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FUZZY-GRANULAR BASED DATA MINING FOR EFFECTIVE DECISION 

SUPPORT IN BIOMEDICAL APPLICATIONS 

by 
 

YUANCHEN HE 

Under the Direction of Raj Sunderraman and Yan-Qing Zhang 

ABSTRACT 
 
 
Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery 

and data mining systems are highly needed to help humans to understand the inherent 

mechanism of diseases. For biomedical classification problems, typically it is impossible 

to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target 

is to build an effective Decision Support System (DSS).  

In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, 

named FARM-DS, is proposed to build such a DSS for binary classification problems in 

the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-

the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide 

strong decision support on disease diagnoses due to their easy interpretability. 

This dissertation also proposes a fuzzy-granular method to select informative and 

discriminative genes from huge microarray gene expression data. With fuzzy granulation, 

information loss in the process of gene selection is decreased. As a result, more 

informative genes for cancer classification are selected and more accurate classifiers can 

be modeled. Empirical studies show that the proposed method is more accurate than 

traditional algorithms for cancer classification. And hence we expect that genes being 

selected can be more helpful for further biological studies. 
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CHAPTER 1 

INTRODUCTION 

In the last decade, with the advent of genomic and proteomic technologies, more and 

more biomedical databases have been created and have been growing in an exponential 

rate. Developing intelligent data analysis tools is essential to extract knowledge from 

these databases to ease biomedical decision-making process. The knowledge extracted 

from these databases is expected to be as accurate as possible. However, due to 

complexity and huge sizes of biomedical databases, it is difficult or even impossible to 

find 100% accurate knowledge. Therefore, a more realistic goal is to build an intelligent 

data analysis tool as an effective Decision Support System (DSS). That is, the role of 

such a data analysis tool is not to replace human experts, but only to assist human experts 

to make decisions more reliably. 

 
1.1 Problem definitions 
 
1.1.1 Binary classification 
 
In this dissertation, we focus on binary classification modeling. Although binary 

classification is the simplest classification problem, many works show that the models for 

it can be naturally extended to multiple classification or regression problems. (This 

extension itself is an interesting research topic and will not be covered in this 

dissertation.)  

A general binary classification problem is defined as follows:  

• Given l independent and identically distributed (i.i.d.) samples 

),(,),,(),,( 2211 ll yxyxyx K  where d
i Rx ∈ , for li ,,2,1 L=  is a feature vector 
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of length d and }1,1{ −+=iy is the class label (+1 for the positive class, and -1 for 

the negative class) for data point ix , 

• Assume the classes are mutually exclusive and exhaustive, which means every 

sample has one and only one class label, 

• Find a classifier with the decision function ),( θxf such that ),( θxfy = , where y 

is the class label for x, θ is a vector of unknown parameters in the function. These 

l samples are called “training data”. 

 

 

1.1.2 Feature selection 
 
Some binary classification problem is more natural to be modeled as a binary ranking 

modeling. Protein homology prediction task is a good example. The target is to predict if 

a protein sequence is homologous to another pre-specified natural protein sequence. 

Because of biological complexity, it is difficult and arbitrary to say two protein sequences 

are absolutely homologous or not (1 or -1 is output); an output with "confidence" may be 

more helpful. In this way, many protein sequences could be ranked by their confidence to 

be homologous to the pre-specified protein sequence. As a result, biologists could quickly 

 real negatives real positives 

predicted 
negatives 

(TN) true 
negatives 

(FN) false 
negatives 

predicted 
positives 

(FP) false 
positives 

(TP) true 
positives 

Figure. 1.1. confusion matrix
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prioritize a list of protein sequences for further study and thus their working efficiencies 

can be enhanced. 

A binary ranking problem is similar to a binary classification problem. The differences 

are 

• the output is a real number in the field of [-1,1], and 

• the absolute value of the output is useless. Intuitively, a good model should rank 

the unseen positive samples (in case of protein homology prediction, they are 

homologous protein sequences) close to the top and rank unseen negative samples 

(in case of protein homology prediction, they are non-homologous protein 

sequences) close to the bottom of the list. 

1.1.3 Feature selection 
 
Feature selection is another important task usually correlated with a classification 

problem. Given a dataset, some input features may be irrelevant to classification. 

Furthermore, some features may be redundant or even noise due to complex correlations 

among them to hide real data distribution. Hence, relevance analysis may be performed 

on the data with the aim of removing any irrelevant, redundant or noisy features from the 

learning process. In machine learning, this process is known as feature selection to filter 

out features, which may otherwise slow down, and possibly mislead, the learning step. 

Relevance analysis is closely related to binary classification. Suppose there are d input 

features in the original dataset, the target of feature selection is to select id informative 

features while removing nd non-informative features. Here 0>id , 0>=nd , ddd ni =+ . 

The target is that the classifier modeled on the subset of id  features has better 

performance than the classifier modeled in the original feature set. 
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1.2 Metrics for classification 
 
The performance of the classifier is usually measured in terms of misclassification error 

on unseen “testing data” which is defined in Eq. (1.1).  

⎩
⎨
⎧ =

=
otherwise

xfyif
xfyE

1
),,(0

)),(,(
θ

θ     (1.1) 

Based on the confusion matrix in Fig. 1.1, many other metrics have been used for 

performance evaluation on classification.  

• Accuracy is the fraction of correctly classified samples over all samples. 

  
TPFPFNTN

TPTNaccuracy
+++

+
= .     (1.2) 

The overall accuracy metric at Eq. (1.2) represents the same meaning as misclassification 

error. Both of them are used to evaluate classification performance on the whole dataset. 

Besides them, two other kinds of metrics have been proposed for different purposes. 

The first kind of metrics is concern with balanced classification ability. Sensitivity at Eq. 

(1.3) and specificity at Eq. (1.4) are usually adopted to monitor classification 

performance on two classes, separately. 

• Sensitivity is the fraction of the real positives that actually are correctly predicted 

as positives.  

• Specificity is the fraction of the real negatives that actually are correctly predicted 

as negatives.  

  
FNTP

TPysensitivit
+

= .      (1.3) 

  
FPTN

TNyspecificit
+

= .      (1.4) 
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Notice that sensitivity is sometimes called true positive rate or positive class accuracy, 

while specificity called true negative rate or negative class accuracy, in different research 

communities. By the definitions, the combination of sensitivity and specificity can be 

used to evaluate a model’s balance ability so that we know if a model is biased to a 

special class. Notice that the sum of FP and FN is the number of misclassification errors 

on the unseen testing dataset. Based on these two metrics, g-mean was proposed in [76] 

at Eq. (1.5), which is the geometric mean of classification accuracy on positive samples 

and classification accuracy on negative samples. Area under ROC curve (AUC-ROC) 

[19], as shown in Fig. 1.2, can also indicate a classifier’s balance ability between 

sensitivity and specificity as a function of varying a classification threshold. 

  yspecificitysensitivitmeang ×=−      (1.5) 

 

 

There is a traditional academic point system to roughly guide the performance evaluation 

on the AUC metric [113]: 

19.0 ≤≤ auc  = excellent (A) 
9.08.0 <≤ auc  = good  (B) 
8.07.0 <≤ auc  = fair  (C) 
7.06.0 <≤ auc  = poor  (D) 
6.05.0 <≤ auc  = fail  (F) 

 
Figure. 1.2. Sample of Area under ROC curve
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On the other hand, sometimes we are interested in highly effective detection ability for 

only one class. For example, for credit card fraud detection problem, the target is 

detecting fraudulent transactions. For diagnosing a rare disease, what we are especially 

interested in is to find patients with this disease. For such kind of problems, another pair 

of metrics, precision at Eq. (1.6) and recall at Eq. (1.7), is often adopted.  

• Precision is the fraction of the samples predicted as positives that really are 

positives.  

• Recall is the fraction of the real positives that actually are correctly predicted as 

positives.  

Notice that recall is the same as sensitivity. F-value at Eq. (1.8) is used to integrate 

precision and recall into a single metric for convenience of modeling. Similarly, area 

under precision/recall curve (AUC-PR), as show in Fig. 1.3 is also used to indicate a 

classifier’s detection ability between precision and recall as a function of varying a 

classification threshold. 

 

FPTP
TPprecision
+

=        (1.6) 

FNTP
TPrecall
+

=        (1.7) 

recallprecision
recallprecisionvaluef

+
=−

**2      (1.8) 
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Both g-mean and AUC-ROC can be used if the target is to optimize classification 

performance with balanced positive class accuracy and negative class accuracy. On the 

other hand, either f-value or AUC-PR is a good metric if the high detection ability is 

more preferred.  

 
1.3 Challenges 
 
How to build an effective and efficient model on a huge and complex dataset is a major 

concern of the science of data mining and machine learning. With emergence of new 

machine learning application domains such as biomedical informatics, E-business and 

national security, more challenges are coming. 

In many biomedical applications, a biologist or a clinician needs to decide whether a 

sample (maybe a patient, a tissue, or a tumor) is healthy or not. From the viewpoint of 

data mining, this problem can be modeled as a binary classification problem. If a sample 

is healthy, it is classified to be a negative case, and the class label is -1; otherwise it is 

positive and the class label is +1. For such a binary classification problem, the 

“effectiveness” of a DSS means that it should not only predict unseen samples accurately, 

but also work in a human-understandable way. Due to this reason, a desirable data 

analysis tool, a classifier in this context, should not only assign a class label to an unseen 

 
Figure. 1.3. Sample of Area under Precision/Recall 
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sample, but also provide meaningful and understandable information why it decides to 

assign such a class label. 

1.4 Organizations 
 
The rest of this dissertation is organized as follows: Chapter 2 reviews related works. 

After that, the general idea and framework of FARM-DS is presented in Chapter 3. 

Chapter 4 conducts empirical studies to apply FARM-DS on real world medical data, 

while Chapter 5 focuses on mining FARs from microarray expression data. In Chapter 6, 

a fuzzy-granular based method is designed to identify marker genes from microarray 

expression data to support further biomedical study. Finally, we conclude this 

dissertation and direct the future work in Chapter 7. 

 



  9  

 

CHAPTER 2 

RELATED WORKS 

2.1 Knowledge discovery, data mining, and data warehousing 
 
Knowledge discovery and data mining is generally known as the science of extracting 

useful information from large and complex datasets or databases. A data warehousing 

system is targeted at integrating knowledge discovery and data mining techniques into 

databases for adaptive and intelligent data analysis. One important data mining task is 

predicting the unknown value of a variable of interest given known values of other 

variables. There are two important distinct kinds of problems in predictive data mining: 

classification if the unknown variable is categorical; and regression if the unknown 

variable is real-valued [52]. For a classification problem, samples of different classes are 

accumulated, on which a classifier is modeled to predict future samples. 

2.2 Association rule mining 
 
Association rule mining is one of the best studied models for data mining. In recent 

years, the discovery of association rules from databases is an important and highly active 

research topic in the data mining field. Association rule mining searches for interesting 

association or correlation relationships among items in a given dataset.  

2.2.1 Basic concepts  
 
Agrawal et al [3] proposed the first association rule mining algorithm in 1993 to discover 

patterns in transactional databases from the retail industry and business. The idea to 

discover association rules is also named “market basket analysis” because it looks for 

associations among items that a customer purchases in a retail shop. For example, when 

a customer buys item A, there is 90% probability he or she will also buy item B.  
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With a transaction database D =  { },...,, 21 nTTT  where each iT  ( )ni ≤≤1 represents a 

transaction and a set of items I = { },...,, 21 mIII  where each jI  ( )mj ≤≤1  represents one 

kind of item, each transaction iT  records the items purchased by the corresponding 

customer, i.e., ⊆iT I. An association rule on this database is formatted as YX ⇒ , where 

X and Y are called itemsets, which are non-empty subsets of I, X and Y are disjoint. Two 

metrics are usually used to measure the reliability and accuracy of the mined association 

rule:  

• The support s of the rule is the prior probability of X and Y, 

n
YX

YXs
∪

=∪= )sup( , and  

• The confidence c of the rule is the conditional probability of Y given X, 

X
YX

X
YXc

∪
=

∪
=

)sup(
)sup( .  

Intuitively, s can be viewed as the occurrence frequency of X in the whole transaction 

database D, while c indicates that when X is true, Y is also true with the probability of c. 

Two thresholds, minimum confidence and minimum support, are used by the mining 

algorithm to find all association rules whose support and confidence are above the 

corresponding thresholds.  

Usually, an association rule mining algorithm consists of two steps: 

1) Finding the frequent itemsets which have support above the predetermined 

minimum support. 

2) Deriving all rules, based on each frequent itemset, which have more than 

predetermined minimum confidence.  
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2.2.2 The Apriori Algorithm 
 
The Apriori algorithm is proposed in [3] for finding frequent itemsets. It generates the 

candidate itemsets in one pass through only the itemsets with large support in the 

previous pass, without considering the transactions in the database.  

An itemset with support larger than or equal to the minimum support is called a frequent 

itemset. The idea of the Apriori algorithm lies in the “downward-closed” property of 

support, which means if an itemset is a frequent itemset, then each of its subsets is also a 

frequent itemset. The candidate itemsets having k items can be generated by joining 

frequent itemsets having k-1 items, and removing all subsets that are not frequent. 

The Apriori algorithm starts by finding all frequent 1-itemsets (itemsets with 1 item); 

then consider 2-itemsets, and so forth. During each iteration only candidates found to be 

frequent in the previous iteration are used to generate a new candidate set during the next 

iteration. The algorithm terminates when there are no frequent k-itemsets.  

Figure 2.2 sketches the idea of the Apriori algorithm with the notation given at Table 2.1. 

k-itemset An itemset having k items 

Lk Set of frequent k-itemset (those with minimum support) 

Ck Set of candidate k-itemset (potentially frequent itemsets) 

 

Table. 2.1.  Notation for mining algorithm 
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L1 = { frequent 1-itemsets }; 
for (k =2; Lk-1 ≠∅; k++ ) do begin 
    Ck = apriori-gen (Lk-1 );  // New candidates 
    forall transactions t ∈ D do begin 
        Ct  = subset (Ck, t);       // Candidates contained in t 
        forall condidates c ∈ Ct  do 
            c.count ++; 
    end 
    Lk  =  { c ∈ Ck | c.count ≥ minsup } 
end 
Answer = ∪ k Lk ; 

 
 

 

Figure. 2.1  Apriori algorithm 

The apriori-gen function takes as an input parameter Lk-1 and returns a superset of the set 

of all frequent k-itemsets. It consists of a join step and a prune step. In the join step, Lk-1 

is joined with itself: 

            insert into Ck 

            select p.item1, p.item2, …, p.itemk-1, q.itemk-1 

            from Lk-1  p, Lk-1  q 

            where p.item1 = q.item1, …, p.itemk-2 = q.itemk-2, p.itemk-1 < q.itemk-1 

In the prune step, all itemsets c∈ Ck such that some (k-1)-subset of c is not in Lk-1 are 

deleted. 

The subset function finds all candidate k-itemsets in the transaction database using a hash 

tree. 

To improve the efficiency of the Apriori algorithm, many variations of the Apriori 

algorithm have been designed including hashing [97], transaction reduction [4, 51, 97], 
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partitioning the data (mining on each partition and then combining the results) [107], and 

sampling the data (mining on a subset of the data) [117].  

2.3 Association rule mining for classification 
 
There are two kinds of data mining problems: descriptive data mining and predictive 

data mining [54]. Up to now, most of association rule mining algorithms are designed for 

descriptive data mining problems. That is, they are used to describe interesting 

relationships among items in a given dataset. Because of their easy interpretability, the 

mined association rules may also be utilized for predictive data mining including 

supervised classification problems. 

Some research works have been carried out to utilize “crisp” association rules for 

classification.  

In 1997, Lent et al proposed a method, Association Rule Clustering System, or ARCS, to 

mine association rules based on clustering and then employ the rules for classification 

[77]. The ARCS, mined association rules of the form catquanquan AAA ⇒∧ 21 , where 1quanA  

and 2quanA  are tests on quantitative attribute ranges, and catA assigns a class label for a 

categorical attribute from the given training data. The clustered association rules 

generated by ARCS were applied to classification, and their accuracy was compared to 

C4.5 [105]. ARCS algorithm is found to be slightly more accurate than C4.5.  

The classification by aggregating emerging patterns, called CAEP, is proposed by Dong 

et al [44]. CAEP uses the notion of itemset support to mine emerging patterns (EPs), 

which are used to construct a classifier. An EP is defined as an itemset whose support 

increases significantly from one class to another. CAEP has been found to be more 

accurate than C4.5 and association-based classification on several data sets.  



  14  

 

Association based decision tree [120], called ADT, is a different classification algorithm 

based on association rules, combined with decision tree pruning techniques. All rules 

with a confidence greater or equal to a given threshold are extracted and more specific 

rules are pruned. A decision tree is created based on the remaining association rules, on 

which classical decision tree pruning techniques are applies. 

Baralis et al [12] proposed “Live and Let Live” (L3), for associative classification. In this 

algorithm, classification is performed in two steps. Initially, rules which have already 

correctly classified at least one training case, sorted by confidence, are considered. If the 

case is still unclassified, the remaining rules (unused during the training phase) are 

considered, again sorted by confidence. 

Liu et al proposed a framework, named associative classification, to integrate association 

rule mining and classification [84]. The integration is done by focusing on mining a 

special subset of association rules whose consequent parts are restricted to the 

classification class labels, called “Class Association Rules” (CARs). This algorithm first 

generates all the association rules and then selects a small set of rules to form the 

classifiers. When predicting the class label for a coming sample, the best rule is chosen.  

Li et al proposed an algorithm “Classification based on Multiple Association Rules” 

(CMAR), which utilizes multiple class-association rules for accurate and efficient 

classification [78]. This method extends an efficient mining algorithm, FP-growth [53], 

constructs a class distribution- associated FP-trees, and predicts the unseen sample 

within multiple rules, using weighted 2χ .  

Liu and Li’s approaches generate the complete set of association rules as the first step, 

and then select a small set of high quality rules for prediction. These two approaches 
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achieve higher accuracy than traditional classification approaches such as C4.5. 

However, they often generate a very large number of rules in association rule mining, 

and take efforts to select high quality rules from among them. Yin et al proposed 

“Classification based on Predictive Association Rules” (CPAR) [126], which combines 

the advantages of both associative classification and traditional rule-based classification. 

CPAR adopts a greedy algorithm to generate rules directly from training data, and hence 

generates and tests more rules than traditional rule-based classifiers to avoid missing 

important rules, and uses expected accuracy to evaluate each rule and uses the best k 

rules in prediction to avoid overfitting. 

Using association rules for classification helps to solve the understandability problem 

[32, 100] in classification rule mining. Many rules produced by standard classification 

systems are difficult to understand because these systems use domain independent biases 

and heuristics to generate a small set of rules to form a classifier. However, these biases 

may not be in agreement with the knowledge of the human user, result in that many 

generated rules are meaningless to user, while many understandable and meaningful 

rules are left undiscovered. 

2.4 Soft computing and fuzzy logic 
 
The basic ideas underlying soft computing in its current incarnation have links to many 

earlier influences, among them Prof. Zadeh’s 1965 paper on fuzzy sets [130]; the 1973 

paper on the analysis of complex systems and decision processes [131]. 

The principal constituents of soft computing (SC) are fuzzy logic (FL), neural network 

theory (NN) and probabilistic reasoning (PR), with the latter subsuming belief networks, 

evolutionary computing including DNA computing, chaos theory and parts of learning 
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theory. For more detailed information and latest news on the soft computing, please refer 

to The Berkeley Initiative in Soft Computing (BISC) program (http://www-

bisc.cs.berkeley.edu/).  

2.4.1 Fuzzy concept in the data mining domain. 
 
Real world data often comes with impreciseness and uncertainty. Such data needs to be 

transformed to be well-defined and unambiguous so that it can be handled with a standard 

relational data model. For example, many extensions to a standard relational model have 

been proposed [21, 89, and 4] to support quantitative data.   

The fuzzy approach clearly represents a robust solution for the transformation. Instead of 

defining special “null values” or specific relational algebra operators or first order 

predicates, fuzzy sets and fuzzy databases are used [132, 106]. 

Knowledge presented by fuzzy sets is not only more human-understandable but also 

usually more compact and robust. Furthermore, mining association rules based on fuzzy 

sets can handle quantitative data, not only just providing the necessary support to use 

uncertain data types with existing algorithms; but also creating smoother transition 

boundaries between partitions for numerical values [75]. As a result, fuzzy approaches 

constitute a good solution for both well-defined and imprecise data.   

2.4.2 Fuzzy data modeling 
 
The use of fuzzy logic in the relational model provides an effective way to handle 

quantitative data with imprecise, uncertain or incomplete information. Fuzzy set theory is 

more and more frequently used in intelligent systems because of its affinity to human 

reasoning and the simplicity of the concept [34, 62, and 129]. 
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Some early works [106, 21, and 89], have demonstrated the superior performance of 

fuzzy logic on data mining and data warehousing as an extension to the relational model. 

In order to fuzzify a relational data model, structural modifications are introduced to 

represent and manage quantitative data.  There are two major approaches: the proximity 

relation model [21, 89] and a probability distribution based model [1, 89]. 

2.4.2.1 Fuzzy sets 
 
A fuzzy set F in a universe of discourse U (classical set of objects) is characterized by a 

membership function: 

        µF: U [0,1] 

where µF(U)  for each u∈U denotes the membership value of u in the fuzzy set F. 

With the membership function, a fuzzy set F is represented as 

F = {µ(u1)/u1, µ(u2)/u2,…, µ(un)/un} 

where ui∈U, 1 ≤ i ≤ n. 

To deal with a fuzzy set, classical set theory operations have been extended to deal with 

fuzzy sets. One example extension is as follows [RM 88]: 

µA∪B (u) =  max(µA(u), µB(u) ) 

µA∩B (u) =  min(µA(u), µB(u) ) 

µĀ(u) = 1 -  µA(u) 

where A and B are two fuzzy subsets in a universe of discourse U with membership 

functions µA  and  µB respectively . 

Based on these definitions, most of the properties that hold for classical set operations, 

such as DeMorgan’s Laws, have been shown to also hold for fuzzy sets. The only law of 

classical set theory that is no longer true is the law of excluded middle, ie., A∩Ā ≠ ∅ and 
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A∪Ā ≠ U. where ∅ is the null set for all u∈U. Two fuzzy sets are defined to be equal if 

A ⊇ B and A ⊆ B. 

The Cartesian product A1xA2x…An (n universes) is defined to be the fuzzy set 

U1xU2x…Un where µA1xµA2x…µAn(u1…un) = min(µA1(u1), µA2(u2),… µAn(un)) 

2.4.2.2 Probability distribution and fuzzy sets 
 
Instead of considering µF(u) to be the membership value of u in F, it can also be 

considered as a measure of the possibility that a variable X has a value u, where X takes 

values in U. 

 P(X = u) = µF(u) for all u∈U. 

A distribution function of the previous probability equation can be defined with classical 

statistical definitions [106] to provide a very powerful analysis tool. 

2.4.3 Data mining and quantitative data  
 
Data mining, or knowledge discovery in databases, is the extraction of hidden 

relationships among data items. A Boolean Association Rule problem [3] is to find all 

association rules that satisfy user-specified minimum support and minimum confidence 

constraints.  It can be conceptually reduced to find all matching values in different 

categories belonging to a given database, which appear together with certain frequency. 

Since the problem of discovering association rules was introduced [3], many algorithms 

have been proposed to find association rules in large databases with binary attributes. 

However, the binary association rule restricts the application area to a binary one and real 

data usually contains quantitative data that cannot be directly treated with classical binary 

mining algorithms.   
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2.4.3.1 Transforming quantitative data  
 
In order to deal with quantitative data, the quantitative association rule was proposed as 

an extension to the boolean association rule [4], where boolean features can be 

considered a special case of categorical features. 

Several partitioning methods based on classical set theory have been proposed to 

accomplish this task [4] but all of them are susceptible to the effect of sharp boundaries 

and sensitive loose of intrinsic relational data information. 

The discrete interval method divides a feature domain into discrete intervals and 

measures the importance of an interval based on the frequency of items appeared in the 

interval. However, there is a potential risk of information loss because of excluding some 

potential elements near the crisp boundaries. (Fig. 2.2). 

  

 

Figure. 2.2 discrete interval method 

 

Another feature partitioning method tries to minimize this effect creating overlapping 

regions but this causes that the near boundary elements become more important, 

overemphasizing the important of some intervals  (Fig. 2.3). 
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Figure. 2.3 creating overlapping regions 

 

In the fuzzy theory set, an element can belong to a set with a set membership value 

between 0 and 1 that is assigned by the membership function associated with each fuzzy 

set. As such, an interval membership is no longer defined by an absolute true/false binary 

statement but by a probabilistic degree of membership specified by the membership 

function. As a result, fuzzy sets provide a smooth change between boundaries and the 

effect is represented by the curve of a traditional fuzzy set (Fig. 2.4) 

 

 

Fig. 2.4 fuzzy partition 
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With the fuzzy approach, quantitative data can be defined and specified without 

introducing crisp partition boundaries, side-effects of conventional partitioning 

algorithms. 

2.4.3.2 Fuzzy data mining 
 
Although current quantitative association rule mining algorithms can solve some of the 

problems introduced by quantitative features, they also introduce some other problems 

[75]. The use of a crisp partition is also not reasonable with respect to human perception. 

Fuzzy sets provide an intuitive and understandable solution to handle quantitative data by 

providing a valid data abstraction to use boolean association rule mining algorithms. 

Several fuzzy learning algorithms have been successfully applied to specific domains [3, 

129, and 34], where strategies based on decision trees [129] can be found in conjunction 

with space learning [62] and some other classical machine learning algorithms [34]. 

With fuzzy transformation, most of classical algorithms for mining boolean association 

rule can be directly used to handle quantitative data [75, 43, 61, and 62], without the need 

to discover new techniques.  

2.4.3.3 Finding Fuzzy Sets 
 
As mentioned in [43], most of the proposed fuzzy mining algorithms relieve the creation 

of fuzzy sets on quantitative features and defining corresponding membership functions 

to an end user or an expert. As a result, the performance of these algorithms relies 

crucially on the appropriateness of the fuzzy sets to a given dataset. Unfortunately, in the 

real word applications, it is usually difficult to know a priori which fuzzy sets will be the 

most suitable. Moreover, human experts can not always provide the fuzzy sets of the 

quantitative features in the database for fuzzy association rule mining.  
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Some researches have demonstrated that fuzzy sets can be determined automatically from 

the data using clustering techniques. Some of them are integrated in the fuzzy mining 

algorithm [118, 61], while others are fully external to completely reuse preexistent 

algorithms [43]. Once defined the fuzzy sets, the membership functions can be efficiently 

calculated [43]. 

2.5 Fuzzy association rule mining 
 
Traditional association rule mining algorithms can only be applied to data mining 

problems with categorical features. For a data mining problem with quantitative features, 

it is necessary to transform each quantitative feature into discrete intervals. Many 

discretization algorithms have been proposed for this purpose. Kamber et al proposed 

one such algorithm to mine multidimensional association rules using statistically 

discretization of quantitative features and data cubes based on predefined concept 

hierarchies [70]. The ARCS [77] algorithm mines quantitative association rules by 

dynamically discretizing quantitative attributes based on binding, where “adjacent” 

association rules may be combined by clustering. Techniques for mining quantitative 

rules based on x-monotone and rectilinear regions were presented by Fukuda et al [44], 

and Yoda et al. [128]. A non-grid-based technique for mining quantitative association 

rules, which uses a measure of partial completeness, has been proposed by Srikant and 

Agrawal [110]. The distance-based association rule mining algorithm [91] can mine 

distance-based association rules to capture the semantics of interval data, where intervals 

are defined by clustering. But these approaches have the disadvantage that they involve 

crisp cutoffs for quantitative features. Fuzzy logic can be introduced into the system to 
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allow “fuzzy” thresholds or boundaries to be defined. Fuzzy logic is demonstrated to be 

a superior mechanism to enhance interpretability of these discrete intervals.  

Many fuzzy association rule mining algorithms have been proposed in recent research 

works.  

[76] uses a membership threshold to transform fuzzy transactions into crisp ones before 

looking for binary association rules in the set of crisp transactions. This algorithm can 

diminish the granularity of quantitative features. Chan et al introduced F-APACS to 

employ linguistic terms for representing the reveal regularities and exceptions for mining 

fuzzy association rules [23]. The linguistic representation is especially useful when those 

rules discovered are presented to human experts for examination. In order to avoiding 

the usage of user-supplied thresholds such as minimum support and minimum 

confidence, which are often difficult to determine, F-APACS utilizes adjusted difference 

analysis to identify interesting associations among attributes. Moreover, a confidence 

measure, called weight of evidence measure, is used to provide a way for representing 

the uncertainty associated with the fuzzy association rules. In [7, 8 and 24], Au et al also 

proposed a series of  algorithms to employ a set of predefined linguistic labels using 

adjusted difference and weight of evidence to measure the importance and accuracy of 

fuzzy association rules. These two measures can avoid the need for a user to provide 

importance thresholds, but has the drawback of making symmetric the adjusted 

difference and thus, when a rule CA⇒  is found to be interesting, then AC ⇒  will be 

too. 

In [chun1998hongkong], the usefulness of itemsets and rules is measured by means of a 

significance factor, which is defined as a generalization of support based on sigma-
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counts (to count the percentage of transactions where the item is) and the product. The 

accuracy is based on a kind of certainty factor (with different formulation and semantics). 

In [tp1999], only one item per feature is considered: the pair <feature, label> with 

greater support among those items based on the same feature. The model is the usual 

generalization of support and confidence based on sigma-counts. The proposed mining 

algorithm first transforms each quantitative value into a fuzzy set in linguistic terms. The 

algorithm then calculates the scalar cardinalities of all linguistic terms in the transaction 

data. Now the linguistic term with maximal cardinality is used for each feature and thus 

the number of items keeps. The algorithm therefore focuses on the most important 

linguistic terms and hence speeds up finding frequent itemsets. The mining process is 

then performed by using fuzzy counts. 

Chien et al [30] proposed an efficient hierarchical clustering algorithm based on 

variation of density to solve the problem of interval partition. For this purpose, two main 

characteristics of clustering numerical data: relative inter-connectivity and relative 

closeness are defined. By giving a proper parameter to determine the importance 

between relative closeness and relative inter-connectivity, the proposed approach can 

generate a reasonable interval automatically for data transformation.  

Bosc et al [16, 18] introduced another approach to the linguistic summarization of 

databases. The basic ideas are to use fuzzy partitions on feature domains, which are 

meaningful for the users, to perform a “soft compression” of the database, and then 

explore it for evaluating potential summaries. The evaluation is made by computing 

fuzzy cardinalities which account for the possible variations of the interpretation of the 

labels. 
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To cope with the task of diminishing the granularity in quantitative feature 

representations to obtain useful and natural association rules, some researchers opted for 

using crisp grid partition or clustering based approaches/ algorithms like Partial 

Completeness [110], Optimized Association Rules [45] or CLIQUE [2]. Hu et al. [64] 

have extended the ideas of using crisp grid partition or clustering based approaches to 

allow non-empty intersections between neighborhood sets in partitions and to describe 

that by fuzzy sets. They construct an effective algorithm Fuzzy Grid Based Rules Mining 

Algorithm, called FGBRMA. This algorithm deals with both quantitative and categorical 

features in a similar manner. The concepts of large fuzzy grid and effective fuzzy 

association rule are introduced by using special fuzzy support and fuzzy confidence 

measures. FGBRMA generates large fuzzy grids and fuzzy association rules. 

A similar method is developed in [65] for inductive machine learning problems to extract 

classification rules from a set of examples. They proposed a new fuzzy data mining 

technique consisting of two phases to find fuzzy if–then rules for classification problems. 

The first phase is used to find frequent fuzzy grids by using a pre-specified simple fuzzy 

partition method to divide each quantitative feature, and then the second phase is for 

generating fuzzy classification rules from frequent fuzzy grids. Another interesting work 

in [43] finds the fuzzy sets to represent suitable linguistic labels for data by using fuzzy 

clustering techniques. This way, fuzzy sets can be automatically extracted but may be 

hard to fit to meaningful labels. 

Kaya et al. [73] proposed a clustering method that employs multi-objective Genetic 

Algorithm for the automatic discovery of membership functions used in determining 

fuzzy quantitative association rules. This approach optimizes the number of fuzzy sets 
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and their ranges according to multi-objective criteria in a way to maximize the number 

of large itemsets with respect to a given minimum support value.  

Chen et al [27, 28] have considered the case in which there are certain fuzzy taxonomic 

structures reflecting partial belonging of one item to another in the hierarchy. To deal 

with these situations, association rules are requested to be of the form YX ⇒  where 

either X or Y is a collection of fuzzy sets. The model is based on a generalization of 

support and confidence by means of sigma-counts, and the algorithms are again 

extensions of the classic Apriori algorithm. 

Delgado et al define “fuzzy transactions”, which can be applied to quantitative features. 

They also propose an algorithm to mine “fuzzy association rules” based on these “fuzzy 

transactions” [35]. The model can be employed in mining distinct types of patterns, from 

ordinary association rules to fuzzy and approximate functional dependencies and gradual 

rules.   

2.6 Fuzzy association rule mining for classification 
 
In recent years, many research works haven been conducted for fuzzy association rules 

mining. However, to out best knowledge, there are very few works focusing on fuzzy 

association rule mining on supervised classification problems. Hu et al proposed to 

extract “fuzzy associative classification rules” in “fuzzy grids” that are generated by 

fuzzy partitioning on each input feature [63]. A fuzzy associative rule is defined as a 

fuzzy if-then rule, whose consequent part is one class label. They divide both 

quantitative and categorical features into many fuzzy partitions by the concept of the 

fuzzy grids, resulting from fuzzy partitioning in the feature space, and a linguistic 

interpretation is easily obtained for each fuzzy partition, since each fuzzy partition is a 
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fuzzy number. After fuzzy partition for each feature, these partitions are viewed as 

candidates of one-dimension fuzzy grid used to generate large k-dimension fuzzy grids, 

and then the fuzzy associative classification rules are generated from these large fuzzy 

grids.  In their work, they limit the application of mined fuzzy association rules in the 

domain of industrial engineering. Moreover, their algorithm faces the “combinatorial 

rule explosion” problem [37] in that the number of “fuzzy grids” increases exponentially 

with the dimension of a dataset. Chatterjee et al propose a fuzzy pattern classifier named 

Influential Rule Search Scheme (IRSS) [26]. This fuzzy classification algorithm is used 

for automatic construction of the membership functions (MFs) and the fuzzy rule base 

from an input-output data set. IRSS constructs MFs for each input attribute individually, 

applying fuzzy C-means (FCM) algorithm. And shapes of all the input MFs are generic 

in nature and depend entirely on data. This method adaptively modifies the fuzzy rule 

base, after each epoch, by identifying those rules which are mostly influential in 

contributing to the system error and subsequently punishing them to improve 

performance. This coarse adjustment scheme can be followed by another fine adjustment 

scheme where output MFs are adapted depending on system cumulative error after each 

epoch. The entire adaptation process stops when system rms error falls below maximum 

allowable limit.  The proposed IRSS, developed as a pattern classifier, has four basic 

development stages. In stage 1, initial construction of the membership functions for input 

and output variables from the input-output data set is achieved. In stage 2, initial 

construction of the fuzzy rule base, from MFs constructed in stage 1 and the input-output 

data set, us done. Stage 3 contains the defuzzification method to generate crisp output 

value from fuzzified consequence. Stage 4 contains the proposed approach for tuning of 
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both the fuzzy rule base and the output MFs to achieve desired performance of the IRSS, 

hence constructed. However, some parameters in IRSS need to be decided by human 

experts in advance. As a result, it is difficult to be applied to mine FARs on real 

biomedical datasets due to absent of this kind of prior knowledge. 

2.7 Granular computing 
 
Granular computing represents information in the form of some aggregates (called 

“information granules”) such as subsets, classes, and clusters of a universe and then 

solves the targeted problem in each information granule [11, 80-83, 124-125]. On one 

hand, for a huge and complicated problem, it embodies Divide-and-Conquer principle to 

split the original task into a sequence of more manageable and smaller subtasks. On the 

other hand, for a sequence of similar little tasks, it comprehends the problem at hand 

without getting buried in all unnecessary details. As opposed to traditional data-oriented 

numeric computing, granular computing is knowledge-oriented [124]. From the data 

mining viewpoint, if built reasonably, information granules can make the mining 

algorithms more effective and at the same time avoid the notorious noise problem.  

Many previous works have reported that the frequent patterns occurred in the training 

dataset of a complex and huge classification problem could lead to measured 

improvement on testing accuracy [126]. The idea was named "association classification" 

[126]. 

For a binary classification problem with continuous features, an association rule is 

usually formed as: 

1)-(or 1y    ],,[ ...   ],[    ],[ 212221212111 =∈∈∈ thenvvaandvvaandvvaif nnn  (2.1) 
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The support and confidence of an association rule for a binary classification problem are 

defined in Equations2.2-2.3: 

WPG SSARSUP /)( =        (2.2) 

GPG SSARCOF /)( =        (2.3) 

where WS is the size of training data with the same class label as the THEN-part of the 

association rule, GS is the size of training data that satisfy the IF-part, while PGS is the 

size of training data correctly classified by the association rule. Notice that WS is defined 

in such a way that the support and confidence of an association rule are calculated based 

on a single class. As a result, the association rule mining will not be biased for major 

class in an unbalanced binary classification problem.  

From Eq. 2.1, an association rule (or a set of association rules combined disjunctively) 

could be used to partition the feature space to find an information granule. So association 

rules mining is a possible solution for granulation. The realization of a successful 

"association granulation" depends on the following two issues: 

An association rule with high enough confidence could deduce a "pure" granule, in 

which it is unnecessary to build a classifier because of its high purity. If its support is 

also high, it could significantly simplify and speed up classification because it decreases 

the size of the training dataset. 

A more general association rule with a shorter IF-part should be more possible to avoid 

overfitting training dataset. A short IF-part means a low model complication, which in 

turn means a good generalization capability. 
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2.8 Clustering and data abstraction 
 
2.8.1 Clustering 
 
2.8.1.1 Basic concepts 
 
Clustering is a division of data into groups of similar objects. Each group, called a 

cluster, is a collection of data objects that are similar to one another within the same 

cluster and are dissimilar to the objects in other clusters. A cluster of data objects can be 

treated collectively as one group in many applications. Representing data by fewer 

clusters loses certain details, but achieves simplification.  

Clustering analysis has wide applications including market or customer segmentation, 

pattern recognition, biological studies, spatial data analysis, Web document classification, 

and many others.  

Cluster analysis can be used as a standalone data mining tool to gain insight into the data 

distribution for descriptive data mining, or serve as a preprocessing step for predictive 

data mining algorithms operating on the detected clusters. 

There are a large number of clustering algorithms in the literature. In general, most of 

clustering methods can be categorized into partitioning methods, hierarchical methods, 

density-based methods, grid-based methods, or model-based methods. Among them 

partitioning and hierarchical methods are most popular ones. A partitioning method first 

creates an initial set of k partitions, where k is the number of partitions to construct; then 

it iteratively moves objects from one group to another to improve the partitioning. 

Typical partitioning methods include k-means [87], k-medoids [71], CLARANS [95, 42], 

and so on. A hierarchical method creates a hierarchical decomposition of the given set of 

data objects.  The method can be classified as being either agglomerative (bottom-up) or 
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divisive (top-down), based on how the hierarchical decomposition is formed. The quality 

of hierarchical agglomeration can be improved by analyzing object linkages at each 

hierarchical partitioning (such as in Cure [47] and Chameleon [72]) or integrating other 

clustering techniques, such as iterative relocation (as in BIRCH [133]). 

Traditional clustering approaches generate partitions; in a partition, each pattern belongs 

to one and only one cluster. Hence, the clusters in a hard clustering are disjoint. Fuzzy 

clustering extends this notion to associate each pattern with every cluster using a mem-

bership function. The out-put of such algorithms is a clustering, but not a partition. In 

fuzzy clustering, each cluster is a fuzzy set of all the patterns. Larger membership values 

indicate higher confidence in the assignment of the pattern to the cluster. A hard 

clustering can be obtained from a fuzzy partition by thresholding the membership value. 

The most popular fuzzy clustering algorithm is the fuzzy c-means (FCM [40, 14]) 

algorithm. 

2.8.1.2 Representation of clusters 
In applications where the number of classes or clusters in a data set must be discovered, 

a partition of the data set is the end product. Here, a partition gives an idea about the 

separability of the data points into clusters and whether it is meaningful to employ a 

supervised classifier that assumes a given number of classes in the data set. However, in 

many other applications that involve decision making, the resulting clusters have to be 

represented or described in a compact form to achieve data abstraction. Even though the 

construction of a cluster representation is an important step in decision making, it has not 

been examined closely by researchers. The notion of cluster representation was 

introduced and was subsequently studied. The followings are three popular representation 

schemes:  
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1. Represent a cluster of points by their centroid or by a set of distant points in the 

cluster.  

2. Represent clusters using nodes in a classification tree.  

3. Represent clusters by using conjunctive logical expressions 

Use of the centroid to represent a cluster is the most popular scheme. It works well when 

the clusters are compact or isotropic. However, when the clusters are elongated or non-

isotropic, then this scheme fails to represent them properly. In such a case, the use of a 

collection of boundary points in a cluster captures its shape well. The number of points 

used to represent a cluster should increase as the complexity of its shape increases. Every 

path in a classification tree from the root node to a leaf node corresponds to a 

conjunctive statement. An important limitation of the typical use of the simple 

conjunctive concept representations is that they can describe only rectangular or 

isotropic clusters in the feature space. 

2.8.2 Data abstraction 
Data abstraction is useful in decision making because of the following reasons: 

• It gives a simple and intuitive description of clusters which is easy for human 

comprehension. In both conceptual clustering and symbolic clustering this 

representation is obtained without using an additional step. These algorithms 

generate the clusters as well as their descriptions. A set of fuzzy rules can be 

obtained from fuzzy clusters of a data set. These rules can be used to build fuzzy 

classifiers and fuzzy controllers. It helps in achieving data compression that can 

be exploited further by a computer. A partition clustering like the k-means 

algorithm cannot separate these two structures properly. The single-link algorithm 

works well on this data, but is computationally expensive. So a hybrid approach 
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may be used to exploit the desirable properties of both these algorithms. We 

obtain 8 subclusters of the data using the (computationally efficient) k-means 

algorithm.  

• It increases the efficiency of the decision making task. In a cluster-based 

document retrieval technique, a large collection of documents is clustered and 

each of the clusters is represented using its centroid. In order to retrieve 

documents relevant to a query, the query is matched with the cluster centroids 

rather than with all the documents. This helps in retrieving relevant documents 

efficiently. Also in several applications involving large data sets, clustering is 

used to per-form indexing, which helps in efficient decision making.  
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Chapter 3 Fuzzy Association Rule Mining for Decision Support 
 
 

 

The new FARM-DS algorithm consists of two phases: the training phase and the testing 

phase. In the training phase, four steps are executed to mine fuzzy association rules. At 

step 1, a 1-in-1-out ANFIS system is used to generate fuzzy internals on each input 

feature. Each fuzzy interval is defined with a fuzzy membership function. At step 2, 

clustering is conducted for data abstraction to extract inherent data distribution 

knowledge. At step 3, FARM-DS naturally transforms quantitative samples into “fuzzy 

discrete transactions” by projecting the center of each cluster extracted at step 2 on the 

fuzzy intervals generated at step 1. Finally, at step 4, simple “IF-THEN” Fuzzy 

Association Rules can be mined from the “fuzzy discrete transactions” by the traditional 

Apriori association rule mining algorithm. These FARs are thereafter used to predict 

unseen samples in the testing phase.  

Figure. 3.1.  a sketch of FARM-DS 
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Fig. 3.1 shows a sketch of the FARM-DS algorithm. In the following, we assume that the 

classification problem at hand has n samples and m input features. Notice that step 1 and 

step 2 can be executed independently in parallel. 

3.1 Step 1: Fuzzy Interval Partitioning 
 
Step 1 builds a 1-in-1-out 0-order TSK fuzzy model [112, 114] for each feature: 
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Here, j ≥ 2 linguistic terms (Mi1, Mi2,… Mij) are defined for the ith input feature fi, and 

the shape of the fuzzy membership function for each linguistic term will be selected in a 

data-dependant way from the following functions.  

Triangular membership function specified by three parameters {a, b, c} as follows: 
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where {a, b, c} determine the x coordinates of the three corners of the underlying 

triangular MF. 

Trapezoidal membership function specified by four parameters {a, b, c, d} as follows: 
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where {a, b, c, d} determine the x coordinates of the four corners of the underlying 

triangular MF. 

Gaussian membership function specified by two parameters {c, σ} as follows: 
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where c represents the center and σ determines the width of the underlying Gaussian MF. 

Generalized bell membership function specified by three parameters {a, b, c} as follows: 
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where b is usually positive. 

Sigmoidal membership function specified by two parameters {a, c} as follows: 
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where a controls the slope at the crossover point x = c. 

Left-Right membership function specified by three parameters {α, β, c} as follows: 
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where FL(x) and FR(x) are monotonically decreasing functions defined on [0,∞) with 

FL(0) = FR(0) = 1 and limx→∞ FL(x)= limx→∞ FR(x)=0 .  

In Eq. 3.1, Y = -1 means a negative sample, and Y = 1 means a positive sample. 

In its simplest form, only two linguistic terms (“low” and “high”) are defined for the ith 

input feature fi, and the default membership function is a trapezoidal membership 

function (Eq. 3.3). 

.1,
,1,

=
−=

YthenhighisfIf
YthenlowisfIf

i

i      (3.8) 

Furthermore, parameters (defining MFs ) in the 1-in-1-out TSK model are optimized by 

an ANFIS system to maximize the classification accuracy on the training dataset. The 

goal of this step is to achieve an approximate but suitable fuzzy partition for each feature 

efficiently (because here we consider each feature separately) and effectively (because 

we optimize the partition with a simple 1-in-1out ANFIS system). 

Recently, cancer classification on microarray expression data is a hot bioinformatics 

research topic. A typical gene expression dataset is extremely high dimensional. The 

data usually comes with only dozens of samples but with thousands or even tens of 

thousands of gene features. As a result, the ability to extract a subset of informative 

genes while removing irrelevant or redundant genes is crucial for accurate classification. 

Furthermore, it is also helpful for biologists to find the inherent cancer-resulting 

mechanism and thus to develop better diagnostic methods or find better therapeutic 

treatments. From the data mining viewpoint, this gene selection problem is essentially a 

feature selection or dimensionality reduction problem. A good dimensionality reduction 

method should remove irrelevant or redundant features while keep informative or 

important features for classification. A classifier modeled in the resulted lower-



  38  

 

dimensioned feature space is expected to capture the inherent data distribution better and 

thus has a better performance. 

One more potential benefit of single dimension fuzzy partition described above is that 

features can be ranked according to classification accuracy of corresponding TSK 

models. For a high-dimensional classification problem such as cancer classification on 

microarray gene expression data, this feature ranking process may be useful for 

dimension reduction to make the following steps more efficient. This is an interesting 

future work. 

3.2 Step 2: Data Abstracting 
 
Step 2 groups training samples into several clusters by the K-means clustering algorithm.  

1. Choose k cluster centers to coincide with k randomly-chosen patterns or k 

randomly defined points inside the hypervolume containing the pattern set.  

2. Assign each pattern to the closest cluster center. 

3. Recompute the cluster centers using the current cluster memberships. 

4. If a convergence criterion is not met, go to step 2. Typical convergence criteria 

are: no (or inimal) reas-signment of patterns to new cluster centers, or minimal 

decrease in squared error. 

Several variants of the k-means algorithm have been reported in the literature. Some of 

them attempt to select a good initial partition so that the algorithm is more likely to find 

the global minimum value. 

Another variation is to permit splitting and merging of the resulting clusters. Typically, a 

cluster is split when its variance is above a prespecified threshold, and two clusters are 

merged when the distance between their centroids is below another pre-specified 
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threshold. Using this variant, it is possible to obtain the optimal partition starting from 

any arbitrary initial partition, provided proper threshold values are specified. The well-

known ISO-DATA algorithm employs this technique of merging and splitting clusters.  

Another variation of the k-means algorithm involves selecting a different criterion 

function altogether. The dynamic clustering algorithm (which permits representations 

other than the centroid for each cluster) was proposed and describes a dynamic clustering 

approach obtained by formulating the clustering problem in the framework of maximum-

likelihood estimation. The regularized Mahalanobis distance was used in Mao and to 

obtain hyperellipsoidal clusters. 

K-means clustering can be viewed as a data abstraction method. That is, K-means 

partitions the samples into K mutually exclusive clusters, and returns a vector of indices 

indicating to which of the k clusters it has assigned each observation. Notice that K-

means creates a single level of clusters. K-means is more suitable for clustering large 

amounts of data. It treats each sample as an object having a location in the feature space. 

It finds a partition in which objects within each cluster are as close to each other as 

possible, and as far from objects in other clusters as possible.  

There are many different distance measurements.  

• Squared Euclidean distance. Each centroid is the mean of the points in that 

cluster.  

• Sum of absolute differences, i.e., L1. Each centroid is the component-wise 

median of the points in that cluster. 
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• One minus the cosine of the included angle between points (treated as vectors). 

Each centroid is the mean of the points in that cluster, after normalizing those 

points to unit Euclidean length. 

• One minus the sample correlation between points (treated as sequences of values). 

Each centroid is the component-wise mean of the points in that cluster, after 

centering and normalizing those points to zero mean and unit standard deviation. 

• Percentage of bits that differ (only suitable for binary data). Each centroid is the 

component-wise median of points in that cluster. 

Which distance measurement is best depends on the kind of data being clustered. Each 

cluster in the partition is defined by its member objects and by its centroid, or center. 

The centroid for each cluster is the point to which the sum of distances from all objects 

in that cluster is minimized. K-means computes cluster centroids differently for each 

distance measure, to minimize the sum with respect to the measure. K-means uses an 

iterative algorithm that minimizes the sum of distances from each object to its cluster 

centroid, over all clusters. This algorithm moves objects between clusters until the sum 

cannot be decreased further. The result is a set of clusters that are as compact and well-

separated as possible. The details of the minimization can be controlled by using several 

optional input parameters to K-means, including ones for the initial values of the cluster 

centroids, and for the maximum number of iterations. 

To decide the optimal/suboptimal number of clusters K, the whole FARM-DS algorithm 

runs several times with different K values. The K value with the largest training or cross-

validation accuracy is selected as the optimal number of clusters. After K is fixed, the 

clustering with the largest overall silhouette value is selected to be the best clustering. 
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The silhouette value for a sample is a measure of how similar the sample is to samples in 

its own cluster compared with samples in other clusters, and ranges from -1 to +1. It is 

defined as  

))),(min(),(max(
)()),(min()(

kibia
iakibiS −

=   ,     (3.9) 

where a(i) is the average distance from the ith sample to other samples in its own cluster, 

and b(i,k) is the average distance from the ith sample to samples in another cluster k. 

 The larger silhouette values over all training samples mean that samples in the same 

cluster are more similar while samples between different clusters are more different, 

which in turns means a better clustering result.  

 

We also tried fuzzy clustering algorithms for data abstraction. 

1. Select an initial fuzzy partition of the N objects into K clusters by selecting the N 

3 K membership matrix U. An element uij of this matrix represents the grade of 

membership of object xi in cluster cj. 

2. Using U, find the value of a fuzzy criterion function, e.g., a weighted squared 

error criterion function, associated with the corresponding partition. 

3. Repeat step 2 until entries in U do not change significantly. 

In fuzzy clustering, each cluster is a fuzzy set of all the patterns. Larger membership 

values indicate higher confidence in the assignment of the pattern to the cluster. A hard 

clustering can be obtained from a fuzzy partition by thresholding the membership value. 

The most popular fuzzy clustering algorithm is the fuzzy c-means (FCM) algorithm. 

Even though it is better than the hard k-means algorithm at avoiding local minima, FCM 

can still converge to local minima of the squared error criterion. The design of 
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membership functions is the most important problem in fuzzy clustering; different 

choices include those based on similarity decomposition and centroids of clusters. A 

generalization of the FCM algorithm was proposed through a family of objective 

functions. A fuzzy c-shell algorithm and an adaptive variant for detecting circular and 

elliptical boundaries was presented. 

In FARM-DS, fuzzy C-means algorithm (FCM) is used to group samples into K clusters 

with centers Kk ccc LL ,,1 in the feature space. FCM assigns a real-valued vector 

},,,{ 1 KikiiiU µµµ LL=  to each sample. ]1,0[∈kiµ is the membership value of the ith 

gene in the kth cluster. The larger membership value indicates the stronger association of 

the sample to the cluster. Membership vector values kiµ  and cluster centers kc can be 

obtained by minimizing 
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where Ni ≤≤1 and Kk ≤≤1 [40, 14].  

In Eq. 3.10, K and N are the number of clusters and the number of samples in the dataset, 

respectively. m>1 is a real-valued number which controls the ‘fuzziness’ of the resulting 

clusters, kiµ is the degree of membership of the ith sample in the kth cluster, and 

),(2
ki cxd  is the square of distance from ith sample to the center of the kth cluster. In Eq. 

3.11, kA is a symmetric and positive definite matrix. If kA  is the identity matrix, 
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),(2
ki cxd  corresponds to the square of the Euclidian distance. Eq. 3.12 indicates that 

empty clusters are not allowed. 

Notice in each step, the fuzzy membership values are defuzzified in such a way that a 

sample is always grouped into the cluster with the largest membership value and the 

cluster with the second largest membership value.  

In the near future, other clustering algorithms such as Self-Organizing Maps or 

hierarchical clustering will be also tried for data abstraction.   

3.3 Step 3: Generating Fuzzy Discrete Transactions 
 
By grouping similar samples together in several clusters at step 2, a high-level data 

abstraction can be achieved. This way, the number of transactions and following rules is 

independent with the dimension of the input feature space. It is only decided by the 

number of clusters to generate a compact rule base, which in turn enhances the 

generalization capability and the interpretability to predict unknown new samples. 

Step 3 transforms quantitative training samples into “fuzzy discrete transactions”. 

Firstly, the TSK models generated at step 1 are used to fuzzify the center of each cluster 

generated at step 2.  

Currently, only two MFs for each feature at step 1 are considered. On each input feature 

fi, two membership values lowµ  and highµ  are calculated for a center by projecting the 

center on the feature. Fig. 3.2 shows an example of projecting a center with fi =0.113 on 

the trapezoidal membership functions. 
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After that, for a cluster k with sk+ positive samples and sk- negative samples, | sk+ - sk-| 

same “fuzzy discrete transactions” are generated as follows:  

If −+ ≥ kk ss , +1 is inserted into the transactions; 

Else -1 is inserted into the transactions. 

For each fi, 
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, (3.13) 

Here ]1,0[∈α  is a threshold used to prune the resulted “fuzzy discrete transactions”. 

That is, if the difference between the “low” membership function value and the “high” 

membership function value of a feature is too small (less thanα ), this feature is treated 

as an unavailable feature on the resulted transactions. The pruning process improves the 

generalization capability of the clusters.  

 
Figure. 3.2.  an example to project a sample onto a feature



  45  

 

This projection method can also be extended to more than two MFs for some features at 

step 1.  

3.4 Step 4: Mining Association Rules 
 
The final step is mining association rules from the fuzzy discrete transactions generated 

at step 3 by the Apriori algorithm. It follows a rule-pruning process to eliminate the 

redundant and useless rules: 

For a pair of rules A and B, if B is more specific than A (that means A is included by B), 

and B has the same support value as A, A is eliminated. A mined fuzzy association rule 

has the following format: 

}{ 1,1,,,, 21 +−=ythenhighisfhighisflowisfif hL ,  (3.14) 

where mh ≤<0 . The rule is called a positive rule if y=1 or called a negative rule if y=-1. 

The length of a rule is defined to be the number of items in the antecedent part of this 

rule. 

3.5 Testing Phase 
 
In the testing phase, the performance of mined fuzzy association rules is evaluated on the 

testing dataset. Assume that there are r+ positive rules and r- negative rules. For each 

new sample, its positive weight weight+ and negative weight weight- are decided as 

follows: 
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The ith positive rule is said to be fired if 0>+istrength . 
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The ith negative rule is said to be fired if 0>−istrength . 

Finally, a class label is calculated by the following equation: 

)( bweightweightsigny +−= −+ ,     (3.19) 

where Rb∈  is a bias constant, which can be optimized by cross validation. 

3.6 Parameter Selection 
 
In the above process for FARM-DS modeling, many parameters need to be decided. At 

step 1, we need to decide the number of MFs for each feature; at step 2, the number of 

clusters need to be decided for data abstraction; at step 3, the threshold α need to be 

decided whether a feature should be inserted into a fuzzy discrete transaction; at step 4, 

bias b for final prediction also need to be decided. In general, some parameters can be 

decided based on prior knowledge for a specific problem, or at least limited into a field. 

On the other hand, cross-validation and bootstrapping are two common heuristics for 

parameter selection with the available training dataset.  

For cross-validation, the dataset is randomly split into k equal-sized subsets. k-1 subsets 

are combined as the dataset for modeling and another one is taken as the dataset for 

validation. The process is repeated k times such that each subset is used for validation 

once. 

Another evaluation heuristic adopted is balanced .632 bootstrapping [20]: random 

sampling with replacement is repeated for m times (usually m=100 to 1000) on the 

training dataset. Each sample appears exactly m times in the computation to reduce 
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variance [22]. Each time, on average 63.2% samples will appear for training and other 

samples for validation. The bootstrapping accuracy is defined to be the average accuracy 

on m times bootstrapping. The bootstrapping accuracy tends to be high-biased. The 

0.632 bootstrapping accuracy 

testingtraining accaccacc 632.0)632.01(632. +−= ,   (3.20) 

tries to correct this bias via a weighted average of the training accuracy and the 

bootstrapping accuracy. 
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Chapter 4 FARM-DS from medical data 
 
4.1 Experiments Design   
 
The hardware we used is a desktop with P4-2.8MHz CPU and 256M memory. The 

software we developed is based on Matlab Fuzzy Logic Toolbox and Statistics Toolbox. 

The program of the Apriori association rule mining algorithm comes from 

http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html. 

FARM-DS is compared with well-known SVMs and C4.5 classification algorithms. We 

run FARM-DS and SVMs in the experiments. We also compare our works with Bennett 

et al’s works [13] on SVMs and C4.5 because the same experimental setup. For 

discrimination, the SVM built by us is called SVM1, and the SVM built in [13] is called 

SVM2. The Wisconsin breast cancer dataset and the Cleveland heart-disease dataset 

from UCI data mining repository [90] are used in the experiments. Table 41 lists the 

detailed characteristics of datasets. 

  

 

 

5-fold cross validation is used for comparison. A dataset is randomly split into five 

equal-sized subsets, four of which are combined as the training dataset and another one 

is taken as the testing dataset. The training-testing process is repeated five times such 

that each subset is used as the testing dataset once. The input features are scaled and 

TABLE 4.1 
CHARACTERISTICS OF DATASETS USED FOR EXPERIMENTS 

Dataset Size Attr Ratio 

Wisconsin Breast Cancer 683 9 239:444 
Cleveland heart-disease 297 13 160:137 

Note 1:  Size = # of cases after removing cases with missing data, Attr = 
# of input features, Ratio = # of positive cases: # of negative cases. 
Note 2:  16 cases in Wisconsin Breast Cancer and 6 cases in Cleveland 
heart-disease with missing values are removed. 
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normalized to [-0.9, 0.9]. Note that the normalization process is based on the training 

dataset to avoid overfitting. For each fold:  

1:4)(:)( =testingStrainingS  

1:4)_(:)_( =testingpositiveStrainingpositiveS    

1:4)_(:)_( =testingnegativeStrainingnegativeS    

)(xS means the size of the dataset x. 

According to [116], both SVMs with the linear kernel and the RBF kernel are used in our 

experiments. The best kernel and the parameters are optimized with grid search heuristic.  

For the linear kernel, the regulation parameterC is selected from 

}.,2,2,2,2,2,2,2,22        
,,2,2,22 ,2 ,,2,22        

,,2,2,2,2,2,2,22{

21.510.500.5-1-1.5-2-

2.5-3-3.5-4-4.5-5-5.5-6-

-6.5-7-7.5-8-8.5-9-9.5-10∈C
  

For the RBF kernel, the parameters C,γ  are selected from  

},2,2,2,2,2,2,2,2,2,22{ 420-2-4-6-8-10-12-14-16∈γ , 

},2,2,2,2,2,2,2,22{ 1086420-2-4-6∈C . 

For FARM-DS, at step 1, trapezoidal membership functions are adopted for modeling a 

1-in-1-out-0-order ANFIS system for each feature; the number of linguistic terms for 

each feature is fixed to be 2. At step 2, after some preliminary experiments, the optimal 

number of clusters is selected to be 11 for the Wisconsin breast cancer dataset and 21 for 

the Cleveland heart-disease dataset. For each fold, the clustering process is repeated 50 

times and the one with the largest silhouette value is selected. The fuzzy discrete 

transactions pruning parameter 7.0=α is used at step 3. For mining association rules 

from the “fuzzy discrete transactions”, minimal support=0.1, and minimal 
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confidence=0.8. At step 4, bias is 0 for the Wisconsin breast cancer dataset and is 3 for 

the Cleveland heart-disease dataset. 

4.2 Results Analysis on Effectiveness   
 
Firstly a clustering result on the Wisconsin breast cancer dataset is shown in Fig. 4.1. 

The clustering result is optimal in that it achieves the largest overall silhouette values 

0.3899 [71]. From Fig. 4.1, we can see that except clusters 1, 7, and 11, the other clusters 

have good qualities. 

Tables 4.2 reports the FARM-DS modeling results. For each fold, the largest overall 

silhouette value, and the numbers of mined positive rules and negative rules are reported. 

The validation accuracy is reported in Tables 4.3. Bennett et al also adopt 5-fold cross 

validation to evaluate the performance of C4.5 and SVM [13] on these two datasets. As a 

result, our simulation results can directly be compared with them. The experimental 

results demonstrate that FARM-DS with trapezoidal membership functions is 

competitive with the optimal SVM and better than C4.5 to achieve high prediction 

accuracy. 

 

 

 

 
 Figure.4.1.  an example to decide the optimal 
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4.3 Result Analysis on Efficiency  
 
Table 4.4 compares the running time of FARM-DS and that of SVM. The comparison 

shows that FARM-DS can finish in a reasonable period, although it is slower than SVM. 

Notice that the running time of FARM-DS is calculated under the assumption that the 

optimal number of clusters is known in advance. In the future, we plan to implement the 

parallel version of FARM-DS so that the same or similar efficiency can be achieved if 

the optimal number of clusters is unknown. 

 

TABLE 4.2 
FARM-DS MODELING RESULTS WITH TRAPEZOIDAL-SHAPED MEMBERSHIP 

FUNCTIONS BY 5-FOLD CROSS VALIDATION 
Fold Max sil value # pos rules # neg rules 

Wisconsin breast cancer dataset 
1 0.2756 22 7 
2 0.3829 26 7 
3 0.2606 21 7 
4 0.2993 20 9 
5 0.3899 19 10 

Cleveland heart-disease dataset 
1 0.4859 43 86 
2 0.5002 67 75 
3 0.4913 75 93 
4 0.4823 63 98 
5 0.4927 59 80 

TABLE 4.3 
VALIDATION ERROR COMPARISON BY 5-FOLD CROSS VALIDATION 

Fold FARM-DS  SVM1 SVM2 [27] C4.5 [27] 
Wisconsin breast cancer dataset 

1 97.81% 98.54% N/A N/A 
2 97.81% 96.35% N/A N/A 
3 97.81% 97.81% N/A N/A 
4 97.08% 95.62% N/A N/A 
5 95.56% 95.56% N/A N/A 

Overall 97.2% 96.8% 97.2% 93.4% 
Cleveland heart-disease dataset 

1 80% 81.67% N/A N/A 
2 78.33% 83.33% N/A N/A 
3 79.66% 81.36% N/A N/A 
4 86.44% 83.05% N/A N/A 
5 89.83% 88.14% N/A N/A 

Overall 82.8% 83.5% 81.5% 77.8% 
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4.4 Result Analysis on Interpretability  
 
As we know, a SVM only assigns a class label for a sample so that the classification 

exhibits little understandability, i.e., a diagnostic decision is essentially a black box, with 

no explanation on how it is reached. On the other hand, a decision tree built by C4.5 may 

be explained. Unfortunately, the classification accuracy of C4.5 is low on these two 

datasets. 

In contrast, FARM-DS achieves high accuracy and also can return fired positive rules 

and fired negative rules for further analysis. 

Due to relatively higher accuracy on the Wisconsin breast cancer dataset, we take it as 

the example to analyze the interpretability of mined FARS.  

 

 

 

For the Wisconsin breast cancer dataset, Table 4.5 describes the nine cellular features 

taken from fine needle aspirates (a fine needle aspiration is an outpatient procedure that 

involves using a small-gauge needle to extract fluid directly from a breast mass [30]) 

TABLE 4.5 
THE FEATURE INFORMATION OF  

THE WISCONSIN BREAST CANCER DATA SET 
Feature Medical meaning Domain 

1 clump thickness (the extent to which epithelial 
cell aggregates are mono or multilayered) 1 – 10 

2 uniformity of cell size 1 – 10 
3 uniformity of cell shape 1 – 10 
4 marginal adhesion (cohesion of peripheral cells) 1 – 10 
5 single epithelial cell size 1 – 10 
6 number of bare nuclei 1 – 10 
7 extent of bland chromatin 1 – 10 
8 number of normal nucleoli 1 – 10 
9 frequency of mitosis 1 – 10 

TABLE 4.4 
RUNNING TIME COMPARISON WITH 5-FOLD CROSS VALIDATION 

Dataset  FARM-DS  SVM1 
Wisconsin 46 seconds 45 seconds 
Cleveland 61 seconds 27 seconds 
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from human breast tissues. These nine features are believed to be useful to distinguish 

benign tumors from malignant ones.  

Each of the nine features of the fine needle aspirates is graded one to ten at the time of 

sample collection so that a larger number signals a higher probability of malignancy. 

Thus, for the purposes of diagnosis, each tumor sample is represented as a 9-dimensional 

integer vector. Given such a 9-dimensional feature vector of an undiagnosed tumor, the 

problem is to determine whether the tumor is benign or malignant. 

Extracted FARs enhance the interpretability of classification due to the following three 

benefits: 

Firstly, FARs may help human experts to correct the wrongly classified samples. For 

example, 12 from 19 wrongly classified samples in the Wisconsin breast cancer dataset 

activate some correct rules. Table 4.6 lists the 12 samples. By analyzing these samples 

and corresponding rules, we can expect that the accuracy can be further improved. 

Consequently, more reliable decisions can be made. 

 

 

 

TABLE 4.6 
12 WRONGLY CLASSIFIED SAMPLES ON WISCONSIN BREAST CANCER DATASET 

id Real class  Predictive 
class 

Positive 
weights 

Negative 
weights 

1 -1  +1  2.0000 0.9660 
2 -1 +1 2.0000 0.9290 
3 +1 -1 0.7300 0.9290 
4 +1 -1 0.7085 0.9290 
5 -1 +1 8.6263 0.1535 
6 -1 +1 2.0000 0.9970 
7 +1 -1 0.3756 0.9970 
8 -1 +1 4.6971 0.9470 
9 -1 +1 3.6049 0.9470 

10 -1 +1 4.4657 0.8900 
11 -1 +1 2.2007 0.1556 
12 -1 +1 1.0000 0.8630 
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For example, the first validation sample in fold 1 is classified to be positive but it is 

actually negative. (That is, it is false positive). Its positive weight weight+=2.0000, and 

its negative weight weight-=0.9660. For this sample, FARM-DS returns 2 fired positive 

rules and 5 fired negative rules, of which the most general ones and the most specific 

ones are shown in Table 4.7. The larger support of the negative rules may help human 

experts to make final correct decisions and find inherent disease-resulting mechanisms. 

Secondly, FARs extracted by FARM-DS are short and compact. FARM-DS is executed 

again on the whole dataset. 22 positive rules and 8 negative rules are extracted. In 

average, the length of a positive rule is 2.6, the length of a negative rule is 4.3, and every 

sample activates 3.3 positive rules and 5.6 negative rules. We believe that both the short 

length and the small number of activated rules can make extracted FARs easy to 

understand for further study.  

 

TABLE 4.7 
THE MOST GENERAL AND THE MOST SPECIFIC FIRED RULES FOR THE 1ST 

SAMPLE IN FOLD 1 ON WISCONSIN BREAST CANCER DATASET 
If bare nuclei (f6) is high, Then y=1 (malignant).  
support=26.9%, confidence=100%, (most general) 
If bare nuclei (f6) is high, mitosis (f9) is low, Then y=1 (malignant).  
support=22.9%, confidence=100%, (most specific) 
If normal nucleoli (f8) is low, Then y=-1 (benign).  
support=77.6%, confidence=85.1%, (most general) 
If normail nucleoli (f8) is low, marginal adhesion (f4) is low, single 
epithelial cell size (f5) is low, Then y=-1 (benign).  
support=68.4%, confidence=96.6%, (most specific) 
If normal nucleoli (f8) is low, marginal adhension (f4) is low, mitosis 
(f9) is low, Then y=-1 (benign).  
support=71.4%, confidence=92.6%, (most specific) 
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Thirdly, FARs are helpful to select important features. In Table 4.8, we count the 

activated numbers for each feature. As mentioned above, a larger number in a feature 

signals a higher probability of malignancy. So if a feature f is displayed in a positive rule 

in the format of “f is high”, it is correctly activated. If a feature is displayed in a positive 

rule in the format of “f is low”, it is wrongly activated. For negative rules, correct 

activation and wrong activation are defined reversely. The result demonstrates that the 

extracted FARs are reasonable because most of features are correctly activated. The 

activated frequency is calculated by decreasing the wrongly activated frequency from the 

correctly activated frequency. For example, the activation frequency of f8 is (8-1)/22 + 

4/8 = 0.8122. The number of bare nuclei (f6), the degree of marginal adhesion (f4) and 

the number of normal nucleoli (f8) are most useful for classification because they are 

correctly activated most frequently. On the other hand, the degree of clump thickness 

(f1), the extent of bland chromatin (f7) and the frequency of mitosis (f9) are less useful. 

This kind of information is also helpful to human experts because they can pursue study 

on important features first. 

TABLE 4.8 
ACTIVATION FREQUENCY OF FEATURES ON 

THE WISCONSIN BREAST CANCER DATA 

Feature positive (malignant) 
count 

negative (benign) 
count 

activated 
frequency 

1  6 high /  0 low / 22 0 high / 1 low / 8 0.3977 
2  8 high /  0 low / 22 0 high / 3 low / 8 0.7386 
3  8 high /  0 low / 22 0 high / 3 low / 8 0.7386 
4  3 high /  0 low / 22 0 high / 6 low / 8 0.8864 
5  0 high /  0 low / 22 0 high / 5 low / 8 0.6250 
6 12 high /  0 low / 22 0 high / 4 low / 8 1.0455 
7  1 high /  0 low / 22 0 high / 3 low / 8 0.4205 
8  8 high /  1 low / 22 0 high / 4 low / 8 0.8182 
9  0 high / 10 low / 22 0 high / 8 low / 8 0.5455 
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There have been a lot of works to produce crisp or binary rule-typed knowledge on the 

Wisconsin breast cancer dataset [39, 94]. Compared with them, fuzzy rules with 

linguistic terms are more natural and hence easier to understand.  

Peña-Reyes et al design the Fuzzy Cooperative Coevolution algorithm for breast cancer 

diagnosis to generate fuzzy rules [104]. FARM-DS combines Fuzzy Logic with 

Association Rule Mining, and hence provides an alternative rule mining method.  
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Chapter 5 FARM-DS from microarray expression data 
 
5.1 Biological background   
 
Every organism is composed of cell(s). In each cell, there is a nucleus, where the genetic 

material (DNA) is located. The coding segments of DNA, named “genes”, contain the 

sequence information for specific proteins, which are macro-molecules that play the key 

roles on biochemical and biological function, regulation and development of the 

organism. As a matter of fact, all cells in the same organism have exactly the same 

genome. However, due to different tissue types, different development stages, and 

different environmental conditions, genes from cells in the same organism can be 

expressed in different combinations and/or different quantities during the transcription 

process from DNA to messenger RNA (mRNA) and the translation process from mRNA 

to proteins. These different gene expression patterns, including both the combination and 

quantity, thus account for the huge variety of states and types of cells in the same 

organism [109]. Different organisms have different genomes and different gene 

expression patterns. 

Very recently, DNA microarray (including cDNA microarray and GeneChip) has been 

developed as a powerful technology for molecular genetics studies, which simultaneously 

measures the mRNA expression levels of thousands to tens of thousands genes. A typical 

microarray expression experiment monitors expression level of each gene multiple times 

under different conditions or in different tissue types (for example, healthy tissue versus 

cancerous tissue, one kind of cancerous tissue versus another cancerous tissue). By 

recording such huge gene expression data sets, it opens the possibility to distinguish 
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tissue types and to identify disease-related genes whose expression data are good 

diagnostic indicators [6, 10, 69, 92, 93, 96, 109]. 

From the viewpoint of data mining, it is a predictive data mining task [54] to distinguish 

different tissue types because the goal is to predict the unknown value of a variable 

(healthy or cancerous; if cancerous, which kind of cancer) of interest given known values 

of other variables (gene expression data). More specifically, it could be modeled as a 

classification problem. For example, one well-known problem by utilizing microarray 

gene expression data is to distinguish between two variants of leukemia, which are Acute 

Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL). The AML/ALL 

problem could be modeled as a binary classification problem: if a sample is ALL, it is 

classified to be a negative case and -1 is output, otherwise it is AML and 1 is output. 

5.2 Challenges for bioinformatics scientists 
 
A typical gene expression dataset is extremely sparse compared to a traditional 

classification dataset: the data usually comes with only dozens of samples but with 

thousands or even tens of thousands of genes/features. This extreme sparseness is 

believed to significantly deteriorate the performance of a classifier. As a result, the 

ability to extract a subset of informative genes while removing irrelevant or redundant 

genes is crucial for accurate classification. Furthermore, it is also helpful for biologists to 

find the inherent cancer-resulting mechanism and thus to develop better diagnostic 

methods or find better therapeutic treatments. From the data mining viewpoint, this gene 

selection problem is essentially a feature selection or dimensionality reduction problem. 

A good dimensionality reduction method should remove irrelevant or redundant features 

while keep informative or important features for classification. A classifier modeled in 
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the resulted lower-dimensioned feature space is expected to capture the inherent data 

distribution better and thus has a better performance. 

For example, the AML/ALL data has only 72 samples (tissues) with 7129 features (gene 

expression measurements). That means, without gene selection, we would need to 

discriminate and classify such a few samples in such a high dimensional space. It is 

unnecessary or even harmful for classification because it is believed that no more than 

10% of these 7129 genes are relevant to Leukemia classification [48]. 

Moreover, we notice that most of current related works stop when a group of informative 

genes are selected. However, the behavior of the classifier modeled on the selected genes 

is difficult to understand by human experts. It is desirable to go one step further for 

knowledge discovery from the selected genes to ease further cancer study. 

As a brief summary, there are three highly-correlated challenging tasks: 

• Key Gene Selection: given some tissues, extract cancer-related genes while 

remove irrelevant or redundant genes. 

• Cancer Classification: given a new tissue, predict if it is healthy or not; if not, 

predict which kind of cancer it has. 

• Cancer-Gene Knowledge Discovery: After key genes are selected, extract 

knowledge from the classifier modeled on these key genes in the format of cases 

or rules. 

FARM-DS can be applied to the 3rd task with mining fuzzy associations rules to uncover 

correlations between genes and cancers. 
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5.3 Simulation Environment and Datasets 
 
The hardware used in the simulations is a laptop with centrino-1.6MHz CPU and 1024M 

memory. The software we developed is based on OSU SVM Classifier Matlab Toolbox 

[86], which implements a Matlab interface to LIBSVM [25]. 

 

 

 

Table 5.1 lists characteristics of three datasets used in simulations for this work.  

For the AML/ALL leukemia classification [48], there are 72 samples (47 ALL and 25 

AML) from bone marrow and blood sample specimens. The 7129 features correspond to 

some normalized gene expression values extracted from the microarray image: 6817 of 

them come from human genes and the other 312 come from control genes. 

The colon cancer dataset [6] is also used in simulations. For the colon cancer dataset, 

there are 22 normal tissues and 40 colon cancer tissues. Gene expression information of 

colon cancer on more than 6500 genes were measured using oligonucleotide microarray 

and 2000 of them with highest minimum intensity were extracted to form a matrix of 62 

tissues × 2000 gene expression values. Similar to the AML/ALL dataset, some non-

human genes are included for control. 

The third dataset in our simulations is the prostate cancer dataset for tumor versus 

normal classification [110]. The dataset consists of 102 prostate samples (52 with tumors 

TABLE 5.1 
CHARACTERISTICS OF DATASETS 

Dataset #genes #samples #neg : #pos 

AML/ALL 7129 72 47:25 
colon cancer 2000 62 40:22 

prostate cancer 12600 102 52:50 
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and 50 without tumors). The 12600 features correspond to some normalized gene 

expression values extracted from the microarray image. 

5.4 Perfect gene subsets 
 
GSVM-RFE can find multiple compact cancer-related gene subsets on each of which a 

SVM with 100% leave-one-out validation accuracy can be modeled [22]. In the 

following, such a gene subset is referred as a “perfect” gene subset. Table 5.2 lists a 

perfect subset of 8 genes for the AML/ALL dataset. Table 5.3 lists a perfect subset of 5 

genes for the colon cancer dataset. Table 5.4 lists a perfect subset of 8 genes for the 

prostate cancer dataset.  

 

 

TABLE 5.2 
A PERFECT GENE SUBSET SELECTED ON THE AML/ALL DATASET 

 

rank/ 
index GAN Description  of Gene 

Function 
References 

(PMID) 
1/4847 X95735 Homo sapiens Zyxin 11433529 

2/5039 Y12670 Leptin receptor gene-
related protein 15337805 

3/230 D14659 KIAA0103 gene x 

4/461 D49950 Interferon-gamma 
inducing factor (IL-18) 

11261420 
12860020 
12804640 
12513747 
12363462 

5/2242 M80254 

PEPTIDYL-PROLYL 
CIS-TRANS 

ISOMERASE, 
MITOCHONDRIAL 

PRECURSOR 

12846892 

6/1834 M23197 Human differentiation 
antigen (CD33) 

12939719 
12899727 
12162910 
11590793 
7690733 

7/1796 M20902 Apolipoprotein C-I 
(VLDL) 

15343346 
2570021 

8/1779 M19507 Myeloperoxidase 

8019964 
1336394 
1751367 
1650411 
6304866 
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5.5 Gene-cancer knowledge discovery 
 

 

 

TABLE 5.5 
CLASSIFICATION ERRORS OF THE FOUR MODELS 

 
Data (size) SVM DTs FARM-DS ANFIS 

AML/ALL (72) 0 7 2 1 
colon cancer (62) 0 9 13 1 
prostate cancer (102) 0 13 7 8 

TABLE 5.4 
A PERFECT GENE SUBSET SELECTED ON THE PROSTATE CANCER 

DATASET 
 

rank/ 
index 

GAN 
/GPL91 

Description  of Gene 
Function 

References 
(PMID) 

1/6185 X07732 
hepatoma mRNA for 

serine protease 
hepsin 

11518967 

2/4649 M16942  

12603425 
11262202 
9655265 
7690428 
6640262 

3/5821 AF044311  x 

4/5045 AL080150  

7843088 
2053044 
745402 
944985 
5950231 

5/10537 AF045229  x 
6/6368 AB017363  x 

7/11818 M21535 erg protein (ets-
related gene) x 

8/5402 W27944 39g8 retina (?) x 

TABLE 5.3 
A PERFECT GENE SUBSET SELECTED ON THE COLON CANCER DATASET 

 

rank/ 
index GAN Description  of Gene 

Function 
References 

(PMID) 

1/377 Z50753 GCAP-II/uroguanylin 
precursor 8519795 

2/1353 M31303 
Human oncoprotein 18 
(Op18) gene, complete 

cds 
x 

3/1423 J02854 20-kDa myosin light 
chain (MLC-2) 

1535481 
1535480 
3909097 

4/353 T57882 Stratagene fetal spleen x 

5/1976 K03474 
Human Mullerian 

inhibiting substance 
gene, complete cds 

x 
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In this section, FARM-DS is compared to other three classification models, including 

SVM, Decision Trees, and ANFIS on each of the three datasets with the corresponding 

perfect gene subset reported above. We evaluate a model’s performance both in terms of 

accuracy and interpretability. Classification errors [54] (See Table 5.5) and area under 

the ROC curve (AUC) [19] (See Table 5.6) by the leave-one-out validation heuristic are 

used for accuracy comparison. A smaller error and a larger AUC mean a more accurate 

classifier.  

On the other hand, number (See Table 5.7) and average length (See Table 5.8) of rules 

extracted on the whole dataset are reported for interpretability comparison. The length of 

a rule is defined to be the number of features appeared in the antecedent part of this rule. 

A classifier is easy to interpret if the extracted rules are few and short. 

TABLE 5.8 
AVERAGE RULE LENGTHS OF THE FOUR MODELS 

 
data SVM DTs FARM-DS ANFIS 

AML/ALL 8.0 2.0 4.8 8.0 
colon cancer 5.0 2.4 2.4 5.0 
prostate cancer 8.0 4.1 3.1 8.0 

TABLE 5.7 
RULE NUMBERS OF THE FOUR MODELS 

 
data SVM DTs FARM-DS ANFIS 

AML/ALL 7 4 5 2 
colon cancer 6 5 8 3 
prostate cancer 7 8 15 4 

TABLE 5.6 
AUC OF THE FOUR MODELS 

 
data SVM DTs FARM-DS ANFIS 

AML/ALL 1.0000 0.8881 0.9600 0.9600 
colon cancer 1.0000 0.8364 0.7966 1.0000 
prostate cancer 1.0000 0.8731 0.9312 0.9858 
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In the following, all results are reported and analyzed in the order of the AML/ALL 

dataset, the colon cancer dataset, and the prostate cancer dataset. 

The extracted compact but highly informative gene subsets make it possible and 

meaningful to discover useful knowledge based on them. FARM-DS works on these 

gene subsets for fuzzy association rule mining to provide strong decision support for 

further cancer study. The consequent part of a FAR is limited to be the class label {-1, 

+1}.  

5.6 Fuzzy association rules 
 

 

 

 

 

TABLE 5.10 
8 FUZZY ASSOCIATION RULES FOR COLON DATASET 

 
G1 G2 G3 G4 G5 label 

    +1 -1 
   -1  -1 
   -1 +1 -1 
 -1  -1  -1 

-1 -1 -1 -1  -1 
  -1  -1 +1 

-1  -1  -1 +1 
-1 -1 -1  -1 +1 

TABLE 5.9 
5 FUZZY ASSOCIATION RULES FOR AML/ALL DATASET 

 
G1 G2 G3 G4 G5 G6 G7 G8 label 

 -1 -1  -1    -1 
 -1 -1 -1   -1 -1 -1 
 -1  -1 -1  -1 -1 -1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 
 -1 -1   +1   +1 
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FARM-DS has higher accuracy than DTs. On the other hand, compared with SVM, 

FARM-DS extracts much shorter rules and thus easier to interpret. 5, 8, 15 rules with 

average length 4.8, 2.4, 3.1 are extracted and reported in Tables 5.9-5.11, respectively. In 

the Tables, the empty cell means the “not available” condition of the corresponding gene 

in the corresponding rule. A low expressed gene is expressed as “-1”, which is actually a 

fuzzy membership function on the gene; while “+1” means a high expressed gene. 

Notice that the number of activated rules is even fewer for a special sample.  

 

TABLE 5.11 
15 FUZZY ASSOCIATION RULES FOR PROSTATE DATASET 

 
G1 G2 G3 G4 G5 G6 G7 G8 label 

    -1    -1 
-1        -1 
-1    -1  -1  -1 
      +1  +1 

+1        +1 
 +1   +1    +1 

+1      +1  +1 
 +1   +1  +1  +1 

+1 +1   +1    +1 
+1  +1    +1  +1 
+1  +1    +1 +1 +1 
+1 +1  +1 +1    +1 
+1 +1 +1  +1  +1  +1 
+1 +1 +1 +1 +1  +1  +1 
+1 +1 +1 +1 +1 +1 +1 +1 +1 



  66  

 

Chapter 6 Fuzzy-Granular Gene Selection from Microarray Expression 
Data 

 
6.1 Introduction 
 
Selecting informative and discriminative genes from huge microarray gene expression 

data is an important and challenging bioinformatics research topic. This chapter proposes 

a fuzzy-granular method for the gene selection task. Firstly, genes are grouped into 

different function granules with the Fuzzy C-Means algorithm (FCM). And then 

informative genes in each cluster are selected with the Signal to Noise metric (S2N). 

With fuzzy granulation, information loss in the process of gene selection is decreased. As 

a result, more informative genes for cancer classification are selected and more accurate 

classifiers can be modeled. The simulation results on two publicly available microarray 

expression datasets show that the proposed method is more accurate than traditional 

algorithms for cancer classification. And hence we expect that genes being selected can 

be more helpful for further biological studies.  

The rest of the chapter is organized as follows. In Section 2, previous works on cancer 

classification and gene selection are briefly reviewed. After that, a new fuzzy-granular 

gene selection algorithm is proposed in Section 3. Section 4 evaluates the performance of 

this method on two microarray expression datasets. Finally, Section 5 summarizes the 

chapter. 

6.2. Traditional algorithms for gene selection 
 
6.2.1. SVM for cancer classification 
 
Based on [50], Support Vector Machine (SVM) is believed to be a superior model for 

high-dimensional classification problems including cancer classification on microarray 
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expression data. SVM is a new generation learning system based on recent advances in 

statistical learning theory [123].  

Due to extreme sparseness of microarray gene expression data, the dimension of input 

space is already high enough so that the cancer classification is already as simple as a 

linear separable task [50]. It is unnecessary and even harmful to transfer it to a higher 

implicit feature space with a non-linear kernel. As a result, usually a SVM with a linear 

kernel (Eq. 6.1) [22] is adopted as the basic cancer classifier. 

)(),( jiji xxxxK •= .      (6.1) 

For a linear SVM, the margin width can be calculated by Equations 6.2-6.3. 

∑=
=

sN

i
iii xyw

1
α ,       (6.2) 

  w/2widthmargin = .      (6.3) 

where sN is the number of support vectors, which are defined to be the training samples 

with Ci ≤< α0 . Note that C is a “regulation parameter” used to trade-off the training 

accuracy and the model complexity so that a good generalization capability can be 

achieved. Interesting readers may refer [22, 33, 108, 123] for detailed knowledge about 

SVM. 

However, the sparseness of microarray data is so extreme that even a SVM classifier is 

unable to achieve a reliable performance for cancer classification. A preprocessing step 

for gene selection is necessary for SVM modeling to achieve more reliable classification.  
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6.2.2. Correlation-based feature ranking algorithms for gene selection 
 
Correlation-based gene selection algorithms work in a forward selection way by ranking 

genes individually in terms of a correlation-based metric, and then the top ranked genes 

are selected to form the most informative gene subset [38, 46, 99].  

Some commonly used ranking metrics are  

Signal-to-Noise (S2N) [46] 

  
)()(
)()(
−++

−−+
=

ii

ii
iw

σσ
µµ

.      (6.4)  

Fisher Criterion (FC) [99] 
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T-Statistics (TS) [38] 
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In Equations 6.4-6.6, )(+iµ and )(−iµ are the mean values of the ith gene’s expression 

data over positive and negative samples in the training dataset, respectively. )(+iσ and 

)(−iσ are the corresponding standard deviations. )(+n and )(−n denote the numbers of 

positive and negative training samples, respectively. A larger iw  means that the ith gene 

is more informative for cancer classification. 

Correlation-based algorithms are straightforward to understand and work efficiently. If 

there are d genes originally, the ranking process takes O(dlgd) time. However, a common 

drawback is that these algorithms rank genes in one single group. Biologically, some 

genes may regulate cancers with a similar function and hence be similarly expressed. 
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With correlation-based algorithms, these genes may be ranked close enough. If they 

happen in the top of the ranking list, all of them may be selected as “informative” genes. 

As a result, the process of gene selection is biased to this single function and genes with 

other functions are removed. Because multiple different gene groups may regulate 

cancers in different ways, the biological analysis on genes selected by traditional 

correlation-based algorithms may lose other cancer-related information. 

Biologically, different groups of genes may regulate cancers with different functions on 

one hand and one single gene may have more than one function to regulate cancers on the 

other hand. To select genes with more information from different function groups for 

reliable cancer classification and diagnosis, the novel Fuzzy-Granular based algorithm is 

presented in this work. The algorithm is based on the principles of granular computing. 

6.3. A new fuzzy-granular based algorithm for gene selection 
 
6.3.1. Granular computing 
 
Granular computing represents information in the form of some aggregates (called 

“information granules”) such as subsets, classes, and clusters of a universe and then 

solves the targeted problem in each information granule [11, 83, 124-125]. On one hand, 

for a huge and complicated problem, it embodies Divide-and-Conquer principle to split 

the original task into a sequence of more manageable and smaller subtasks. On the other 

hand, for a sequence of similar little tasks, it comprehends the problem at hand without 

getting buried in all unnecessary details. As opposed to traditional data-oriented numeric 

computing, granular computing is knowledge-oriented [124]. From the data mining 

viewpoint, granular computing is knowledge-oriented. This means that data mining 

algorithms can be more effective by embedding the prior knowledge into the granulation 

process.  
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Lin does hybrid research in granular computing based on rough sets, fuzzy sets and 

topology and uses the granular computing theory in data mining applications [80-83]. 

Pedrycz applies interval mathematics, fuzzy sets, rough sets and random sets to granular 

computing research and relevant applications such as pattern recognition [15, 101-103]. 

In essential, our algorithm utilizes the Fuzzy C-Means clustering algorithm (FCM) to 

group genes into different function granules based on their expression patterns. Bezdek 

proposed FCM [14]. The advantage of FCM clustering is that it can assign a sample (a 

gene here) into multiple clusters with different membership values. Because a gene may 

regulate cancers with multiple functions, FCM matches the need to utilize this biological 

knowledge for granulation. 

6.3.2. Relevance Index 
 
“Relevance Index” (RI) was used to measure the relevance of a feature to a cluster in [35] 

to ease an unsupervised clustering process. Here the idea is extended as a preprocessing 

step. The goal here is to pre-filter some irrelevant genes to ease the following gene 

selection and supervised classification. Because a gene is possible to be negatively 

expressed or positively expressed, Equations 6.7-6.8 define the negative relevance index 

and the positive relevance index to measure the negative correlation and the positive 

correlation of a gene with the cancer being studied, respectively. 

  22 /1 iiiR σσ −− −= ,      (6.7) 

  22 /1 iiiR σσ ++ −= ,      (6.8) 

where 2
iσ , 2

−iσ , and 2
+iσ  are the variances of the projected values on the ith gene of the 

whole training samples, the negative training samples, and the positive training samples, 

respectively.  
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For example, gene X1 in Fig. 6.1 is positive-related because the local variance among 

positive samples is much smaller than the global variance on the whole samples. 

Similarly, gene X2 is negative-related, gene X3 is both negative-related and positive-

related, and gene X4 can be viewed as an “irrelevant” gene in that it is neither negative-

related nor positive-related. 

 

To apply RI metric for gene selection, a negative filtering threshold )1,0[∈−α  and a 

positive filtering threshold )1,0[∈+α  need to be decided. The ith gene is “negative-

related” if −− ≥ αiR . Similarly, it is “positive-related” if ++ ≥ αiR . If −− < αiR  and 

++ < αiR , it is “irrelevant”. A gene may be both negative-related and positive-related. 

These two filtering thresholds should be selected carefully: firstly, they can not be too 

large, otherwise the information loss may happen because some cancer-related genes are 

wrongly eliminated; secondly, they should be selected “in balance”, which means 

negative-related genes and positive-related genes should be selected in balance, otherwise 

the minor genes are possible to be totally eliminated to result in performance degradation, 

especially when negative-related genes and positive-related genes are significantly 

imbalanced in the original dataset. 

 
Figure. 6.1. positive-related gene, negative-related gene, both, neither 
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6.3.3. Fuzzy C-Means clustering 
 
RI metric helps us to remove irrelevant genes. The next step is to pick up discriminative 

genes while removing redundant genes. By removing redundancy, genes with more 

regulation functions may be selected, assuming the number of genes is fixed. 

Some genes may similarly regulate cancers and thus be similarly expressed. And hence 

these genes may play a similar role in cancer classification. As a result, if genes with 

similar expression patterns are grouped together into clusters, a few typical genes in a 

cluster may be selected and other genes in the cluster may be safely eliminated without 

significant information loss. On the other hand, an informative gene may contribute to 

cancer classification with complex correlations with multiple different clusters. 

Therefore, after the pre-filtering by RI metric, FCM is adopted to group genes into 

different function clusters.  

FCM groups genes into K clusters with centers Kk ccc LL ,,1 in the training samples 

space. (That is, each training sample is a dimension of the space). FCM assigns a real-

valued vector },,,{ 1 KikiiiU µµµ LL=  to each gene. ]1,0[∈kiµ is the membership value 

of the ith gene in the kth cluster. The larger membership value indicates the stronger 

association of the gene to the cluster. Membership vector values kiµ  and cluster centers 

kc can be obtained by minimizing 

∑∑=
= =

K

k

N

i
ki

m
ki cxdmKJ

1 1

2 ),()(),( µ ,    (6.9) 

)()(),(2
kik

T
kiki cxAcxcxd −−= ,    (6.10) 

1
1

=∑
=

K

k
kiµ , N

N

i
ki <∑<

=1
0 µ ,     (6.11) 

where Ni ≤≤1 and Kk ≤≤1 [14].  
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In Eq. 6.9, K and N are the number of clusters and the number of genes in the dataset, 

respectively. m>1 is a real-valued number which controls the ‘fuzziness’ of the resulting 

clusters, kiµ is the degree of membership of the ith gene in the kth cluster, and ),(2
ki cxd  

is the square of distance from the ith gene to the center of the kth cluster. In Eq. 6.10, 

kA is a symmetric and positive definite matrix. If kA  is the identity matrix, ),(2
ki cxd  

corresponds to the square of the Euclidian distance. Eq. 6.11 indicates that empty clusters 

are not allowed. 

6.3.4. Fuzzy-Granular based gene selection 
 
We categorize genes into three classes: 

• Informative genes, which are essential for cancer classification and diagnosis; 

• Redundant genes, which are also cancer-related but there are some other 

informative genes regulating cancers similarly but more significantly; 

• Irrelevant genes, which are not cancer-related and do not affect cancer 

classification; 

A desirable algorithm should extract genes of the first category while eliminating genes 

of the last two categories. However, it is difficult to perfectly implement this goal. Firstly, 

inherent cancer-related factors are very possibly mixed with other non-cancer-related 

factors for classification. Secondly, some non-cancer-related factors may even have more 

significant effects on classifying the training dataset. It is actually the notorious 

“overfitting” problem. It is even worse when the training dataset is too small to embody 

the inherent real data distribution, which is common for microarray gene expression data 

analysis.  
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Correlation-based algorithms work by ranking genes in a same group. However, some 

really informative genes are possible to be wrongly eliminated. For example, an 

informative gene is ranked the highest in a function group. However, the genes in this 

function group are all ranked below another group of genes. As a result, all of genes 

including the informative gene in this function group are possibly eliminated. 

The fuzzy-granular based algorithm is proposed in this work for more reliable gene 

selection. It works in two stages. Fig. 6.2 sketches the algorithm. 

 

At the first stage, RI metrics are used to coarsely group genes into two granules: “relevant 

granule” and “irrelevant granule”. The relevant granule consists of negative-related genes 

(with −− ≥ αiR ) and positive-related genes (with ++ ≥ αiR ), while the irrelevant granule is 

comprised of irrelevant genes (with −− <αiR  and ++ <αiR ). Notice )1,0[∈−α  is the 

 
Figure. 6.2.  Fuzzy-Granular gene selection  
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negative filtering threshold and )1,0[∈+α  is the positive filtering threshold. Only genes 

in the relevant granule survive for the following stages. The assumption is that irrelevant 

genes are not so useful for cancer classification or even possible to correlate other genes 

in some unknown complex way to confuse FCM to get good clusters/granules or confuse 

SVMs to get good classification. This pre-filtering process can dramatically decrease the 

number of candidate genes on which FCM works. Therefore, it can improve both the 

efficiency and the effectiveness of the following stages. Notice that the pre-filtering step 

by RI metrics is targeted at minimizing information loss by eliminating most of irrelevant 

genes. 

At the second stage, genes which survive after the first stage are grouped by FCM into 

several “function granules”. In each function granule, some correlation-based metric is 

used to rank genes in the descending order. The lower-ranked genes are removed. And 

then all remaining genes in these function granules are combined disjunctively to form 

the final gene subset. By using FCM, our algorithm explicitly groups genes with similar 

expression patterns into clusters and then the lower-ranked genes in each cluster could be 

safely removed as redundant genes because the more significant genes with similar 

functions will survive. Furthermore, due to complex correlation between genes, the 

similarity is by no means a “crisp” concept. FCM deals with complex correlation between 

genes by assigning a gene into several clusters with different membership values. 

Therefore, a really informative gene achieves more than one opportunity to survive. 

6.4. Simulation 
 
In our simulation, the new fuzzy-granular based algorithm is compared with three 

correlation-based algorithms, S2N, FC and TS. The hardware we used is a desktop with 
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P4-2.8MHz CPU and 256M memory. The software we developed is based on OSU SVM 

Classifier Matlab Toolbox [86] which implements a Matlab interface to LIBSVM [25]. 

6.4.1. Evaluation metrics 
 
Three metrics, accuracy (Eq. 6.12), sensitivity (Eq. 6.13) and specificity (Eq. 6.14), are 

used to evaluate classification performance.  

Here, sensitivity is defined to be the fraction of the real negatives that actually are 

correctly predicted as negatives. Specificity is defined to be the fraction of the tissues 

predicted as negatives that really are negatives.  

TPFPFNTN
TPTNaccuracy

+++
+

= .    (6.12) 

)/( FPTNTNysensitivit += .     (6.13) 

)/( FNTNTNyspecificit += .     (6.14) 

By the definitions, the combination of sensitivity and specificity can be used to evaluate a 

model’s balance ability so that we know if a model is biased to a special class. 

We also report the area under the ROC curve (AUC) [19] for each algorithm. The AUC 

value can indicate a model’s generalization capability as a function of varying a 

classification threshold. An area of 1 represents a perfect classification, while an area of 

0.5 represents a worthless model.  

6.4.2. Data description 
 
The prostate cancer dataset for tumor versus normal classification [79] is used in our 

simulation. It consists of 136 prostate samples (77 with tumors and 59 without tumors). 

The 12600 features correspond to some normalized gene expression values extracted 

from the microarray image. Here negatives are defined to be the normal prostate samples 

without tumor, while positives are the tumor samples. 
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The colon cancer dataset is also used for comparison [79]. There are 22 normal tissues 

and 40 colon cancer tissues. Gene expression information of colon cancer on more than 

6500 genes were measured using oligonucleotide microarray and 2000 of them with 

highest minimum intensity were extracted to form a matrix of 62 tissues ×  2000 gene 

expression values. 

6.4.3. Data modeling 
 
The same as [48], the original dataset is simply normalized so that each gene vector has 0 

for mean and 1 for standard deviation. To avoid overfitting, for leave-one-out or 

bootstrapping validation accuracy evaluation, validation samples are kept out from 

calculating these two values. 

The regulation parameter 1≡C  for the linear SVMs. For FCM, the “fuzziness 

degree” 15.1=m , the maximal iteration number is 100, and the minimal 

improvement 510−=ε . For fuzzy-granular gene selection, genes are grouped into 10 

clusters, in each of which S2N/FC/TS is used for gene ranking, and then 2 highest ranked 

genes in each of the 10 clusters are combined disjunctively to form the final gene set with 

the size (at most) 20. For comparison, top 20 ranked genes are also selected based on 

S2N, FC and TS, respectively.  

Notice that fuzzy membership values are defuzzified in such a way that a gene is always 

grouped into the cluster with the largest membership value and the cluster with the 

second largest membership value. The assumption is that different gene function groups 

are clustered based on their expression strengths. Some genes whose expression strengths 

are between two groups may be more suitable to be clustered into the two groups at the 

same time. This way, each gene achieves two opportunities to be selected. 
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The genes distribution in the prostate cancer dataset is highly imbalanced between 

negative-related genes and positive-related genes. If 5.0== −+ αα , 4761 positive-related 

genes and only 110 negative-related genes are survived. To alleviate the imbalance, 

75.0=+α  and 5.0=−α  are used to select 721 positive-related genes and 110 negative-

related genes. There is no overlapping between positive-related genes and negative-

related genes. Similarly, for the colon cancer dataset, 5.0=+α  and 1.0=−α . 

The leave-one-out validation is used [50]: in each fold, one sample is left for validation 

and the other samples are used for training. Another evaluation heuristic adopted is 

balanced .632 bootstrapping [20]: random sampling with replacement is repeated for 100 

times on each of the two datasets. Each tissue sample appears exactly 100 times in the 

computation to reduce variance [29].  

6.4.4. Result analysis 
 
Table 6.1 reports the leave-one out validation performance of six gene selection 

algorithms, named S2N, Fuzzy-Granular with S2N, FC, Fuzzy-Granular with FC, TS and 

Fuzzy-Granular with TS. Table 6.2 reports .632 bootstrapping performance. The results 

show that Fuzzy-Granular gene selection improves prediction performance compared to 

correlation-based algorithms both in terms of accuracy and AUC. Specifically, Fuzzy-

Granular with S2N has the best performance under both leave-one-out validation and 

.632 bootstrapping validation. This means fuzzy-granular algorithm can select more 

informative genes. 
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There are two reasons for the good performance of fuzzy-granular gene selection. Firstly, 

RI-based pre-filtering eliminates most of irrelevant genes and hence decreases 

correlation-induced noise. Secondly, FCM explicitly groups genes into different clusters 

with different expression patterns so that informative genes from different function 

granules (clusters) are selected in balance. 

Similar performance gain of fuzzy-granular gene selection is observed for the colon 

cancer dataset (Table 6.3 and Table 6.4). 

TABLE 6.4 
.632 BOOTSTRAPPING PERFORMANCE ON THE COLON CANCER 

DATASET  
model accuracy AUC sensitivity specificity 
S2N [46] 0.8419 0.8701 0.9092 0.9116 
FG+S2N 0.8428 0.8881 0.9285 0.9212 
FC [99] 0.8314 0.8690 0.9087 0.9128 
FG+ FC 0.8323 0.8806 0.9236 0.9160 
TS [38] 0.8150 0.8437 0.8741 0.9010 
FG+TS 0.8428 0.8881 0.9285 0.9212 

TABLE 6.3 
LEAVE-ONE OUT VALIDATION PERFORMANCE ON THE COLON 

CANCER DATASET  
model accuracy AUC sensitivity specificity 
S2N [46] 0.8710 0.8591 0.9000 0.9000 
FG+S2N 0.9516 0.9523 0.9500 0.9744 
FC [99] 0.8710 0.8693 0.8750 0.9211 
FG+ FC 0.8710 0.8591 0.9000 0.9000 
TS [38] 0.7903 0.7761 0.8250 0.8462 
FG+TS 0.8710 0.8591 0.9000 0.9000 

TABLE 6.2 
.632 BOOTSTRAPPING PERFORMANCE ON THE PROSTATE CANCER 

DATASET 
model accuracy AUC sensitivity specificity 
S2N [46] 0.8323 0.8484 0.8047 0.9073 
FG+S2N 0.8684 0.9125 0.9045 0.9357 
FC [99] 0.8489 0.8688 0.8938 0.8829 
FG+ FC 0.8621 0.9054 0.9002 0.9280 
TS [38] 0.8556 0.8734 0.8953 0.8880 
FG+TS 0.8530 0.8864 0.8379 0.9436 

TABLE 6.1 
LEAVE-ONE OUT VALIDATION PERFORMANCE ON THE PROSTATE 

CANCER DATASET 
model accuracy AUC sensitivity specificity 
S2N [46] 0.8309 0.8388 0.7792 0.9091 
FG+S2N 0.9191 0.9226 0.8961 0.9583 
FC [99] 0.8824 0.8803 0.8961 0.8961 
FG+ FC 0.9118 0.9102 0.9221 0.9221 
TS [38] 0.8603 0.8588 0.8701 0.8816 
FG+TS 0.9191 0.9206 0.9091 0.9459 
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6.5. Summary 
 
To select a more informative gene set for reliable cancer classification, the fuzzy-granular 

based algorithm is proposed in this chapter. Firstly, it utilizes Relevance Index metrics to 

remove most of irrelevant genes to improve the efficiency and decrease the noise effect at 

the same time. Secondly, it explicitly groups genes with similar expression patterns into 

“function granules” with the Fuzzy C-Means clustering algorithm. Therefore, the lower-

ranked genes in each “function granule” can be safely removed as redundant genes 

because more significant genes with similar functions will survive. Finally, it deals with 

complex correlation between genes by assigning a gene into several clusters with 

different membership values so that a really informative gene is more possible to survive.  

Our fuzzy-granular based algorithm is more reliable for cancer classification, as the 

experiment results on the prostate cancer dataset and the colon cancer dataset 

demonstrated. The gene set selected by our algorithm is expected to be more helpful for 

biologists to uncover the inherent cancer-resulting mechanism. 

Because of the inherent advantage to eliminate irrelevant or redundant genes while 

selecting really informative genes, we expect that this superior performance can also be 

true in processing other microarray datasets. This work is currently in processing. 
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Chapter 7 Conclusions and future works 
 

In this dissertation, two fuzzy granular based algorithms have been proposed. The first 

one is a general Fuzzy Association Rule Mining for Decision Support algorithm (FARM-

DS). By combining data clustering techniques with fuzzy interval partitions on input 

features, the high-level data abstraction can be extracted and the quantitative data can be 

efficiently transformed into fuzzy discrete transactions, on which a traditional Apriori 

algorithm works on mine association rules that can be utilized for classification and 

decision support.  

The FARM-DS algorithm is compared with state-of-the-art classification algorithms on 

medical or biological datasets. The empirical study demonstrates that FARM-DS is 

accurate for classification. More importantly, besides a class label, FARM-DS also 

returns the fired rules for an unseen sample to human experts, and thus can provide strong 

decision support to assist human experts to make correct decisions. 

The second algorithm is applying fuzzy granulation on the microarray expression dataset 

for gene selection. This algorithm utilizes Relevance Index metrics to remove most of 

irrelevant genes, groups genes with similar expression patterns into granules then, ranks 

them with correlation-based methods in each granule, finally, lower-ranked genes are 

removed as redundant genes. 

The experiment results show that this algorithm is more reliable for cancer classification. 

The gene set selected by our algorithm is expected to be more helpful for biologists to 

uncover the inherent cancer-resulting mechanism. 

As a long term research plan, our goal is to build a hybrid intelligent knowledge 

discovery and data mining system based on granular computing, soft computing and 
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statistical learning to provide effective and efficient decision support for diseases 

diagnosis and drug design, and many other applications. The algorithms proposed in this 

dissertation can be viewed as a preliminary step toward the goal.  
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