

Multidimensional process discovery

Citation for published version (APA):
Ribeiro, J. T. S. (2013). Multidimensional process discovery. [Phd Thesis 1 (Research TU/e / Graduation TU/e),
Industrial Engineering and Innovation Sciences]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR750819

DOI:
10.6100/IR750819

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR750819
https://doi.org/10.6100/IR750819
https://research.tue.nl/en/publications/ef3b5ad5-002b-498f-9e81-3ab7638ebc7b

Multidimensional Process Discovery

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Ribeiro, Joel T.S.

Multidimensional Process Discovery / by Joel T.S. Ribeiro.
- Eindhoven: Technische Universiteit Eindhoven, 2013. - Proefschrift. -

A catalogue record is available from the Eindhoven University of Technology
Library

ISBN: 978-90-386-3341-1
NUR: 982
Keywords: Process Mining / Process Discovery / Enhancement / OLAP /
Data Mining

The research described in this thesis has been carried out under the auspices
of Beta Research School for Operations Management and Logistics.

This work has been carried out as part of the project “Merging of Incoher-
ent Field Feedback Data into Prioritized Design Information (DataFusion)”,
sponsored by the Dutch Ministry of Economic Affairs, Agriculture and In-
novation under the IOP IPCR program.

Beta Dissertation Series D165

Printed by Proefschriftmaken.nl ‖ Uitgeverij BOXPress
Cover design: Proefschriftmaken.nl ‖ Uitgeverij BOXPress

Copyright c© 2013 by Joel Tiago Soares Ribeiro. All Rights Reserved.

Multidimensional Process Discovery

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 13 maart 2013 om 16.00 uur

door

Joel Tiago Soares Ribeiro

geboren te Vila de Cucujães, Portugal

Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. P.W.P.J. Grefen

Copromotor:
dr. A.J.M.M. Weijters

To my family

Contents

1 Introduction 1
1.1 DataFusion Project 2

1.1.1 New Product Development 2
1.1.2 Field Feedback Information 4

1.2 Knowledge Discovery 4
1.2.1 Data Mining 5
1.2.2 Online Analytic Processing 7
1.2.3 Process Mining 8

1.3 Motivating Case Study 11
1.3.1 Knowledge Discovery in Customer Experience Databases . . 11

1.4 Multidimensional Process Mining 14
1.5 Research Questions 16
1.6 Outline . 18

2 Concept Architecture 21
2.1 Reference Architecture 23
2.2 Data Warehousing System 26
2.3 Enterprise Search Engine 30
2.4 Multidimensional Process Explorer 33
2.5 Summary 37

3 Process Discovery 39
3.1 Process Data 40

3.1.1 Event Logs 40
3.1.2 Event Streams 42

3.2 Process Representation 43
3.2.1 Traditional Process Models 43
3.2.2 Multidimensional Process Models 48

3.3 Control-Flow Mining 61
3.3.1 Flexible Heuristics Miner 61
3.3.2 Multidimensional Heuristics Miner 73

3.4 Summary 83

4 Process Similarity 85
4.1 Process Similarity in Traditional Process Models 86
4.2 Process Similarity in Multidimensional Process Models 87

4.2.1 Similarity between Event Occurrences 88

viii Contents

4.2.2 Similarity between Event Occurrence Bindings 90
4.2.3 Similarity between Process Instances 92
4.2.4 Similarity between Sub-Processes 93

4.3 Summary 94

5 Process Analysis 95
5.1 Multidimensional Data Model 96
5.2 Event Cube 99

5.2.1 Information Retrieval on Process Data 99
5.2.2 Deriving Process Information 103
5.2.3 Measures of Interest 106
5.2.4 Materializing the Event Cube 111

5.3 Multidimensional Process Analysis 114
5.3.1 Multidimensional Process Discovery 114
5.3.2 Business Process Querying 118
5.3.3 Cube Exploitation 120
5.3.4 Filtering Process Behavior 124

5.4 Challenges 132
5.4.1 Curse of Dimensionality 132
5.4.2 Measuring Artificial Dependency Relations 134
5.4.3 Parameter Selection 136
5.4.4 Process Model Consistency across Perspectives 136

5.5 Summary 139

6 Process Patterns 141
6.1 Pattern Characterization 142
6.2 Pattern Extraction 143

6.2.1 Summarization 143
6.2.2 Deviation Analysis 143
6.2.3 Rule Learning 144
6.2.4 Classification 150
6.2.5 Clustering 152

6.3 Extraction of Process Patterns 154
6.3.1 Frequent Event Sets 154
6.3.2 Event Gradients 157
6.3.3 Frequent Binding Sets 159
6.3.4 Binding Classification 163
6.3.5 Instance Clustering 165

6.4 Summary 168

7 Evaluation 169
7.1 Software Quality Model 169
7.2 Implementation 171
7.3 Evaluation Method 174

7.3.1 Experiments 175
7.3.2 Case Study 176
7.3.3 Workshop 178

7.4 Efficiency 179
7.5 Usability 189

Contents ix

7.5.1 Understandability 189
7.5.2 Operability 190

7.6 Functionality 191
7.6.1 Suitability 191
7.6.2 Accuracy 193

7.7 Discussion 194

8 Conclusions 197
8.1 Contributions 200
8.2 Applications 202
8.3 Limitations 203
8.4 Future Work 203

A Building Multidimensional Process Models from a Reference Pro-
cess Model 205

Bibliography 209

Summary 221

Samenvatting 223

Acknowledgements 225

Curriculum Vitae 227

Chapter 1

Introduction

Business process management (BPM) is increasingly becoming present in modern en-
terprises. This fact is explained by the orientation shift within organizations, from
data orientation to process orientation. Process aware information systems have been
used to manage the execution of business processes, providing support especially at
the operational level. Business process intelligence (BPI) techniques such as process
mining can be applied to get strategic insight into the business processes. Process dis-
covery, conformance checking and enhancement are possible applications for knowledge
discovery on process data.

Typically represented in event logs, business process data describe the execution of
process events over time. This means that operational data are associated with process
events, which turns the static nature of the business data into dynamic. This is a great
advantage for business process analysis once that the business behavior can be tracked.
By applying process mining techniques on data that describe the behavior of process
instances, it is possible to discover and analyze the business as it is being executed.
However, so far, these techniques are typically designed to focus on specific process
dimensions, omitting information potentially relevant for the analysis comprehension.

Specially designed to support on-the-fly hypothesis-driven exploration of data, on-
line analytic processing (OLAP) systems are commonly used as reporting tools in
almost every application for business intelligence. Exploiting the data by combining
different dimensions with some measures of interest, it is possible to adjust on-the-fly
the analysis’ level of abstraction in an interactive way. Relying on the multidimensional
data model, OLAP tools organize the data in such a way that it is possible to have
multiple perspectives in the same analysis.

This thesis presents a research work concerning the extension of process mining
techniques with OLAP functionalities. Making use of OLAP concepts, a multidimen-
sional data structure is designed to hold the different dimensions of business processes
in such a way that process discovery and analysis are facilitated. Extending the tradi-
tional OLAP data cubes, these structures can improve the process analysis by providing
immediate results under different levels of abstraction. Furthermore, non-trivial pro-
cess patterns and relations can also be identified by exploiting the different process
perspectives.

The research work presented in this thesis was conducted under the scope of the
DataFusion project, which is described next.

2 Chapter 1. Introduction

1.1 DataFusion Project

The DataFusion project aims at the extraction of structural, richer and prioritized field
feedback information from the existing New Product Development (NPD) operational
databases. Fusing data from these databases can be potentially used to enrich the
information in the new NPD data warehouses. Together with the input from prod-
uct developers, information related to mismatches between product specifications and
customer requirements can be obtained.

The goal of the DataFusion project is to support product development with
prioritized information related to mismatches between product specifications
and customer requirements.

The DataFusion project, in long term, aims at preventing consumer complaints
through product development. Thus, in order to achieve this objective, it is necessary
to develop new consumer information processes. These processes should be organized
in such way that the relevant information can be easily identified and, consequently,
prioritized design information can be generated. The hypothesis is that this informa-
tion can be generated by combining the consumer information from the existing NPD
datasets. Assuming the validity of this hypothesis, this project concerns the design
of a new consumer information repository based on existing NPD databases in order
to deal with the mismatched information. This system should be able to establish an
effective connection between the data sources and the knowledge discovery techniques.
Three different aspects of this system are studied in the following subprojects.

Information Integration and Distribution in NPD focuses on generating the
information requirements and developing a new information process to provide
development with the required information.

Information Extraction from Unstructured Texts focuses on the development
of techniques for efficiently and accurately extracting relevant information from
large amount of texts.

Knowledge Discovery on NPD Information focuses on the development of suit-
able knowledge discovery techniques that can be applied to identify various pat-
terns on NPD information.

The focus of this thesis is the knowledge discovery on NPD datasets (the third
subproject described above). Therefore, the contribution of this thesis – to the Data-
Fusion project – consists of (i) the design of a concept system to establish an effective
connection between the data sources and the knowledge discovery techniques, and (ii)
the development of a framework for knowledge discovery on NPD information.

1.1.1 New Product Development

New Product Development (NPD) can be defined as the complete process of introducing
a new product (good or service) to market, from conceptualization to commercializa-
tion. The different stages in NPD can be summarized as follows.

Idea Generation and Screening: Spotting good ideas, evaluating them for tech-
nical feasibility, marketability and financial viability. It is necessary to involve
different departments such as R&D, Production and Sales, and to use information
about costumers, competitors, market and others.

1.1. DataFusion Project 3

Concept Development and Testing: Stating a detailed version of the new product
in meaningful consumer terms. Additionally, the new products are tested with
a group of consumers to find out whether the concepts have strong consumer
appeal.

Business Analysis: Estimating costs, sales, income, break-even point, profit and re-
turn on investment (ROI) for the new ideas. It is necessary to find out whether
the estimations satisfy the enterprise’s goals.

Beta and Market Testing: Turning the idea into a prototype to ensure that the
new product is feasible. Additionally, the prototype is tested in typical usage
situations. An initial run of the product is produced and sold in a test market
area in order to determine customer acceptance.

Technical Implementation: Planning and implementing the product production.
Several engineering and production issues need to be solved. Furthermore, there
are concerns with design, materials, production processes, quality and safety.

Commercialization: Introducing the new product into the market. Issues such as
promotional expenditures at the product launch, penetration prices and distri-
bution plan need to be taken. The timing is critical for success.

Technical and Customer Support: Handling with products malfunctions and cus-
tomers complaints. This stage does not take part of NPD but its information may
be extremely useful and valuable for improving current products or developing
better new ones.

Figure 1.1 provides an overview of the NPD process. This process starts with the
idea generation for a product and ends with the product commercialization. Technical
and customer support is considered as a stepping stone for enabling the development
of better products. Field feedback information such as the one that is generated by
customer services can be used to characterize the market needs and expectations for
new products. Thus, better products can be developed faster.

Idea Generation
and Screening

Concept
Development and

Testing

Business Analysis

Beta and Market
Testing

Technical
Implementation

Commercialization

Technical and
Customer Support

People

Systems

Processes

Decisions

Teams

Expertise

Data

Figure 1.1: Stages in New Product Development.

4 Chapter 1. Introduction

1.1.2 Field Feedback Information

Field feedback data sources can be rich knowledge repositories for NPD. Nowadays,
especially due the Internet, it is easy to share an opinion, experience or complaint about
an acquired - or experienced - product or service. When accessible, this information
may have a strong influence not only on the consumer audience - which can be potential
buyers - but also on the producers. Internet forums, social networks, and blogs are
good examples that may work as an immediate kind of word of mouth, affecting market
trends and companies goodwill. Other forms of communication, such as the usage of
customer services for complaint or request notification, may enable the producers to
get good insight into their products in the field and market conditions. This strategic
knowledge is an example of what can be extracted from field feedback data sources.
However, this task is not trivial but may be achieved through knowledge discovery
techniques.

Although knowledge discovery techniques can easily fit in any business context,
there are some issues to apply it on field feedback data. The curse of heterogeneity
is the major challenge related to information management over the product life cy-
cle. This life cycle generates information under diverse forms (e.g., Internet forums or
technical reports), feeding multiple, heterogeneous, and autonomous databases. More-
over, cross-functional teams1 have multiple, heterogeneous information needs. Thus,
the boundaries2 among NPD team members may be seen as an extra constraint for
information or knowledge retrieval, especially over heterogeneous databases. Data re-
liability is a critical issue as well. Unstructured, incoherent and noisy data may lead to
misadjusted results. Thus, data integration as well as data enrichment are fundamental
tasks to be applied before performing knowledge discovery.

1.2 Knowledge Discovery

Knowledge discovery can be defined as the process of searching large amounts of data in
order to find non-trivial patterns (i.e., knowledge). The knowledge discovery domain
consists of a broad category of applications and technologies for gathering, storing,
analyzing, and providing access to data, in order to support better business decision-
making through historical, current, and predictive views of business operations. Knowl-
edge discovery subdomains such as data mining, online analytic processing (OLAP),
and process mining have been exhaustively studied over the last decade, offering nowa-
days a vast amount of techniques that can be used in almost every business context
[50, 74, 87].

Although knowledge discovery techniques are easily applicable in any business con-
text according to the literature, there are some issues related to customer experience
data that make the application more difficult and complex. The heterogeneous and
autonomous character of the customer experience databases is the major challenge for
knowledge discovery. The reliability of the data is a critical issue as well. Unstruc-
tured, incoherent, and noisy data may lead to misadjusted results. It implies that
unstructured customer experience data need to be transformed to structured informa-
tion before knowledge discovery can be performed.

1The NPD process is traditionally handled by cross-functional teams [107].
2Concept introduced in [26] to describe the implicit limitation in communication among NPD team

members due the absence of similar background skills.

1.2. Knowledge Discovery 5

1.2.1 Data Mining

Data mining can be defined as the extraction of implicit, previously unknown, and po-
tentially useful information from data [134]. This can be achieved by analyzing auto-
matically large amounts of data in order to find relationships or patterns. Databases,
data warehouses, and other repositories are potential data sources for data mining.
However, in order to optimize the accuracy of the mining functions, some data prepa-
ration such as data integration, transformation and cleaning may be needed before
mining. Applications of data mining on field feedback data sources can be found in
[61, 71, 84].

Depending on the data mining functionality, different kinds of patterns can be
discovered to characterize general aspects of data or to support prediction. The main
data mining functionalities can be categorized as follows.

• Characterization and discrimination consists of summarizing and comparing
general characteristics of data.

• Rule learning refers to the discovery of frequent patterns, associations and
correlations from data.

• Classification and estimation consists of learning models or functions for
prediction.

• Clustering refers to the process of grouping data objects into classes of similar
objects.

Characterization and discrimination is the simplest functionality since it basically re-
lies on statistical functions. One common application of this data mining functionality
is described in Subsection 1.2.2. Rule learning, classification and estimation, and clus-
tering are described next.

Rule Learning

Association rule learning [8] consists of finding strong relationships (in form of associ-
ation rules) in the data. Basically, these relationships are based on frequent patterns
(i.e., patterns that occur frequently in data), which can include itemsets, subsequences,
and substructures.

• Frequent itemsets consist of a set of objects (items) that frequently appear
together in data (e.g., a transactional dataset or an event log).

• Frequent subsequences consist of a sequence of objects (items) that appear
frequently in data.

• Frequent substructures consist of structural objects such as subtrees or sub-
graphs that occur frequently.

The Apriori algorithm [7] is the reference algorithm for mining frequent itemsets.
Exploring the Apriori property (all non-empty subsets of a frequent itemset must also be
frequent), this algorithm finds frequent itemsets by generating candidates from related
known frequent itemsets. As an alternative to Apriori, the FP-growth (frequent pattern
growth) [51] finds frequent itemsets by using a tree-based structure (an FP-tree) to
describe the data. Instead of generating candidates, the FP-growth uses each case
in the data to grow the FP-tree and, thus, discover the frequent patterns. Another
common approach for mining frequent itemsets is the ECLAT [142], which applies some
concepts from information retrieval to efficiently compute the support of the itemsets.

6 Chapter 1. Introduction

Mining frequent subsequences and substructures can be performed by applying
a similar approach as for frequent itemsets. Association rules can be generated di-
rectly from frequent patterns. This process is described in detail in Subsection 6.2.3.
Eventually, association rules can be extended to correlation rules by using a correla-
tion measure. For an extensive overview of association rule learning techniques see
[50, 55, 143].

Classification and Estimation

Classification is a supervised learning technique that can be used to construct a model
(or to find a function) that characterizes and discriminates specific categorical aspects
(target classes) in data. These classification models are based on a set of training data
(i.e., a set of cases with known classes) and can be used to predict the classes in cases
when these are not known. A classification model can be represented in various forms
depending on the classification approach. These approaches can be characterized as
follows.

• Decision tree induction is one of the most common classifier techniques. Ba-
sically, these techniques consists of constructing a tree-based structure (i.e., a
decision tree) where target values (classes) are described according to a training
dataset. ID3 [89], C4.5 [90], and CART [24] can be considered as the reference
algorithms for the induction of decision trees. Further details about decision tree
induction are provided in Chapter 6.

• Bayesian classification consists of statistical classifiers based on Bayes’ the-
orem. Näıve Bayesian classifiers [37] and Bayesian belief networks [54] are two
common Bayesian classification techniques.

• Artificial neural networks are structures mimicking biological neural networks.
These structures can be used to model complex relationships between attributes
and classes. The backpropagation algorithm [97] can be considered as the refer-
ence algorithm for training artificial neural networks.

• A support vector machine (SVM) is a classification approach for both linear
and non-linear data. Basically, these techniques transform the data in such a
way that the multidimensional space can be divided by one or more hyperplanes.
The maximum margin training algorithm [21] can be considered as the reference
algorithm for computing support vector machines.

• Other classification approaches such as lazy learners [33], genetic algorithms [38],
fuzzy set theory [141], among others.

Estimation is a supervised learning technique that can be used to find a function
that describes specific continuous values in data. These estimation functions are also
based on a set of training data and can be used to predict missing or unknown values.
Linear and non-linear regression models [63] are common estimation techniques. Be-
sides regression, several classification techniques can be adapted to predict continuous
values (e.g., neural networks and SVM).

The accuracy of a classification model or an estimation function can be assessed by
some validation techniques (e.g., holdout, cross-validation, and bootstrap). Basically,
the evaluation of a model consists of using a set of testing data (i.e., a set of cases with
known classes not used in the learning process) for predicting the known classes. The
accuracy assessment can be done by checking the correct and incorrect predictions.

1.2. Knowledge Discovery 7

For an extensive overview of classification and estimation techniques see [37, 50, 69].

Clustering

Clustering is an unsupervised learning technique that can be used to group objects into
clusters of objects. A cluster can be defined as a collection of objects that are similar
to each other but different (dissimilar) from objects in other groups. The measure that
define the similarity (or dissimilarity) between objects can be used for learning the
clustering models as well as for assessing their quality. Euclidean distance, Minkowski
distance, and Jaccard coefficient are examples of these measures. Pattern recognition
and outlier detection and analysis are common applications of clustering techniques.

Clustering techniques can be classified into the following categories.

• Partitioning methods distribute the objects by a user-specified number of
clusters (K). Clusters are typically represented by a centroid that provides the
summary description of all objects in the cluster. The K-means algorithm [81]
and theK-medoids algorithm [64] are two good examples of partitioning methods.

• Hierarchical methods generate a hierarchy of clusters in which the objects
are distributed from a single cluster comprising all objects to several one-object
clusters. There are two types of hierarchical methods: agglomerative and divisive.
The agglomerative approach starts by considering every object as a cluster and
then successively merges the two most similar clusters until only one cluster
remains. The divisive approach starts by considering all objects as a single cluster
and then successively splits a cluster until all clusters consist of a single object.
Examples of both agglomerative and divisive approaches can be found in [64].

• Density-based methods are based on the notion of density instead of similarity
(or dissimilarity) between objects. The GDBSCAN [98] and the OPTICS [13]
algorithms are examples of density-based methods.

• Grid-based methods transform the object space into a grid structure with a
finite number of cells. The clustering process is then performed over the grid.
The STING algorithm [127] is a good example of a grid-based method.

• Model-based methods hypothesize different models to define the different clus-
ters and find the best fit of the data to those models. The EM (Expectation-
Maximization) [34] and the COBWEB [41] algorithms are examples of model-
based methods.

For an extensive overview of clustering techniques see [50, 138].

1.2.2 Online Analytic Processing

Traditionally associated to decision support systems (DSS), OLAP systems provide
a different view of the data by applying the multidimensional paradigm [29]. OLAP
techniques organize the data under the multidimensional data model. This model rep-
resents data by means of a data cube, a multidimensional fact-based structure that
supports complex queries in real time. A fact describes an occurrence of a business
operation (e.g., sale or purchase), which can be quantified by one or more measures of
interest (e.g., the total amount of the sale or purchase) and characterized by multiple
dimensions of analysis (e.g., time, location, product and customer). Typically numer-
ical, measures can be aggregated at different levels of abstraction. Nonetheless, the

8 Chapter 1. Introduction

application of OLAP on non-numerical data is increasingly being explored. Temporal
series, graphs, and complex event sequences are possible applications [30, 72, 76]. An
application of OLAP in customer service support can be found in [57].

A data cube provides a multidimensional view of data through the computation
of specific measures for every combination of the cube’s dimension values. Each com-
bination defines a different group of facts and is represented by a multidimensional
cell. The set of cells that share the same dimensions forms a cuboid, which represents
a perspective. The complete set of cuboids forms the data cube through a lattice of
cuboids.

A lot of research have been done to develop efficient methods for computing data
cubes. The data cube can be either fully materialized or partially materialized. Full
materialization consists of the computation of all cuboid cells in the data cube. Partial
materialization consists of the computation of a subset of cuboid cells. Common types
of partially materialized data cubes are [50]:

• Iceberg cubes [39] simply contain multidimensional cells that satisfy a specific
minimum support threshold.

• Shell cubes [73] simply contain shell fragments. Shell fragments can be defined
as a subset of cuboids that are characterized by a specific set of dimensions.

• Closed cubes [136] simply contain closed cells. Closed cells can be defined as
multidimensional cells that can be used to represent other cells without losing
information.

Several efficient materialization methods are proposed. MultiWay [144] is a top-
down approach that explores the simultaneous aggregation of multiple dimensions to
compute full data cubes. BUC [20] is a bottom-up approach that explores sorting
and partitioning for computing iceberg cubes. Comparable to BUC, H-Cubing [52]
is a bottom-up approach that uses an efficient data structure (a H-Tree) to compute
iceberg cubes. Integrating top-down and bottom-up approaches, Star-Cubing [135,
137] computes either full data cubes or iceberg cubes by performing aggregations on
multiple dimensions simultaneously. Shell Cube [73] computes shell fragments based
on a selection of dimensions of interest. C-Cubing [136] computes closed cubes by using
an algebraic measure that can be computed efficiently and incrementally.

OLAP Mining

Combining OLAP with data mining, OLAP mining (or OLAPing) aims at the discovery
of non-trivial patterns from multidimensional views of data. In [48, 49], it is described
how the traditional data mining functions can be applied in multidimensional datasets.
The cube-gradient analysis problem is introduced in [58]. This problem consists of
searching the multidimensional space in order to find significant changes in measures.
Efficient methods for constrained gradient analysis are proposed in [10, 11, 36].

1.2.3 Process Mining

Process mining can be defined as the extraction of valuable, process-related information
from event logs [110]. Process aware information systems have been used to manage
the execution of business processes, providing support specially at an operational level.
Business process intelligence techniques such as process mining can be applied to get

1.2. Knowledge Discovery 9

strategic insight into the business processes. Process discovery, conformance checking
and enhancement are common applications for knowledge discovery on process data.
Figure 1.2 shows an overview about process mining.

software

system

(process)

model

process

data

models

analyzes

discovery

records

events, e.g.,

messages,

transactions,

etc.

specifies

configures

implements

analyzes

supports/

controls

enhancement

conformance

“world”

people machines

organizations

components

business

processes

Figure 1.2: Positioning of the main applications of process mining: discovery, conformance, and
enhancement [110].

An example of process mining applicability on event-based customer experience
data sets can be found in [67].

Process Discovery

Discovery consists of characterizing the behavior of business processes by simply ana-
lyzing data about executed processes. This means that, given some process data, the
observed behavior described in the data is represented by means of process models.
Depending on the discovery technique, process models can be modeled according to
several process modeling formalisms. Petri nets [91], Causal nets [6, 130], Fuzzy models
[46, 47], Business Process Modeling Notation (BPMN) [88], and Event-driven Process
Chains (EPCs) [109] are common formalisms in process discovery.

Process discovery can be decomposed in four possible perspectives [110]:

• Control-flow perspective concerns with aspects related to the process behavior
[111, 112]. Examples for the control-flow perspective are all techniques that
construct process models from the observed behavior described in the process
data.

• Organizational (or resource) perspective concerns with aspects related to the
resources and the organizational structure of the business process [104]. An
example for the organizational perspective is a technique introduced in [114],
which derives social networks from event logs.

• Time perspective concerns with aspects related to the timing of process events.
An example for the time perspective is the dotted chart [103], a technique that
represents process events over time.

10 Chapter 1. Introduction

• Data perspective concerns with aspects related to the properties of process in-
stances and/or process events.3 An example for the data perspective is the de-
cision miner [95], a technique that considers the properties of process events to
characterize specific choices in the process model.

Several control-flow approaches can be found in the literature. The α-algorithm
[112] constructs a Workflow net by analyzing binary relations between activities.4

Although being capable of dealing with concurrent behavior, the α-algorithm has
some limitations with regard to noise, infrequent or incomplete behavior, and com-
plex control-flow constructs (cf. Section 3.2). Several extensions to the α-algorithm
have been proposed to overcome its limitations. In [4], it is presented a solution to deal
with short loops. In [133], it is proposed an extension capable of dealing with non-free
choice constructs. An overview of proposed extensions of the α-algorithm can be found
in [124]. As an alternative to α-algorithms, the Heuristics Miner [131, 132] constructs
a Causal net by computing dependency measures between activities. Being known by
its capability of dealing with noise and infrequent or incomplete behavior, the Heuris-
tics Miner is also capable of dealing with concurrent behavior as well as all complex
control-flow constructs except duplicate tasks. The Genetic Miner [2, 113] is proposed
to handle all common control-flow constructs and be robust to noise at once. By using
genetic algorithms [38], the Genetic Miner constructs a Causal net by mimicking the
process of evolution in nature on a population of candidate solutions (process models).
The Genetic Miner can produce near-optimal results, but it is limited by performance
issues. In [22, 23], a distributed version of the Genetic Miner is proposed to overcome
this limitation. A different control-flow approach, the Fuzzy Miner [46, 47], consists
of constructing hierarchical models (Fuzzy models). In this approach, the process is
presented in multiple abstraction layers where less frequent behavior may be omitted
or aggregated with other closely related behavior. The main limitation of the Fuzzy
Miner is the incapacity of dealing with some common control-flow constructs. Based
on EPCs, the Multi-Phase mining approach [121, 122] is introduced to deal with noise,
infrequent or incomplete behavior, and complex split and join constructs. In this ap-
proach, the process model is built by aggregating the process instances. Based on
theory of regions [14], state discovery algorithms [14, 27, 31, 32, 66, 116] construct a
Petri Net from transition systems, which describe the process instances as sequences
of states and the transitions between these states. Also based on theory of regions,
language-based region algorithms [18, 77, 78, 119] construct a Petri Net from a lan-
guage (step languages, regular languages and partial languages). The languages are
defined by words representing process instances, being each word formed by a letter
in an alphabet representing process events. The main limitation of the region-based
approaches is the lack of generalization in the results.

Conformance Checking

Conformance consists of checking the support of a process model in the process data.
This means that, given both a process model and process data, the modeled behavior of
the model is compared to the observed behavior of the data in order to find similarities

3Properties can be defined as implicit information (i.e., information that can be derived from the
process data) and explicit information (i.e., information described in the process data).

4A WorkFlow net (WF-net) [108] is a particular type of Petri net in which the process starts and
ends in dedicated places.

1.3. Motivating Case Study 11

and differences between them. Some examples of conformance checking can be found
in the literature. In [93, 94, 96], process data are replayed on an existing Petri net in
order to find misalignments between observed behavior and modeled behavior. In [6],
the replaying of process data is performed on Causal nets, a formalism that captures
the essential aspects of other existing formalisms used in process discovery. A concrete
application of conformance checking on service-oriented systems is presented in [115].

Enhancement

Enhancement (or extension) consists of enriching a process model with further process
information. This means that, given a process model and process data, information
about different process perspectives is added to the model in order to enhance it. For
instance, the model can be annotated with information about the process performance
(e.g., case arrival). Some examples of enhancement can be found in the literature. In
[95], process models (Petri nets) are extended with decision rules – derived from the
process data – to characterize choices in the model. In [46, 47], the observed behavior
described in the process data can be projected onto process models (Fuzzy models).
In [131, 132], process models (Causal nets) are annotated with frequency information
based on the process data.

1.3 Motivating Case Study

After introducing the research topics in the previous sections, the following case study is
used to provide a motivation for the research work presented in this thesis. Conducted
in the context of the DataFusion project, this case study aims at the data integration
of customer experience and service data in order to enable the knowledge discovery on
that data. Currently, in this case, data integration processes are defined in an ad hoc
manner, constraining thus the scope of the data analysis. Data heterogeneity is the
main issue to deal with in order to retrieve and integrate data from the existing data
sources. Therefore, this case study can be seen as an abstraction of the requirements
of the DataFusion project. Additionally, besides the data integration issue, the appli-
cability of knowledge discovery techniques on the integrated data is also assessed in
the case study.

1.3.1 Knowledge Discovery in Customer Experience Databases

A large global company that designs and manufactures highly exclusive quality elec-
tronic products has the customer satisfaction as one of the main performance indica-
tors. They have been putting many efforts in acquiring the customer feedback related
to their latest systems and concepts, but their insight about the customer satisfaction
is not yet totally comprehensive. Although there is a large volume of data in their
customer service databases, it is difficult to monitor processes like the handling of
customer complaints. This happens due to data heterogeneousness, that is, the data
are distributed over different databases and may be represented by different notations.
Moreover, these databases have been used as independent operational systems, which
means that information retrieval is not always possible.

A case study was conducted to investigate the integration of customer experience
and service data. Additionally, since these data sources contain more than opera-

12 Chapter 1. Introduction

tional information, the application of knowledge discovery techniques (OLAP and data
mining) is also considered to get insight about the customer satisfaction. Due to the
similarities of this case and a data warehousing project, this case study follows the
Kimball’s approach [65]. As an outcome of this study, a system is designed and de-
ployed. In this system, data can be retrieved from the distributed data sources, cleaned
and transformed in such a way that knowledge discovery techniques can be applied,
and finally integrated into a new data repository. For further details about this case
study see [25].

Description and purpose of existing corporate data

The case study aims at a new solution toward the discovery of non-trivial knowledge
from the customer service databases. Typical examples of their customer service cases
are product flaws that need to be fixed, support service requests, or new functionality
desires. The business managers want to know what they can learn from the (integra-
tion of) customer experience data in relation to their service quality, how they can
improve their customer service process accordingly, and consequently reach a higher
level of customer satisfaction. The company’s customer experience databases are fed
by multiple sources such as call centers, R&D, dealers, or the Internet. The collected
data are typically unstructured (i.e., free text) but, at early stages of the service pro-
cess, a team of specialized employees classifies the cases according to specific categories.
Depending on the case, the data are used to characterize complaints or requests, which
solution (or answer) can either be known or unknown. Known solutions are maintained
in a knowledge management system that relies on a dedicated relational database. Un-
known cases are reported to service teams to be analyzed and solved. These teams are
supported by two heterogeneous relational databases, one for complaint management
and the other for supporting the solution development process. The time period that
each customer service case needs to be solved (i.e., from the complaint or request ar-
rival until its solution or answer release) is defined as solution time. This is considered
the main performance measure for which the company wants to develop a system for
complaint monitoring. Such a system needs to be able to track the customer complaints
along their life cycle, providing better insight about the complaint handling process.
In the end, through better process performance analysis, the company will be able to
improve its customer service and, consequently, the customer satisfaction.

Implemented solution

Although the solution time of a complaint can be simply defined by the time difference
of when the complaint is raised and its solution is given, the procedure for computing
the solution times is not as simple as it initially seems. Since the complaints follow
four different stages along their life cycle, it is necessary to identify on each stage a
specific complaint actually is. These stages are simply identified as discovery, analysis,
resolution, and release. Let us assume that a complaint may always skip one or more
stages. This happens because, for instance, a former solution may solve a recent
complaint. Furthermore, other exceptional behaviors, such as cases with one missing
stage, should be considered as well. Moreover, even when a complete complaint (with
all of its four stages) is successfully retrieved, there may be unknown or incoherent
information.

1.3. Motivating Case Study 13

An analysis was performed to check whether the identified databases contain suf-
ficient information about the complaints and their handling service. Combining these
heterogeneous databases requires an effective data integration process. Missing in-
formation, especially foreign keys (i.e., the references that enable the relation of two
different data tables), is identified as the main issue for this process. Furthermore,
data normalization and transformation are also necessary to standardize or derive rele-
vant information. The complaint life cycle information is distributed over two different
databases (seven data tables). The percentage of missing (or null) information for each
attribute varies up to 77%.

The implemented solution consists on a three-step data integration process: data ex-
traction, transformation, and loading. First, the complaint life cycle data are extracted
from the data sources to a staging area. Then, transformation services are applied
to prepare the data to be analyzed according to the users requirements. This means
that the complaint data need to be retrieved from the different data tables. Then,
by linking the different stage data, it is possible to build the complaint case along
the different stages. Eventually, data cleaning and normalization tasks are applied to
treat incoherent information. Finally, the solution time can be easily calculated. The
complaint case is ready to be loaded into a knowledge base.

Result analysis is achieved through OLAP techniques. The data integration process
was designed in such a way that it is possible to analyze each complaint case through the
combination of five different dimensions. Thus, it is possible to evaluate the customer
service by either quantity (number of complaints) or quality (complaint solution time).
Furthermore, different dimensions may be combined to constraint the analysis. As
example, possible answers are the average of solution times for every complaint about
a specific product family or the evolution of the total amount of high-priority complaints
over time. Time, product, priority, complaint type, and measurement type are possible
dimensions that can be combined with two measurements: number of complaints and
complaint solution time.

Conclusions

This case study focused on the design and development of a system capable of perform-
ing data integration and knowledge discovery on process data. It was demonstrated
that, through combining customer experience information, it is possible to obtain a
better overview about customer service processes. This actionable knowledge may be
used at both strategic and operational level. Once that the system’s knowledge base re-
lies on coherent and integrated data, this new knowledge source outstands its own data
sources in terms of data trustworthiness and readiness. So far, OLAP-based techniques
were applied to exploit the business process information through different perspectives.
However, other issues such as improving the detection of bottlenecks and using the data
in NPD projects are not solved. Table 1.1 summarizes the specific problems exhibited
before and after the application of the implemented solution.

As identified in Table 1.1, the main limitation of the implemented solution is the
impossibility of determining the source of long throughput times. This issue can be
generalized to the system’s incapacity of performing process discovery and analysis.
Although a concrete business process is described in the data, the proposed solution
simply focuses in four predetermined process stages. This high-level of abstraction is
the ideal to assess the process performance of functional units, but it does not provide

14 Chapter 1. Introduction

Specific problem (requirements) Implemented solution

Before the application of
the new solution

1. Time to solution difficult to
retrieve

Data integration process

2. Time to solution difficult to
analyze

Knowledge discovery techniques

After the application of
the new solution

1. Evaluating customer services
by quality and quantity (calcu-
late time to solution)

Problem partially solved

2. System still not effective
to detect the source of long
throughput times

Problem to be solved (process
mining)

3. Data not used in NPD (po-
tential usage)

Problem to be solved (knowledge
management)

Table 1.1: Overview of the case study results.

any insight into the root causes of specific issues (e.g., bottlenecks). Therefore, the
integration of process mining in the solution is required to overcome this limitation.
By applying process discovery techniques on different business perspectives, it will be
possible to discovery and analyze the process at different levels of abstraction and ac-
cording to multiple dimensions (e.g., the process of handling high-priority complaints).

1.4 Multidimensional Process Mining

By applying process mining techniques on process data, it is possible to discover the
business process as it was executed. However, so far, these techniques are typically
designed to focus on specific aspects of the process, omitting information potentially
relevant for the process comprehension. Eventually, this limitation may be overcome
by some data preprocessing (e.g., redefining aspects of the process or filtering the data),
though in a laborious and non-integrated way.

The dynamic integration of business process dimensions into process mining can
bring the process analysis to another level. Considering the attributes of the event
log as dimensions, process analysis can be performed in such a way that events and
workflow can be constrained by specific process information. Traditionally, only a
single dimension (or a static set of dimensions) is considered. For example, the activity
is typically the only considered dimension in control-flow mining for deriving process
models. Additionally, social network analysis techniques basically consider the resource
dimension. However, neither the resources can be described in process models nor the
activities in social networks. In a multidimensional approach, process analysis can be
dynamically constrained by any dimension or combination of dimensions the analyst
considers relevant.

In this thesis, a multidimensional approach is introduced to facilitate the dynamic
integration of business process dimensions into process mining. Basically, this ap-
proach aims at knowledge discovery on process data by combining concepts from pro-
cess mining, OLAP, and data mining. Although the approach is designed using the
requirements of the DataFusion project, it is more general in its basic nature. Hence,
it can be applied in other domains (i.e., NPD is one possible application where the
multidimensional approach can be applied).

The multidimensional approach consists of a sequence of steps in which process

1.4. Multidimensional Process Mining 15

data are transformed first into process information, and then into process knowledge.
An initial overview of a multidimensional approach for process discovery is provided
in Figure 1.3. All components identified in this overview will be discussed in the core
chapters of this thesis. Furthermore, after introducing and discussing the components,
updated overviews of the multidimensional process discovery approach will be provided
along the thesis.

Data Cube

Multidimensional
Control-Flow Miner

Process
Data

Index

Control-Flow Miner

Process Model
Multidimensional
Process Model

10101010101010
10101011101010
11101010101010
1010101010

Process
Patterns

Process Pattern
Miners

ETL Cube
Processor

01

Figure 1.3: Initial overview of the multidimensional process discovery approach. Layers in gray color
characterize data transformations, while the others identify process data or results. Arrows represent
the data flow.

Both traditional and multidimensional process discovery approaches are represented
in Figure 1.3. These approaches can be described as follows.

Traditional process discovery approach consists of applying current process dis-
covery techniques directly on process data. This approach is represented by the
leftmost objects in Figure 1.3 (Process Data, Control-Flow Miner, and Process
Model). Although only the control-flow perspective of process discovery is iden-
tified in the overview diagram, other perspectives are assumed to be part of the
traditional approach as well.

Multidimensional process discovery approach consists of

i. indexing the process data for optimizing the data retrieval,

ii. computing a data cube for enabling the dynamic exploitation of multiple
aspects (dimensions) described in the process data,

iii. performing process discovery on a specific business perspective (i.e., a par-
tition of the process data characterized by a set of dimensions), and

16 Chapter 1. Introduction

iv. eventually, extracting non-trivial patterns from multidimensional process
models by applying data mining-based techniques.

This approach is represented by all objects in Figure 1.3 except the Control-Flow
Miner and the Process Model. Unlike traditional process models, multidimen-
sional process models can be used to combine the control-flow perspective of
process discovery with the other perspectives (i.e., time, resource, and data).

Related Work

As mentioned before, process mining techniques provide strategic insight into the busi-
ness processes. Process discovery, conformance checking, and enhancement are possible
applications [106, 110, 118]. However, the state-of-the-art process mining techniques
do not support yet multidimensional analysis. Nevertheless, some research has been
done in multidimensional process analysis [83, 86]. Workflow ART is a proposed frame-
work to explore the three main business process dimensions Action (or Activity), Re-
source and Time. Although several predefined business measures can be analyzed, this
approach is not as flexible as an OLAP-based technique. A fully multidimensional
approach for business process analysis can be found in [83]. Relying in the multidi-
mensional data model, this approach maps the different aspects of the business process
into a data cube. However, only numerical information is considered.

The multidimensional process discovery approach applies OLAP – and data mining
– concepts on business process data. This means that predefined business measures can
be exploited under any combination of dimensions, producing multidimensional views
of the process data. Therefore, the process visualization plays an important role in
multidimensional process discovery and analysis. In [62, 100], different visualizations
are proposed for different types of business process analyses. In [19], the extension of
traditional model representations with resource-related information is proposed.

1.5 Research Questions

In this section, we define two research questions to be investigated in this thesis. Cover-
ing the enterprise information systems and information retrieval domains, a preliminary
research question can be stated as follows.

(Q′) How to establish an effective connection between the – operational – data
sources and the knowledge discovery techniques?

By answering this preliminary research question, it is possible to position the main
focus of this thesis (the knowledge discovery on process data) with respect to the main
goal of the DataFusion project (the integration of information from the existing NPD
datasets).

Covering the process mining, OLAP, and data mining domains, the main research
question of this thesis aims at the discovery and analysis of business processes by
integrating dynamically the different aspects (dimensions) of the process. This question
is stated as follows.

(Q) What is the impact – and the benefit – of the dynamic multidimensional
discovery and analysis of business processes?

This research question can be decomposed into six sub-questions.

1.5. Research Questions 17

(q1) Which traditional process mining techniques can be extended with mul-
tidimensional capacity (i.e., be applied using different dimensions, by
turning traditional analyses into multidimensional)?

(q2) How can traditional process discovery be extended with multidimen-
sional capacity?

(q3) What kind of knowledge can be achieved with dynamic multidimen-
sional process discovery and analysis?

(q4) How can multidimensional process discovery results be exploited for
knowledge discovery?

(q5) What kind of non-trivial patterns can be – automatically – derived from
multidimensional process discovery results?

(q6) What is the added value of dynamic multidimensional process discovery
and analysis to the stakeholders?

Figure 1.4 positions the research question Q and sub-questions q1−6 with respect to
the process mining, OLAP, and data mining domains. Multidimensional process discov-
ery can be performed either by hypothesis-driven analysis (OLAP-based approach) or
by the extraction of non-trivial patterns (data mining-based approach). Sub-questions
q1 and q2 aim at the extension of the traditional process mining techniques with mul-
tidimensional capacity by combining the process mining and the OLAP approaches.
Sub-questions q3 and q4 concern the study of the potential of dynamic multidimensional
process discovery. Sub-question q5 aims at the application of the data mining-based
approach on multidimensional process discovery results. Finally, the impact (added
value) of the proposed multidimensional approach on real-life applications is evaluated
by answering the last sub-question (q6).

Knowledge
Discovery

Data
Mining

Process
Mining

OLAP q2

q3

q1

Q

q4-6

Figure 1.4: Positioning of the research questions Q and q1−6 with respect to the process mining,
OLAP, and data mining domains.

18 Chapter 1. Introduction

Figure 1.5 positions the research question Q and sub-questions q1−6 with respect
to the multidimensional process discovery approach.

q5

q4

Data Cube

Multidimensional
Control-Flow Miner

Process
Data

Index

Control-Flow Miner

Process Model
Multidimensional
Process Model

10101010101010
10101011101010
11101010101010
1010101010

Process
Patterns

Process Pattern
Miners

ETL Cube
Processor

01

q1

q2

q3

q6

Figure 1.5: Positioning of the research questions q1−6 with respect to the multidimensional process
discovery approach.

1.6 Outline

The structure of this thesis can be described as follows.

Chapter 1, the current chapter, firstly introduces the DataFusion project and the
general domain of NPD and knowledge discovery. Then, a case study is used
to motivate the need for multidimensional discovery and analysis of business
processes. A partial answer for research question q1 is provided in this chapter.

Chapter 2 introduces the concept architecture of a system in which the requirements
of the DataFusion project are fulfilled. This concept architecture can be consid-
ered as the answer for research question Q′.

Chapter 3 presents a methodology to represent and construct multidimensional pro-
cess models from process data. Research questions q1 and q2 are addressed in
this chapter.

Chapter 4 discusses the similarity aspects of multidimensional process models. In
this chapter, similarity functions are defined to facilitate the comparison between
elements of multidimensional process models. Research question q2 is further
addressed in this chapter.

Chapter 5 introduces an OLAP-based framework for process discovery, and describes
how the multidimensional discovery and analysis of business processes can be
achieved. Research questions q3 and q4 are addressed in this chapter.

Chapter 6 describes the application of data mining functionalities on the multidi-
mensional process discovery approach. Research question q5 is addressed in this
chapter.

1.6. Outline 19

Chapter 7 presents a quantitative and qualitative evaluation of the multidimensional
process discovery approach described in this thesis. This evaluation provides the
answer for research question q6.

Chapter 8 concludes this thesis by providing a final discussion as well as contribu-
tions, applications, limitations, and future work. Research questionQ is discussed
in this chapter.

Appendix consists of an alternative approach for building multidimensional process
models from an Event Cube (concept defined in Chapter 5), relying on a reference
process model.

In Figure 1.6, it is provided the positioning of the core chapters (i.e., chapters 2−7)
with respect to the multidimensional process discovery approach.

C
h

a
p

te
r

6

Process
Data

Process Model
Multidimensional
Process Model

10101010101010
10101011101010
11101010101010
1010101010

Process
Patterns

Process Pattern
Miners

ETL Cube
Processor

01

C
h

a
p

te
r

3
C

h
a
p

te
r

5

Chapter 4

Control-Flow Miner Multidimensional
Control-Flow Miner

Data Cube

Index

Chapters 2 and 7

Figure 1.6: Positioning of the core chapters with respect to the multidimensional process discovery
approach.

Chapter 2

Concept Architecture

The term architecture is assumed to be a specification of a system, and can be defined
as follows [44]:

The architecture of a (corporate) information system defines that system in
terms of functional components and interactions between those components,
from the viewpoint of specific aspects of that system, possibly organized into
multiple levels, and based on specific structuring principles.

In this chapter, we introduce the architecture of a (corporate) information system
in which the requirements of the DataFusion project are fulfilled (i.e., a concept sys-
tem to establish an effective connection between the data sources and the knowledge
discovery techniques). This architecture is used to position the multidimensional pro-
cess discovery approach presented in this thesis (chapters 3− 6) in the context of the
DataFusion project.

As described in Section 1.1, the DataFusion project aims at (i) the extraction and
integration of operational data from the existing NPD operational databases, (ii) the
transformation of NPD operational data into structural, richer and prioritized field
feedback information, and (iii) the knowledge discovery on the field feedback infor-
mation in order to identify non-trivial patterns. Therefore, three distinct functional
sub-areas can be clearly identified: data sources (i.e., the operational databases), data
preparation (i.e., the sub-system that transforms data into information), and data anal-
ysis (i.e., the tools for data analysis and knowledge discovery). Logically, the data flow
goes from the data sources to the data analysis (Figure 2.1).

D
a

ta
 S

o
u

rc
e

s

D
a

ta
 A

n
a

ly
s

is

D
a

ta
 P

re
p

a
ra

ti
o

n

data flow

Figure 2.1: The three functional sub-areas of the concept architecture.

22 Chapter 2. Concept Architecture

Taking the three functional sub-areas of the concept architecture as a starting point,
we first describe the project’s reference architecture (Section 2.1) in order to identify
the main functional components and their interactions. This reference architecture is
intended to be an abstract blueprint of the project’s information system with business-
oriented specifications. Next, we instantiate two alternative architectures (sections 2.2
and 2.3) from the reference architecture, providing more technology-oriented specifica-
tions and concrete component descriptions. The first one, a data warehousing system,
can be seen as the logical option once that this kind of system is optimized to inte-
grate data from heterogeneous sources for decision supporting. However, since NPD
processes are dynamic and multidisciplinary, some of the prerequisites for implement-
ing a data warehousing system may not be met. Hence, as an alternative approach,
the search engine systems are considered for overcoming these issues. Finally, in Sec-
tion 2.4, we introduce the architecture of a framework in which knowledge discovery
can be performed on the field feedback information, fulfilling thus both the third objec-
tive of the DataFusion project and the requirements of the research work presented in
this thesis. For all the architectures, three main dimensions are considered to describe
the characteristics of architecture models [44]:

The abstraction dimension describes the detail level of the architecture description
in terms of component characterization. The domain of this dimension can be
defined by four distinct abstraction levels. At the first and highest level, the
architecture is represented in terms of class type components. At the second
level, system type components can be used to represent the architecture. At the
third level, the architecture is represented by vendor type components. Finally,
at the last and lowest level, vendor version components provide a highly detailed
representation of the architecture.

The aggregation dimension describes the detail level of the architecture descrip-
tion in terms of component representation. At one end of this dimension domain,
the architecture of an interorganizational information system covers a wide range
of information systems. At the other end, an architectural submodule covers
specific functionalities by representing functional elements.

The realization dimension describes the orientation of the architecture description
in terms of component specification. At one end of this dimension domain,
business-oriented specifications focus on the motivation for developing the in-
formation system described in the architecture. At the other end, technology-
oriented specifications provide the technical requirements for the architecture
realization.

The detail level of the descriptions of the DataFusion project’s functional sub-areas
(Figure 2.1) is characterized in Figure 2.2 according to these three dimensions.

Remark that the focus of this chapter is simply to introduce an architecture that
supports the DataFusion project needs. Hence, there are dimensions and architectural
aspects (i.e., specific characteristics on which the architecture focuses) that are not
considered. Examples of other dimensions can be found in [43]. For an overview of
architectural aspects see [44].

2.1. Reference Architecture 23

Figure 2.2: Detail level of the functional sub-areas descriptions.

2.1 Reference Architecture

The term – software – reference architecture can be defined as follows [15]:

A reference architecture consists of a reference model mapped onto software
elements (that cooperatively implement the functionality defined in the ref-
erence model) and the data flows between them.1

Basing on a framework for analysis and design of reference architectures introduced
in [12], we first characterize the reference architecture of the DataFusion project in
terms of type. This characterization provides insight into the objective, the context,
and the design of the reference architecture. The goal of the project’s reference ar-
chitecture is the standardization of concrete architectures (e.g., the data warehousing
system and the enterprise search engine architectures, presented in the next sections).
The context can be decomposed in three parts: (i) where and (ii) when the architecture
will be used, and (iii) who defines it. Although it can be applied in a broader scope,
the DataFusion architecture is meant to work in a single organization. Since some of
its components are not yet developed (by the time of its design), the project’s refer-
ence architecture is considered as preliminary. Research centers and user groups (i.e.,
the members of the DataFusion project) are the stakeholders involved in the design of
the reference architecture. The design process consists of describing the architecture’s
components and interfaces at a high level of aggregation. Architecture details are pro-
vided by semi-formal specifications of semi-concrete elements. This generic architecture
representation facilitates the architecture’s components applicability in different con-
texts. The characteristics of the reference architecture of the DataFusion project are
summarized in Table 2.1.

The reference architecture of the DataFusion project consists of the general design
of a structure for the information system that fulfills the project’s requirements. In this
architecture, the three functional sub-areas previously identified are considered: data
sources, data preparation, and data analysis. These sub-areas can be seen as class type

1A reference model is a division of functionality together with data flow between the pieces [15].

24 Chapter 2. Concept Architecture

Aspect Description Value

Goal Why is it defined? Standardization
Context Where will it be used? Single Organization
Context When is it defined? Preliminary reference architecture
Context Who defines it? Research centers and user groups
Design What is described? Components and interfaces
Design How detailed is it described? Aggregated components
Design How concrete is it described? Semi-concrete elements
Design How is it represented Semi-formal element specifications

Table 2.1: Characterization of the reference architecture in terms of type (according to [12]).

components (abstraction dimension). Also, the architecture describes a wide range of
information systems (aggregation dimension) by using business-oriented descriptions
(realization dimension). By moving one level down on both abstraction and aggregation
dimensions, we intend to provide further details about system type components and
their interactions. By moving one level up on the realization dimension, we intend to
describe some technology-oriented specifications. These operations are summarized in
Figure 2.3 in which the different line styles represent the detail level of the reference
architecture (solid line) and the functional sub-areas (dashed line) descriptions.

Figure 2.3: Detail level of the reference architecture description.

The main focus of this reference architecture is the data flow, i.e., the transformation
of data into information and of information into knowledge. Figure 2.4 presents an
overview of the reference architecture by combining the component-oriented with the
columned architecture styles [44]. The three functional sub-areas are identified at the
top. In each column, the corresponding functional sub-area is decomposed in one
or more system type components (abstraction dimension). The data flow through the
different components is represented by the arrows. Remark that, to keep simplicity, the
– multiple – data sources are considered both functional sub-area and generic system
type.

2.1. Reference Architecture 25

D
a
ta

 S
o

u
rc

e
s

DB

operational
systems

DB

external
sources

Data Sources Data Preparation Data Analysis

O
L

A
P

 S
e
rv

e
r

data flow

datacube

S
ta

g
in

g
 A

re
a

D
a
ta

 P
ro

v
id

e
r

query

F
ro

n
t-

E
n

d
 T

o
o

ls

report

analysis

mining

transformed
query

10101010101010
10101011101010
11101010101010
1010101010

01

Figure 2.4: Overview of the reference architecture.

According to the reference architecture in Figure 2.4, there are five system type
components:

Data Sources refer to all types of accessible systems (or data structures) from which
data are obtained. Databases, data streams, and computer files are typical ex-
amples of data sources.

Staging Area encloses all services that transform and prepare data to be exploited.
Filtering, cleaning, normalizing, or deriving new information are some of the
possible operations that can be performed in the staging area.

Data Provider refers to systems that facilitate the integration of data from hetero-
geneous data sources, and make it accessible for exploitation. Data warehousing
systems and search engines can be considered as data providers.

OLAP Server is a data manipulation engine for dynamic multidimensional analysis
of consolidated enterprise data. Relying on the multidimensional data model,
OLAP tools organize the data in such a way that it is possible to have multiple
perspectives of the data in the same analysis.

Front-End Tools consist of all sorts of techniques for data exploitation. Knowledge
discovery techniques such as data mining and OLAP are typical applications for
data analysis.

Remark that the staging area and the data provider are often considered as different
parts of the same system. Also, it is assumed that each system maintains a metadata
repository about its own objects. The metadata describes the objects in terms of
structure, meaning, and relationships. Additionally, information about the system’s
performance, history, and processes may be provided as well.

In order to explain the data flow through the system type components, we provide
in Table 2.2 the characterization of the component’s data objects. The data sources

26 Chapter 2. Concept Architecture

can be seen as a set of databases from which – operational – data can be selected
and extracted. After extraction data consists of a dataset, which is characterized
by given query conditions and maintained in a data provider. Eventually, in order
to prepare the data for analysis, the extracted dataset is submitted to some data
transformation services in the staging area for consolidation. Next, the data are loaded
into an OLAP server for materialization, which means that the data is organized in
a data cube in order to make it possible to perform the data exploitation through
multiple perspectives. Finally, the data can be exploited using the front-end tools.

Component Object Type

Data Sources Operational Data Database
Data Sources External Data Dataset

Data Provider Query Dataset
Staging Area Transformed Query Dataset
OLAP Server Data Cube Database

Front-End Tools Report Result
Front-End Tools Analysis Result
Front-End Tools Mining Result

Table 2.2: Reference architecture: characterization of the component’s data objects.

In the next two sections, we decompose the reference architecture in terms of vendor
type components (abstraction dimension), corresponding functional modules (aggrega-
tion dimension), and technology-oriented specifications (realization dimension). Two
different approaches are considered as data provider: the data warehousing system
and the enterprise search engine. The first one can be seen as the logical option once
that this kind of system is optimized to integrate data from heterogeneous sources for
decision supporting. However, since NPD processes are dynamic and multidisciplinary,
some of the prerequisites for implementing a data warehousing system may not be
met. Hence, as an alternative approach, the search engine systems are considered for
overcoming these issues. For both approaches, the detail level of the architectures de-
scriptions is summarized in Figure 2.5. This time the solid line represents both the data
warehousing system and the enterprise search engine architectures, while the dashed
line refers to the reference architecture.

2.2 Data Warehousing System

A data warehousing system (DWS) consists of the technology that supports the integra-
tion of data from heterogeneous sources, and is typically designed for decision making.
Mainly from operational systems, data are extracted from the sources, transformed
according to specific requirements, and loaded into a single data repository called data
warehouse. The data in the data warehouse comprise the following characteristics [59]:

• Multidimensional : The system’s data can be exploited and analyzed combining
different dimensions.

• Subject-oriented : The system’s data are organized so that all data elements re-
lating to the same real-world event or object are linked together.

2.2. Data Warehousing System 27

Figure 2.5: Detail level of the descriptions of the data warehousing system and the enterprise search
engine architectures.

• Time-variant : The changes to the sources’ data are tracked and recorded so that
reports can be produced showing changes over time.

• Non-volatile: The system’s data are never over-written or deleted – once com-
mitted, the data are static, read-only, and retained for future reporting.

• Integrated : The data warehouse contains data from most (or all) of the organi-
zation’s operational systems and these data are made consistent.

A data warehousing system is autonomous from the data sources, and does not con-
tain – exactly – the same information as the operational databases (i.e., the system also
maintains summarized data and historical information). Thus, the data warehouse’s
data are always available even when the operational systems are not.

Figure 2.6 presents the component diagram of a data warehousing system by com-
bining the component-oriented with the layered architecture styles [44]. The diagram
describes a generic data warehouse architecture with staging area and data marts,
which can support the most predominant data warehouse reference architectures [128]:

Hub and Spoke Architecture (also known as Corporate Information Factory) con-
sists of a data warehousing system with a normalized data warehouse and depen-
dent data marts. Based on the data-driven approach (i.e., the data warehousing
system is designed according to the existing data in the operational source sys-
tems), this architecture was proposed by Inmon [60] and is especially designed to
deal with scalability issues. The basic idea is that atomic level data are stored in a
normalized data warehouse (i.e., a third normal form (3NF) relational database).
This normalized data warehouse is used as the data source of dependent data
marts or data analysis tools. The dependent data marts are oriented to specific
purposes, departments and users, and contain dimensionally structured summary
data.

Kimball Bus Architecture consists of a data warehousing system with a centralized
data warehouse or linked data marts. Based on the goal-driven approach (i.e.,

28 Chapter 2. Concept Architecture

«database»

Data Marts

«database»

Data Warehouse

«database»

Operational Systems

«file»

External Sources

«datacube»

OLAP Server

«database»

Other Systems

«database»

Operational Data Store

«load»

«lookup/update»

«tool»

Reporting

«tool»

Analysis

«tool»

Mining

«query»
«query» «query»

«update»

 OLAP Server

 Data Warehouse Server

 Data Sources

 Staging Area

 Front-End Tools

«processor»

ETL

«extract»

«extract»

Figure 2.6: Component diagram of a data warehousing system. The gray-colored layers identify core
components of the system.

data warehousing system is designed according to specific strategic goals), this
architecture was proposed by Kimball [65] and is especially designed to deal with
performance issues. The basic idea is that, in order to provide a dimensional
view of the data, both atomic and summarized data are organized under the
multidimensional data model (Section 5.1) in either the data warehouse or the
data marts.

The data warehousing system’s component diagram (Figure 2.6) is a specialization
of the reference architecture’s overview diagram (Figure 2.4). Therefore, the system
type components are decomposed in one or more vendor types components. The con-
nectors, the lines between the components, represent how the data flows from one
component to another. Note that the component’s interfaces are considered implicit
in the components.

According to the component diagram in Figure 2.6, a data warehousing system
relies on four main components:

ETL is a predefined process that involves (i) extracting data from some data sources,
(ii) transforming the extracted data according to specific requirements, and (iii)
loading the transformed data into some data repository. In a data warehousing
system, the ETL is executed in a regular basis to populate – and keep updated

2.2. Data Warehousing System 29

– the data warehouse.

Operational Data Store (ODS) is an auxiliary repository that supports ETL pro-
cesses. An ODS maintains the necessary information for the ETL’s operations
such as surrogate keys and input data. For example, financial information may
need to be converted into a specific currency. So, as input data, exchange rates
are necessary for the conversion, but not relevant for analysis.

Data Warehouse is a repository that maintains historical information under a unified
schema.

Data Mart is a subset of the data warehouse, which is oriented to specific subject,
requirements, and users.

One of the advantages of a data warehousing system is its capability for performing
on-the-fly integrated dimensional analyses on enterprise data. Using complex queries in
user-friendly tools, the users are provided with a broad dimensional view of the data.
Additionally, the ETL processes ensure data quality and consistency, characteristics
that are difficult to achieve using data directly from the operational systems.2 Never-
theless, these characteristics are achieved under an important assumption: data sources
remain static over time (i.e., the structure of the data sources should not change). This
happens because the data warehousing system relies on predefined data integration pro-
cesses in which the data definition (meaning and structure) must be preserved on pain
of information consistency loss. Since NPD processes are dynamic (i.e., the way they
are executed may vary according several factors), it is not likely that the existing NPD
operational databases remain static over time. Furthermore, different NPD projects
lead tendentiously to the creation of new data repositories [28].

A data warehousing system is optimized to handle factual data, expressed typically
by numerical values. In contrast, the DataFusion project focuses essentially on free-text
data. Additionally, the data warehousing systems rely on very structured data schemas
that imply well-defined facts. Since NPD environments have a multidisciplinary na-
ture, the fact definition from free-text data is a major issue because each disciplinary
group has its own perspective on reality. Hence, the distinct handling of all of these
perspectives is a utopian task as well as their combination into a generic single case.
This happens because a text can have multiple interpretations and its generalization
process would vanish the data roots, restricting the data exploitation to the existing
information in the data warehousing system.

Using the motivation described above, we propose another approach for the DataFu-
sion project. The main idea is to combine the traditional data warehousing system with
the web search engines. The search engines are mainly based on information retrieval
algorithms, which work effectively well on free-text. Furthermore, these searching tools
are designed to work on dynamic environments such as the web. Thus, if one is able
to migrate these abilities to the data warehousing system, the power of the developing
NPD data warehouse will be optimized to this particular environment. To do so, a
different approach is considered: the enterprise search engine.

2Remark that achieving data quality and consistency depends on the effectiveness of the ETL
processes as well as on the data in the operational systems.

30 Chapter 2. Concept Architecture

2.3 Enterprise Search Engine

The enterprise search engine consists of the technology that searches data from hetero-
geneous sources within an enterprise [53]. Like in a traditional web search engine, all
the available data are fetched from the sources, analyzed at a content level, normalized
to given standards, and indexed into the system’s index. Given a query, specific data
may then be located and retrieved from the sources. Figure 2.7 presents the component
diagram of the enterprise search engine system by combining the component-oriented
with the layered architecture styles. Like the data warehousing system’s component
diagram, this component diagram is a specialization of the reference architecture’s
overview diagram (Figure 2.4). The components represent vendor types components,
while the connectors describe how the data flows from one component to another. The
component’s interfaces are considered implicit in the components.

According to the component diagram in Figure 2.7, the enterprise search engine
relies on eight main components:

Crawler is a software agent that searches automatically the data sources in order to
discover the current state of the sources’ data. Like a web crawler that browses
the web, a crawler should be capable of identifying changes on the data sources
over time, indexing and updating the available data into the enterprise search
engine’s index.

Metadata is an additional metadata repository that describes the sources’ data in
terms of structure, meaning, and relationships. These data can be used to facili-
tate the data source discovery and the data indexation. Eventually, this reposi-
tory can support the execution of some data transformation services.

Ontology defines formally concepts and entities within a domain, and the relation-
ships among them.

Index is a data structure that facilitates the data retrieval from the data sources. Like
a book’s index, these indices map keywords to the set of data structures (in the
data sources) containing the keyword.

Query Processor is a computer program that interprets the users input (given
through the user interface) and processes it by searching the index. The out-
put (i.e., the results) consists of the list of entries that identify where the data
satisfying the input conditions appear.

Transformation Services component is a computer program that transforms data
according to specific requirements. Data transformations consist of applying one
or more transformation functions on retrieved data from operational systems or
the knowledge base. Eventually, metadata and ontology information is considered
to support the data transformation.

Knowledge Base is an extra repository to maintain results the users consider rel-
evant to archive. These results may be data directly retrieved from the data
sources, information obtained from the transformation services, or data analysis
results. Eventually, this repository may be used for knowledge sharing within the
organization.

User Interface is a computer program that allows the users to (i) search and retrieve
data from the operational systems (or the knowledge base), (ii) transform data
using transformation services, (iii) make data available for materialization and
data analysis, and (iv) store results in the knowledge base.

2.3. Enterprise Search Engine 31

«update»

«database»

Knowledge Base

«database»

Operational Systems

«file»

External Sources

«ontology language»

Ontology

«processor»

Query Processor

«database»

Other Systems

«table»

Metadata

«update»

«lookup/update»

«lookup»

«tool»

Reporting

«tool»

Analysis

«tool»

Mining

«lookup»

«query»

«insert/retrieve»

«query»
«query»

«query»

«software agent»

Crawler

«processor»

Transformation Services

«call»

«software»

User Interface

«datacube»

OLAP Server

«extract»

«retrieve»

 Front-End Tools

 OLAP Server

 Data Sources

 Staging Area

 Search Engine Server

«extract»

«lookup»

«index structure»

Index

Figure 2.7: Component diagram of the enterprise search engine. The gray-colored layers identify
core components of the system.

Unlike the data warehousing systems, the enterprise search engine is dependent on
the data sources. All the accessible data of the operational databases are simply indexed
in the system, being eventually retrieved from the sources. Hence, the data redundancy
is minimized to the detriment of query performance. Any sort of data materialization
must thus be achieved after querying by applying some transformation services (staging
area) on the retrieved data. This explains the positioning, in the component diagram,
of the staging area between the search engine and the OLAP server. Eventually, results
are inserted in the system’s knowledge base and made searchable for later retrieval (i.e.,
the system’s index is updated). Obviously, the knowledge base is autonomous from the
data sources and may contain redundant data.

In order to assess the differences between the data warehousing system and the

32 Chapter 2. Concept Architecture

enterprise search engine, we first describe for this architecture the five characteristics
that define the main requirements of the data warehousing systems. Next, in Table 2.3,
we compare the characteristics of both systems as well as some other aspects mentioned
before. Then, we identify the major issues and challenges of using the enterprise search
engine as the DataFusion architecture.

• Multidimensional : Like the data warehousing systems, the data can be exploited
and analyzed combining different dimensions.

• Orientation: Since the sources’ data are simply indexed, there is no specific
orientation for the enterprise search engine systems. The same applies when
some results are archived in the knowledge base once that this repository can
maintain any sort of information (i.e., it is not necessary to exist any relation
among the data elements).

• Time-variant : The changes to the sources’ data are tracked, but only for keeping
the system’s index up-to-date. This means that reports cannot be produced
showing changes over time. This issue can eventually be overcome if the changes
are saved in the knowledge base.

• Non-volatile: The system may produce different results over time for the same
query, which leads to inconsistencies in the query results. This happens because
the sources’ data can be over-written (or deleted) at any time. Hence, even that
the knowledge base’s data are made read-only and not deletable, query results –
depending on the data sources – may vary over time. Tracking the changes on
the data sources and saving them in the knowledge base may solve partially this
issue.

• Integrated : The enterprise search engine may maintain, in the knowledge base,
data from most (or all) of the organization’s operational systems. However, these
data may not be completely integrated or even consistent if the integration pro-
cesses are not capable of dealing with complex or nonexistent data relationships.

Characteristics Data Warehousing System Enterprise Search Engine

Multidimensional Yes Yes
Orientation Subject Generic

Time-variant Yes No
Non-volatile Yes No

Integrated Yes No/Partially
Data sources dependency No (except for updating) Yes

Query performance Optimal Limited
Data materialization Before querying After querying

Data redundancy Maximal Minimal
Focus Localized Widespread

Table 2.3: Comparison between the traditional data warehousing system and the enterprise search
engine.

Although both systems can act as data integrators and providers, Table 2.3 demon-
strates that data warehousing systems and the enterprise search engine are divergent
in many aspects. This happens because both systems are designed for different pur-
poses. On the one hand, a data warehousing system focuses in specific – and limited

2.4. Multidimensional Process Explorer 33

– operational data for simply transforming them into strategic information. On the
other hand, the enterprise search engine takes into account all the accessible data, and
makes them available for generic purposes. By applying some transformation services
on the search engine results, data can also be transformed into strategic information,
but in a much more flexible manner and a broader scope. However, there are some
issues to overcome.

The enterprise search engine may not be time-variant and non-volatile, and the
results provided by this system may not be completely integrated. As mentioned before,
the knowledge base can be part of the solution for some of these issues. Additionally,
intelligent transformation services can enhance the integration processes as well as the
data quality. Nonetheless, a further analysis on these issues is required in order to
assess the feasibility of deploying the enterprise search engine on NPD operational
systems for knowledge discovery.

2.4 Multidimensional Process Explorer

In this section, we introduce a possible instantiation of the enterprise search engine
architecture in terms of version components (abstraction dimension), corresponding
functional elements (aggregation dimension), and concrete technology-oriented spec-
ifications (realization dimension). The detail level of this architecture description is
summarized in Figure 2.8 in which the different line styles represent the detail level of
the instantiation (solid line) and the enterprise search engine (dashed line) architec-
tures.

Figure 2.8: Detail level of the descriptions of the Multidimensional Process Explorer architecture.

This instantiation refers to the Multidimensional Process Explorer framework, a
process mining tool for process discovery and analysis. As input, process data (i.e.,
information about the execution of business processes that can be used to replay the
executed events, identifying details such as originators or temporal references) are read
from either event logs (computer files) or data streams. As output, multidimensional

34 Chapter 2. Concept Architecture

process models (i.e., graphical representations of business processes) and related anal-
ysis results are presented to the user through the framework’s graphical user interface.

This instantiation consists of three distinct components. First, the event logs are
considered as instance of the external sources. Second, the Enterprise System and
Analysis Tool (ESAT) system is instantiated as data provider. The ESAT is an Apache
Solr-based enterprise engine tool [70], which can be used to index relational databases
as well as document files such as PDF, Word or Excel.3 This system also offers an
intuitive graphical user interface in which the user can select the right data to be
retrieved and analyzed. Third, the Multidimensional Process Explorer framework is
identified as instance of both OLAP server and analysis tools. This framework is
a process mining technique that organizes the event data in such a way that it is
possible to exploit the different business dimensions [92]. This means that the process
discovery and analysis can be performed considering multiple dimensions and measures
of interest. A data cube of events is defined to support these multidimensional analyses,
which can either be done directly on the cube or using the cube as basis for process
mining techniques such as the Flexible Heuristics Miner [130]. Implementing the main
OLAP operators (cf. Section 5.1), the proposed framework provides to the business
analyst the opportunity to drill-down the process information without complex queries
and long response times.

Figure 2.9 presents an overview of the Multidimensional Process Explorer frame-
work by combining the component-oriented with the columned architecture styles. Fo-
cusing on the data flow, this overview shows the component’s data objects and their
role in the execution of the framework. The data flow through the different components
is represented by the arrows. Remark that this framework conforms to the reference ar-
chitecture described in Section 2.1. In this overview, the staging area is omitted as well
as the data flow from the data sources to the data provider. As long the process cases
are recognized as so, the data provider component may be either a data warehousing
system or an enterprise search engine.

In order to explain the data flow through the components, we provide in Table 2.4
the characterization of the component’s data objects. The Multidimensional Process
Explorer framework relies on process data to build a data cube of events. These data
can be provided by either an event log or a data connection to a data provider (i.e., a
data warehousing system or an enterprise search engine). The data cube of events is
maintained in the Event Cube version component, which can be seen as an instance
of an OLAP server. The data analysis (i.e., the process discovery and analysis) can
be performed through the Process Explorer version component, by exploiting the data
cube of events.

Component Object Type

Event Log Process Data File
Process Cases Process Data Data Stream

Event Cube Data Cube Database
Process Explorer Multidimensional Process Models Result
Process Explorer Process Patterns Result

Table 2.4: Multidimensional Process Explorer: characterization of the component’s data objects.

3For more information about the Apache Solr check: http://lucene.apache.org/solr/

http://lucene.apache.org/solr/

2.4. Multidimensional Process Explorer 35

E
v
e
n

t
L

o
g

P
ro

c
e
s
s
 C

a
s
e
s

E
v
e
n

t
C

u
b

e

P
ro

c
e
s
s
 E

x
p

lo
re

r

process
data

datacube

multidimensional
process models

process
patterns

OLAP ServerData Sources

Data Provider

Front-End Tools

output

process
data

process data

10101010101010
10101011101010
11101010101010
1010101010

01

Figure 2.9: Overview of the Multidimensional Process Explorer framework.

In order to present the component diagram of the Multidimensional Process Ex-
plorer, we first present in Figure 2.10 an aggregated version of the component diagram
of the enterprise search engine. Based on the component diagram of Figure 2.7, this
version provides a simplified view of the enterprise search engine by aggregating vendor
types components into system type ones. Remark that, since the Multidimensional Pro-
cess Explorer interacts exclusively with the data provider system, the data provider and
the staging area are considered as a single component. The detail level of the descrip-
tions of these component diagrams can also be summarized in Figure 2.5. This time
the solid line represents the component diagram of the enterprise search engine, while
the dashed line refers to the aggregated version. By combining the component-oriented
with the layered architecture styles, we finally present in Figure 2.11 the component
diagram of a Multidimensional Process Explorer framework working with an ESAT
system. This component diagram is an instantiation of the aggregated version of the
component diagram of the enterprise search engine (Figure 2.10). The components
represent version components, while the connectors describe how the data flows from
one component to another. The component’s interfaces are considered implicit in the
components.

According to the component diagram in Figure 2.11, there are five version compo-
nents:

Event Log is a data structure (commonly an XML file) that organizes the process
data as sets of traces (process instances), being each trace a set of events. Further
details about event logs are provided in Subsection 3.1.1.

Process Data consists of all sorts of data that describe the execution of business
processes. Typically, process data are distributed across different operational
databases and their exploitation depends on a data provider (for retrieving) and

36 Chapter 2. Concept Architecture

«provider»

Search Engine

«data»

External Data

«datacube»

OLAP Server

«tool»

Data Exploiter

«query»

 OLAP Server

 Search Engine Server

 Staging Area

 Data Sources

 Front-End Tools

«extract»

«data»

Internal Data

«extract/retrieve»

Figure 2.10: Aggregated version of the component diagram of the enterprise search engine.

«provider»

ESAT

«data»

Event Log

«datacube»

Event Cube

«tool»

Process Explorer

«query»

 OLAP Server

 Search Engine Server

 Staging Area

 Data Sources

 Front-End Tools

«extract»

«load»

«data»

Process Data

«extract/retrieve»

Figure 2.11: Component diagram of the Multidimensional Process Explorer. The gray-colored layers
identify core components of the system. The direct connection between the Event Cube and the Event
Log components does not reflect the architecture stratification of the Figure 2.10’s component diagram
but the framework’s functionality of working directly on event logs.

2.5. Summary 37

transformation services (for normalizing and structuring).

ESAT system is a possible instance of the enterprise search engine architecture. This
system may be used to automatically retrieve process data from the data sources.

Event Cube is a data cube of process events that can be used to analyze the business
information (process data) under different levels of abstraction.

Process Explorer is an OLAP-based tool for process discovery and analysis. This
tool may combine knowledge discovery techniques from data mining, OLAP, and
process mining.

Further details about the Multidimensional Process Explorer framework are pro-
vided in the next chapters.

2.5 Summary

A concept architecture of a system in which the requirements of the DataFusion project
are fulfilled is introduced in this chapter. Two different approaches are identified to
establish an effective connection between the data sources and the knowledge discovery
techniques: the data warehousing systems and the enterprise search engines. The first
one can be seen as the logical option once that this kind of system is optimized to
integrate data from heterogeneous sources for decision supporting. However, since NPD
processes are dynamic and multidisciplinary, some of the prerequisites for implementing
a data warehousing system may not be met. Hence, as an alternative approach, the
search engine systems are considered for overcoming these issues. The framework for
multidimensional process discovery described in this thesis is introduced as a part of
the architecture.

Addressing research question Q′, the concept architecture can be used to establish
an effective connection between the data sources and the knowledge discovery tech-
niques (e.g., the framework described in this thesis).

Chapter 3

Process Discovery

In this chapter, we present a methodology for discovering business processes. Taking
some process data as starting point, it is intended to provide insight into the business
process by representing it in such a way that its behavior can be easily understood.
To achieve this, a new process representation language is introduced. The level of
abstraction provided by this language should not be restricted to the traditional process
representation (i.e., process models characterized by activities and their relationships).
The dimensionality of the business processes (i.e., the multiple aspects of the business
described in the process data) should also be considered in the proposed language.
Furthermore, this methodology should be robust enough to work not only on complete
and high-quality data from well-defined processes but also on incomplete and noisy
data from low-structured processes.

Data Cube

Multidimensional
Control-Flow Miner

Process
Data

Index

Control-Flow Miner

Process Model
Multidimensional
Process Model

10101010101010
10101011101010
11101010101010
1010101010

Process
Patterns

Process Pattern
Miners

ETL Cube
Processor

01

Figure 3.1: Positioning of Chapter 3 with respect to the multidimensional process discovery approach.

Figure 3.1 positions this chapter with respect to the multidimensional process dis-
covery approach. In the next sections, we firstly characterize process data in terms
of structure, meaning, and relationships. Then, we define two process representation
notations that can be used to present the process data as a process model. The first

40 Chapter 3. Process Discovery

notation, the Causal nets, is designed to provide insight into the process by using
an easy-to-understand model in which non-trivial control-flow constructs can be rep-
resented. The second notation, the multidimensional Causal nets, can be seen as a
generalization of the first one once that, instead of simply considering the activities
performed in the process (i.e., dimension Activity), it can take into account multiple
aspects of the process (i.e., other dimensions such as Resource or Time). Next, we
present two process discovery techniques for deriving process models from process data.
The first technique, the Flexible Heuristics Miner, is designed to discover a Causal net
from processes that can be low structured, eventually dealing with the presence of noise
in the process data. The second technique, the Multidimensional Heuristics Miner, is
designed to discover a multidimensional Causal net. This technique can be seen as a
generalization of the first one once that it can take into account multiple dimensions.

3.1 Process Data

Business process data describe the execution of the different process events of one or
more business processes over time. Supported by process aware information systems,
process data enclose information about the process cases (instances) and their process
events, and, eventually, operational data produced in the business process.

Definition 3.1 (Process Event) A process event is a fact of the business process (at
the most atomic level) that describes the execution of an activity (or task). A process
event can be characterized by multiple aspects such as the resource who executed the
activity or when the activity was performed. The aspects used to characterize process
events are designated as event-based attributes. A process event is uniquely identified
by the pair of values (PID,EID), where PID is the unique key of the process instance
in which the process event was executed, and EID is the position of the process event
in the process instance.

Definition 3.2 (Process Instance) A process instance is a sequence of process
events in either an event log or an event stream. Besides the sequence of process
events, a process instance can be characterized by multiple aspects such as the product
or service processed or the customer for which the process instance was executed. The
aspects used to characterize a process instance are designated as instance-based at-
tributes. Every process event inherits the characteristics of the process instance which
it is part of. A process instance is uniquely identified by the value PID, which is the
unique key of the process instance.

An event log is a data structure where process data are integrated. An event stream
may be used to transmit process data from a system to another.

3.1.1 Event Logs

Basically, event logs (or transition logs) organize the process data as sets of process
instances. Figure 3.2 presents a generic schema of an event log as a UML class dia-
gram. It is assumed that each process event is always characterized by the attribute
Activity, which describes the performed activity or task of the process event. Even-
tually, information about who performed the activity (attribute Originator), when
the activity was performed (attribute Timestamp), and which type the activity is

3.1. Process Data 41

(attribute Event Type) can be provided as typical process event attributes. Generic
event-based attributes can be used to characterize other aspects of process events.
Similarly, instance-based attributes can be used to describe specific aspects of process
instances. Finally, generic attributes can be used to provide details about the event
log. For further insight into the structure of event logs see [46, 120, 126].

Event Log

Process Instance

Process Event

Attribute

1

1..*

1

1..*

1 0..*

1 0..*

1 0..*

Activity Originator TimestampEvent Type

Event-Based Attribute

Instance-Based Attribute

1

1 0..1 0..1 0..1

Figure 3.2: Structure of an event log.

Table 3.1 shows an example of an event log. Remark that, in event logs, the process
events are grouped by process instance and ordered by execution time.

PID Type Activity Originator Timestamp Product Decision

t1 • a System 19-06-2012:14.00 α
t1 • b Tester 19-06-2012:15.10
t1 • e Clerk 19-06-2012:15.45
t1 • d Repairer 20-06-2012:10.30
t1 • g Accountant 20-06-2012:15.35

t2 • a System 20-06-2012:10.05 β
t2 • c Analyst 20-06-2012:11.20 pos
t2 • f Repairer 20-06-2012:15.30
...

t3 • a System 20-06-2012:13.45 α
t3 • c Analyst 20-06-2012:16.00 neg
...

Table 3.1: Example of an event log.

The process instance t1 can be described by the following sequence of process events
〈e1e2e3e4e5〉, with ei being the process event represented in the ith row of Table 3.1.

42 Chapter 3. Process Discovery

Eventually, this sequence of events can be projected onto a sequence of attribute values
〈v1v2v3v4v5〉, with vi being the value of a given attribute in the process event ei. For
example, t1 can be described by the following sequences:

• Activities: 〈abedg〉.
• Originators: 〈(System)(Tester)(Clerk)(Repairer)(Accountant)〉.
• Products: 〈α????〉, being the wildcard value ‘?’ used to represent the unknown

values.

• Types: 〈• • • • •〉.

3.1.2 Event Streams

An event stream is a data stream that consists of a continuous sequence of process
events. Unlike in event logs, process events in event streams are not grouped by process
instance. Additionally, unless indicated explicitly in the data, a process instance cannot
be assumed as complete once that further events of that instance can be received at
any point in time.

An operational data store is required to maintain the process data received in
the event stream. By grouping the process events by process instance, the stored
information can be equated to an event log with the difference that the amount of
information may change over time. Like in event logs, the structure of process events
depends on the information system that generates the data. Nonetheless, it is assumed
that the process data in an event stream is characterized by the same attributes as in
event logs (i.e., instance- and event-based attributes). Table 3.2 shows an example of
an event stream.

PID Type Activity Originator Timestamp Product Decision

t1 • a System 19-06-2012:14.00 α
t1 • b Tester 19-06-2012:15.10
t1 • e Clerk 19-06-2012:15.45
t2 • a System 20-06-2012:10.05 β
t1 • d Repairer 20-06-2012:10.30
t2 • c Analyst 20-06-2012:11.20 pos
t3 • a System 20-06-2012:13.45 α
t2 • f Repairer 20-06-2012:15.30
t1 • g Accountant 20-06-2012:15.35
t3 • c Analyst 20-06-2012:16.00 neg
...

Table 3.2: Example of an event stream.

Remark that it is assumed that the events in the stream can be unequivocally
associated to a process instance. In this example, the association of events to process
instances is supported by the attribute PID (the process instance identifier). The
process event ordering is determined by the time information (i.e., the timestamps).

3.2. Process Representation 43

3.2 Process Representation

A – business – process model can be seen as an abstraction of how work is done in a
specific business. A process model can be defined under the scope of two distinct BPM
applications: process modeling and process discovery. In process modeling, the process
model is designed by process modelers and used as reference for process management.
In process discovery, the process model is discovered from process data that describe
the – past – execution of a business process. This discovered process model can be
used for assessing the process performance and conformance of running processes.

In this section, we introduce a notation for representing two types of process models
discovered from process data. The first type consists of traditional process models in
which the business process is represented as groups of process events (grouped by
activity) and a set of control-flow constructs. In the process notation, the following
constructs are considered to characterize the behavior of the process:

• Sequence: identifies – causal – dependencies between process events.

• Splits: characterizes how process events activate the execution of other events.

• Joins: characterizes how process events are activated by other events to be
executed.

• Loops: describes repetitions in the execution of one or more process events.

• Non-Free Choice: identifies indirect dependencies that constrain the process
behavior.

The second type of process model is a generalization of the first one. Instead of grouping
process events simply by activity, process events can be grouped by multiple aspects
of the business process. Furthermore, constructs can also be characterized by multiple
aspects. This second type of process model is designated as multidimensional process
model.

3.2.1 Traditional Process Models

A traditional process model (or a one-dimensional process model) is an activity-centric
process model that describes the business process in terms of activities and their de-
pendency relations. Transition systems, Petri nets, BPMN, and EPCs are examples
of notations for modeling these models. Depending on the notation, process-related
information such as resources, time, decisions and rules may also be described in a
traditional process model. For an overview of process notations see [93, 110].

Characterized by their simplicity and flexibility, Causal nets (C-nets) are commonly
used as process notation in process mining [6, 130].1 Following the given definition of
traditional process model, C-nets consist of a set of activities and, for each activity,
a set of possible input bindings and a set of possible output bindings. Also known as
joins and splits, these sets of – input and output – bindings define not only the inputs
and outputs of a specific activity but also how these inputs and outputs are activated.

Definition 3.3 (Causal net – strict definition [117]) A Causal net (C-net) is a
tuple (A, ai, ao, D, I,O) where

- A is a finite set of activities,

- ai ∈ A is the start activity,

1Causal nets are also known as Heuristics nets.

44 Chapter 3. Process Discovery

- ao ∈ A is the end activity,

- D ⊆ A×A is the set of dependency relations,

- AS = {X ∈ P(A) | X = {∅} ∨ ∅ 6∈ X}, is the set of all possible input and output
bindings,2

- I ∈ A→ AS defines the set of possible input bindings per activity, and

- O ∈ A→ AS defines the set of possible output bindings per activity

such that

- D = {(a1, a2) ∈ A×A | a1 ∈
⋃
as∈I(a2) as ∧ a2 ∈

⋃
as′∈O(a1)

as′},
- {ai} = {a ∈ A | I(a) = {∅}},
- {ao} = {a ∈ A | O(a) = {∅}}, and

- All activities in the graph (A,D) are on a path from ai to ao.

The representation of a C-net consists of a graph where nodes represent activities
and arcs (or edges) represent dependency relations. Eventually, – non-empty – input
and output bindings (joins and splits) can be explicitly represented in the graph (e.g.,
Figure 3.4). Another representation for splits and joins is a kind of truth table where
only the possible (positive) cases are described (e.g., Table 3.5). A split (or a join) is
represented in the disjunctive normal form (DNF) and may be categorized as one of
the following simple types of splits and joins.

• XOR: an XOR-split (or an XOR-join) is formed exclusively by single-element
bindings (i.e., only one output (or input) is activated at a time). Remark that
this definition does not match with the definition of exclusive disjunction in logic.3

• AND: an AND-split (or an AND-join) is formed exclusively by a single binding
in which all elements (inputs or outputs) are activated.

• OR: an OR-split (or an OR-join) is formed by all the possible combinations of
bindings (i.e., the powerset of elements (inputs or outputs) excluding the empty
set).

Figure 3.3 describes the simple types of splits and joins. A split (or a join) that cannot
be associated to any of these types is designated as a complex split (or a complex join).
For example, the C-net of Figure 3.4 contains a complex join. The join of activity g
expresses that this activity can be activated for execution by

1. only activity e (i.e., {e}),
2. only activity f (i.e., {f}),
3. both activities d and e (i.e., {d, e}), or

4. both activities e and f (i.e., {e, f}).
Therefore, this join is not an XOR- (the input binding {d} is missing), an AND- (the
input binding {d, e, f} is missing), or an OR-join (the input binding {d, f}, for instance,
is missing).

Figure 3.3a shows an XOR-split in which, after activity a, either activity b or
activity c is executed. Figure 3.3b depicts an AND-split in which both activities b and
c are executed after activity a. Figure 3.3c illustrates an OR-split in which (i) only

2P(X) = {Y |Y ⊆ X} is the powerset of some set X.
3In logic, the exclusive disjunction is defined to be true if an odd number of its elements are true,

and false otherwise.

3.2. Process Representation 45

b

a

c

(a) XOR-Split.

b

a

c

(b) AND-Split.

b

a

c

(c) OR-Split.

x

y

z

(d) XOR-Join.

x

y

z

(e) AND-Join.

x

y

z

(f) OR-Join.

Figure 3.3: The different types of splits and joins.

activity b, (ii) only activity c, or (iii) both activities b and c are executed after activity
a. Analogously, figures 3.3d, 3.3e, and 3.3f present examples of XOR-, AND-, and
OR-joins with regard to activity z. Remark that these types of splits and joins can be
combined in order to describe more complex process behavior.

a

b

c

ge

d

f

Figure 3.4: Example of a C-net.

The C-net of Figure 3.4 can be described as follows. The set of activities is A =
{a, b, c, d, e, f, g}. These activities are represented by the nodes of the process model.
The dependency relations depicted by the edges of the process model are given by
D = {(a, b), (a, c), (b, d), (b, e), (c, e), (c, f), (d, d), (d, g), (e, g), (f, g)}. Functions I(a)
and O(a) identify the sets of possible inputs and output bindings of activity a. Table 3.3
shows all inputs and output bindings in the process model of Figure 3.4. Activity a is
the – unique – start activity (i.e., ai = a). This means that activity A has no input
bindings (i.e., I(a) = {∅}) and, thus, cannot be executed more than once in a process
instance. Analogously, activity g is the – unique – end activity (i.e., ao = g). This
activity also cannot be executed more than once in a process instance because its set
of possible output bindings is an empty set of activities (i.e., O(g) = {∅}).

C-nets can describe explicitly how activities are related to each other by defining
dependency relations. This is represented in the process model by connecting nodes
(activities) with edges (dependency relations). However, although the input or output

46 Chapter 3. Process Discovery

Input Bindings Activity Output Bindings

{∅} a {{b}, {c}}
{{a}} b {{d, e}}
{{a}} c {{e}, {f}, {e, f}}
{{b}, {d}} d {{d}, {g}}
{{b}, {c}} e {{g}}
{{c}} f {{g}}

{{e}, {f}, {d, e}, {e, f}} g {∅}
Table 3.3: All input and output bindings of the C-net of Figure 3.4.

relations of an activity can be characterized as input or output bindings, it is not
possible to describe which input binding activated a specific output binding. In order to
overcome this issue, the activity binding concept is defined to characterize a relationship
between input and output bindings.

Definition 3.4 (Activity Binding) Let M = (A, ai, ao, D, I,O) be a C-net accord-
ing to Definition 3.3. An activity binding Bx of an activity x ∈ A is defined by the
tuple (asI , asO)x where asI ∈ I(x) and asO ∈ O(x) are the input and output bindings.
Both input and output bindings are powersets of A.

Table 3.4 describes all activity bindings in the process model of Figure 3.4. Note
that a process instance can be translated into a sequence of activity bindings. For
example, the process instance 〈abdedg〉 can be described as the sequence of activity
bindings 〈(∅, {b})a ({a}, {d, e})b ({b}, {d})d ({b}, {g})e ({d}, {g})d ({d, e}, ∅)g〉.

Activity Activity Bindings

a (∅, {b})a and (∅, {c})a
b ({a}, {d, e})b
c ({a}, {e})c, ({a}, {f})c and ({a}, {e, f})c
d ({b}, {g})d, ({b}, {d})d, ({d}, {d})d and ({d}, {g})d
e ({b}, {g})e and ({c}, {g})e
f ({c}, {g})f
g ({d, e}, ∅)g, ({e}, ∅)g, ({f}, ∅)g and ({e, f}, ∅)g

Table 3.4: All activity bindings of the C-net of Figure 3.4.

The strict definition of C-net assumes the existence of unique and exclusive start
and end activities. This means that the C-net cannot hold more than one start and end
activities, and these cannot be executed more than once in the same process instance.
Furthermore, all activities in the C-net must be reached by the start activity, and reach
the end activity. These assumptions are valid if the business process is well-defined and
there are no isolated sub-processes. One effective solution for overcoming this issue is
to add artificial start and end activities into every process instance. However, these
extra activities will increase the number of objects in the process model, turning the
process analysis more challenging. This issue is even more evident in process models
from low-structured processes. Therefore, in order to keep the resulting process model
as simple as possible, a relaxed definition of C-net is introduced. The relaxed definition
consists of a generalization of the strict one with regard to the start and end activities.

3.2. Process Representation 47

Multiple start and end activities are allowed in this type of C-net. This means that
an activity may be characterized by both empty and non-empty input and output
bindings.

Definition 3.5 (Causal net – relaxed definition) A Causal net (C-net) is a tuple
(A,Ai, Ao, D, I,O) where

- A is a finite set of activities,

- Ai ⊆ A is the set of start activities,

- Ao ⊆ A is the set of end activities,

- D ⊆ A×A is the set of dependency relations,

- I ∈ A→ P(P(A)) defines the set of possible input bindings per activity, and

- O ∈ A→ P(P(A)) defines the set of possible output bindings per activity

such that

- D = {(a1, a2) ∈ A×A | a1 ∈
⋃
x∈I(a2) x ∧ a2 ∈

⋃
y∈O(a1)

y},
- Ai = {a ∈ A | I(a) ⊇ {∅}},
- Ao = {a ∈ A | O(a) ⊇ {∅}}, and

- All activities in the graph (A,D) are on a path from a start activity ai ∈ Ai to
an end activity ao ∈ Ao.

Remark that a C-net defined according to the relaxed definition can easily be converted
into a C-net conforming the strict definition (and the other way around).

One of the limitations of C-nets is the lack of measuring information about the
elements described in the process model. For example, all activities in the process model
are presented as equi-relevant (i.e., the model does not provide explicit information to
assess the relevance of activities). Therefore, low frequent cases (possibly originated by
noise) are thus impossible to identify. By using the process data from which the process
model is discovered, it is possible to easily compute frequency information of activities,
dependency relations, and input and output bindings. By annotating the process model
with this information, it is possible to provide insight into the relevance of the elements
described in the model. Consequently, cases of noise can be directly identified. A C-net
in which the frequency of its elements can be computed and described in the process
model is designated as an augmented Causal net (aC-net).

Definition 3.6 (Augmented Causal net) An augmented Causal net (aC-net) is a
tuple (A,Ai, Ao, D, I,O) according to the relaxed definition of C-net (cf. Definition 3.5)
for which

- freq : A→ N is the activity frequency function,

- freq : D → N is the dependency relation frequency function,

- freq : I → N is the input binding frequency function, and

- freq : O → N is the output binding frequency function.

Figure 3.5 presents the corresponding aC-net of the C-net of Figure 3.4. In this
annotated process model, the numerical information in the nodes (in Italics) represent
the activity frequency (i.e., the number of times the activity appeared in the process
data). Similarly, the numerical information in the edges represent the number of times
a transition from an activity to another occurred. Information about input and output
bindings is not explicitly presented in this process model.

48 Chapter 3. Process Discovery

a

1000

b

300

c

700

g

850

e

800

d

425

f

400

300

700

125

300

500

300

400

300

250

800

Figure 3.5: Example of an aC-net with one start activity (a) and two end activities (f and g).

The aC-net of Figure 3.5 can be described as follows. A = {a, b, c, d, e, f, g} and D =
{(a, b), (a, c), (b, d), (b, e), (c, e), (c, f), (d, d), (d, g), (e, g), (f, g)} are the sets of activities
and dependency relations. Like in C-nets, edges depict dependency relations and nodes
represent activities. Also, functions I(a) and O(a) identify the sets of possible inputs
and output bindings of activity a. Provided in the definition of aC-net, function freq
determines the frequency of activities, dependency relations, and input and output
bindings. In the process model, the frequency information of activities and dependency
relations is provided in nodes and edges. The frequency information of input and
output bindings is not implicitly represented in the model but in splits and joins tables.
Table 3.5 describes the splits and joins tables of activity d. Each entry of these tables
identify the binding’s activated inputs or outputs as well as the binding’s frequency
information. Remark that splits and joins tables can be represented as multisets of
input and output bindings.4 Table 3.6 shows all inputs and output bindings and
corresponding frequencies in the process model of Figure 3.5. Activity a is the only
start activity (i.e., Ai = {a}), while activities f and g are the end activities (i.e.,
Ao = {f, g}). Unlike g, activity f is not an exclusive end activity once that its set of
possible output bindings contains a non-empty set of activities (i.e., {g} ∈ O(f)).

Binding Inputs Frequency

b d

{b} X 300
{d} X 125

(a) Joins.

Binding Outputs Frequency

d g

{g} X 300
{d} X 125

(b) Splits.

Table 3.5: Input and output bindings of activity d.

3.2.2 Multidimensional Process Models

A multidimensional process model is a generic process model that describes the business
process in terms of groups of process events and their dependency relations. Groups
of process events as well as dependency relations can be constrained by multiple di-

4A multiset (or bag) is a generalization of a set in which each element may occur multiple times.
For example, [a1, b2, c3] is a multiset with six elements (one a, two b’s, and three c’s).

3.2. Process Representation 49

Input Bindings Activity Output Bindings

[∅1000] a [{b}300, {c}700]
[{a}300] b [{d, e}300]
[{a}700] c [{e}300, {f}200, {e, f}200]

[{b}300, {d}125] d [{d}125, {g}300]
[{b}300, {c}500] e [{g}800]

[{c}400] f [{g}250, ∅150]
[{e}300, {f}50, {d, e}300, {e, f}200] g [∅850]

Table 3.6: All input and output bindings – and corresponding frequencies – of the aC-net of Fig-
ure 3.5.

mensions. This means that multidimensional process models are a generalization of
traditional process models. By grouping process events by activity and using uncon-
strained dependency relations, it is possible to represent in a multidimensional process
model the same information as the one that can be represented in a traditional process
model.

A dimension is a particular aspect of the business process, which (i) is represented
in the process data through a data element (attribute), or (ii) can be derived from the
process data through some data transformation function. The different values used to
characterize the dimension are designated as dimension values. Typically categorical,
dimension values can be characterized as:

• Simple values, which consist of a single value representing a concrete fact of
the business process.

• Transition values, which consist of two simple values describing a transition
from a fact of the business process to another (i.e., a dependency relation).

Definition 3.7 (Dimension and Dimension Value) Let D = {D1, D2, ..., Dn} be
the set of dimensions. If Di ∈ D then

• {vi1, vi2, ..., vim} are the simple values of Di, and

• {vi1, vi2, ..., vim} × {vi1, vi2, ..., vim} are the transition values of Di.

Since the same values can appear in different dimensions, dimension values are denoted
as:

• Simple values: Di:vik (i ∈ {1, ..., n} and k ∈ {1, ...,m}).

• Transition values: Di is Di:vik → vij (i ∈ {1, ..., n} and k, j ∈ {1, ...,m}). If
k = j then the transition value can be considered as a simple value.

If Di ∈ D then the set of simple values of Di is determined by the function
values(Di). The cardinality of Di (i.e., the number of simple values in Di) is de-
termined by the function card(Di).

As an example of a simple value, the originator of the first process event in Table 3.1
(first row) can be identified as Originator:System. As an example of a transition
value, the transition of originators from the first to the second process events in the
same table (first and second rows) can be described as Originator:System→ Tester.

Considering the C-net notation, the representation of a multidimensional process
model consists of a multigraph (i.e., a graph in which nodes can be connected by
parallel edges) where nodes represent groups of process events and arcs (or edges)

50 Chapter 3. Process Discovery

represent constrained dependency relations. Nodes are identified by a set of simple
values that describe the characteristics of the represented process events. Edges are
constrained by a set of transition values that describe the characteristics of the existing
transitions. This means that more than one transition from a node to another can
exist. Figure 3.6 shows three multidimensional models representing the same sub-
process through different perspectives. In terms of dimensions, these submodels can
be described as follows. D = {Task,Resource, Product} is the set of dimensions in all
three submodels. SinceD contains three dimensions, these submodels can be considered
as three-dimensional submodels. In terms of dimension values, each dimension contains
two distinct values (i.e., values(Task) = {T1, T2}, values(Resource) = {R1, R2}, and
values(Product) = {P1, P2}).

Task:T2

Resource:R2

Product:P1

Task:T1

Resource:R1

Product:P1

(a)

Task:T2

Product:P1

Task:T1

Product:P1 Resource:

R1 R2

(b)

Task:T2

Resource:R2

Task:T1

Resource:R1 Product:P1

(or P1 P1

(c)

Figure 3.6: Three multidimensional submodels representing different perspectives of the same sub-
process.

Each node of the submodel of Figure 3.6a is characterized by three dimension values
(simple values). Task:T1, Resource:R1, and Product:P1 are the values in the source
node. This submodel is not described by any transition value once that its transition
(edge) is not characterized by any dimension. The same does not happen in the other
submodels. In the submodel of Figure 3.6b, the transition value Resource:R1 → R2 is
used to describe the transition in terms of resources. In the submodel of Figure 3.6c,
the transition value Product:P1 → P1 is used to describe the transition in terms
of products. Once that this transition value does not describe an actual transition,
Product:P1 → P1 may be replaced by the simple value Product:P1.

In a multidimensional process model, each dimension value acts as a filtering condi-
tion of process events or transitions within the process. For example, the source node
of Figure 3.6a represents the group of process events in which the task T1 on product P1

was performed by resource R1. The set of dimension values used to identify a group of
process events is designated as event constraint. The edge of Figure 3.6b describes the
transition of resources from the group of process events in which task T1 was performed
on product P1 to the one in which task T2 was performed on the same product. The set
of dimension values used to describe a transition is designated as workflow constraint.

Definition 3.8 (Constraint) Let D = {D1, D2, ..., Dn} be the set of dimensions, VS
the set of all simple values, and VT the set of all transition values. VS and VT are
defined as follows.

VS = { Di : vik | Di ∈ D ∧ i ∈ {1, ..., n} ∧ k ∈ {1, ...,m} }
VT = { Di : vik → vij | Di ∈ D ∧ i ∈ {1, ..., n} ∧ k, j ∈ {1, ...,m} }

A constraint is a set of dimension values from distinct dimensions (i.e., a dimension
cannot be represented in a constraint by more than one dimension value) that can
be used to filter (or to partition) the process data. There are two different types of
constraints:

3.2. Process Representation 51

• Event constraint: Let CS be the set of all constraints based on simple values
that can defined as

CS = { X | X ⊆ VS ∧ ∀i,j,k,l[Di : vik ∈ X ∧Dj : vjl ∈ X ∧ i = j → vik = vjl] }.

An event constraint CE ∈ CS is a set of simple values can be used to describe one
or more process events or facts of the business process.

• Workflow constraint: Let CT be the set of all constraints based on transition
values that can be defined as

CT = { X | X ⊆ VT ∧ ∀i,j,k,k′,l,l′ [Di : vik → vik′ ∈ X ∧Dj : vjl → vjl′ ∈ X ∧
∧ i = j → vik = vjl ∧ vik′ = vjl′] }.

A workflow constraint CW ∈ CT is a set of transition values that can be used
to describe a specific transition between process events or facts of the business
process.

If a constraint is an empty set (i.e., CE = ∅ or CW = ∅) then no filtering action is
applied to the process data. Otherwise, a partition of the process data is generated
containing all entries in which all dimension values of the constraint are satisfied.
Remark that a constraint holds zero or one dimension values from each dimension.

Table 3.7 summarizes the different constraints in Figure 3.6. Representing groups of
process events, nodes are characterized by event constraints. Representing transitions,
edges are characterized by workflow constraints.

Source Node Target Node

(a) {Task:T1, Resource:R1, P roduct:P1} {Task:T2, Resource:R2, P roduct:P1}
(b) {Task:T1, P roduct:P1} {Task:T2, P roduct:P1}
(c) {Task:T1, Resource:R1} {Task:T2, Resource:R2}

(a) Event constraints.

Edge

(a) ∅
(b) {Resource:R1 → R2}
(c) {Product:P1}

(b) Workflow constraints.

Table 3.7: The event and workflow constraints in Figure 3.6.

A process model describes groups of process events, which are unique facts of the
business process described in the process data. For example, a traditional process model
describes groups of process events characterized by the same activity (i.e., one of the
process event’s attributes). In these one-dimensional models, the term activity is used
to identify the groups of process events. In multidimensional process models, a group of
process events can be characterized by multiple aspects. The concept event occurrence
is defined to describe a group of process events that satisfy specific characteristics
(event constraints).

Definition 3.9 (Event Occurrence) In a multidimensional process model, an event
occurrence E is a group of process events characterized by an event constraint (cf.

52 Chapter 3. Process Discovery

Definition 3.8). Analogously, a transition from an event occurrence E1 to another E2

is defined by a workflow constraint. Unlike traditional process models, there may exist
more than one transition between E1 and E2.

Every node of the submodels of Figure 3.6 represents an event occurrence. For
example, in Figure 3.6a, the event occurrence represented by the source node describes
the group of process events in which task T1 processed the product P1, and was per-
formed by the resource R1. The same logic applies to the other event occurrence (target
node). The transition represented by the edge is not characterized by any dimension
(i.e., it is not constrained). In Figure 3.6b, the edge describes a transition of resources
from an event occurrence to another. This means that resource R1 performed the first
event occurrence, while R2 performed the other one. In Figure 3.6c, the transition de-
scribes that the product P1 was processed in both event occurrences of the submodel
(i.e., there is no transition of product).

Considering the concepts introduced above, a multidimensional version of Causal
nets can be finally defined as a notation for modeling multidimensional process models.
In multidimensional Causal nets,

• event occurrences are considered instead of activities,

• input and output bindings – and, consequently, dependency relations – can be
characterized by workflow constraints, and

• measuring information of event occurrences, dependency relations, and bindings
is provided according to a specific summarization function.

Note that, as a generalization of aC-nets, multidimensional Causal nets preserve the
semantics of the traditional Causal nets.

Definition 3.10 (Multidimensional Causal net) A multidimensional Causal net
(mC-net) is a tuple (E,C,Ei, Eo, D,B) where

- E is a finite set of event occurrences,

- Ei ⊆ E is the set of start event occurrences,

- Eo ⊆ E is the set of end event occurrences,

- C is a finite set of workflow constraints,

- D ⊆ E × E × C is the set of dependency relations,

- I ∈ E → P(P(E × C)) defines the set of possible input bindings per event
occurrence,

- O ∈ E → P(P(E × C)) defines the set of possible output bindings per event
occurrence, and

- B ∈ E → I × O defines the set of possible event occurrence bindings per event
occurrence

such that

- D = {(e1, e2, c) ∈ E × E × C | (e1, c) ∈
⋃
x∈I(e2) x ∧ (e2, c) ∈

⋃
y∈O(e1)

y},
- Ei = {e ∈ E | I(e) ⊇ {∅}},
- Eo = {e ∈ E | O(e) ⊇ {∅}}, and

- All activities in the graph (E,D) are on a path from a start event occurrence
ei ∈ Ei to an end event occurrence eo ∈ Eo.

3.2. Process Representation 53

Any event occurrence, dependency relation, or binding of a mC-net can be charac-
terized by

- fsum : E → R, which is the event occurrence summarization function,

- fsum : D → R, which is the dependency relation summarization function,

- fsum : I → R, which is the input binding summarization function,

- fsum : O → R, which is the output binding summarization function, and

- fsum : B → R, which is the event occurrence binding summarization function.

Figure 3.7 presents the corresponding mC-net of the aC-net of Figure 3.5. In this
multidimensional process model, the numerical information in the nodes (in Italics)
represent the activity frequency (i.e., the number of times the activity appeared in
the process data). Information about input and output bindings is not explicitly pre-
sented in this process model. Edges represented in different colors are characterized
by different workflow constraints. In this case, workflow constraints represent the di-
mension Type (e.g., the type of product or service being processed). Note that in this
process there are distinct process behaviors for different types. For example, the type
represented by the gray color is never processed in activities b and d, while the one
represented by the black color can be processed in any activity.

Activity:a

1000

Activity:b

300

Activity:c

700

Activity:g

850

Activity:e

800

Activity:d

425

Activity:f

400

Figure 3.7: A mC-net with 1-D nodes (dimension Activity) and 1-D edges (dimension Type).

The mC-net of Figure 3.7 can be described as follows. D = {Activity, Type} is the
set of dimensions in the process model. Since D contains two dimensions, this mC-net
can be considered as a two-dimensional process model. Dimension Activity and its
values (values(Activity) = {a, b, c, d, e, f, g}) are used as event constraints, while di-
mension Type and its values (values(Type) = {I, II}) are used as workflow constraints.
The set of event occurrences is E = {{Activity:a}, {Activity:b}, ..., {Activity:g}}, being
each occurrence defined by an event constraint, and summarized by the event occur-
rence frequency function (i.e., fsum(e) = freq(e), with e ∈ E). The set of dependency
relations is

D = { ({Activity:a}, {Activity:b}, {Type:I}), ({Activity:a}, {Activity:c}, {Type:II}), ...,

({Activity:f}, {Activity:g}, {Type:I}), ({Activity:f}, {Activity:g}, {Type:II}) } ,

being each relation constrained by one of the values of dimension Type (i.e., either
I or II). Functions I({Activity:a}), O({Activity:a}), and B({Activity:a}) identify
the sets of possible inputs, output, and event occurrence bindings of event occurrence

54 Chapter 3. Process Discovery

{Activity:a}. Table 3.8 shows all inputs and output bindings (and corresponding fre-
quencies) in the process model of Figure 3.7. The possible event occurrence bindings are
described in Table 3.9. Event occurrence {Activity:a} is the only start event occurrence
(i.e., Ei = {{Activity:a}}), while event occurrences {Activity:f} and {Activity:g} are
the end event occurrences (i.e., Eo = {{Activity:f}, {Activity:g}}).

Depending on the assignment of dimensions to nodes and edges, the same n-
dimensional process model can be presented in 2n different perspectives. Presenting
the same information in different process views, these perspectives can be used to em-
phasize the different aspects of the business toward process events (nodes) or process
behavior (edges). For example, Figure 3.7 presents one out of four possible perspec-
tives of the two-dimensional process model over the dimensions Activity and Type.
In this perspective, dimension Activity is emphasized toward process events, while di-
mension Type toward process behavior. Figure 3.8 presents an opposite perspective
to Figure 3.7 where the dimension emphases are swapped (i.e., dimension Type is em-
phasized toward process events, while dimension Activity toward process behavior).
The other possible perspectives of the same multidimensional process model are pre-
sented in figures 3.9 and 3.10. In Figure 3.9, both dimensions Activity and type are
emphasized toward process behavior. In Figure 3.10, both dimensions Activity and
type are emphasized toward process events. Remark that all of these perspectives are
only given as an illustration of the concept.

Type:I

2625
Type:II

1850

Activity:a → c

Activity:c → e

Activity:a → b

Activity:b → d

Activity:d → d

Activity:d → g

Activity:b → e

Activity:c → f

Activity:e → g

Activity:f → g

Figure 3.8: A mC-net with 1-D nodes (dimension Type) and 1-D edges (dimension Activity).

Activity:a → c

Type:I

Activity:a → b

Type:I

Activity:b → d

Type:I

Activity:d → d

Type:I

Activity:c → e

Type:I

Activity:c → f

Type:I

Activity:e → g

Type:I

Activity:a → c

Type:II

Activity:b → e

Type:I

Activity:d → g

Type:I

Activity:c → e

Type:II

Activity:c → f

Type:II

Activity:e → g

Type:II

Activity:f → g

Type:I

Activity:f → g

Type:II

ALL

4475

Figure 3.9: A mC-net with 0-D nodes and 2-D edges (dimensions Activity and Type).

3.2. Process Representation 55

E
ve

n
t

O
cc

u
rr

en
ce

In
p

u
t

B
in

d
in

gs

{A
ct
iv
it
y
:a
}

[
∅1

0
0
0

]
{A
ct
iv
it
y
:b
}

[
{

({
A
ct
iv
it
y
:a
},
{T
y
p
e:
I
})
}3

0
0

]
{A
ct
iv
it
y
:c
}

[
{

({
A
ct
iv
it
y
:a
},
{T
y
p
e:
I
})
}2

0
0
,
{

({
A
ct
iv
it
y
:a
},
{T
y
p
e:
I
I
})
}5

0
0

]
{A
ct
iv
it
y
:d
}

[
{

({
A
ct
iv
it
y
:b
},
{T
y
p
e:
I
})
}3

0
0
,
{

({
A
ct
iv
it
y
:d
},
{T
y
p
e:
I
})
}1

2
5

]
{A
ct
iv
it
y
:e
}

[
{

({
A
ct
iv
it
y
:b
},
{T
y
p
e:
I
})
}3

0
0
,
{

({
A
ct
iv
it
y
:c
},
{T
y
p
e:
I
})
}2

0
0
,
{

({
A
ct
iv
it
y
:c
},
{T
y
p
e:
I
I
})
}3

0
0

]
{A
ct
iv
it
y
:f
}

[
{

({
A
ct
iv
it
y
:c
},
{T
y
p
e:
I
})
}2

0
0
,
{

({
A
ct
iv
it
y
:c
},
{T
y
p
e:
I
I
})
}2

0
0

]
{A
ct
iv
it
y
:g
}

[
{

({
A
ct
iv
it
y
:e
},
{T
y
p
e:
I
I
})
}3

0
0
,
{

({
A
ct
iv
it
y
:d
},
{T
y
p
e:
I
})
,(
{A
ct
iv
it
y
:e
},
{T
y
p
e:
I
})
}3

0
0
,

{
({
A
ct
iv
it
y
:e
},
{T
y
p
e:
I
})
,(
{A
ct
iv
it
y
:f
},
{T
y
p
e:
I
})
}2

0
0
,
{

({
A
ct
iv
it
y
:f
},
{T
y
p
e:
I
I
})
}5

0
]

(a
)

In
p

u
t

b
in

d
in

g
s.

E
ve

n
t

O
cc

u
rr

en
ce

O
u

tp
u

t
B

in
d

in
gs

{A
ct
iv
it
y
:a
}

[
{

({
A
ct
iv
it
y
:b
},
{T
y
p
e:
I
})
}3

0
0
,
{

({
A
ct
iv
it
y
:c
},
{T
y
p
e:
I
})
}2

0
0
,
{

({
A
ct
iv
it
y
:c
},
{T
y
p
e:
I
I
})
}5

0
0

]
{A
ct
iv
it
y
:b
}

[
{

({
A
ct
iv
it
y
:d
},
{T
y
p
e:
I
})
,(
{A
ct
iv
it
y
:e
},
{T
y
p
e:
I
})
}3

0
0

]
{A
ct
iv
it
y
:c
}

[
{

({
A
ct
iv
it
y
:e
},
{T
y
p
e:
I
I
})
}3

0
0
,
{

({
A
ct
iv
it
y
:f
},
{T
y
p
e:
I
I
})
}2

0
0
,

{
({
A
ct
iv
it
y
:e
},
{T
y
p
e:
I
})
,(
{A
ct
iv
it
y
:f
},
{T
y
p
e:
I
})
}2

0
0

]
{A
ct
iv
it
y
:d
}

[
{

({
A
ct
iv
it
y
:d
},
{T
y
p
e:
I
})
}1

2
5
,
{

({
A
ct
iv
it
y
:g
},
{T
y
p
e:
I
})
}3

0
0

]
{A
ct
iv
it
y
:e
}

[
{

({
A
ct
iv
it
y
:g
},
{T
y
p
e:
I
})
}5

0
0
,
{

({
A
ct
iv
it
y
:g
},
{T
y
p
e:
I
I
})
}3

0
0

]
{A
ct
iv
it
y
:f
}

[
{

({
A
ct
iv
it
y
:g
},
{T
y
p
e:
I
})
}2

0
0
,
{

({
A
ct
iv
it
y
:g
},
{T
y
p
e:
I
I
})
}5

0
,
∅1

5
0

]
{A
ct
iv
it
y
:g
}

[
∅8

5
0

]

(b
)

O
u

tp
u

t
b

in
d

in
g
s.

T
a
b
le

3
.8
:

A
ll

in
p

u
ts

a
n

d
o
u

tp
u

t
b

in
d

in
g
s

–
a
n

d
co

rr
es

p
o
n

d
in

g
fr

eq
u

en
ci

es
–

o
f

th
e

m
C

-n
et

o
f

F
ig

u
re

3
.7

.

56 Chapter 3. Process Discovery

E
ven

t
O

ccu
rren

ce
E

ven
t

O
ccu

rren
ce

B
in

d
in

gs

{A
ctiv

ity
:a}

[(
∅
,
{(
{A
ctiv

ity
:b},{T

y
p
e:I}

)})
3
0
0,

(
∅
,
{(
{
A
ctiv

ity
:c},{

T
y
p
e:I}

)})
2
0
0,

(
∅
,
{(
{
A
ctiv

ity
:c},{

T
y
p
e:I
I}

)})
5
0
0]

{A
ctiv

ity
:b}

[(
{
(
{A
ctiv

ity
:a}

,{T
y
p
e:I}

)}
,
{(
{
A
ctiv

ity
:d}
,{
T
y
p
e:I}

),(
{A
ctiv

ity
:e},{

T
y
p
e:I}

)})
3
0
0]

{A
ctiv

ity
:c}

[(
{
(
{A
ctiv

ity
:a}

,{T
y
p
e:I}

)}
,
{(
{
A
ctiv

ity
:e},{T

y
p
e:I}

),(
{
A
ctiv

ity
:f},{T

y
p
e:I}

)})
2
0
0,

(
{(
{A
ctiv

ity
:a},{

T
y
p
e:I
I}

)}
,
{(
{
A
ctiv

ity
:e},{T

y
p
e:I
I}

)})
3
0
0,

(
{(
{A
ctiv

ity
:a}

,{
T
y
p
e:I
I}

)}
,
{(
{
A
ctiv

ity
:f},{T

y
p
e:I
I}

)})
2
0
0]

{
A
ctiv

ity
:d}

[(
{(
{A
ctiv

ity
:b},{

T
y
p
e:I}

)}
,
{(
{
A
ctiv

ity
:g},{T

y
p
e:I}

)})
2
0
0,

(
{
(
{A
ctiv

ity
:b},{T

y
p
e:I}

)}
,
{
(
{A
ctiv

ity
:d},{T

y
p
e:I}

)})
1
0
0,

(
{
(
{A
ctiv

ity
:d},{T

y
p
e:I}

)}
,
{(
{A
ctiv

ity
:d}
,{T

y
p
e:I}

)})
2
5,

(
{
(
{A
ctiv

ity
:d},{T

y
p
e:I}

)}
,
{(
{A
ctiv

ity
:g}
,{T

y
p
e:I}

)})
1
0
0]

{A
ctiv

ity
:e}

[(
{A
ctiv

ity
:b},{T

y
p
e:I}

)}
,
{(
{A
ctiv

ity
:g}
,{T

y
p
e:I}

)})
3
0
0,

(
{
(
{A
ctiv

ity
:c},{T

y
p
e:I
I}

)}
,
{
(
{A
ctiv

ity
:g},{T

y
p
e:I
I}

)})
3
0
0,

(
{
(
{A
ctiv

ity
:c},{T

y
p
e:I}

)}
,
{
(
{A
ctiv

ity
:g},{T

y
p
e:I}

)})
2
0
0]

{
A
ctiv

ity
:f}

[(
{(
{
A
ctiv

ity
:c}
,{
T
y
p
e:I}

)}
,
{(
{
A
ctiv

ity
:g},{T

y
p
e:I}

)})
2
0
0,

(
{
(
{A
ctiv

ity
:c},{T

y
p
e:I
I}

)}
,
{
(
{A
ctiv

ity
:g},{T

y
p
e:I
I}

)})
5
0,

(
{
(
{A
ctiv

ity
:c},{T

y
p
e:I
I}

)}
,
∅)

1
5
0]

{A
ctiv

ity
:g}

[(
{(
{
A
ctiv

ity
:d}
,{
T
y
p
e:I}

),(
{A
ctiv

ity
:e},{

T
y
p
e:I}

)}
,
∅)

3
0
0,

(
{(
{A
ctiv

ity
:e}
,{T

y
p
e:I
I}

)}
,
∅)

3
0
0,

(
{(
{A
ctiv

ity
:e}
,{T

y
p
e:I}

),(
{A
ctiv

ity
:f}

,{T
y
p
e:I}

)}
,
∅)

2
0
0,

(
{(
{
A
ctiv

ity
:f},{T

y
p
e:I
I}

)}
,
∅)

5
0]

T
a
b
le

3
.9
:

A
ll

ev
en

t
o
ccu

rren
ce

b
in

d
in

g
s

–
a
n

d
co

rresp
o
n

d
in

g
freq

u
en

cies
–

o
f

th
e

m
C

-n
et

o
f

F
ig

u
re

3
.7

.

3.2. Process Representation 57

Activity:a

Type:I

500

Activity:b

Type:I

300

Activity:c

Type:I

200

Activity:g

Type:I

500

Activity:e

Type:I

500

Activity:d

Type:I

425

Activity:f

Type:I

200

Activity:a

Type:II

500

Activity:c

Type:II

500

Activity:e

Type:II

300

Activity:f

Type:II

200

Activity:g

Type:II

350

Figure 3.10: A mC-net with 2-D nodes (dimensions Activity and Type) and 0-D edges.

Sequences of Bindings

A process instance is a sequence of process events (cf. Definition 3.2). These sequences
characterize the process execution in terms of executed activities (or tasks) and simple
process behavior (i.e., the order in which the process events occurred). Therefore, since
complex process behavior such as parallelism is not explicitly represented in a process
instance, any kind of analysis directly performed in process instances is quite limited,
and usually does not take into account event- or instance-based information.

For traditional process models, an activity binding is defined as the relationship of
activated inputs and outputs of a specific activity (cf. Definition 3.4). For multidimen-
sional process models, an event occurrence binding is defined as the – multidimensional
– relationship of activated inputs and outputs of a specific event occurrence (cf. Defi-
nition 3.10). This means that, in a process instance and given a process model, every
process event of the process instance has a relation one-to-one with an activity binding
or an event occurrence binding. Hence, by transforming a sequence of process events
into a sequence of bindings, it is possible to take into account complex control-flow
constructs.

Definition 3.11 (Binding Sequence) Let a process instance T be a finite sequence
of process events 〈e1e2...en〉, M a mC-net, and fmap a function that, given a mC-net,
finds the corresponding event occurrence binding of a process event in T by match-
ing their identifiers. A binding sequence is a transformation of T into a sequence of
bindings T ′ = 〈m1m2...mn〉 by applying fmap to every element of T and M .

The main difference between a sequence of process events and a sequence of bind-
ings is that the first only takes into account event-based information, while the latter
also considers workflow-based information. Note that this happens because, unlike se-
quences of process events, a sequence of bindings is dependent on a specific mC-net (or
an aC-net, which can also be seen a particular instance of mC-net).

Figure 3.11 presents a process with parallel behavior represented by a C-net. The

58 Chapter 3. Process Discovery

activity bindings of every activity in the C-net are provided in Table 3.10. Table 3.11
shows that there are four distinct sequences of process events that fit in this process.
The sequences of activities 〈ABCDEG〉, 〈ABCDFG〉, 〈ACBDEG〉, and 〈ACBDFG〉
can be used to represent the different sequences of process events. The corresponding
– activity – binding sequences are also provided.

A GD

B

C

E

F

Figure 3.11: A C-net describing a process with parallel behavior.

ID Inputs Outputs

B C

a1 7→ • •

(a) Bindings of A.

ID Inputs Outputs

A D

b1 • 7→ •

(b) Bindings of B.

ID Inputs Outputs

A D

c1 • 7→ •

(c) Bindings of C.

ID Inputs Outputs

B C E F

d1 • • 7→ •
d2 • • 7→ •

(d) Bindings of D.

ID Inputs Outputs

D G

e1 • 7→ •

(e) Bindings of E.

ID Inputs Outputs

D G

f1 • 7→ •

(f) Bindings of F .

ID Inputs Outputs

E F

g1 • 7→
g2 • 7→

(g) Bindings of G.

Table 3.10: The activity bindings of Figure 3.11’s C-Net.

Process Instance Binding Sequence Frequency

1 〈ABCDEG〉 〈a1b1c1d1e1g1〉 350
2 〈ABCDFG〉 〈a1b1c1d2f1g2〉 300
3 〈ACBDEG〉 〈a1c1b1d1e1g1〉 225
4 〈ACBDFG〉 〈a1c1b1d2f1g2〉 275

Table 3.11: List of all possible process instances that fit in the process of the Figure 3.11, and
corresponding binding sequences.

3.2. Process Representation 59

Considering that activities B and C are executed in parallel (i.e., it does not mat-
ter which of these activities is executed first), one may argue that 〈ABCDEG〉 and
〈ACBDEG〉 are the same process instance. The same happens to 〈ABCDFG〉 and
〈ACBDFG〉. However, these sequence of activities cannot be used to represent such
a process behavior (i.e., workflow-based information). Some insight into this aspect
can be provided by binding sequences. By transforming these sequences of activities
into binding sequences, it is possible to identify parallel behavior in the process. For
instance, by translating the activity A into the binding a1 (the only possible activity
binding for A according to Table 3.10), one can easily identify this parallel behavior in
all process instances because a1 defines that, after A, both B and C must be activated.

By adding workflow constraints in the C-net of the Figure 3.11, it is possible to
demonstrate that binding sequences can also take into account instance-based informa-
tion. This means that two similar process instances (i.e., the same sequence of process
events) with different characteristics (i.e., different execution properties) can be distin-
guished. For instance, a specific process instance of the repair process that can handle
different types of products.

Figure 3.12 presents a mC-net with an abstract workflow constraint (e.g., the prod-
uct or service type) of the process of the Figure 3.11. Different colors represent different
constraint values. The – event occurrence – bindings of every event occurrence of the
mC-net are provided in Table 3.12. Table 3.13 provides details about both sequences
of activities and bindings. Remark that the colored bullets are associated to process
instances just to help on the identification of the workflow constraint described by the
instance.

Activity:A Activity:GActivity:D

Activity:B

Activity:C

Activity:E

Activity:F

Figure 3.12: A mC-net of the process of the Figure 3.11.

Considering the explicit information provided by sequence of activities, one can con-
clude that process instances 1a and 1b are represented by 〈ABCDEG〉. This happens
because this kind of sequence does not take into account instance- or workflow-based
information. Sequences of – event occurrence – bindings, on the other hand, comprise
not only event- but also instance- and workflow-based information. Therefore, process
instances with similar behavior but different workflow constraints can be distinguished.
For instance, process instances 1a and 1b are represented by distinct binding sequences:
〈a1b1c1d1e1g1〉 and 〈a2b2c2d2e2g2〉.

Although binding sequences provide further information than the traditional se-
quences of process events (or any derivation of them such as sequences of activities),
distinguishing process instances with parallel behavior (e.g., 1a and 3a) is not yet pos-
sible. This happens because the ordering of bindings is kept in these sequences. A
solution for this issue will be discussed in Section 6.3.5.

60 Chapter 3. Process Discovery

ID Inputs Outputs Frequency

B C

a1 7→ • • 750
a2 7→ • • 400

(a) Bindings of A.

ID Inputs Outputs Frequency

A D

b1 • 7→ • 750
b2 • 7→ • 400

(b) Bindings of B.

ID Inputs Outputs Frequency

A D

c1 • 7→ • 750
c2 • 7→ • 400

(c) Bindings of C.

ID Inputs Outputs Frequency

B C E F

d1 • • 7→ • 175
d2 • • 7→ • 400
d3 • • 7→ • 575

(d) Bindings of D.

ID Inputs Outputs Frequency

D G

e1 • 7→ • 175
e2 • 7→ • 400

(e) Bindings of E.

ID Inputs Outputs Frequency

D G

f1 • 7→ • 575

(f) Bindings of F .

ID Inputs Outputs Frequency

E F

g1 • 7→ 175
g2 • 7→ 400
g3 • 7→ 575

(g) Bindings of G.

Table 3.12: The event occurrence bindings of Figure 3.12’s mC-Net.

3.3. Control-Flow Mining 61

Process Instance Binding Sequence Frequency

1a 〈ABCDEG〉• 〈a1b1c1d1e1g1〉 100
1b 〈ABCDEG〉• 〈a2b2c2d2e2g2〉 250
2a 〈ABCDFG〉• 〈a1b1c1d3f1g3〉 300
3a 〈ACBDEG〉• 〈a1c1b1d1e1g1〉 75
3b 〈ACBDEG〉• 〈a2c2b2d2e2g2〉 150
4a 〈ACBDFG〉• 〈a1c1b1d3f1g3〉 275

Table 3.13: List of all possible process instances that fit in the process of the Figure 3.12, and
corresponding binding sequences.

3.3 Control-Flow Mining

Control-flow mining is particular application of process mining. It consists of the dis-
covery of a process model that reflects the process behavior observed in process data.
In this section two control-flow mining techniques based on C-nets are introduced: the
Flexible Heuristics Miner and the Multidimensional Heuristics Miner. Both techniques
are designed to mine a process model from process data. The difference between these
techniques relies on the type of process model produced. The first one produces an
aC-net, a one-dimensional process model over the dimension Activity (i.e., a tradi-
tional process model). The second one produces a mC-net, an n-dimensional process
model over n given dimensions present in (or derived from) the process data (i.e., a
multidimensional process model). As mC-nets (multidimensional process models) are
generalization of aC-nets (traditional process models), the Multidimensional Heuristics
Miner can also be considered a generalization of the Flexible Heuristics Miner.

3.3.1 Flexible Heuristics Miner

To construct an aC-net on the basis of process data (an event log or an event stream),
the data should be analyzed for causal dependencies [131, 132], e.g., if an activity is
always followed by another activity then it is likely that there is a dependency relation
between both activities. In order to analyze these relations, some basic relations over
the activities in the process data are firstly introduced. The basic relations are used to
define dependency measures between activities.

Definition 3.12 (Basic Relations) Let A be a set of activities. δ ∈ A∗ is a process
instance, W : A∗ → N is a process dataset5, and x, y ∈ A:

1. x >W y iff there is a process instance δ = 〈a1a2a3 . . . an〉 and i ∈ {1, . . . , n − 1}
such that δ ∈W and ai = x and ai+1 = y (direct successor),

2. x�W y iff there is a process instance δ = 〈a1a2a3 . . . an〉 and i ∈ {1, . . . , n− 2}
such that δ ∈W and ai = ai+2 = x and ai+1 = y and x 6= y (length-two loops),

3. x ≫W y iff there is a process instance δ = 〈a1a2a3 . . . an〉 and i < j and i, j ∈
{1, . . . , n} such that δ ∈W and ai = x and aj = y (direct or indirect successor).

5A∗ is the set of all sequences (i.e., process instances) that are composed of zero or more activities
of A. W : A∗ → N is a function from the elements of A∗ to N (i.e., the number of times an element
of A∗ appears in the process data). In other words, W is a multiset of process instances.

62 Chapter 3. Process Discovery

Mining of the Dependency Graph

The starting point of the Heuristics Miner is the construction of a so-called dependency
graph (DG). A frequency-based metric is used to indicate the strength of a dependency
relation between two process events a and b (notation a ⇒W b). The ⇒W values
between the process events of an event log or an event stream are the basis of the
heuristic search for determining the actual dependency relations of the process model.

Definition 3.13 (Dependency Measures) Let W be a process dataset over A,
x, y ∈ A, |x >W y| the number of times x >W y occurs in W , and |x �W y| is the
number of times x�W y occurs in W .6

x⇒W y =

|x>W y|−|y>W x|
|x>W y|+|y>W x|+1 if (x 6= y)

|x>W x|
|x>W x|+1 otherwise

(3.1)

x⇒2
W y =

|x�W y|+ |y �W x|
|x�W y|+ |y �W x|+ 1

(3.2)

Note that x ⇒W y ∈ [−1, 1] ([0, 1] if x = y) and x ⇒2
W y ∈ [0, 1]. x ⇒W x can

be used to identify length-one loops. Length-two loops are identified by the x ⇒2
W y

measurement.

A simple example demonstrates the rationale behind the x⇒W y measurement. If
we apply Equation 3.1 in the situation that, in 5 process instances out of hundreds,
activity a is directly followed by activity b but the other way around never occurs, the
value of a ⇒W b = 5/6 = 0.833 indicates that the dependency relation is not highly
reliable. Actually, these 5 observations are possibly caused by noise. However, if there
are 50 process instances in which a is directly followed by b but the other way around
never occurs, the value of a ⇒W b = 50/51 = 0.980 indicates that the dependency
relation is highly reliable. If there are 50 process instances in which task a is directly
followed by b and the other way around occurs once because of some noise, the value of
a⇒W b is 49/52 = 0.942 indicates that is still reliable. A high a⇒W b value strongly
suggests that there is a dependency relation between activities a and b. Nonetheless,
the boundary that identifies whether a dependency relation is reliable or not depends
on several factors. The threshold appears sensitive for the amount of noise, the degree
of concurrency in the underlying process, and the frequency of the involved activities.
The dependency values of Definition 3.13 can be applied in two different ways: with
or without the all-tasks-connected heuristic.

The underlying intuition in the all-tasks-connected heuristic is that each non-initial
activity must have at least one other activity that is its cause, and each non-final
activity must have at least one dependent activity. Using this information we can first
take the best candidates (the ones with the highest x ⇒W y scores). The advantage
of using this heuristic is that many dependency relations are tracked without any
influence of any parameter setting.7 Therefore, in the context of a structured process,

6Because the dataset W is a multiset, the same sequence of activities can appear more than once
in the data and patterns can appear multiple times in a sequence. If, for instance, the pattern ab
appears twice in a sequence (e.g., cabefgcabefh), and this sequence appears three times in W (i.e.,
W (cabefgcabefh)=3) then these appearances count as 6 in the |a >W b| measurement.

7Remark that the best candidates are always taken independently of the parameter setting. The
parameters only influence the amount of extra connections that will appear in the control-flow model.

3.3. Control-Flow Mining 63

the result is a relative complete and understandable control-flow model even if there
is some noise in the data. However, if we use the all-tasks-connected heuristic in
the context of a less-structured process the result is a very complex model with all
activities connected by a high number of transitions (i.e., a spaghetti model). In these
circumstances, this heuristic can be disabled resulting the execution of the Heuristics
Miner in a control-flow model with only the most frequent tasks and behavior. By
changing the parameters, it is possible to influence the completeness of the control-
flow model. Next, we will firstly introduce the different parameters. Afterwards, some
mining results with and without the all-tasks-connected heuristic will be presented.

Four threshold parameters are available in the Heuristics Miner to identify whether
or not a dependency relation is reliable:

Dependency threshold (σD) defines that a dependency relation from an activity x
to another y is reliable if x ⇒W y ≥ σD. The default value of this threshold is
σD = 0.9.

Length-one loops threshold (σL1L) defines that a dependency relation involving a
single activity x (i.e., a length-one loop, from x to x) is reliable if x⇒W x ≥ σL1L.
The default value of this threshold is σL1L = 0.9.

Length-two loops threshold (σL2L) defines that the pair of dependency relations
between activities x and y (i.e., a length-two loop, from x to y and then the other
way around) is reliable if x⇒2

W y ≥ σL2L. The default value of this threshold is
σL2L = 0.9.

Relative-to-best threshold (σR) is used to evaluate the dependency relations gen-
erated by the all-tasks-connected heuristic. This threshold defines that a depen-
dency relation from an activity x to another y that does not satisfy the depen-
dency threshold (i.e., x⇒W y < σD) is reliable if one of the following conditions
is satisfied.

• (x ⇒W z) − (x ⇒W y) ≤ σR, where z is the strongest follower of x (i.e.,
6 ∃w ∈ A (x⇒W w) > (x⇒W z)).

• (z′ ⇒W y) − (x ⇒W y) ≤ σR, where z′ is the strongest cause of y (i.e.,
6 ∃w ∈ A (w ⇒W y) > (z′ ⇒W y)).

Basically, this threshold tests whether a rejected dependency relation (by the
dependency threshold) is almost as reliable as the best accepted relation. The
default value of this threshold is σR = 0.05.

These thresholds define which dependency relations between activities should be
part of the dependency graph. Hence, the mining of the dependency graph can be
adjusted to deal with different kinds of processes. For example, the loop thresholds
(i.e., σL1L and σL2L) can be set to 1.0 if it is known that the process does not have any
type of loop (or there is no interest to have loops in the process model). In this way, the
process model will be built without any loop. The major disadvantage of building the
dependency graph in this way is the strong influence of these parameters, especially if
there is noise in the process dataset. In these circumstances, the selection of the right
parameters (in order to avoid including noise in the results) may be difficult.

The mining of the dependency graph in combination with the all-tasks-connected
heuristic is described in Algorithm 1. The all-tasks-connected heuristic is implemented
in the algorithm lines 4 through 9. In the lines 9, 10 and 11, the minimal connected

64 Chapter 3. Process Discovery

process model is extended with other reliable connections. Remark that, as a heuristic-
based algorithm, Algorithm 1 simply provides an approximate solution. The quality
of the solution can be improved by adjusting the threshold parameters. For further
insight into the parameter selection issue see Subsection 5.4.3.

Algorithm 1: Building the Dependency Graph

Input : The process dataset W , the dependency threshold σD, the length-one
loops threshold σL1L, the length-two loops threshold σL2L, and the
relative-to-best threshold σR.

Output: The dependency graph for W .

Method
1 A = {a | ∃δ∈W [a ∈ δ]}

// the set of activities appearing in the dataset

2 D1 = {(a, a) ∈ A×A | a⇒W a ≥ σL1L}
// the set of length-one loops

3 D2 = {(a, b) ∈ A×A | (a, a) /∈ D1 ∧ (b, b) /∈ D1 ∧ a⇒2
W b ≥ σL2L}

// the set of length-two loops

4 Dout = {(a, b) ∈ A×A | a 6= b ∧ ∀y∈A[(a⇒W b ≥ a⇒W y) ∧ (a⇒W b > 0)]}
// for each activity, the strongest follower

5 Din = {(a, b) ∈ A×A | a 6= b ∧ ∀x∈A[(a⇒W b ≥ x⇒W b) ∧ (a⇒W b > 0)]}
// for each activity, the strongest cause

6 D′out = {(a, y) ∈ Dout | a⇒W y < σD ∧ ∃(b,z)∈Dout
[(a, b) ∈ D2 ∧ (b⇒W

z)− (a⇒W y) > σR]}
// only one follower activity is necessary for a length-two loop

7 Dout = Dout −D′out
8 D′in = {(x, a) ∈ Din | x⇒W a < σD ∧ ∃(z,b)∈Din

[(a, b) ∈ D2 ∧ (z ⇒W

b)− (x⇒W a) > σR]}
// only one cause activity is necessary for a length-two loop

9 Din = Din −D′in
10 D′′out = {(a, b) ∈ A×A | a⇒W b ≥ σD ∨ ∃(a,y)∈Dout

[(a⇒W y)− (a⇒W b) ≤
σR]}

11 D′′in = {(a, b) ∈ A×A | a⇒W b ≥ σD∨∃(x,b)∈Din
[(x⇒W b)−(a⇒W b) ≤ σR]}

12 return D1 ∪D2 ∪D′′out ∪D′′in

The process model as depicted in Figure 3.13 is used as an illustrative example to
explain the process of building a dependency graph. Let us assume that this model
is also used for generating an artificial event log with 1000 random traces. However,
during the generation of the event log, the hidden activities D1, D2 and D3 are not
registered. Hidden activities are a standard solution within the Petri net formalism to
deal with more complex and flexible split/join constructs. Moreover, the patterns in
which the activity L and the hidden activity D2 are involved are low frequent patterns
(i.e., activity J followed by C, and D followed by K without F as intermediate). The
combination of parallelism (after activity A two parallel processes are started), loops
(length-one, length-two and longer loops), hidden activities, and low frequent behavior,
makes this event log difficult to mine.

3.3. Control-Flow Mining 65

A

K

D

L

D2

I

D1

B

E

H

G

JC

F

D3

Exception

Exception

Figure 3.13: The reference process model.

The basic information needed to build the dependency graph based on Figure 3.13 is
presented in Table 3.14 (the counting of the direct successors (i.e., x >W y)), Table 3.15
(the counting of the length-two loops (i.e., x �W y)), and Table 3.16 (the result of
applying Equation 3.1 on Table 3.14).

A B C D E F G H I J K L
A 0 520 480 0 0 0 0 0 0 0 0 0
B 0 0 360 182 198 0 0 0 233 27 0 0
C 0 338 0 125 128 40 48 8 349 0 0 0
D 0 0 63 0 0 586 0 0 193 68 5 6
E 0 0 73 0 0 0 619 0 236 67 0 3
F 0 0 16 124 134 0 0 327 212 88 0 7
G 0 0 16 143 145 0 0 359 220 105 0 10
H 0 0 11 0 0 0 0 0 252 105 614 5
I 0 119 0 209 236 179 210 166 315 576 0 0
J 0 23 0 135 155 102 117 118 0 0 381 5
K 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 17 3 2 1 4 9 0 0 0 0

Table 3.14: Direct successor counting (x >W y-counting for activities).

The value 520 in position (A,B) indicates that A was followed by B 520 times in
the event log. Analogously, the value 315 in position (I,I) indicates that I followed
itself 315 times. This value clearly suggests that there is an length-one loop on I.

A B C D E F G H I J K L
A 0 0 0 0 0 0 0 0 0 0 0 0
B 0 0 0 0 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0
D 0 0 0 0 0 89 0 0 0 0 0 0
E 0 0 0 0 0 0 104 0 0 0 0 0
F 0 0 0 110 0 0 0 0 0 0 0 0
G 0 0 0 0 133 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 0 0
I 0 19 0 40 63 59 57 97 116 0 0 0
J 0 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.15: Length-two loops counting (x�W y-counting for activities).

66 Chapter 3. Process Discovery

The value 89 in position (D,F) indicates that there are 89 DFD patterns in the
event log. Remark the high value between the length one loop-activity I and many
other activities (i.e., B, D, E F , G and H). This is caused by the looping behavior of
I in combination with the parallel behavior of the other mentioned activities.

A B C D E F G H I J K L
A 0 .998 .998 0 0 0 0 0 0 0 0 0
B -.998 0 .031 .995 .995 0 0 0 .323 .084 0 0
C -.997 -.031 0 .328 .272 .421 .492 -.150 .997 0 0 -.944
D 0 -.995 -.328 0 0 .650 -.993 0 -.040 -.328 .833 .300
E 0 -.995 -.272 0 0 -.993 .620 0 0 -.395 0 .167
F 0 0 -.421 -.650 .993 0 0 .997 .0842 -.073 0 .667
G 0 0 -.492 .993 -.620 0 0 .997 .0232 -.054 0 .400
H 0 0 .15 0 0 -.997 -.997 0 .205 -.058 .998 -.267
I 0 -.323 -.997 .040 0 -.084 -.023 -.205 .997 .998 0 0
J 0 -.078 0 .328 .395 .073 .054 .058 -.998 0 .997 .833
K 0 0 0 -.833 0 0 0 -.998 0 -.997 0 0
L 0 0 .944 -.300 -.167 -.667 -.400 .267 0 -.833 0 0

Table 3.16: All x⇒W y-values.

According to lines 4 and 5 of Algorithm 1, the best candidate (bold face) of each row
and column is accepted. However, based on lines 6 and 7, in case of length-two loops
(i.e., DF and EG) the weakest candidates (underlined) are removed (these loops only
need one (extra) incoming and one outgoing candidate, to be part of the dependency
graph). Extra connections may be accepted depending on the values of the parameters
(i.e., lines 2, 3, 8 and 9). These connections are displayed in Italics (e.g., from G to D).
Considering the information in Table 3.16 and assuming the thresholds default values
(i.e., σD = σL1L = σL2L = 0.9 and σR = 0.05), each step of the process of building the
dependency graph (i.e., each line of Algorithm 1) can be described as follows.

1. The first step of the algorithm is the construction of the set A (the set of all
activities appearing in the log).

2. Looking at the diagonal of Table 3.14 there is only one candidate for D1: activity
I is 315 times followed by itself. The value of I ⇒W I = 315/(315 + 1) ≥ σL1L,
resulting in D1 = {(I, I)}.

3. For this step of the algorithm we make use of Table 3.15. The table indicates
that the subsequence 〈DFD〉 appears 89 in the log and subsequence 〈FDF 〉
110 times. Therefore D ⇒2

W F = (89+110)/(89+110+1) = 0.995. Because
(F, F) /∈ D1 and (D,D) /∈ D1 and 0.995 ≥ σL2L both (F,D) ∈ D2 and (D,F) ∈
D2. The same argumentation counts for the case (E,G) resulting in D2 =
{(F,D), (D,F), (E,G), (G,E)}.

4. Based on Table 3.16, check each row for the highest value (the strongest follower).
For example, for activity C the highest value (in boldface) is 0.997; therefore
(C, I) is in the set Dout.

5. Based on Table 3.16, check each column for the highest value (the strongest
cause). For example, for activity K the highest value (in boldface) is 0.998;
therefore (H,K) is in the set Din.

6,7. The relation between activities D and F can be used to explain this step. They
are in a direct loop (i.e., (D,F) ∈ D2). The strongest output connection of D
beside F is K (0.833), and from F is H (0.997). For this reason (D,F) ∈ D′out (is

3.3. Control-Flow Mining 67

not strictly necessary) and will be removed from Dout (line 7 of the algorithm).
In Table 3.16 the removed connections are marked with underlining.

8,9. Analogue to lines 6 and 7, but now for the incoming connections.

10,11. Depending on the values of the parameters, extra connections are accepted if
both the absolute dependency threshold σD and the relative-to-best threshold
σR are satisfied. Remark that for the default parameter setting the dependency
relation between D and K is not accepted because D ⇒W K = 0.333 < 0.9
(Table 3.16). However, the connection from J to L is accepted, because the all
tasks connected heuristic is active. In the matrix of Table 3.16 the extra accepted
dependency values are displayed in Italics.

12. Finally, the information in the different sets is combined to perform the last step
of the algorithm.

Inputs Activity Outputs

∅ A {B,C}
{A} B {D,E}
{A,L} C {I}
{B,F,G} D {F}
{B,F,G} E {G}
{D} F {D,E,H}
{E} G {D,E,H}
{F,G} H {K}
{C, I} I {I, J}
{I} J {K,L}
{J,H} K ∅
{J} L {C}

Table 3.17: The resulting dependency graph.

Remark that low frequent connections are unlikely to be part of the dependency
graph if

• the thresholds σD, σL1L, and σL2L are near to one,

• the threshold σR is near to zero, and

• the all-tasks-connected heuristic is not applied.

The dependency graph provides information about the dependency between activities,
but the types of splits/joins are not yet mined.

Mining of the Splits and Joins

The second step of the Flexible Heuristics Miner is the identification of output and
input bindings (or splits and joins) in the dependency graph. For each activity in
the dependency graph, all the possible input and output bindings are derived from
parsing the process data on the dependency graph. Applying the aC-net definition (cf.
Definition 3.6), each activity is characterized by two multisets of – input and output
– bindings and corresponding frequencies. Table 3.18 summarizes the possible input
and output bindings in the dependency graph. Remark that these results are based on

68 Chapter 3. Process Discovery

the artificial event log with 1000 random traces in combination with the dependency
graph of Table 3.17.

Input Bindings Activity Output Bindings

[∅1000] A [{B,C}1000]
[{A}1000] B [{D}467, {E}533]

[{A}1000, {L}36] C [{I}1036]
[{B}467, {F}222, {G}232] D [{F}908]
[{B}533, {F}215, {G}250] E [{G}998]

[{D}908] F [{D}222, {E}215, {H}471]
[{E}998] G [{D}232, {E}250, {H}516]

[{F}471, {G}516] H [{K}987]
[{C}1036, {I}974] I [{I}974, {J}1036]

[{I}1036] J [{K}1000, {L}36]
[{J,H}987, {J}13] K [∅1000]

[{J}36] L [{C}36]

Table 3.18: All input and output bindings – and corresponding frequencies – of the dependency
graph of Table 3.17.

Figure 3.14 depicts the aC-net based on the input and output bindings of Table 3.18.
Note that, following the aC-net definition, the numerical information in nodes represent
the activity frequency. Analogously, that information on edges represent the number
of times a transition from an activity to another occurred.

A

1000

C

1036

B

1000

I

2010

J

1036

L

36

D

921

K

1000

F

908

G

998

E

998

H

987

533

998

250

222

1036

974

36

36

1000

1000

1036

987

1000

471

516

533

467

215232

Figure 3.14: The resulting aC-net.

The process of mining the splits and joins of a dependency graph is defined in
Algorithm 2. Remark that the strategy for computing splits and joins described in
this algorithm may not provide the correct results for some exceptional cases. No
inconsistent results (incorrect splits or joins) were found in our experiments. However,
a further assessment is necessary to find the limitations of the strategy.

The dependency graph of Table 3.17 is used as an illustrative example to explain
the mining the splits and joins. Let us consider 〈ABDCIFIJEGHK〉 as the process

3.3. Control-Flow Mining 69

Algorithm 2: Computing the Splits and Joins

Input : The process dataset W and the dependency graph DG.

Output: The multisets of – input and output – bindings and corresponding
frequencies.

Method
1 splits← ∅, joins← ∅ ; // the multisets of -- input and output --

bindings and corresponding frequencies

2 foreach process instance δ ∈ W do
3 for i← 1 to length of δ do BIi ← ∅, BOi ← ∅;
4 for i← 1 to length of δ do
5 ai ← the activity of the process event in the ith position of δ;
6 Oi ← the set of outputs of ai in DG ; // searching activated

outputs of ai
7 visitedEvents← ∅;
8 for j ← (i+ 1) to length of δ do
9 aj ← the activity of the process event in the ith position of δ;

10 Ij ← the set of inputs of aj in DG;
11 if aj ∈ Oi ∧ 6 ∃x∈visitedEvents[x ∈ Ij] then
12 BOi ← BOi ∪ {aj}, BIj ← BIj ∪ {ai};

end
13 if aj = ai then j ← length of δ else

visitedEvents← visitedEvents ∪ {aj};
end

14 Ii ← the set of inputs of ai in DG ; // searching activated inputs

of ai
15 visitedEvents← ∅;
16 for j ← (i− 1) to 1 do
17 aj ← the activity of the process event in the ith position of δ;
18 Oj ← the set of outputs of aj in DG;
19 if aj ∈ Ii ∧ 6 ∃x∈visitedEvents[x ∈ Oj] then
20 BIi ← BIi ∪ {aj}, BOj ← BOj ∪ {ai};

end
21 if aj = ai then j ← 1 else visitedEvents← visitedEvents ∪ {aj};

end

end
22 for i← 1 to length of δ do
23 ai ← the activity of the process event in the ith position of δ;

24 splits← splits ∪ {BOi }ai , joins← joins ∪ {BIi }ai ;
end

end
25 return (joins,splits);

instance being parsed. The mining of the output binding (split) of the activity A can
be described as follows (lines 4-13). According to Table 3.17, the outputs of A are B
and C. Therefore, four output bindings are possible:

70 Chapter 3. Process Discovery

• ∅, if A is not followed by any of its outputs. This output binding can occur when
A is an end-activity or there is some noise in the data.

• {B}, if A is followed exclusively by B. This output binding can be considered as
an XOR-Split.

• {C}, if A is followed exclusively by C. This output binding can be considered as
an XOR-Split.

• {B,C}, if A is followed by both B and C. This output binding can be considered
as an AND-Split.

Note that the activity A appears in the first position of the process instance (i.e., i = 1
in line 4 and a1 in line 5). Hence, the output binding of this activity is defined by the
subsequence of activities from the instance’s second position onwards (i.e., j = 2 to 12
in the loop of line 8). An activity x in this subsequence is part of the output binding
of A if (line 12):

• x is part of the set of outputs of A (i.e., set O1 = {B,C} in line 6), and

• there is no other activity y in between of A and x (i.e., set visitedEvents in lines
7, 11 and 13) such that y is part of the set of inputs of x. This condition checks
if this possible output is actually activated by A and not by any other activity.

Activities B and C (a2 and a4 in line 9) satisfy these conditions. B ∈ O1 and there is
not any activity in between of A and B. C ∈ O1 and none of the activities in between
of A and C (i.e., visitedEvents = {B,D}) is part of the inputs of C (i.e., B and D are
not in I4 = {A,L}). Therefore, the output binding of A in the given process instance
is defined as an AND-Split {B,C}. Consequently, A is added to the input bindings
of B and C (line 12). Finally, the value {B,C}A is added into the multiset of output
bindings of the dependency graph (line 24).

The mining of joins is analogous to the process described above. The mining of the
input binding (join) of the activity E can be described as follows (lines 4-5 and 14-21).
According to Table 3.17, the inputs of E are B, F and G. Therefore, for E, eight input
bindings are possible: ∅, {B}, {F}, {G}, {B,F}, {B,G}, {F,G}, and {B,F,G}. Note
that the activity E appears in the ninth position of the process instance (i.e., i = 9
in line 4 and a9 in line 5). Hence, the input binding of this activity is defined by the
subsequence of activities from the instance’s eighth position backwards (i.e., j = 8 to
1 in the loop of line 16). An activity x in this subsequence is part of the input binding
of E if (line 20):

• x is part of the set of inputs of E (i.e., set I9 = {B,F,G} in line 14), and

• there is no other activity y in between of x and A (i.e., set visitedEvents in lines
15, 19 and 21) such that y is part of the set of outputs of x. Analogously to the
mining of splits, this condition checks if this possible input is actually activated
by E and not by any other activity.

Although activities B and F appear in the subsequence (a2 and a6 in line 17), only
F satisfies these conditions. F ∈ I9 and none of the activities in between of F and
E (i.e., D ∈ visitedEvents = {I, J}) is part of the outputs of F (i.e., I and J are
not in O6 = {D,E,H}). B ∈ I9, but activity D appears in between of B and E (i.e.,
D ∈ visitedEvents = {D,C, I, F, J}), and D is part of the set of outputs of B (i.e.,
D ∈ O2 = {D,E}). Therefore, the input binding of E in the given process instance
is defined as an XOR-Join {F}. Consequently, E is added to the output binding of F

3.3. Control-Flow Mining 71

(line 20). Finally, the value {F}E is added into the multiset of input bindings of the
dependency graph (line 24).

Each activity of a process instance is characterized by an input and an output
binding (i.e., a join and a split). The multisets of all – input and output – bindings
derived from parsing the process data on the dependency graph define the aC-net (e.g.,
Table 3.18 and Figure 3.14).

Mining of the Long-Distance Dependencies

The final step of the Flexible Heuristics Miner is the identification of dependencies that
are not represented yet in the dependency graph. Called long-distance dependencies
(or non-free choice), these relations indicate cases in which an activity X depends
indirectly on another activity Y to be executed. That means that, in a split or a join
point, the choice may depend on choices made in other parts of the process model.
Figure 3.15 depicts a Petri Net with two distinct long-distance dependencies (i.e., the
relations B ⇒ E and C ⇒ F). Note that, in this example, there are only two possible
sequences: 〈ABDEG〉 and 〈ACDFG〉. However, without mining the long-distance
dependencies, the dependency graph does not ensure that activity E is only executed
if D follows B. The same happens for F . Thus, non-valid sequences such as 〈ABDFG〉
or 〈ACDEG〉 might fit in the process model. Figure 3.16 shows the corresponding C-
nets with and without mining the long-distance dependencies.

B

D

E

C F

GA

Figure 3.15: A Petri net with long-distance dependencies.

In order to handle the long-distance dependency issue, a new frequency-based met-
ric is defined. Basically, this metric takes into account the indirect relation between
activities (i.e., the direct or indirect successor counter of Definition 3.12). The main
idea is to find pairs of activities with similar frequencies in which the first activity is
directly or indirectly followed by the second one. These cases are measured through
the x ⇒l

W y measure (cf. Definition 3.14). Every pair with a non-zero ⇒l
W -value is

designated as a long-dependency relation.

Definition 3.14 (Long-Distance Dependency Measure) Let A be a set of activ-
ities, W a process dataset over A, x, y ∈ A, |x ≫W y| the number of times x ≫W y
occurs in W 8, and |x| is the number of times x occurs in W .

x⇒l
W y =

2× (|x≫W y|)
|x|+ |y|+ 1

− 2× abs(|x| − |y|)
|x|+ |y|+ 1

(3.3)

8In the pattern cdeafgbhibjkaladefbgh only the underlined appearances of the pattern a...b con-
tribute to the value |a ≫W b| (i.e., only a...b patterns without other a’s or b’s between them).

72 Chapter 3. Process Discovery

A GD

B

C

E

F

(a) C-net without long-distance dependency relations.

A GD

B

C

E

F

(b) C-net with long-distance dependency relations.

Figure 3.16: The Figure 3.15’s corresponding C-nets with and without long-distance dependency
relations.

Note that x⇒l
W y ∈ [0, 1].

A long-distance relation from an activity x to another y (x ⇒l
W y) is considered

reliable if x⇒l
W y ≥ σL, where σL is the long-distance threshold. The default value

of this threshold is σL = 0.9.

A x⇒l
W y value close to 1 of the first part of the expression indicates that activity

x is always followed by activity y. A value close to 0 of the second part indicates that
the frequency of activities x and y is about equal. That means that an overall value
close to 1 indicates both: activity x is always followed by activity y and the frequencies
of activities x and y are about equal. Remark that some long-dependency cases are
already implicitly represented in the dependency graph. A good example is the relation
A⇒ D in Figure 3.15, which its long-distance dependency value is close to 1.0 but no
extra dependency relation is necessary. This happens because A is always indirectly
followed by D, turning redundant the extra direct connection from A to D. Taking into
account this remark, it is finally defined that a long-dependency relation x⇒ y (with
x, y ∈ A) should be part of the dependency graph whenever the relation satisfies the
long-distance threshold and it is possible to go from x to an end task without visiting
y.

The process of mining the long-distance dependencies in a dependency graph is
described in Algorithm 3. This process starts by determining the set of long-distance
relations (D) that satisfy the long-distance threshold (lines 1 and 2). Every relation
in D should not be in the dependency graph. For each relation (a, b) in D (line 3),
function escapeToEnd checks whether it is possible to go from a to an end task without
visiting b. If so, the long-distance relation (a, b) is added into the dependency graph
(line 4).

Note that every time a new long-distance dependency relation is added into the
dependency graph the relation activities’ inputs and outputs change as well as their
input and output bindings. So, at the end of this stage (i.e., after adding all long-

3.3. Control-Flow Mining 73

Algorithm 3: Computing the Long-Distance Dependencies

Input : The process dataset W , the dependency graph DG, the multiset of
output bindings (splits) and corresponding frequencies S, and the
long-distance threshold σL.

Output: The dependency graph with long-distance dependencies for W .

Method
1 A is the set of activities appearing in the dependency graph;

2 D = {(a, b) ∈ A×A | (a, b) 6∈ DG ∧ a⇒l
W b ≥ σL} ; // the set of

potential long-distance relations

3 foreach pair of activities (a, b) ∈ D do
4 if escapeToEnd(a,S,{b}) = true then DG← DG ∪ {(a, b)};

end
5 return DG;

function escapeToEnd(currentActivity, S, visitedActivities)
if currentActivity ∈ visitedActivities then return false;
X ← {A | ∃Ab∈S [b = currentActivity]} ; // the output bindings of

activity currentActivity
if ∅ ∈ X then return true ; // tests whether the activity

currentActivity is an end activity

visitedActivities← visitedActivities ∪ {currentActivity};
return

∨
B∈X

∧
b∈B escapeToEnd(b,S,visitedActivities);

distance dependencies into the dependency graph), it is necessary to recompute the
split/join information.

3.3.2 Multidimensional Heuristics Miner

The Multidimensional Heuristics Miner can be seen as a generalization of the Flex-
ible Heuristics Miner. Instead of one-dimensional process models (over the dimen-
sion Activity), this algorithm can build process models over multiple dimensions, the
so-called multidimensional process models. The main differences between the Multi-
dimensional and the Flexible Heuristics Miner algorithms are basically described as
follows.

Mining of the dependency graph follows the same approach as in the Flexible
Heuristics Miner, but over event occurrences instead of activities. Additionally,
instead of using abstract dependency relations, workflow constraints are used to
characterize the transitions between event occurrences.

Mining of the splits and joins is based on the approach considered in the Flexible
Heuristics Miner. However, instead of input and output bindings, this step is
redesigned to find event occurrence bindings (cf. Definition 3.10). Remark that
event occurrence bindings are formed by input and output bindings characterized
by workflow constraints.

Mining of the long-distance dependencies is not considered in the Multidimen-
sional Heuristics Miner. Eventually, long-distance dependencies may be identified

74 Chapter 3. Process Discovery

by process patterns, which can be derived from a mC-net. Process patterns are
introduced in Chapter 6.

Like for aC-nets, to construct a mC-net on the basis of process data (an event log or
an event stream), the data should be analyzed for causal dependencies between event
occurrences. These multidimensional relations are a generalization of the basic ones
used in the Flexible Heuristics Miner.

Definition 3.15 (Basic Multidimensional Relations) Let E be a set of event oc-
currences. δ ∈ E∗ is a process instance, W : E∗ → N is a process dataset9, and
x, y ∈ E:

1. x >W y iff there is a process instance δ = 〈e1e2e3 . . . en〉 and i ∈ {1, . . . , n − 1}
such that δ ∈W and ei = x and ei+1 = y (direct successor),

2. x �W y iff there is a process instance δ = 〈e1e2e3 . . . en〉 and i ∈ {1, . . . , n − 2}
such that δ ∈W and ei = ei+2 = x and ei+1 = y and x 6= y (length-two loops),

Remark that this definition and Definition 3.12 are equivalent if the event occurrences
in E are characterized exclusively by the dimension Activity.

Mining of the Multidimensional Dependency Graph

Like for any other Heuristics Miner-based algorithm, the construction of the depen-
dency graph is the starting point for mining a process model. However, for build-
ing a multidimensional process model, the traditional dependency graphs need to be
adapted to support multiple dimensions. Therefore, instead of describing activities and
their – abstract – dependency relations, the dependency graphs should be extended in
such a way that event occurrences and their constrained dependency relations can
be described. These extended dependency graphs are designated as multidimensional
dependency graphs.

The process of building a multidimensional dependency graph relies on the same
frequency-based metrics ⇒W and ⇒2

W used in the Flexible Heuristics Miner (cf. Defi-
nition 3.13). However, instead of applying the measures over activities, the dependency
measures are applied over event occurrences. This means that, being x and y event
occurrences, the values x >W y and x �W y – needed to compute the dependency
values x⇒W y and x⇒2

W y – are determined according to Definition 3.15.

The Multidimensional Heuristics Miner works with the same parameters as the
Flexible Heuristics Miner. The mining of the multidimensional dependency graph in
combination with the all-tasks-connected heuristic is described in Algorithm 4. Re-
mark that this algorithm is a generalization of Algorithm 1 (page 64). For an easier
understanding, the same line numbering is preserved in this algorithm (i.e., the same
operations are identified by the same line numbers in both algorithms 1 and 4).

The one-dimensional sub-process as depicted in Figure 3.17 is used as an illustrative
example to explain the process of building a multidimensional dependency graph. Let
us assume that the process data from which the model is generated contains information
about not only activities but also resources (originators) and product types. For this
sub-process, details about these dimensions are provided in Table 3.19.

9E∗ is the set of all sequences (i.e., process instances) that are composed of zero or more event
occurrences of E. W : E∗ → N is a function from the elements of E∗ to N (i.e., the number of times
an element of E∗ appears in the process data). In other words, W is a multiset of process instances.

3.3. Control-Flow Mining 75

Algorithm 4: Building the Multidimensional Dependency Graph

Input : The process dataset W , the set of dimensions by which event
occurrences are characterized (DE), the set of dimensions by which
dependency relations are characterized (DW), the dependency
threshold σD, the length-one loops threshold σL1L, the length-two
loops threshold σL2L, and the relative-to-best threshold σR.

Output: The multidimensional dependency graph for W .

Method
1 E′ = {D:d | ∃δ∈W [∃e∈δ[d is the value of dimension D in e]] ∧D ∈ DE ∪DW }

E = {X ∈ P(E′) | ∀D1:d1∈X 6 ∃D2:d2∈X [D1 = D2 ∧ d1 6= d2]}
// the set of event occurrences appearing in the dataset

2 D1 = {(a, a) ∈ E × E | a⇒W a ≥ σL1L}
// the set of length-one loops

3 D2 = {(a, b) ∈ E × E | (a, a) /∈ D1 ∧ (b, b) /∈ D1 ∧ a⇒2 W b ≥ σL2L}
// the set of length-two loops

4 Dout = {(a, b) ∈ E × E | a 6= b ∧ ∀y∈A[(a⇒W b ≥ a⇒W y) ∧ (a⇒W b > 0)]}
// for each activity, the strongest follower

5 Din = {(a, b) ∈ E × E | a 6= b ∧ ∀x∈A[(a⇒W b ≥ x⇒W b) ∧ (a⇒W b > 0)]}
// for each activity, the strongest cause

6 D′out = {(a, y) ∈ Dout | a⇒W y < σD ∧ ∃(b,z)∈Dout
[(a, b) ∈ D2 ∧ (b⇒W

z)− (a⇒W y) > σR]}
// only one follower activity is necessary for a length-two loop

7 Dout = Dout −D′out
8 D′in = {(x, a) ∈ Din | x⇒W a < σD ∧ ∃(z,b)∈Din

[(a, b) ∈ D2 ∧ (z ⇒W

b)− (x⇒W a) > σR]}
// only one cause activity is necessary for a length-two loop

9 Din = Din −D′in
10 D′′out = {(a, b) ∈ E × E | a⇒W b ≥ σD ∨ ∃(a,y)∈Dout

[(a⇒W y)− (a⇒W b) ≤
σR]}

11 D′′in = {(a, b) ∈ E×E | a⇒W b ≥ σD∨∃(x,b)∈Din
[(x⇒W b)−(a⇒W b) ≤ σR]}

12 X ← D1 ∪D2 ∪D′′out ∪D′′in
return split(X,DE,DW)

function split(X, DE , DW)
constrainedPairs ← ∅
foreach pair of event occurrences (a, b) ∈ X do
x← {D:d | D:d ∈ a ∧D ∈DE } // the event constraint of a

x′ ← {D:d | D:d ∈ a ∧D ∈DW } // the workflow constraint of a

y ← {D:d | D:d ∈ b ∧D ∈DE } // the event constraint of b

y′ ← {D:d | D:d ∈ b ∧D ∈DW } // the workflow constraint of b
z ← {D:d1 → d2 | D:d1 ∈ x′ ∧D:d2 ∈ y′} // the workflow constraint

of the transition (a, b)
constrainedPairs ← constrainedPairs ∪ {(x, y, z)}

end
return constrainedPairs

76 Chapter 3. Process Discovery

Activity:B

1500

Activity:C

2525

Activity:D

2525

Activity:E

1000
2525

1525
500

987100010001000

Figure 3.17: An example of a one-dimensional sub-process.

Dimension Dimension Values

Activity {B,C,D,E}
Resource {X,Y, Z}

Type {I, II}

Table 3.19: Characterization of the dimensions in the process data from which the model of Fig-
ure 3.17 is generated.

Considering the dimensions Activity, Resource, and Type, eight different three-
dimensional models of the same sub-process (i.e., different perspectives of the sub-
process) can be built:

• 3-D nodes + 0-D edges

1. The three dimensions (Activity, Resource, and Type) are used to define
the model’s event occurrences. In this case, the dependency relations be-
tween event occurrences are not constrained (i.e., there are no workflow
constraints).

• 2-D nodes + 1-D edges

2. The dimensions Activity and Resource are used to define the model’s event
occurrences. In this case, the dependency relations are constrained by the
dimension Type.

3. The dimensions Activity and Type are used to define the model’s event
occurrences. In this case, the dependency relations are constrained by the
dimension Resource.

4. The dimensions Resource and Type are used to define the model’s event
occurrences. In this case, the dependency relations are constrained by the
dimension Activity.

• 1-D nodes + 2-D edges

5. The dimension Activity is used to define the model’s event occurrences.
In this case, the dependency relations are constrained by the dimensions
Resource and Type.

6. The dimension Resource is used to define the model’s event occurrences.
In this case, the dependency relations are constrained by the dimensions
Activity and Type.

7. The dimension Type is used to define the model’s event occurrences. In this
case, the dependency relations are constrained by the dimensions Activity
and Resource.

• 0-D nodes + 3-D edges

3.3. Control-Flow Mining 77

8. The three dimensions (Activity, Resource, and Type) are used to define
the model’s workflow constraints. In this case, since there are no event con-
straints, the model will be formed by a single event occurrence representing
all process events of the sub-process.

Let us consider, in this example, the process of building a multidimensional depen-
dency graph of the model with 2-D nodes defined by dimensions Activity and Resource,
and 1-D edges defined by dimension Type. Rather than explaining how a dependency
graph can be built (process explained in Subsection 3.3.1), this example focuses on the
constraining process that turns a one-dimensional dependency graph into a multidimen-
sional one. Based on the information in the process data, {Activity:B,Resource:Y },
{Activity:C,Resource:X}, {Activity:C,Resource:Y }, {Activity:D,Resource:X},
{Activity:D,Resource:Y }, and {Activity:E,Resource:Z} are the event constraints,
while {Type:I} and {Type:II} are the workflow constraints.

Table 3.20 presents the counting of direct successors (i.e., x >W y in Defini-
tion 3.15), the basic information needed to build the multidimensional dependency
graph. Remark that this table combines information from both event and workflow
constraints. Hence, instead of simply considering six event occurrences identified above,
this table describes the counting of direct successors for all the combinations of event
and workflow constraints. This means that the information about the necessary mea-
surements for building the dependency graph can be maintained in a similar structure
as in the Flexible Heuristics Miner. Table 3.21 describes the combined event occur-
rences (event and workflow constraints) used in Table 3.20.

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

E1 350 0 550 0 0 0 0 0 0 0 0 0
E2 0 150 0 0 0 450 0 0 0 0 0 0
E3 0 0 0 0 0 0 725 0 0 0 0 0
E4 0 0 0 0 0 0 0 450 0 0 0 0
E5 0 0 0 0 0 0 0 0 550 0 0 0
E6 0 0 0 0 0 0 0 0 0 800 0 0
E7 0 0 175 0 550 0 0 0 0 0 0 0
E8 0 0 0 0 0 0 0 0 0 0 0 450
E9 0 0 0 0 0 0 0 0 0 0 550 0
E10 0 0 0 450 0 350 0 0 0 0 0 0
E11 0 0 0 0 0 0 0 0 0 0 0 0
E12 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.20: Direct successor counting (x >W y-counting for event occurrences).

The value 550 in position (E1,E3) of Table 3.20 indicates that the activity B per-
formed by resource Y (i.e., the event constraint {Activity:B,Resource:Y }) was fol-
lowed 550 times (in the process data) by the activity C performed by resource X
(i.e., {Activity:C,Resource:X}). The transition from the first event occurrence to
the other one is characterized by the product type I (i.e., the workflow constraint
{Type:I → I}). The information about the counting of length-two loops (i.e., x�W y
in Definition 3.15) can be structured – and read – in the same way as for the direct
successor counting. Consequently, the same principle applies to the x⇒W y-values.

Assuming the thresholds default values (i.e., σD = σL1L = σL2L = 0.9 and σR =
0.05), each step of the process of building the multidimensional dependency graph (i.e.,
each line of Algorithm 4) can be described as follows.

1. The first step of the algorithm is the construction of the set E, the set of all the

78 Chapter 3. Process Discovery

Event Dimension
Occurrence Values

E1 {Activity:B,Resource:Y, Type:I}
E2 {Activity:B,Resource:Y, Type:II}
E3 {Activity:C,Resource:X,Type:I}
E4 {Activity:C,Resource:X,Type:II}
E5 {Activity:C,Resource:Y, Type:I}
E6 {Activity:C,Resource:Y, Type:II}
E7 {Activity:D,Resource:Y, Type:I}
E8 {Activity:D,Resource:Y, Type:II}
E9 {Activity:D,Resource:X,Type:I}
E10 {Activity:D,Resource:X,Type:II}
E11 {Activity:E,Resource:Z, Type:I}
E12 {Activity:E,Resource:Z, Type:II}

Table 3.21: The list of event occurrences after combining the event and workflow constraints.

combinations of event and workflow constraints appearing in the process data.
Remark that, each element of E is considered as an intermediate event occurrence,
which is used as a stepping stone to discover the actual event occurrences that
appear in the dependency graph. For the running example, all the elements of E
are described in Table 3.21.

2-11. Analogue to the one-dimensional approach (Flexible Heuristics Miner). For the
running example, the results of each step are the following.

• D1 = {(E1, E1), (E2, E2)} (step 2),

• D2 = {(E3, E7), (E7, E3), (E6, E10), (E10, E6)} (step 3),

• Dout = {(E1, E3), (E2, E6), ..., (E9, E11), (E10, E4)} (step 4),

• Din = {(E1, E3), (E10, E4), ..., (E9, E11), (E8, E12)} (step 5),

• D′out = ∅ and D′in = ∅ (steps 6 and 8), and

• D′′out = Dout and D′′in = Din (i.e., no extra connections are found in steps
10 and 11).

12. Finally, like in the one-dimensional approach, the information in the different sets
is combined to perform the last step of the algorithm. However, in this multi-
dimensional approach, the combined information still need to be transformed to
describe explicitly the dependency relations and the corresponding constraints.
Therefore, the pair of – intermediate – event occurrences (a, b) should be trans-
lated into a triple consisting of two event constraints and one workflow constraint
(a′, b′, c), with a′ and b′ being the event constraints of a and b, and c being the
workflow constraint for the transition (a, b). In Algorithm 4, this translation is
performed by the function split. For the running example, the translation of the
pair (E1, E3) into (Ea, Eb, C1) can be explained as follows.

• DE = {Activity,Resource} is the set of the dimensions in event constraints,

• DW = {Type} is the set of the dimensions in workflow constraints,

• x = { Activity:B,Resource:Y } = Ea is the event constraint of E1,

• x′ = { Type:I } is the workflow constraint of E1,

3.3. Control-Flow Mining 79

• y = { Activity:C,Resource:X } = Eb is the event constraint of E3,

• y′ = { Type:I } is the workflow constraint of E3, and

• z = { Type:I → I } = C1 is the workflow constraint of the transition
(E1, E3).

Table 3.22 describes the resulting multidimensional dependency graph. Remark
that the inputs of the event occurrence Ea and the outputs of the event occurrence
Ef are not known due to the lack of information in the example.

Event
Inputs Occurrence Outputs

? Ea {(Ea, C1), (Ea, C2), (Eb, C1), (Ec, C2)}
{(Ea, C1), (Ed, C2), (Ee, C1)} Eb {(Ee, C1), (Ee, C2)}
{(Ea, C2), (Ed, C2), (Ee, C1)} Ec {(Ed, C1), (Ed, C2)}

{(Ec, C1), (Ec, C2)} Ed {(Eb, C2), (Ec, C2), (Ef , C1)}
{(Eb, C1), (Eb, C2)} Ee {(Eb, C1), (Ec, C1), (Ef , C2)}
{(Ed, C1), (Ee, C2)} Ef ?

(a) The dependency graph.

Event Dimension
Occurrence Values

Ea {Activity:B,Resource:Y }
Eb {Activity:C,Resource:X}
Ec {Activity:C,Resource:Y }
Ed {Activity:D,Resource:X}
Ee {Activity:D,Resource:Y }
Ef {Activity:E,Resource:Z}

(b) Characterization of the event occurrences
in the dependency graph.

Workflow Dimension
Constraint Values

C1 {Type:I → I}
C2 {Type:II → II}

(c) Characterization of the workflow
constraints in the dependency graph.

Table 3.22: The resulting multidimensional dependency graph.

Mining of the Event Occurrence Bindings

The second step of the Multidimensional Heuristics Miner is the identification of event
occurrence bindings (i.e., pairs of input and output bindings activated together) in
the multidimensional dependency graph. For each event occurrence in the dependency
graph, all the possible event occurrence bindings are derived from parsing the process
data on the dependency graph. Applying the mC-net definition (cf. Definition 3.10),
each event occurrence is characterized by a multiset of event occurrence bindings and
corresponding frequencies. Since an event occurrence binding basically consists of a
pair of input and output bindings, the mining of event occurrence bindings follows a
similar approach as the mining of splits and joins in the Flexible Heuristics Miner.

The process of mining the event occurrences of a multidimensional dependency
graph is defined in Algorithm 5. The dependency graph of Table 3.22 is used as an
illustrative example to explain this process. Let us consider 〈ε1ε2ε2ε3ε6ε4ε5ε7ε8〉 as
the process instance being parsed. The details of the process events in the process
instance are presented in Table 3.23.

80 Chapter 3. Process Discovery

Algorithm 5: Computing the Event Occurrence Bindings

Input : The process dataset W , the set of dimensions by which event occurrences are
characterized (DE), the set of dimensions by which dependency relations are
characterized (DW), and the multidimensional dependency graph DG.

Output: The multiset of event occurrence bindings and corresponding frequencies.

Method
1 bindings← ∅ ; // the multiset of event occurrence bindings

2 foreach process instance δ ∈ W do
3 for i← 1 to length of δ do BOi ← ∅, BIi ← ∅;
4 for i← 1 to length of δ do

5 ei ← the process event in the ith position of δ;

6 Xi ← {D:d | D ∈ DE ∧ d is the value of dimension D in ei} ; // the event

constraint of ei
7 Yi ← {D:d | D ∈ DW ∧ d is the value of dimension D in ei} ; // the

workflow constraint of ei
8 Oi ← the set of outputs of Xi in DG ; // searching activated outputs of

Xi
9 visitedEvents← ∅;

10 for j ← (i+ 1) to length of δ do

11 ej ← the process event in the jth position of δ;

12 Xj ← {D:d | D ∈ DE ∧ d is the value of dimension D in ej};
13 Yj ← {D:d | D ∈ DW ∧ d is the value of dimension D in ej};
14 Zi→j ←transition(Yi,Yj);
15 Ij ← the set of inputs of Xj in DG;
16 if (Xj , Zi→j) ∈ Oi ∧ 6 ∃(x,y)∈visitedEvents[(x,transition(y,Yj)) ∈ Ij] then

BOi ← BOi ∪ {(Xj , Zi→j)}, BIj ← BIj ∪ {(Xi, Zi→j)};
17 if Xj = Xi ∧ Yj = Yi then j ← length of δ else

visitedEvents← visitedEvents ∪ {(Xj , Yj)};
end

18 Ii ← the set of inputs of Xi in DG ; // searching activated inputs of Xi
19 visitedEvents← ∅;
20 for j ← (i− 1) to 1 do

21 ej ← the process event in the jth position of δ;

22 Xj ← {D:d | D ∈ DE ∧ d is the value of dimension D in ej};
23 Yj ← {D:d | D ∈ DW ∧ d is the value of dimension D in ej};
24 Zj→i ←transition(Yj,Yi);
25 Oj ← the set of outputs of Xj in DG;
26 if (Xj , Zj→i) ∈ Ii ∧ 6 ∃(x,y)∈visitedEvents[(x,transition(Yj,y)) ∈ Oj] then

BIi ← BIi ∪ {(Xj , Zj→i)}, BOj ← BOj ∪ {(Xi, Zj→i)};
27 if Xj = Xi ∧ Yj = Yi then j ← 1 else

visitedEvents← visitedEvents ∪ {(Xj , Yj)};
end

end
28 for i← 1 to length of δ do

29 ei ← the process event in the ith position of δ;

30 Xi ← {D:d | D ∈ DE ∧ d is the value of dimension D in ei};
31 bindings← bindings ∪ (BIi , B

O
i)Xi ;

end

end
32 return bindings;

function transition(C1,C2) = {D:d1 → d2 | D:d1 ∈ C1 ∧D:d2 ∈ C2}

3.3. Control-Flow Mining 81

Process
Event Activity Resource Type ...

ε1 A Z I
ε2 B Y I
ε3 C X I
ε4 C Y I
ε5 D X I
ε6 D Y I
ε7 E Z I
ε8 F Z I
...

Table 3.23: The characterization of process events according to the attributes in the event log.

Every event occurrence binding is derived from parsing a process instance on the
dependency graph. Each event of a process instance is characterized by an input and
an output binding (i.e., a join and a split). This pair of – input and output – bindings
define the event occurrence binding of the event. The set of all event occurrence
bindings derived from parsing the process data on the dependency graph defines the
mC-net.

The mining of the event occurrence binding of the process event ε3 can be de-
scribed as follows. Note that ε3 appears in the fourth position of the process
instance (i.e., i = 4 in line 4 and e4 in line 5). Considering that the dimen-
sions Activity and Resource are used to define the model’s event occurrences,
the event constraint of ε3 is X4 = {Activity:C,Resource:X} (line 6). Analo-
gously, since the dimension Type is used to characterize the model’s dependency
relations, the workflow constraint of ε3 is Y4 = {Type:I} (line 7). According to
Table 3.22, the outputs of X4 are ({Activity:D,Resource:Y }, {Type:I → I}) and
({Activity:D,Resource:Y }, {Type:II → II}) (i.e., set O4 in line 8). The output
binding of ε3 is defined by the subsequence of process events from the instance’s fifth
position onwards (i.e., j = 5 to 9 in the loop of line 10). A pair of – event and workflow
– constraints (Xk, Yk) that characterizes a process event ek in this subsequence is part
of the output binding of ε3 if (line 16):

• Being Z4→k = transition(Y4, Yk) the workflow constraint of the transition
(e4, ek), (Xk, Z4→k) is part of the set of outputs of ε3,10 and

• There is no other pair of constraints (Xl, Yl) in between of ε3 (e4) and ek (i.e.,
set visitedEvents in lines 9, 16 and 17) such that (Xl, transition(Yk, Yl)) is part
of the set of inputs of ek. This condition checks if this possible output is actually
activated by ε3 and not by any other process event.

The pair (X5, Y5) (ε6 in line 11, X5 = {Activity:D,Resource:Y } in line 12, and Y5 =
{Type:I} in line 13) satisfies these conditions. Z4→5 = {Type:I → I} is the workflow
constraint of the transition (ε3, ε6) (line 14). (X5, Z4→5) ∈ O4 and there is not any pro-
cess event in between of ε3 and ε6. Therefore, the output binding of ε3 in the given pro-
cess instance is defined as an XOR-Split {({Activity:D,Resource:Y }, {Type:I → I})}.

10The function transition(C1, C2) converts two constraints composed by simple values into a
constraint composed by transition values. For example, transition({D1:x,D2:y}, {D1:x,D2:z}) =
{D1:x→ x,D2:y → z}.

82 Chapter 3. Process Discovery

The mining of input bindings (lines 18-27) is analogous to the mining of output bind-
ings (lines 8-17). The input binding of ε3 in the given process instance is defined as an
XOR-Join {({Activity:B,Resource:Y }, {Type:I → I})}. Finally, the event occurrence
binding of ε3 is defined as the pair with the input and output bindings (line 31):

({({Activity:B,Resource:Y }, {Type:I → I})},{({Activity:D,Resource:Y }, {Type:I → I})})

Table 3.24 summarizes the possible input and output bindings in the dependency
graph of Table 3.22. Similarly, Table 3.25 describes the possible event occurrence
bindings in the dependency graph. The results in these tables are based on the event
log from which the model of Figure 3.17 is generated.

Input Event Output
Bindings Occurrence Bindings

[{(?, C1)}550, {(?, C2)}450] Ea [{(Ea, C1)}350, {(Ea, C2)}150,
{(Eb, C1)}550, {(Ec, C2)}450]

[{(Ea, C1)}550, {(Ed, C2)}450, Eb [{(Ee, C1)}725, {(Ee, C2)}450]
{(Ee, C1)}175]

[{(Ea, C2)}450, {(Ed, C2)}350, Ec [{(Ed, C1)}550, {(Ed, C2)}800]
{(Ee, C1)}550]

[{(Ec, C1)}550, {(Ec, C2)}800] Ed [{(Eb, C2)}450, {(Ec, C2)}350,
{(Ef , C1)}550]

[{(Eb, C1)}725, {(Eb, C2)}450] Ee [{(Eb, C1)}175, {(Ec, C1)}550,
{(Ef , C2)}450]

[{(Ed, C1)}550, {(Ee, C2)}450] Ef [{(?, C1)}540, {(?, C2)}447, ∅13]

Table 3.24: All input and output bindings – and corresponding frequencies – of the multidimensional
dependency graph of Table 3.22.

Figure 3.18 depicts the mC-net based on the event occurrence bindings of Ta-
ble 3.25. Note that, following the mC-net definition, the numerical information in
nodes represent the activity frequency. Analogously, that information on edges repre-
sent the number of times a transition from an activity to another occurred.

Activity:B

Resouce:Y

1500

Activity:C

Resouce:X

1175

Activity:D

Resouce:Y

1175

Activity:D

Resouce:X

1350

Activity:C

Resouce:Y

1350

Activity:E

Resouce:Z

1000

725

550

350

175

350

540

450

550
450

550

550450
550

447450

150

450

800

Figure 3.18: The resulting mC-net.

3.4. Summary 83

Event Occurrence Event Occurrence Bindings

Ea
[(
{(?, C1)}, {(Ea, C1)}

)350
,
(
{(?, C2)}, {(Ea, C2)}

)150
,(

{(?, C1)}, {(Eb, C1)}
)200

,
(
{(?, C2)}, {(Ec, C2)}

)300
,(

{(Ea, C1)}, {(Eb, C1)}
)350

,
(
{(Ea, C2)}, {(Ec, C2)}

)150]
Eb

[(
{(Ea, C1)}, {(Ee, C1)}

)550
,
(
{(Ed, C2)}, {(Ee, C2)}

)450
,(

{(Ee, C1)}, {(Ee, C1)}
)175]

Ec
[(
{(Ea, C2)}, {(Ed, C2)}

)450
,
(
{(Ed, C2)}, {(Ed, C2)}

)350
,(

{(Ee, C1)}, {(Ed, C1)}
)550]

Ed
[(
{(Ec, C1)}, {(Ef , C1)}

)550
,
(
{(Ec, C2)}, {(Ec, C2)}

)350
,(

{(Ec, C2)}, {(Eb, C2)}
)450]

Ee
[(
{(Eb, C1)}, {(Ec, C1)}

)550
,
(
{(Eb, C1)}, {(Eb, C1)}

)175
,(

{(Eb, C2)}, {(Ef , C2)}
)450]

Ef
[(
{(Ed, C1)}, {(?, C1)}

)540
,
(
{(Ee, C2)}, {(?, C2)}

)447
,(

{(Ed, C1)}, ∅
)10

,
(
{(Ee, C2)}, ∅

)3]
Table 3.25: All event occurrence bindings – and corresponding frequencies – of the multidimensional
dependency graph of Table 3.22.

3.4 Summary

Five components of the multidimensional process discovery approach were discussed in
this chapter.

• Process data are characterized in Section 3.1 in terms of structure.

• Augmented Causal nets are presented in Subsection 3.2.1 as instances of
traditional process models. Augmented Causal nets are characterized by their
simplicity and flexibility to describe complex behavior.

• Multidimensional Causal nets are introduced in Subsection 3.2.2 as instances
of multidimensional process models. A multidimensional Causal net can be seen
as a generalization of an augmented Causal net. Instead of grouping process
events simply by activity, process events can be grouped by multiple aspects
of the business process. Furthermore, constructs can also be characterized by
multiple aspects.

• Flexible Heuristics Miner is presented in Subsection 3.3.1 as a – traditional
– process discovery technique focusing on the control-flow perspective. Based
on the Heuristics Miner [131, 132], this technique can be used to construct an
augmented Causal net from process data. A great advantage of this technique is
its capability of dealing with noise and infrequent (or incomplete) behavior.

• Multidimensional Heuristics Miner is described in Subsection 3.3.2 as a
multidimensional process discovery technique focusing on the control-flow per-
spective. The Multidimensional Heuristics Miner can be seen as a generalization
of the Flexible Heuristics Miner. Instead of one-dimensional process models (over
the dimension Activity), this technique can build process models over multiple
dimensions.

84 Chapter 3. Process Discovery

Except the process data component, all components described above are implemented
as ProM 6 plugins, or objects that can be executed in the ProM framework [123, 125].

Answering research questions q1 and q2, the link between traditional and multi-
dimensional process discovery is established by the generalizations of (i) augmented
Causal nets to multidimensional Causal nets, and (ii) the Flexible Heuristics Miner to
the Multidimensional Heuristics Miner.

Chapter 4

Process Similarity

In this chapter, we introduce a methodology to compute differences or similarities in
multidimensional process models. Taking a multidimensional process model as refer-
ence, it is intended to define similarity functions for comparing:

• A pair of event occurrences in multidimensional process model.

• A pair of event occurrence bindings in multidimensional process model.

• A pair of sequences of event occurrence bindings describing process in-
stances according to the multidimensional process model.

• A pair of multisets of event occurrence bindings describing sub-processes
in the multidimensional process model.

This kind of information can be used to identify similarities in the process behavior of
multidimensional process models. In this thesis, process similarity is used in the ex-
traction of non-trivial patterns from multidimensional process models (cf. Section 6.2).
Process retrieval [139, 140] is another possible application.

Multidimensional
Heuristics Miner

Process
Data

Flexible
Heuristics Miner

10101010101010
10101011101010
11101010101010
1010101010

Process
Patterns

Process Pattern
Miners

ETL Cube
Processor

01

Multidimensional
Causal Net

Augmented
Causal Net

Index

Data Cube

Figure 4.1: Positioning of Chapter 4 with respect to the multidimensional process discovery approach.

86 Chapter 4. Process Similarity

Figure 4.1 positions this chapter with respect to the multidimensional process dis-
covery approach. In the next sections, we firstly introduce the concept of similarity
in multidimensional process models. Then, similarity functions are introduced to de-
termine similarity between (i) event occurrences, (ii) event occurrence bindings, (iii)
process instances, and (iv) sub-processes in a multidimensional process model.

4.1 Process Similarity in Traditional Process Models

Process similarity can be defined as a measure that quantifies how identical two process
models are. The main approaches for assessing process similarity between – traditional
– process models can be described as follows.

• Similarity based on process elements takes into account nodes and edges in
the process models (but not the control-flow). In [35], several similarity measures
based on node aspects are studied. Four different aspects can be considered in
the similarity assessment of process elements:

– The syntactic aspect compares the designations (labels) of two nodes (or
two node attributes) according to their string-edit distance.1

– The semantic aspect compares the designations (labels) of two nodes (or
two node attributes) according to their meanings.

– The attribute aspect compares the attribute values of two nodes.

– The type aspect compares the types of two nodes.

All these aspects are quantified in a similarity score between 0 (no similarity) and
1 (identical elements). In [85], it is proposed a similarity measure based on the
percentage of activities (nodes) and dependency relations (edges) that appear in
both process models. This similarity measure relies on exact node matchings. In
[56], a similar approach supporting non-exact node matchings (like the similarity
aspects described above) is proposed.

• Similarity based on process structure takes into account the edit distance
between graphs. In [35], a similarity measure based on graph-edit operations
is discussed. Node deletion or insertion, node substitution, and edge deletion or
insertion are the graph-edit operations considered in this approach. Eventually,
other graph-edit operations may also be considered [45]. Furthermore, this ap-
proach may be combined with other similarity metrics (e.g., combining string-
and graph-edit distances).

• Similarity based on process behavior takes into account the dependency
graphs (including the splits and joins constructs) of the process models. In [129],
the process behavior of two process models are compared by analyzing the causal
dependencies in their dependency graphs. If two causal dependencies share spe-
cific characteristics then the process behavior represented by the dependencies is
considered similar. In [35], a similarity measure based on causal footprints (i.e.,
the input and output relationships of activities) is introduced. In this approach

1The edit distance between two objects quantifies the number of atomic operations necessary to
transform one object into the other. For instance, the Levenshtein distance, a string-edit distance
metric, consists of the minimum number of insertion, deletion, and substitution operations (on single
characters) to transform one string into the other.

4.2. Process Similarity in Multidimensional Process Models 87

the behavioral similarity of two process models is determined by computing their
distance in a vector space constructed from their causal footprints.

• Similarity based on process instances takes into account the sequences of
process events described in the models. These sequences of process events can
be either generated from a process model by inference or simulation, or obtained
from actual process executions. In [42], it is presented a similarity measure
based on the longest common subsequence of process events in process instances
inferred from the models in comparison. In [5], frequent process instances from
actual process executions are used to calculate the similarity of process models.

For further details about business process similarity measures see [16, 35].

4.2 Process Similarity in Multidimensional Process
Models

In this section, we present an approach to calculate similarity in multidimensional
process models. Rather than comparing two process models describing different process
perspectives, we exclusively focus on the comparison of sub-processes in a process
model. This means that, since the process elements are characterized by the same
dimensions, the comparison of sub-processes does not rely on any of the syntactic,
semantic, attribute, and type aspects identified in the last section, but on the direct
comparison of the dimension values that describe the process elements.

In multidimensional process models, nodes represent event occurrences, which are
characterized by a set of dimension values. Since attribute values can be explicitly
represented in nodes, it is not necessary to take the attribute aspect into account for
assessing the similarity between event occurrences. Additionally, since there is the
assumption that dimensions and dimension values are unambiguous, the similarity
between nodes can rely on exact matchings of dimension values (instead of non-exact
matchings based on syntax and semantics). Finally, since nodes in multidimensional
process models are all of the same type, the type aspect is also not relevant to event
occurrence similarity. In Subsection 4.2.1, we define a similarity metric to compare
event occurrences. Basically, this metric consists of the weighted average of matched
dimension values.

In multidimensional process models, edges represent dependency relations between
event occurrences. Like event occurrences, dependency relations are also characterized
by a set of dimension values. Therefore, computing similarity between edges of a
multidimensional process model can follow a similar strategy as in computing similarity
between nodes. A similarity metric to compare dependency relations is defined in
Subsection 4.2.2.

Rather than structure, we are interested in assessing the process similarity by com-
paring process behavior. To do so, we introduce a number of behavioral-based sim-
ilarity metrics to compare elements of a multidimensional process model as well as
sub-processes of it. Note that these metrics are based on similarity metrics for tradi-
tional models described in [16]. The mC-net as depicted in Figure 4.2 is used as running
example to illustrate the similarity computation in a multidimensional process model.
In this example, it is intended to explain iteratively how the similarity between the
sub-processes α and β in the mC-net can be computed. The event occurrence bindings

88 Chapter 4. Process Similarity

of every event occurrence of the mC-net are provided in Table 4.1. Details about this
calculation process are provided in the next subsections.

A

α

G

α

D

α

B

α

C

α

E

α

F

α

A

β

G

β

D

β

B

β

C

β

E

β

F

β

Figure 4.2: A three-dimensional process model.

4.2.1 Similarity between Event Occurrences

Comparing event occurrences basically consists of matching the dimension values that
characterize the different occurrences. The values that cannot be matched define
the differences between the event occurrences. Remark that a matching focuses al-
ways on values from the same dimension. For instance, the event occurrences E =
{D1:X,D2:Y } and E′ = {D1:Y,D2:X} (D1 and D2 are dimensions sharing the same
domain: {X,Y }) do not have any dimension value in common once that X 6= Y for
D1, and Y 6= X for D2.

By counting the matched values, it is possible to quantify the similarity between
event occurrences. Basically, this measure consists of the weighted ratio of matched
values to the number of dimensions.

Definition 4.1 (Event Occurrences Similarity) Let an event occurrence X of an
n-dimensional process model be defined as a set of dimension values {D1:x1, ..., Dn:xn}.
The similarity of two event occurrences A and B (from the same model) can be defined
as follows.

corr(A,B) =

{
1 if n = 0∑

D:a∈A,D:b∈B equals(D:a,D:b)∑
D:a∈A card(D) otherwise

(4.1)

equals(D : x,D : y) =

{
card(D) if x = y

0 otherwise
(4.2)

Remark that card(D) ∈ N represents the cardinality of the dimension D (i.e., the
number of dimension values in D). In this approach there is the assumption that two
distinct dimension values have no similarity relation to each other.

For the similarity assessment, dimensions with many values (i.e., higher cardinality)
are considered to be more relevant than low-cardinality dimensions. The rationale
behind this consideration can be demonstrated by the following example. Taking the

4.2. Process Similarity in Multidimensional Process Models 89

ID Inputs Outputs

B
α

C
α

a1 7→ • •
a2 7→ • •

(a) Bindings of A
α

.

ID Inputs Outputs

B
β

a3 7→ •
a4 7→ •

(b) Bindings of A
β

.

ID Inputs Outputs

A
α

D
α

b1 • 7→ •
b2 • 7→ •

(c) Bindings of B
α

.

ID Inputs Outputs

A
β

C
β

b3 • 7→ •
b4 • 7→ •

(d) Bindings of B
β

.

ID Inputs Outputs

A
α

D
α

c1 • 7→ •
c2 • 7→ •

(e) Bindings of C
α

.

ID Inputs Outputs

B
β

D
β

c3 • 7→ •
c4 • 7→ •

(f) Bindings of C
β

.

ID Inputs Outputs

B
α

C
α

E
α

F
α

d1 • • 7→ •
d2 • • 7→ •
d3 • • 7→ •

(g) Bindings of D
α

.

ID Inputs Outputs

C
β

E
β

F
β

d4 • 7→ •
d5 • 7→ •
d6 • 7→ •
d7 • 7→ •

(h) Bindings of D
β

.

ID Inputs Outputs

D
α

G
α

e1 • 7→ •
e2 • 7→ •

(i) Bindings of E
α

.

ID Inputs Outputs

D
β

G
β

e3 • 7→ •
e4 • 7→ •

(j) Bindings of E
β

.

ID Inputs Outputs

D
α

G
α

f1 • 7→ •

(k) Bindings of F
α

.

ID Inputs Outputs

D
β

G
β

f2 • 7→ •
f3 • 7→ •

(l) Bindings of F
β

.

ID Inputs Outputs

E
α

F
α

g1 • 7→
g2 • 7→
g3 • 7→

(m) Bindings of G
α

.

ID Inputs Outputs

E
β

F
β

g4 • 7→
g5 • 7→
g6 • 7→
g7 • 7→

(n) Bindings of G
β

.

Table 4.1: The event occurrence bindings of Figure 4.2’s mC-Net.

90 Chapter 4. Process Similarity

multidimensional process model in Figure 4.2 into account, let us calculate the event
occurrences similarity between B

α = {D1:B,D2:α} and B
β = {D1:B,D2:β}. Applying

the definition provided above, the similarity value is:

corr

(
B

α
,
B

β

)
= corr({D1 : B,D2 : α}, {D1 : B,D2 : β})

=
equals(D1 : B,D1 : B) + equals(D2 : α,D2 : β)

card(D1) + card(D2)

=
7 + 0

7 + 2
= 0.78,

where card(D1) = |{A,B,C,D,E, F,G}| = 7 and card(D2) = |{1, 2}| = 2. Similarly,
the similarity value for B

α = {D1:B,D2:α} and C
α = {D1:C,D2:α} is:

corr

(
B

α
,
C

α

)
=

0 + 2

7 + 2
= 0.22.

In both cases, one out of two dimension values of B
α has a match in B

β and C
α . With-

out considering the dimensions cardinality as a weight (i.e., the cardinality values
are replaced by 1), both cases would have the same similarity value (corr

(
B
α ,

B
β

)
=

corr
(
B
α ,

C
α

)
= 0.5). This would mean that D1 and D2 were treated equally even

though the likelihoods of their values appearing in an event occurrence are uneven.
The dimensions cardinality are used to overcome this issue. The idea is to adjust the
similarity value by giving more importance to the high-cardinality dimensions in order
to prioritize the less likely matchings. Therefore, since the cardinality of D1 is higher
than the cardinality of D2, corr

(
B
α ,

B
β

)
is greater than corr

(
B
α ,

C
α

)
.

Remark that the presented approach relies on the dimensions cardinality because
this information can always be computed from the process data. If there is a function
f(D) ∈ R that determines the importance (weight) of the dimension D then, by replac-
ing card(D) by f(D) in Definition 4.1, a different notion of importance of dimensions
may be used instead of the dimensions cardinality.

4.2.2 Similarity between Event Occurrence Bindings

The comparison of event occurrence bindings focuses on three aspects: (i) the event
occurrences to which the bindings refer, (ii) the bindings’ activated inputs, and (iii)
the bindings’ activated outputs. The similarity between event occurrence bindings is
defined by the combination of the similarities of these aspects.

Definition 4.2 (Event Occurrence Bindings Similarity) Let a event occurrence
binding MX of an event occurrence X be defined as the tuple (I,O)X , where I =
{i1, ..., iη} and O = {o1, ..., oµ} are the activated inputs and outputs of X. Every acti-
vated input ix (x ∈ [1, η]) or output ox′ (x′ ∈ [1, µ]) is defined by the tuple (CE , CW),
where CE = {v1, ..., vn} and CW = {v′1, ..., v′m} are the event occurrence and workflow
constraints. The similarity of two event occurrence bindings AX = (IA, OA)X and
BY = (IB , OB)Y can be defined as follows.

simB(AX , BY) =
corr(X,Y) + simIO(IA, IB) + simIO(OA, OB)

3
, (4.3)

4.2. Process Similarity in Multidimensional Process Models 91

where corr(X,Y) determines the similarity of the event occurrences X and Y (cf. Def-
inition 4.1).

simIO(S, S′) =

1 if S = ∅ ∧ S′ = ∅

1/(|S|+ |S′|)×
(∑

s∈S maxs′∈S′
(
simAV (s, s′)

)
+
∑
s′∈S′ maxs∈S

(
simAV (s′, s)

))
if S 6= ∅ ∧ S′ 6= ∅

0 otherwise
(4.4)

simAV

(
(CE1 , C

W
1), (CE2 , C

W
2)
)

=
corr(CE1 , C

E
2) + corr(CW1 , CW2)

2
(4.5)

The following example is used to explain how the similarity between event occur-
rence bindings is calculated. Let us consider the following event occurrence bindings
from the multidimensional process model in Figure 4.2:

AX = ({{B,α}{•}, {C,α}{•}}, {{E,α}{•}}){D,α}, and

BY = ({{C, β}{•}}, {{E, β}{•}}){D,β}.
Applying the definition provided above, the similarity between AX and BY is:

simB(AX , BY) =
corr(X,Y) + simIO(IA, IB) + simIO(OA, OB)

3

= 1/3×
(
corr({D,α}, {D,β})

+ simIO({{B,α}{•}, {C,α}{•}}, {{C, β}{•}})
+ simIO({{E,α}{•}}, {{E, β}{•}})

)
= 1/3×

(7 + 0

7 + 2
+

(0.5 + 0.89) + 0.89

2 + 1
+

0.89 + 0.89

1 + 1

)
= 1/3× (0.78 + 0.76 + 0.89) = 0.81

As mentioned before, the event occurrence bindings similarity consists of the av-
erage of the similarity values of (i) the event occurrences to which the bindings re-
fer (i.e., X = {D,α} and Y = {D,β}), (ii) the bindings’ activated inputs (i.e.,
IA = {{B,α}{•}, {C,α}{•}} and IB = {{C, β}{•}}), and (iii) the bindings’ activated
outputs (i.e., IA = {{E,α}{•}} and IB = {{E, β}{•}}). The computation of the sim-
ilarity value of the event occurrences X and Y is explained in Section 4.2.1. The
similarity value of the bindings’ activated inputs consists of the ratio of the summation
of the best inputs matching value to the total number of inputs (in both bindings).
The input matching value can be defined as the average of similarity values of the in-
puts’ constraints (event occurrences and workflow). Therefore, for instance, the inputs
match value of 0.5 is obtained from:

simAV

(
({B,α}, {•}), ({C, β}, {•})

)
=
corr({B,α}, {C, β}) + corr({•}, {•})

2

= 1/2×
(0 + 0

7 + 2
+

2

2

)
= 1/2× 1 = 0.5

92 Chapter 4. Process Similarity

Note that the function corr(X,Y) can be used to determine the similarity between
either event occurrences or workflow constraints. The similarity value of the bindings’
activated outputs is analogous to that for activated inputs.

4.2.3 Similarity between Process Instances

The similarity between process instances is based on sequences of event occurrence
bindings. Since the event occurrence bindings implicitly describe the process behavior,
the process instances similarity can be achieved through the comparison of multisets
of event occurrence bindings.

Definition 4.3 (Process Instances Similarity) Let a process instance T of a mul-
tidimensional process model be a finite sequence of event occurrences 〈E1E2...En〉 that
can be translated into the sequence of event occurrence bindings T ′ = 〈ME1

1 ME2
2 ...MEn

n 〉
(cf. Subsection 3.2.2). The similarity of two process instances T1 and T2 can be defined
as follows.

simPI(T1, T2) =

1 if |T ′1| = 0 ∧ |T ′2| = 0

min(|T ′
1|,|T

′
2|)

max(|T ′
1|,|T ′

2|)
× simID

(
id(T ′

1),id(T
′
2)
)

|T ′
1|+|T ′

2|
if |T ′1| 6= 0 ∧ |T ′2| 6= 0

0 otherwise

,

(4.6)
where |T ′| represents the number of elements in the sequence of event occurrence bind-
ings T ′. The function id(T ′) is defined in Definition 6.7.

simID(X,Y) =
∑
x∈X

max
y∈Y

(
simBME(x, y)

)
+
∑
y∈Y

max
x∈X

(
simBME(y, x)

)
(4.7)

simBME

(
(aα), (bβ)

)
=
min(α, β)

max(α, β)
× simB(a, b), (4.8)

where simB(a, b) determines the similarity of the event occurrence bindings a and b
(cf. Definition 4.2).

The following example is used to explain how to calculate the similarity between
process instances. Let us consider the following process instances from the multidimen-
sional process model in Figure 4.2: T1 = 〈Aα

C
α
B
α
D
α
E
α
G
α 〉
• and T2 = 〈Aβ

B
β
C
β
D
β
E
β
G
β 〉
•. Note

that these process instances can be converted first into the sequences of event occur-
rence bindings T ′1 = 〈a2c2b2d2e2g2〉 and T ′2 = 〈a4b4c4d5e4g5〉, and then into multisets
of event occurrence bindings as described in Definition 6.7. Applying the definition
provided above, the similarity between T1 and T2 is:

4.2. Process Similarity in Multidimensional Process Models 93

simPI(T1, T2) =
min(|T ′1|, |T ′2|)
max(|T ′1|, |T ′2|)

×
simID

(
id(T ′1), id(T ′2)

)
|T ′1|+ |T ′2|

=
min(6, 6)

max(6, 6)
× 1

6 + 6
× simID([a2, b2, c2, d2, e2, g2],

[a4, b4, c4, d5, e4, g5])

= 6/6× 1/12×
(
(0.85 + 0.72 + 0.72 + 0.81 + 0.85 + 0.89)

+ (0.85 + 0.72 + 0.72 + 0.81 + 0.85 + 0.89)
)

= 0.81

Basically, the process instances similarity consists of the ratio of the summation
of the best bindings matching value to the total number of bindings (in both process
instances). The bindings matching value can be defined as the bindings similarity. Both
similarity and matching values are adjusted to the proportion of their lengths (process
instances) and frequencies (event occurrence bindings). Therefore, for instance, the
event occurrence bindings match values of 0.81 are obtained from:

simBME

(
(d12), (d15)

)
=
min(1, 1)

max(1, 1)
× simB(d2, d5)

= 1× simB

(
({{B,α}{•}, {C,α}{•}}, {{E,α}{•}}){D,α},

({{C, β}{•}}, {{E, β}{•}}){D,β}
)

= 1/3×
(
corr({D,α}, {D,β})

+ simIO({B,α}{•}, {C,α}{•}}, {C, β}{•}})
+ simIO({{E,α}{•}, {{E, β}{•})

)
=

1

3
×
(7 + 0

7 + 2
+

(0.5 + 0.89) + 0.89

2 + 1
+

0.89 + 0.89

1 + 1

)
= 0.81 = simBME

(
(d15), (d12)

)
4.2.4 Similarity between Sub-Processes

Like for any process instance, any sub-process of a multidimensional process model
can be univocally described by a multiset of event occurrence bindings. Therefore,
the similarity between sub-processes can be calculated using the same approach as
for process instances. The only difference is that, instead of two sequences of event
occurrence bindings, Equation 4.6 should get two multisets of event occurrence bindings
as arguments.

Definition 4.4 (Process Instances Similarity) Let a sub-process S of a multidi-
mensional process model be a multiset of event occurrence bindings [aα1

1 , ..., aαn
n] (cf.

Definition 6.7). The similarity of two sub-processes S1 and S2 can be defined as follows.

simSP (S1, S2) =

1 if |S1| = 0 ∧ |S2| = 0

min(|S1|,|S2|)
max(|S1|,|S2|) ×

simID(S1,S2)
|S1|+|S2| if |S1| 6= 0 ∧ |S2| 6= 0

0 otherwise

, (4.9)

94 Chapter 4. Process Similarity

where |S| represents the number of elements in the multiset of event occurrence bindings
S. The function simID is defined in Definition 4.3.

4.3 Summary

The similarity aspect of multidimensional process models was discussed in this chapter.
Similarity in multidimensional process models can be calculated by comparing event
occurrences (cf. Subsection 4.2.1), event occurrence bindings (cf. Subsection 4.2.2),
sequences of event occurrence bindings (cf. Subsection 4.2.3), or multisets of event
occurrence bindings (cf. Subsection 4.2.4). All similarity functions presented in this
chapter are implemented in an object that can be executed in ProM [123, 125].

Addressing research question q2, the methodology presented in this chapter provides
the link between traditional and multidimensional process models in terms of similarity
assessment.

Chapter 5

Process Analysis

In this chapter, we introduce a framework in which the dimensionality of process data
(i.e., the different attributes) can be exploited for process discovery and analysis. Com-
bining concepts from OLAP and process mining, it is possible to organize the process
data in such a way that the process analysis can be performed taking into account
multiple dimensions. This process consists of

i. retrieving the process data from the sources (e.g., an event log),

ii. deriving relevant information for analysis from the data,

iii. computing summaries for the different dimensions of the business process in anal-
ysis, and

iv. applying process discovery techniques on the summarized information.

Note that the summarized information is computed for multiples business perspectives.
Each perspective is characterized by a distinct set of dimensions, and consists of a data
partition on which reporting, data mining, and process mining techniques may be
applied. In this chapter, we discuss the application of the Multidimensional Heuristics
Miner (i.e., a process discovery technique introduced in Subsection 3.3.2) on these
process perspectives. The exploitation and analysis of the multidimensional process
models that can be discovered from the different process perspectives are the focus of
this chapter.

Figure 5.1 positions this chapter with respect to the multidimensional process dis-
covery approach. In the next sections, we firstly characterize the multidimensional
data model as well as some OLAP concepts. Then, we introduce the Event Cube,
a multidimensional data structure where the information about the different process
perspectives is summarized and prepared for process discovery and analysis. Next, we
describe how the information of an Event Cube can be exploited and analyzed. Finally,
we discuss the challenges and issues related to the generation and exploitation of Event
Cubes.

96 Chapter 5. Process Analysis

Multidimensional
Heuristics Miner

Process
Data

Flexible
Heuristics Miner

Augmented
Causal Net

Multidimensional
Causal Net

10101010101010
10101011101010
11101010101010
1010101010

Process
Patterns

Process Pattern
Miners

ETL Cube
Processor

01

Data Cube

Index

Figure 5.1: Positioning of Chapter 5 with respect to the multidimensional process discovery approach.

5.1 Multidimensional Data Model

Traditionally in OLAP, the multidimensional model represents data by means of a
multidimensional fact-based structure that supports complex queries in real time. A
fact describes an occurrence of a business operation (e.g., sale or purchase), which
can be quantified by one or more measures of interest (e.g., the total amount of the
sale or purchase) and characterized by multiple dimensions of analysis (e.g., time,
location, product and customer). Typically numerical, measures can be aggregated
for different levels of abstraction. Each dimension consists of a set of discrete values
called dimension values or members. Eventually, there may be dimension values that
represent different concept levels. For these cases, a hierarchy defines the order the
different dimension values should be exploited, from a lower to a higher concept level.
The typical example of a hierarchy using the time-based values day, month, and year
is “day < month < year”.

The multidimensional data model is composed by two main components: fact tables
and dimension tables. Fact tables are where the facts are recorded, i.e., the measures
of interest and the corresponding dimension references. The conjunction of the di-
mension references forms the fact ID (primary key), which identifies univocally the
fact. Dimension tables are where the information about the dimensions is kept. The
pair consisting of a fact table and a non-empty set of dimension tables forms the star
schema. Eventually, in order to reduce the data storage (to the expense of the system’s
performance degradation), a normalization operation may be applied on a dimensional
table. This means that one or more linked tables are created to hold the dimension’s
information. A schema with one or more normalized dimensions is called snowflake.
Additionally, it is called constellation schema to the set of two or more schemas (star or
snowflake) that share at least one dimension table. For further details about schemas
for multidimensional databases see [50, 65].

The multidimensional data model can be implemented following three different
approaches [50]. Known as multidimensional OLAP (MOLAP), the first approach relies
on multidimensional data structures called data cubes, which maximize the system’s

5.1. Multidimensional Data Model 97

performance and facilitate the calculation of complex measures. The second approach,
the relational OLAP (ROLAP), relies on a relational database, which theoretically
solve the data storage issues. Basically, the advantages of the first approach are the
disadvantages of the second. A third approach, the hybrid OLAP (HOLAP), can be
eventually considered if both MOLAP and ROLAP can be combined. In this case, data
that are more likely to be retrieved are maintained in a data cube, while the others are
stored in a relational database.

Data Cube

Also designated as a hypercube, a data cube provides a multidimensional view of data
through the materialization of specific measures for every combination of the cube’s
dimension values. Each combination defines a different fact and is represented by a
multidimensional cell. A cell consists of a pair with a set of dimension values that
identifies univocally the cell, and a set of aggregated values representing the measures.
The set of cells that share the same dimensions forms a cuboid, which represents a per-
spective. The complete set of cuboids forms the data cube through a lattice of cuboids.
Figure 5.2 depicts an example of a lattice of cuboids with three dimensions, which
results from the combination of dimensions of a specific base table (e.g., Table 5.1).

Dimensions

Activity Resource Product Cost

a1 r2 p3 10
a3 r2 p1 15
a3 r1 p1 12
a2 r3 p2 15
a1 r3 p2 11

Table 5.1: Example of a base table with three dimensions and one measure.

0-D cuboid

1-D cuboids

2-D cuboids

3-D cuboid

(Activity)

(Activity, Resource)

(Product)

(Resource, Product)

(Activity, Resource, Product)

()

(Resource)

(Activity, Product)

Figure 5.2: Lattice of cuboids based on the base table.

As depicted in Figure 5.2, every cuboid has a different set of dimensions. The size
of this set defines the cuboid dimensionality (e.g., a 2-D or two-dimensional cuboid

98 Chapter 5. Process Analysis

is defined by two dimensions). The cuboid’s cells are defined by dimension values
according to the cuboid’s dimensions. For instance, the top cell () belongs to the
0-D cuboid and represents all the facts in the base table (i.e., no dimension value
is used as constraint). On the other hand, cell (r3, p2) belongs to the 2-D cuboid
(Resource,Product). This cell refers to all the facts in which Resource = r3 and
Product = p2 (i.e., the last two rows of the base table). Remark that the 5 entries of
the base table (Table 5.1) result in 28 cells distributed over 8 cuboids (Figure 5.3).

A cell is materialized with respect to one of its measures when all the values of
the cell’s representative facts – for that measure – are aggregated according a given
aggregation function. For instance, using the average as an aggregation function on the
measure Cost, the aggregation value of the top cell () is avg(10, 15, 12, 15, 11) = 12.6.
Additionally, it is considered that a cuboid is materialized when all of its cells are
materialized. The same principle applies to the data cube and its cuboids. Figure 5.3
shows the data cube after materialization of the measure Cost, using the average as
the aggregation function.

()

12.6

(a1)

10.5

(a2)

15.0

(a3)

13.5

(a2,r3,p2)

15.0

(r1)

12.0

(r2)

12.5

(r3)

13.0

(a2,p2)

15.0

(a3,p1)

13.5

(a1,r3,p2)

11.0

(a1,r2,p3)

10.0

(a3,r1,p1)

12.0

(a3,r2,p1)

15.0

(a1,p2)

11.0

(a1,p3)

10.0

(p1)

13.5

(p2)

13.0

(p3)

10.0

(a2,r3)

15.0

(a3,r1)

12.0

(a1,r2)

10.0

(a1,r3)

11.0

(a3,r2)

15.0

(r2,p3)

10.0

(r3,p2)

13.0

(r1,p1)

12.0

(r2,p1)

15.0

(Activity)

()

(Resource) (Product)

(Activity,Resource,Product)

(Activity,Product) (Resource,Product)(Activity,Resource)

Figure 5.3: The materialized data cube.

The complexity of the data cube materialization depends on the characteristics
of the aggregation functions. Theoretically, all kinds of operations can be used in
the materialization process. However, the number of cells in the data cubes may
constrain the usage of complex functions. Even using simple aggregation functions
the materialization process can be computationally demanding. Hence, the usage of
complex functions may lead to impractical materialization times. One of the solutions
for this issue is the application of efficient materialization strategies. By selecting
the cells to be materialized, it is possible to reduce the computational effort of the
materialization process. This means that the non-selected cells need eventually to be
materialized on-the-fly at the time the cell is accessed, while the others are ready to
be retrieved. For an overview of materialization strategies see [50].

5.2. Event Cube 99

The analysis of a data cube consists of the exploitation of its cuboids. Moving
through the lattice of cuboids, the analyst is able to adjust the analysis perspective
by selecting the cube dimensions. There are five typical OLAP operators that can be
used for querying multidimensional data.

Drill-Down descends one level in the lattice of cuboids by adding one dimension (or
hierarchy level) to the current perspective (i.e., the level of abstraction decreases).
For example, in the data cube of Figure 5.3, changing the perspective by moving
from cuboid (Activity) to cuboid (Activity,Resource).

Roll-Up ascends one level in the lattice of cuboids by removing one dimension (or
hierarchy level) from the current perspective (i.e., the level of abstraction in-
creases). For example, in the data cube of Figure 5.3, changing the perspective
by moving from cuboid (Activity,Resource) to cuboid (Resource).

Slice and Dice restricts the perspective by using filtering conditions. For example,
in the cuboid (Activity,Product) of the data cube of Figure 5.3, considering ex-
clusively the cells characterized by Product = p2.

Pivot permutes the analysis’ axes. The perspective remains the same but the infor-
mation is given in a different layout.

Top-k Selection restricts the perspective to the top-k cells of a given measure. For
example, in Figure 5.3, (r2, p1), (r3, p2), and (r1, p1) are the top-3 cells of cuboid
(Resource,Product).

5.2 Event Cube

An Event Cube is a multidimensional data structure that can hold information about
different aspects (dimensions) of a business process. Like the data cubes of OLAP
systems, an Event Cube can be used to improve the quality of the business analysis by
providing immediate results under different levels of abstraction. Materializing busi-
ness measures for all combinations of dimensions, it is possible to exploit on-the-fly the
different aspects of business processes, by either analyzing directly the materialized
information or applying process mining techniques on the Event Cube. Defining the
process mining measurements as Event Cube measures (e.g., the necessary measure-
ments to derive a process model), the traditional process mining applications such as
process discovery can be performed according to multiple business perspectives.

5.2.1 Information Retrieval on Process Data

One of the challenges of building an Event Cube is the information retrieval on pro-
cess data (i.e., searching data efficiently for computing the Event Cube information).
Traditional process mining techniques search the event logs sequentially, maintaining
the information about the business process in memory. So far, this strategy has proven
to be effective once that the current information needs are almost static. However,
multidimensional approaches have dynamic information needs. Searching the process
data for specific dimension values cannot be done sequentially anymore due to effi-
ciency issues. If filtering conditions are added to the search querying this observation
becomes even more evident. The solution for this issue can be found in the information
retrieval (IR) domain. Commonly used in document retrieval systems, inverted indices

100 Chapter 5. Process Analysis

are able to index multidimensional datasets in such a way that any dimension value
can be accessed directly [145]. Basically, these indices rely on the locations where the
dimension values appear in the dataset.

By applying the inverted indexing concept to process data, it is possible to retrieve
all the different aspects of business processes. As stated in Section 3.1, a process in-
stance is uniquely identified by the value PID, which is the unique key of the instance.
Similarly, a process event is uniquely identified by the pair of values (PID,EID), where
PID is the unique key of the process instance in which the process event was executed,
and EID is the position of the process event in that process instance. Therefore, con-
sidering these identifiers, it is possible to index the characterizing attributes of process
instances and events. The retrieval of these attributes depends on simple intersection
operations. The intersection of sets of pair of identifiers (PID, EID) determines the
locations of process events that are characterized by specific dimension values. The
intersection of sets of PIDs (first element of the pair of identifiers) can be used as well
to directly identify the process instances in which some events appear.

The retrieval of process events and process instances can be described as follows.

Retrieval of process events and process instances: Let W be an event log, I an
inverted index on W , and C the constraint that characterizes the process events
to be retrieved. For each constraint value D:d ∈ C, tidE(D:d) denotes the set
of process event identifiers (i.e., pairs of values (PID,EID)) of the process events
that satisfy the dimension value d of the dimension D. The corresponding set of
process instance identifiers (tidI(D:d)) can be derived from tidE(D:d) by simply
considering the first value (PID) of the process event identifier. The intersec-
tion of all tidE(D:d) sets of C (i.e., tidE(C) =

⋂
(D:d)∈C [tidE(D:d)]) determines

the identifiers of the process events characterized by C. Based on the iden-
tifiers, the process event retrieval can be performed by directly accessing the
process events in the event log. The intersection of all tidI(D:d) sets of C (i.e.,
tidI(C) =

⋂
(D:d)∈C [tidI(D:d)]) determines the identifiers of the process instances

characterized by C. Based on the identifiers, the process instance retrieval can
be performed by directly accessing the process instances in the event log.

The repair process of Figure 5.4 is introduced to illustrate the retrieval of process
events. The goal of this process is to fix malfunctioning products. There may be more
than one repair attempt but not unsuccessful process cases (i.e., the end of a process
instance implies that the product is fixed). Two aspects of this process are registered in
an event log: the performed activities (dimension Activity) and information produced
in one of the activities about the problem type (dimension Problem Type).

Register ArchiveRepairAnalyze Test

Figure 5.4: An example of a repair process.

Figure 5.5 describes four process instances of the repair process of Figure 5.4. Let
us assume that these are the first four process instances in the event log. Remark that
the problem type (information produced in activity Analyze) is identified in brackets.
Although this information is given as an event-based attribute of activity Analyze),
the problem type could also be used to characterize other activities in the process

5.2. Event Cube 101

instance. Event-based attributes that characterize not only the process event where
the attribute is described but also other process events in the same process instance
(e.g., dimension Problem Type) are designated as false event-based attributes.

Register ArchiveRepair
Analyze

(Type I)
Test

Register Repair
Analyze

(Type II)
Test Repair

Analyze

(Type I)
Test Archive

Register Repair
Analyze

(Type II)
Test Repair

Analyze

(Type II)
Test Archive

Register ArchiveRepair
Analyze

(Type II)
Test

Figure 5.5: Four process instances of the repair process of Figure 5.4.

Table 5.2 presents the inverted index of the process instances in Figure 5.5. Remark
that the PID is defined by the process instance’s position in the figure (from top to
bottom). Table 5.2a describes the event locations of the different activities in the repair
process. Similarly, Table 5.2b describes in which process events the different problem
types are known.

Activity Event Locations

Register {(1, 1), (2, 1), (3, 1), (4, 1)}
Analyze {(1, 2), (2, 2), (2, 5), (3, 2), (3, 5), (4, 2)}
Repair {(1, 3), (2, 3), (2, 6), (3, 3), (3, 6), (4, 3)}
Test {(1, 4), (2, 4), (2, 7), (3, 4), (3, 7), (4, 4)}

Archive {(1, 5), (2, 8), (3, 8), (4, 5)}

(a) Index of the dimension Activity.

Problem Type Event Locations

Type I {(1, 2), (2, 5)}
Type II {(2, 2), (3, 2), (3, 5), (4, 2)}

(b) Index of the dimension Problem Type.

Table 5.2: Inverted index of the process instances in Figure 5.5.

The retrieval of all process events (and process instances) in which an analysis is
performed and the problem type is identified as Type II can be described as follows.
C = {Activity:Analyze, Problem Type:Type II} is the constraint that characterizes
the process events to be retrieved. According to Table 5.2a, the set of identifiers of
the process events that satisfy the dimension value Analyze of the dimension Activity
is tidE(Activity:Analyze) = {(1, 2), (2, 2), (2, 5), (3, 2), (3, 5), (4, 2)}. Analogously, ac-
cording to Table 5.2b, tidE(Problem Type:Type II) = {(2, 2), (3, 2), (3, 5), (4, 2)} is
the set of process event identifiers for the dimension value Type II of the dimension
Problem Type. The corresponding sets of process instance identifiers can be derived
from the sets of process instance identifiers by simply considering the first value (PID)
of the process event identifier. Therefore, tidI(Activity:Analyze) = {1, 2, 3, 4} and

102 Chapter 5. Process Analysis

tidI(Problem Type:Type II) = {2, 3, 4}. The exact locations where process events
characterized by both activity Analyze and problem type Type II appear in the event
log are given by:

tidE(C) = {(1, 2), (2, 2), (2, 5), (3, 2), (3, 5), (4, 2)} ∩ {(2, 2), (3, 2), (3, 5), (4, 2)}
= {(2, 2), (3, 2), (3, 5), (4, 2)}

tidI(C) = {1, 2, 3, 4} ∩ {2, 3, 4} = {2, 3, 4}

The value (2, 2) of tidE(C) denotes that the second process event of the second process
instance is both activity Analyze and problem type Type II. Analogously, tidI(C)
indicates that process events characterized by both activity Analyze and problem type
Type II appear in three process instances: the second, the third, and the fourth.

Event-Based Attributes

One of the issues of retrieving information on process data is that the event-based at-
tributes used to identify instance information, the so-called false event-based attributes,
are not handled properly. This often happens because the information is not known un-
til the execution of a specific activity in the process. Hence, instead of being associated
to process instances, the information is given as a specific aspect of a process event.
A good example is the repair process of Figure 5.4 in which the problem type is only
known after some analysis (i.e., in the activity Analyze). Although the information is
given as a characteristic of the activity Analyze, the problem type can be extended to
other activities of the process instance.

Table 5.2b describes in which process events the different problem types are known.
This indexing would be correct if the problem type information was a true event-based
attribute. However, since the problem type is a false event-based attribute, the inverted
index on this kind of attribute needs to be built in a different way. Instead of describing
in which process events a specific attribute appears, the index should identify which
process instances the attribute is associated to. In other words, all process events
of the process instance where the attribute appears must be characterized by that
information. This can be achieved by normalizing the index of the false event-based
attribute. This normalization consists of changing, in the index, the EID values to the
value ‘∗’. This wildcard value represents all the positions of a process instance. For
cases where a false event-based attribute is defined multiple times in the same process
instance, a new attribute value is created by aggregating all the available information
in such a way that no information is lost and the results consistency is preserved. For
example, both third and fourth process instances of Figure 5.5 are characterized by
problems of type II. However, these process instances are distinct once that in one
of the instances only one repair is performed, while in the other there are two repair
activities. Applying a summarization function (e.g., the average throughput time) on
both process instances (and also on the second process instance of Figure 5.5 once
that it is also partially characterized by problems of type II) would lead to results
inconsistency. This issue is even more evident if the first and second process instances
of Figure 5.5 are taken into account as being characterized by problems of type I.
Table 5.3 shows the result of this normalization on the index of Table 5.2b.

Let us use the following example to illustrate the false event-based attribute issue.
The retrieval of all process events in which a repair is performed on a problem of type

5.2. Event Cube 103

Problem Type Event Locations

Type I {(1, ∗)}
Type II > Type I {(2, ∗)}
Type II > Type II {(3, ∗)}

Type II {(4, ∗)}
Table 5.3: Inverted index of the process instances in Figure 5.5.

I (i.e., event occurrence {Activity:Repair, Problem Type:Type I}) can be described
as follows. Considering the problem type information as a true event-based attribute
issue, the location of the process events are defined by the intersection of identifiers from
tables 5.2a and 5.2b. The result is that no process event is characterized by these two
attributes (Activity and Problem Type), i.e., {(1, 3), (2, 3), (2, 6), (3, 3), (3, 6), (4, 3)} ∩
{(1, 2), (2, 5)} = ∅. Considering the problem type information as a false event-based
attribute issue, the location of the process events are defined by the intersection of
identifiers from tables 5.2a and 5.3. This time the third process event of the first process
instance is given as a result once that {(1, 3), (2, 3), (2, 6), (3, 3), (3, 6), (4, 3)}∩{(1, ∗)} =
{(1, 3)}. Remark that, although the second process instance contains a repair activity
on a problem of type I (i.e., the process event with the identifier (2, 6)), this process
event is not included in the results because there is more than one problem type in the
same instance.

5.2.2 Deriving Process Information

Two types of process information can be represented in an Event Cube:

• Characterizing information describes a specific characteristic of a process
instance or a process event. For example, the activity label describes which
activity was executed in a specific process event.

• Measuring information quantifies a specific measurement of a process instance
or a process event. For example, the frequency of a process event quantifies how
many times the event occurred in the process execution.

For both types, the process information needs to be retrieved from the data sources
and, eventually, transformed to meet specific requirements. The retrieval operation
is described in the previous subsection. The transformation operation consists of any
sort of function that converts process information with low analytic potential into
information that can enrich the process analysis.

Numerical Information

Numerical information is a natural candidate for being analyzed as measuring infor-
mation. Nonetheless, there are situations where the numerical information needs to
be prepared for analysis. For example, sometimes it is convenient to remove outliers
from the dataset, which can be achieved by applying some outlier detection method
[17]. Other common numerical transformations are interpolation (and extrapolation)
and normalization.

Interpolation aims at the estimation of missing values in the dataset. For exam-
ple, let us consider the following sequence of numerical values: [0.8, 2.1, 3.4, ?, 4.8, 5.1].

104 Chapter 5. Process Analysis

By applying the linear interpolation method, which in this case basically consists of
estimating the average value of the preceding and following values, it is possible to
estimate that ? = (3.4 + 4.8)/2 = 4.1. Several other interpolation methods can be
found in the literature [82]. Similar to interpolation, extrapolation methods estimate
(forecast) the next values of a sequence. For an overview of extrapolation methods see
[102].

Also known as standardization, normalization aims at the transformation of multi-
ple attributes by converting their different domains into a common domain. This trans-
formation facilitates the comparison of numerical information with different domains.
For example, let us consider the sequences A1, A2, and A3 described in Table 5.4.
These sequences represent time series of data from three sensors of a specific machine.

Attribute Domain Values

A1 [0, 1] 0.59, 0.61, 0.58, 0.57, 0.29, 0.47, ...
A2 [5, 95] 22.1, 18.9, 26.7, 31.9, 85.1, 63.4, ...
A3 [−5, 5] 3.1, 2.5, 1.2, 2.4, −1.0, −0.1, ...

Table 5.4: Example of three numerical attributes with different domains.

Since the domains of A1, A2, and A3 are not the same, the comparison of the
different time series is not straightforward. Three simple normalization methods can
be considered to overcome this issue:

• Standard Score (Z-Score) indicates how many standard deviations a value is
above or below the mean (i.e., v′ = (v − µ)/σ, where µ and σ are the attribute’s
arithmetic mean and standard deviation). For example, by z-score normalization
and assuming the values µ = 0.52 and σ = 0.21, the normalized values of attribute
A1 of Table 5.4 are: 0.33, 0.43, 0.29, 0.24, −1.10, −0.24, etc.

• Min-Max is based on the minimum and maximum values. By replacing each
value v by v′ = (v−min)/(max−min), it is possible to transform the attribute’s
domain [min,max] into [0, 1]. For example, by min-max normalization, the nor-
malized values of attribute A2 of Table 5.4 are: 0.19, 0.15, 0.24, 0.30, 0.89, 0.65,
etc.

• Decimal Scaling is based on the division of the values by 10x (i.e., v′ = v/10x),
where x is the smallest integer for which the absolute maximum value is less than
1 (i.e., |v′| < 1). For example, for attribute A3 of Table 5.4, x = 1 is the smallest
integer for which the absolute maximum value (i.e., | − 5/101| = |5/101| = 0.5)
is less than 1. Hence, by decimal scaling normalization, the normalized values of
A3 are: 0.31, 0.25, 0.12, 0.24, −0.10, −0.01, etc.

There are situations where numerical information is rather characterizing informa-
tion. A good example for this observation is the attribute age, which characterizes the
age of a specific individual or object. Like in many mining techniques, most numerical
attributes cannot be used as characterizing information because of their continuous
nature. The role of the characterizing information is to group the data by similar
characteristics. For example, in control-flow mining, the attribute Activity is used as
characterizing information for grouping the process events by activity. The number of
groups of process events is defined by the number of distinct activity values (i.e., the

5.2. Event Cube 105

cardinality of the attribute Activity). Depending on the attribute’s distinct values,
using a numerical attribute as characterizing information can lead to the generation of
an excessive number of groupings. This means that the representation and analysis of
a numerical attribute can be challenging.

The discretization aims at the transformation of a numerical (continuous) attribute
into a categorical (discrete) one. This is achieved by dividing the range of the at-
tribute into categories (e.g., intervals). By replacing numerical values by categories,
the number of distinct values can be reduced considerably, facilitating thus the at-
tribute analysis. There are two categories of discretization methods: supervised and
unsupervised. On the one hand, supervised discretization methods do not consider only
the numerical values to be discretized but also reference values. Also known as classes,
the reference values can be used to supervise (assist) the distribution of numerical
values across the different categories. For example, the Chi2 method uses statisti-
cal significance tests – on the relationship between a group of numerical values and a
specific class – to optimize the grouping of the numerical values. Other common super-
vised methods such as MDLP and ID3 are based on entropy measures (further details
about entropy are presented in Subsection 6.2.4). On the other hand, unsupervised
discretization methods simply consider the set of numerical values to be discretized.
Basically, this category of discretization method distribute equally the numerical val-
ues across a given number of bins (categories) k. For example, the equal-width method
divides the attribute’s domain into k equal-width intervals, representing each interval
as a bin. Another common binning method is the equal-frequency in which k bins with
equal number of values are created. For an overview of discretization methods see [75].

Time Information

Time information (a timestamp) is typically considered as characterizing information.
Nonetheless, like numerical information, time information is characterized by a contin-
uous nature, which means that some kind of time discretization may be necessary to
reduce the number of time references. By time discretization we mean the division of
timestamps attributes by the existing time categories (e.g., day of week). Therefore,
by applying simple binning-based methods on timestamps, it is possible to transform
the time information into categorical information. An example of time discretization
is described as follows. Let us assume that the original timestamp is 19-06-2012:15.45.
Some possible time categories into which the given timestamp can be transformed are
the following:

• Hour is the hour part of the timestamp. For example, 15 is the hour of 19-06-
2012:15.45.

• Date is the date part of the timestamp. For example, 19-06-2012 is the date of
19-06-2012:15.45.

• Day of Month is the day part of the date. For example, 19 is the day of month
of 19-06-2012.

• Day of Week is the date’s day of week according to the Gregorian calendar.
For example, Tuesday is the day of week of 19-06-2012.

• Month is the month part of the date. For example, 06 or June is the month of
19-06-2012.

106 Chapter 5. Process Analysis

• Quarter is the quarter (three month period) of the date. For example, Q2 is the
quarter of 19-06-2012.

• Year is the year part of the date. For example, 2012 is the year of 19-06-2012.

Categorical Information

Naturally, categorical information can be considered as characterizing information.
Nevertheless, there are situations where the categorical information can be used to
derive extra information that can enrich the process analysis. For instance, the at-
tribute Originator may be used to derive information about the team and department
the resource is part of. Thus, not only the performance of the resource can be as-
sessed but also the performance of its team and department. Obviously, this kind of
transformation only can be achieved if

i. there is a specific transformation function capable of converting some given in-
formation into another (according to some requirements), and

ii. there is enough information in the data sources on which the transformation
function can be applied.

5.2.3 Measures of Interest

A measure of interest consists of measuring information about a specific aspect of the
business process. This information can be used to summarize the process behavior
represented in a multidimensional process model. Hence, a measure can be categorized
as follows.

Instance-Based Measures quantify a specific aspect of the business process by con-
sidering process instance-related information. For example, the average through-
put time of all process instances.

Event-Based Measures quantify a specific aspect of the business process by consid-
ering process event-related information. For example, the average execution time
of process events.

Flow-Based Measures quantify a specific aspect of the business process by consid-
ering information about causal dependencies. For example, the average waiting
time between process events.

Binding-Based Measures quantify a specific aspect of the business process by con-
sidering information about splits and joins. For example, the number of times a
split (output binding) was activated.

The aggregation of the information from a given measure can provide useful insight
into the process behavior. Aggregation functions can be applied on measures in order
to summarize the measuring information, facilitating thus the process analysis.

In an Event Cube, measures of interest can have two distinct scopes: (i) process
discovery, and (ii) performance analysis. Measures that facilitate the discovery of
process models are designated control-flow measures. Measures that support the
performance analysis of processes are designated performance measures. Remark
that a measure of interest can be both a control-flow and a performance measure (e.g.,
the event occurrence frequency).

5.2. Event Cube 107

Control-Flow Measures

A control-flow measure consists of measuring information about a specific aspect of the
business process, which can used by a control-flow algorithm in the discovery of process
models. For example, the basic multidimensional relations (cf. Definition 3.15) can be
considered as control-flow measures. The materialization of control-flow measures in
the Event Cube enables the execution of process discovery techniques over any process
perspective. Moreover, since the measuring information is computed beforehand, the
process discovery – and analysis – on the Event Cube can be performed efficiently and
on-the-fly.

The Multidimensional Heuristics Miner relies on the following control-flow mea-
sures.

• Event-Based Measures

– Event Entry: the set of process event identifiers (PID, EID) of an event oc-
currence. The number of elements of this set represents the event occurrence
frequency.

– Start Event: the set of process event identifiers of a given event occurrence
in which EID = 1 (i.e., the first position of the process instance). The num-
ber of elements of this set represents the frequency of the event occurrence
as a start event.

– End Event: the set of process event identifiers of a given event occurrence in
which EID = n, with n the last position of the process instance. The number
of elements of this set represents the frequency of the event occurrence as
an end event.

• Flow-Based Measures

– Direct Successor: for each other cuboid’s event occurrence b, the set of
process event identifiers of a given event occurrence a in which its EID
is one position before the EID of the other. The number of elements of
each set represents the number of times the given event occurrence is a
predecessor of the other (i.e., the number of times the a >W b measurement
of Definition 3.15 occurs in the process data).

– Length-Two Loop: for each other cuboid’s event occurrence b, the set of
process event identifiers of a given event occurrence a in which its EID is one
position before the EID of the other (i.e., direct successor), and two positions
before another EID of itself. The number of elements of each set represents
the number of times the given event occurrence has a length-two loop via
other occurrence (i.e., the number of times the a �W b measurement of
Definition 3.15 occurs in the process data).

– Direct Successor Dependency: for each other cuboid’s event occurrence,
the dependency measure a⇒W b between the given event occurrence a and
another b (Definition 3.13 applied on event occurrences instead of activities).

– Indirect Successor Dependency: for each other cuboid’s event occur-
rence, the dependency measure a⇒2

W b between the given event occurrence
a and another b (Definition 3.13 applied on event occurrences instead of
activities).

108 Chapter 5. Process Analysis

Remark that the control-flow measures presented in this subsection are the necessary
measurements to discover a process model using the Multidimensional Heuristics Miner.
Other control-flow measures may be defined and used in the framework in order to
facilitate the execution of other control-flow algorithms on the Event Cube.

Table 5.5 presents an overview about the necessary measures to build a multidi-
mensional dependency graph. The dependencies between measures define the order
by which the measures should be materialized in order to optimize the materialization
process. For instance, measure Start Event is a subset of Event Entry. So, making use
of the materialized information of Event Entry, it is not necessary to compute – again
– the set of process event identifiers of a given cell. Using the Event Entry, it is only
necessary to identify the process event identifiers that fulfill the Start Event definition
(i.e., all identifiers with EID = 1).

Type Measure Dependencies

Event-Based Event Entry
Event-Based Start Event Event Entry
Event-Based End Event Event Entry
Flow-Based Direct Successor Event Entry
Flow-Based Length-Two Loop Event Entry
Flow-Based Direct Successor Dependency Direct Successor
Flow-Based Indirect Successor Dependency Length-Two Loop

Table 5.5: Overview of the control-flow measures used in the Multidimensional Heuristics Miner.

Performance Measures

A performance measure consists of measuring information about a specific aspect of the
business process that can be used to get insight into the performance of the business
process. For example, the average throughput time of the process can be considered
as a performance measure. The materialization of performance measures in the Event
Cube enables the analysis of the business process.

Some common measurements used in process discovery techniques can be described
as performance measures.1

• Instance-Based Measures

– Instance Entry: the set of process instance identifiers (PID) of an event
occurrence. The number of elements of this set represents the number of
times the event occurrence appears in distinct instances.

– Throughput Time: the set of time periods of an event occurrence that
represent the throughput times of the process instances where the given
occurrence appears. Computing this measure requires temporal information
(timestamps) of process events, and consists of the timestamp difference
between the instance’s first and last events.

– Instance Value: the set of values of an event occurrence provided by a
specific instance-based attribute.

1These process discovery techniques can be found in the ProM framework [123, 125].

5.2. Event Cube 109

– Event Value Aggregation: the set of values of an event occurrence pro-
vided by the aggregation of all information about a specific event-based
attribute described in a process instance.

• Event-Based Measures

– Sojourn Time: the set of time periods that represent the sojourn times of
an event occurrence. Temporal information (timestamps) of process events
regarding the event execution (i.e., the information provided by the attribute
Event Type) is required for computing this measure. The sojourn time
of an event occurrence is defined as the timestamp difference between the
occurrence’s completion and start.

– Inactive Time: the set of time periods that represent the inactive times
of an event occurrence. Like for the Sojourn Time, this measure requires
temporal information (timestamps) of process events regarding the event
execution. The inactive time of an event occurrence is defined as the sum
of the time periods the occurrence was in a state of suspension (i.e., all the
pauses in the occurrence execution).

– Execution Time: the set of time periods that represent the execution
times of an event occurrence. The execution time can be defined as the
sojourn time minus the inactive time.

– Event Value: the set of values of an event occurrence provided by a specific
event-based attribute.

• Flow-Based Measures

– Waiting Time: for each other cuboid’s event occurrence b, the set of time
periods that represent the waiting times between a given event occurrence a
and b. As any other time-related measure, this measure depends on temporal
information (timestamps) of process events regarding the event execution.
The waiting time is defined as the timestamp difference between the com-
pletion time of a and the start time of b.

– Delta Value: for each other cuboid’s event occurrence b and according to
a specific event- or instance-based measure, the set of delta values between
a given event occurrence a and b.

• Binding-Based Measures

– Binding Entry: the set of process event identifiers (PID, EID) of an event
occurrence binding. The number of elements of this set represents the bind-
ing frequency.

Remark that, besides the measures described above, other performance measures may
also be considered.

Aggregation Functions

An aggregation function can be defined as a function that transforms a collection
of objects into a single object that summarizes the collection according to a specific
criteria. By a collection of objects we mean a group of objects that can be represented

110 Chapter 5. Process Analysis

either in a list or in a set. The outcome value of an aggregation function is designated
as an aggregated value.

An aggregation function can be categorized as follows [50].

Distributive functions are those which can be computed by partitioning the collection
of objects. Assuming that the collection is divided in n partitions, the result of
the distributed application of the function on the different partitions consists of n
aggregated values. The function is distributive if the aggregation of the collection
of objects can be computed from these n aggregated values For example, the
functions sum and count can be computed under these circumstances.

Algebraic functions are those which can be computed by combining a finite number
(bounded positive integer) of distributive functions. For example, the function
average can be computed by combining the distributive functions sum and count
(i.e., average = sum/count).

Holistic functions are those for which it is not possible to determine a constant number
of distributive functions needed to characterize the function computation. The
functions median and mode are common examples of holistic functions.

Different types of aggregation functions are introduced next. Remark that it is not
intended to present a complete list of the aggregation functions that can be used on
the Event Cube but rather a list of potentially interesting and useful functions to be
used in process analysis. Therefore, any other aggregation function not mentioned in
this list can also be used in the Event Cube.

Generic Aggregation Functions: An aggregation function that can work over any
collection of objects is designated as a generic aggregation function. Common
examples of this type of aggregation function are the following.

• Count: determines the number of elements of a collection of objects.

• Contain: checks whether a given object is in a collection of objects.

• Mode: identifies the most frequent object of a collection of objects.

• Median: identifies the object that separates the lower and higher halves of
a collection of objects.2

Numerical Aggregation Functions: An aggregation function that can work over a
collection of numerical values is designated as a numerical aggregation function.
Common examples of this type of aggregation function are the following.

• Sum: adds all elements of a collection of numerical values.

• Min: identifies the minimum value of a collection of numerical values.

• Max: identifies the maximum value of a collection of numerical values.

• Average: calculates the arithmetic mean of a collection of numerical values.

• Standard Deviation: estimates the standard deviation of a collection of
numerical values.

• Variance: estimates the variance of a collection of numerical values.

• Product: multiplies all elements of a collection of numerical values.

2Computing the median is only possible if the collection of objects can be sorted.

5.2. Event Cube 111

Time Aggregation Functions: An aggregation function that can work over a col-
lection of timestamps is designated as a time aggregation function. Common
examples of this type of aggregation function are the following.

• Begin: identifies the earliest temporal reference of a collection of times-
tamps.

• End: identifies the latest temporal reference of a collection of timestamps.

• Period: calculates the time period of a collection of timestamps (i.e., the
difference between the latest and earliest timestamps).

• Rate: determines the occurrence rate of the elements of a collection of
timestamps (i.e., the number of elements in the collection divided by the
difference between the latest and earliest timestamps).

Map-Based Aggregation Functions: Typically, an aggregation function works
over a collection of objects. For example, the frequency of an event occurrence
can be determined by aggregating its process event identifiers according to the
function Count. However, there are cases in which more complex data structures
are needed to describe a specific aspect of the case. For example, an event
occurrence is caused (and followed) by zero or more event occurrences. Hence,
the process event identifiers of the causes of an event occurrence cannot be deter-
mined by a single set of identifiers. Instead, the different sets of identifiers should
be grouped by cause. Therefore, a new data structure should be considered.

A map is a data structure that maps unique keys to values. Considering a value as
a collection of objects, a map can be used to group collection of objects by specific
relationships (e.g., the different causes of an event occurrence). The application
of an aggregation function on a map consists of applying that function on every
collection of objects in the map. As the result of the aggregation, it is produced
a map of aggregated values keeping the key mappings. In this way, it is possible
to use any set- or list-based aggregation function.

Table 5.6 presents an overview of the aggregation functions introduced in this sub-
section, where every function is characterized in terms of category. Distributive func-
tions should be preferred over the others in order to optimize the materialization pro-
cess. These functions can be computed efficiently because their computation processes
can be partitioned. On the other extreme, holistic functions should be avoided because
of their complex computation processes.

5.2.4 Materializing the Event Cube

An Event Cube is defined as a data cube of events and can be used to extend the
current process mining techniques with multidimensional capabilities. Based on pro-
cess data, the Event Cube organizes the data in such a way that is possible to analyze
the business information under different levels of abstraction. Applying the Shell Cube
materialization strategy [73], i.e., only a selection of dimensions of interest is material-
ized, an Event Cube can be built to accommodate all the necessary measurements to
perform process discovery and analysis. This means that, all the information regarding
the different perspectives (and levels of abstraction) is computed and maintained in
the cube, facilitating thus the execution of all types of – business – queries.

112 Chapter 5. Process Analysis

Type Aggregation Function Category

Generic Count Distributive
Generic Contain Distributive
Generic Mode Holistic
Generic Median Holistic

Numerical Sum Distributive
Numerical Min Distributive
Numerical Max Distributive
Numerical Average Algebraic
Numerical Standard Deviation Algebraic
Numerical Variance Algebraic
Numerical Product Distributive

Time Begin Distributive
Time End Distributive
Time Period Distributive
Time Rate Algebraic

Table 5.6: Overview of aggregation functions.

The materialization process of an Event Cube can be described as follows. Relying
on an index instead of directly on the process data (e.g., event log), the lattice of
cuboids according to a given set of dimensions is firstly built. Representing a different
perspective, each of these cuboids holds the event occurrences that characterize the
perspective. These occurrences are represented as multidimensional cells and can be
characterized by multiple measures. The Event Cube materialization process is finished
when all the considered measures are computed for every cell in the cube. Computing
a measure for a multidimensional cell can be defined as follows.

i. Using the inverted index, compute the set of identifiers of the process events
characterized by the dimension values of the cell.

ii. Compute the measure value for every process event in the set of identifiers. This
can be achieved either by retrieving a specific attribute of the process event or
by applying a specific transformation function over the set of identifiers.

iii. Apply an aggregation function to summarize the collection of measure values
computed in the previous step.

Finally, the materialized measures can be either directly analyzed (e.g., using a pivot
table) or used for process mining (e.g., deriving multidimensional process models). All
of these steps are summarized in Algorithm 6.

Considering dimensions = {A,B,C} and measures = {m1,m2} as the set of
dimensions and measures to be materialized, each step of the materialization process
of an Event Cube (i.e., each line of Algorithm 6) is described as follows.

1. The data structure that represents the lattice of cuboids of the Event Cube is
initialized.

2. Every possible combination of dimensions is described in the powerset of
dimensions ({A,B,C}). Hence, X = { ∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C},
{A,B,C} }. Every element of X will be used to characterize a different cuboid
in the Event Cube.

5.2. Event Cube 113

Algorithm 6: Materializing the Event Cube

Input : The inverted index and the sets of dimensions and measures to be
materialized.

Output: The materialized Event Cube.

Method
1 init lattice;
2 X ← the powerset of dimensions;
3 foreach set of dimensions D ∈ X do
4 cuboid← buildCuboid(index, D, measures);
5 add cuboid to lattice;

end
6 return lattice;

function buildCuboid(index, D, measures)
a cuboid← new cuboid characterized by the dimensions in D;
b Y ← the combination of dimension values of the dimensions in D such that

every combination contains exactly one value from every dimension in D;
c foreach set of dimension values V ∈ Y do
d cell← new cuboid cell characterized by V ;
e TID ← retrieve, using index, the set of identifiers (PID, EID) of the process

events characterized by the dimension values of V ;
f foreach measure m ∈ measures do
g value← compute m for the process events identified in TID;
h add value to cell as measure value of m;

end
i add cell to cuboid;

end
j return cuboid;

3-5. For each combination of dimensions D in X, a new cuboid – characterized
by the dimensions in D – is created (and materialized) through the function
buildCuboid(), and added to the lattice. Further details about this function are
provided below.

6. The lattice of cuboids of the Event Cube is generated. Since all cuboids in the
lattice are materialized, the lattice of cuboids can be returned as the materialized
Event Cube.

The function buildCuboid() creates a cuboid characterized by a given set of dimen-
sions (D), generates all cuboid’s cells according to the values of the dimensions in D,
and computes – for every cell – a given set of measures (measures). Let D = {A,C}
be the set of dimensions to characterize the cuboid, A = {a1, a2, a3} and C = {c1, c2}
the sets of dimension values of A and C, measures = {m1,m2} the set of measures to
be materialized, and m1 and m2 the average cost and the Start Event control-flow mea-
sure introduced in Subsection 5.2.3. Each step of function buildCuboid() is described
as follows.

a. The data structure that represents the cuboid is initialized.

114 Chapter 5. Process Analysis

b. The combination of dimension values of the dimensions in D (i.e., {A,C}) is com-
puted such that every combination contains exactly one value from dimensions
A and C. Hence, Y = { {a1, c1}, {a1, c2}, {a2, c1}, {a2, c2}, {a3, c1}, {a3, c2} }.

c-i. For each combination of dimension values V in Y , a new cuboid’s cell – charac-
terized by the dimension values in V , is created (line d), materialized (lines e-h),
and added to the cuboid (line i). Materializing a cell consists of computing the
measures through the set of identifiers of the process events characterized by the
cuboid’s cell. For example, let us assume that TID = {(1, 1), (2, 3), (3, 5)} is the
set of identifiers of the process events characterized by the cuboid’s cell (i.e., event
occurrence). For measure m1, the average cost of the process events characterized
by the cell (assuming that this information is available), each identifier in TID
is used to retrieve the cost information of the corresponding process event. The
average of the retrieved costs defines the final value of m1. For measure m2, the
Start Event control-flow measure, the set of identifiers TID is filtered in such a
way that only the process events with EID = 1 remain in the set. The number
of remaining elements in the set defines the final value of m2 (in this example,
m2 = 1). The multidimensional cell is added into the cuboid when all measures
are computed.

j. The cuboid is generated and materialized. Since all cuboid’s cells are material-
ized, the cuboid is ready to be returned as result.

5.3 Multidimensional Process Analysis

Multidimensional process analysis consists of exploiting the Event Cube in order to
get insight into the business process. This is achieved by performing multidimensional
process discovery based on specific business process queries.

5.3.1 Multidimensional Process Discovery

Traditional process discovery consists of extracting a – traditional – process model
from some given process data (e.g., event log). These techniques describe the process
behavior with respect to typical process perspectives such as the one that simply de-
scribes the performed activities. Changing the focus of traditional process discovery
techniques to non-typical process perspectives is not possible in most cases, although
it may be achieved indirectly by manipulating the process data.

Multidimensional process discovery consists of extracting – multidimensional – pro-
cess models from an Event Cube. These techniques are capable of describing the
business process according to any process perspective supported in the process data.
Furthermore, the process behavior can be characterized by one or more aspects of the
business process. By materializing the necessary measurements to perform process
discovery, it is possible discover on-the-fly – and in an integrated environment – the
different perspectives of the business process.

An Event Cube consists of a lattice of cuboids. Representing a distinct process per-
spective, each cuboid is formed by multidimensional cells which identify specific groups
of process events described in the process data. Each cell is defined by a distinct combi-
nation of dimension values according to the dimensions of the cuboid that contains the
cell. Additionally, after materialization, every cell in the Event Cube is characterized

5.3. Multidimensional Process Analysis 115

by measuring information (e.g., the control-flow measures). Multidimensional process
discovery relies on this information to describe the process behavior with respect to
some process perspective. By applying some OLAP-based operations (e.g., drill-down
and roll-up), the focus of the process discovery can be adjusted on-the-fly in order to
fulfill specific interests or requirements.

The following example is presented to illustrate how process discovery can be
performed on an Event Cube. Let us consider an Event Cube with two dimensions:
Activity andResource (with values(Activity) = {A,B,C,D} and values(Resource) =
{W,X, Y, Z}). The lattice of cuboids of this Event Cube is presented in Figure 5.6.

0-D cuboid

1-D cuboids

2-D cuboid

(Activity)

(Activity, Resource)

()

(Resource)

Figure 5.6: Lattice of cuboids based on the dimensions Activity and Resource.

Characterized by a distinct combination of dimension values, the multidimensional
cells that form the different cuboids of Figure 5.6 are characterized as follows.

• the multidimensional cell () is the only cell of the 0-D cuboid (). Being charac-
terized by no dimension, this cell represents all process events described in the
process data.

• four multidimensional cells form the 1-D cuboid (Activity): (A), (B), (C), and
(D). Cell (A), for instance, represents all process events in which activity A was
performed.

• four multidimensional cells form the 1-D cuboid (Resource): (W), (X), (Y), and
(Z). Cell (W), for instance, represents all process events performed by W .

• sixteen multidimensional cells form the 2-D cuboid (Activity,Resource): (A,W),
(A,X), ..., (D,Y), and (D,Z). Cell (A,W), for instance, represents all process
events in which activity A was performed by W . Remark that some of these cells
may have no support in the process data.

In order to facilitate the application of process discovery on the Event Cube, the
control-flow measures must be materialized for every multidimensional cell. Thus,
since the necessary measurements for performing process discovery are computed be-
forehand, the discovery can be performed on-the-fly over different business perspectives.
Figure 5.7 shows part of the materialized Event Cube of the running example.

In this example, process discovery can be performed taking into account four dif-
ferent process perspectives. From the cuboids that represent these perspectives, nine
distinct multidimensional process models can be generated through the materialized in-
formation and the Multidimensional Heuristics Miner. These multidimensional process
models can be described as follows.

116 Chapter 5. Process Analysis

(Y)

(C)

(Activity)

()

(Resource)

(Activity,Resource)

()

 Event Entry: { (1,1),(1,2),...,(1000,5),(1000,6) }

 Start Event: { (1,1),(2,1),...,(999,1),(1000,1) }

 ...

 Direct Successor Dependency: ()=0.999

(A)

 Event Entry: { (1,1),(2,1),...,(999,1),(1000,1) }

 Start Event: { (1,1),(2,1),...,(999,1),(1000,1) }

 ...

 Direct Successor Dependency: (B)=0.999

(X)

 Event Entry: { (1,1),(1,4),...,(1000,1),(1000,6) }

 Start Event: { (1,1),(2,1),...,(999,1),(1000,1) }

 ...

 Direct Successor Dependency: (W)=0.999 , (Y)=0.997

(B)

 Event Entry: { (1,2),(2,2),...,(1000,2),(1000,4) }

 Start Event: { }

 ...

 Direct Successor Dependency: (C)=0.999

(W)

 Event Entry: { (1,2),(2,2),...,(1000,2),(1000,4) }

 Start Event: { }

 ...

 Direct Successor Dependency: (Z)=0.999

(B,Y)

(A,X)

 Event Entry: { (1,1),(2,1),...,(999,1),(1000,1) }

 Start Event: { (1,1),(2,1),...,(999,1),(1000,1) }

 ...

 Direct Successor Dependency: (B,W)=0.999, (B,Y)=0.997

(B,W)

 Event Entry: { (1,2),(2,2),...,(1000,2),(1000,4) }

 Start Event: { }

 ...

 Direct Successor Dependency: (C,Z)=0.999

Figure 5.7: The materialized Event Cube.

• 0-D Cuboid () represents the most abstract process perspective. Since this
perspective is characterized by no dimension, the only possible multidimensional
process model that can be generated from this cuboid is the one with 0-D nodes
and 0-edges (Figure 5.8).

ALL

0-D nodes + 0-D edges

Figure 5.8: The only mC-net that can be generated from cuboid ().

• 1-D Cuboid (Activity) represents the perspective characterized by the ac-
tivities of the business process. Since this perspective is characterized by one
dimension (dimension Activity), two possible multidimensional process models
can be generated from this cuboid: one with 1-D nodes and 0-edges (Figure 5.9a)
and another with 0-D nodes and 1-edges (Figure 5.9b).

5.3. Multidimensional Process Analysis 117

Activity:A Activity:CActivity:B Activity:D

1-D nodes + 0-D edges

(a) Dimension Activity as event constraint.

Activity: A → B

Activity: B → C

Activity: C → B

Activity: C → C

Activity: C → D

ALL

0-D nodes + 1-D edges

(b) Dimension Activity as workflow constraint.

Figure 5.9: The mC-nets that can be generated from cuboid (Activity).

• 1-D Cuboid (Resource) represents the perspective characterized by the re-
sources of the business process. Since this perspective is characterized by one
dimension (dimension Resource), two possible multidimensional process models
can be generated from this cuboid: one with 1-D nodes and 0-edges (Figure 5.10a)
and another with 0-D nodes and 1-edges (Figure 5.10b).

Resource:X

Resource:Y

Resource:ZResource:W

1-D nodes + 0-D edges

(a) Dimension Resource as event constraint.

Resource: X → W

Resource: W → Z

Resource: X → Y

Resource: Z → X

Resource: Y → X

Resource: Y → Y

Resource: Z → W

ALL

0-D nodes + 1-D edges

(b) Dimension Resource as workflow constraint.

Figure 5.10: The mC-nets that can be generated from cuboid (Resource).

118 Chapter 5. Process Analysis

• 2-D Cuboid (Activity,Resource) represents the perspective characterized by
the activities of the business process as well as the resources that who/which
performed the activities. Since this perspective is characterized by two dimen-
sion (dimensions Activity and Resource), four possible multidimensional process
models can be generated from this cuboid:

– one process model with 2-D nodes and 0-edges (Figure 5.11a),

– two process models with 1-D nodes and 1-edges (figures 5.11b and 5.11c),
and

– one process model with 0-D nodes and 2-edges (Figure 5.11d).

5.3.2 Business Process Querying

Process discovery techniques provide insight into the business process by answering
different types of queries. A possible characterization of such types is the following:

• What queries aim at the identification of events in the process by answering the
following question: What are the events in the process? This is the most common
type of query in process discovery.

• Who queries provide insight into the originators of the events. Who are the event
executors? is the question that represents these queries. Social and organizational
analyses are typical applications of this type of query.

• When queries identify the temporal references of the events. When do the events
occur? is an example of the time-based questions that can be used to find tem-
poral patterns or seasonal trends.

• Which queries link event-related information with the events or process in-
stances. Which are the objects associated with the events (or the process in-
stances)? is the generic question that defines this type of query. Traditionally,
these queries are not explicitly supported in process discovery techniques.

• How queries describe the execution of events in a process by answering the
following question: How do the events are executed? Basically, these queries
provide insight into the process behavior, the main aspect of the business process
analyses. Control-flow mining is an example of a process discovery application
that supports this type of query.

• Why queries explain the decisions in the execution of a process. Why do different
process instances have different behavior? is the question that represents this type
of query. Decision point analysis is a typical application of these queries.

Designated event-related queries, what, who, and when queries identify aspects of pro-
cess events. Designated workflow-related queries, how and why queries provide insight
into the process behavior (workflow). Being both event- and workflow-queries, which
queries focus on either process events or process behavior.

The process analysis is achieved by combining event- and workflow-queries. For
example, a traditional process model combines what and how queries once that it
identifies the activities in the process as well as the process behavior. An overview
about the query orientation of common process mining techniques for process discovery
and performance analysis is presented in Table 5.7. All of the techniques considered in
this overview can be found in ProM [123].

5.3. Multidimensional Process Analysis 119

Activity:A

Resource:X

Activity:C

Resource:Z

Activity:B

Resource:W

Activity:D

Resource:X

Activity:C

Resource:Y

Activity:B

Resource:Y

2-D nodes + 0-D edges

(a) Dimensions Activity and Resource as event constraints.

Resource:

XY

Resource:

XW

Resource:ZW

Resource:YY

Resource:WZ

Resource:

YY
Resource:

YX

Resource:

ZX

Activity:A Activity:B Activity:DActivity:C

1-D nodes + 1-D edges

(b) Dimension Activity as event constraint and dimension Resource as workflow con-
straint.

Activity:

AB

Activity:AB

Activity:CD

Activity:CD
Activity:CB

Activity:BC

Activity:CC

Activity:BCResource:X

Resource:ZResource:W

Resource:Y

1-D nodes + 1-D edges

(c) Dimension Activity as workflow constraint and dimension Resource as event con-
straint.

Activity:A → B

Resource: X → W

Activity:B → C

Resource: W → Z

Activity:A → B

Resource: X → Y

Activity:C → D

Resource: Z → X

Activity:C → D

Resource: Y → X

Activity:B → C

Resource: Y → Y

Activity:C → B

Resource: Z → W

Activity:C → C

Resource: Y → Y

ALL

0-D nodes +

2-D edges

(d) Dimensions Activity and Resource as workflow constraints.

Figure 5.11: The mC-nets that can be generated from cuboid (Activity,Resource).

120 Chapter 5. Process Analysis

Events Workflow

Technique What Who When Which How Why

Control-flow mining X X
Decision point analysis X X
Social network analysis X X
Temporal analysis X X X X
Sequence analysis X X X X
Linear Temporal Logic (LTL) X X X

Performance analysis X X X X

Multidimensional process discovery X X X X X X

Table 5.7: Query orientation for different process mining techniques.

Event-related queries can be considered the simplest type of query once that their
execution consists basically of information retrieval on process data. On the other
hand, the execution of workflow-based queries depends on information about process
behavior. Hence, it is necessary to apply some control-flow mining algorithm before
executing the query.

Due to its multidimensional nature, the multidimensional process discovery ap-
proach covers a broader range of queries than any other process mining technique. This
means that different aspects of the business process can be exploited in an integrated
multidimensional analysis. Currently, similar analysis can be eventually achieved using
traditional techniques after filtering the dimensions. However, applying a filter for all
dimensions values is almost unfeasible since it would be extremely time consuming and
the different results for the different values would not be integrated.

5.3.3 Cube Exploitation

As long as the necessary aspects of the business process are described in the data,
business process querying can be performed in Event Cubes. As mentioned before,
the process analysis is achieved by combining event- and workflow-queries. Actually,
each different combination defines a process perspective, which is represented in the
Event Cube by cuboids. Therefore, the cube exploitation consists of business process
querying.

The result of a business process query is represented by a multidimensional process
model, which can be considered as a multidimensional view of data. As in tradi-
tional data cubes, multidimensional views in Event Cubes can be defined interactively
through some operations over the lattice of cuboids. Designated discovery operations,
these operations facilitate the combination of event- and workflow-queries by adjusting
the aspects of the business process in analysis. Since events and workflow are repre-
sented by different objects, discovery operations are extended to operate in different
multidimensional spaces.

5.3. Multidimensional Process Analysis 121

Multidimensional Spaces

A space can be defined as a set of objects. Considering that a process is represented by
two types of objects (i.e., nodes and edges, using the notation introduced in Section 3.2),
the space defined by process models consists of two subspaces.

Nodes represent the subspace of process events. In a traditional process model, a set
of activities defines the nodes. Since an activity is an one-dimensional object, tra-
ditional process models consist of one-dimensional nodes. In a multidimensional
process model, nodes are defined by a set of event occurrences. Since an event
occurrence is an n-dimensional object, multidimensional process models consists
of n-dimensional nodes.

Edges (or arcs) represent the subspace of transitions between process events. In a tra-
ditional process model, a set of – unconstrained – transitions defines the edges.
Since an unconstrained transition is a zero-dimensional object (i.e., the transi-
tion is not characterized by any information), traditional process models consists
of zero-dimensional edges. In a multidimensional process model, edges are de-
fined by a set of constrained transitions. Since a constrained transition is an
n-dimensional object, multidimensional process models consists of n-dimensional
edges.

Figure 5.12 illustrates the dimensionality of nodes and edges in traditional and multi-
dimensional process models. A traditional process model consists of one-dimensional
nodes and zero-dimensional edges (Figure 5.12a). Therefore, a traditional process
model can be designated as a one-dimensional model. A multidimensional process
model consists of n-dimensional nodes and m-dimensional edges (Figure 5.12b). Con-
sequently, a multidimensional process model can be designated as a (n+m)-dimensional
model.

a2a1

(a) Traditional process models.

D1:y1

D2:y2

...

Dn:yn

D1:x1

D2:x2

...

Dn:xn
D'1:z1

D'2:z2

...

D'm:zm

(b) Multidimensional process models.

Figure 5.12: Spaces of process models.

Discovery Operators

Like in traditional data cubes, the information of Event Cubes can be accessed by
performing some OLAP-based operations over the lattice of cuboids. OLAP operations
such as drill-down, roll-up, and pivot can be used to create multidimensional views of
data by retrieving information from specific cuboids. The same operations can be used
in the Event Cube for multidimensional process analysis.

Drill-Down adds a dimension to the multidimensional process model. This means
that the process will be represented with more details (i.e., in a lower abstraction
level). The drill-down operation can be performed over either nodes or edges.
Figure 5.13 shows an example where a drill-down operation is performed over
nodes. In this case, details regarding the given dimension are added to the nodes.
Edges are represented in the same abstraction level.

122 Chapter 5. Process Analysis

Activity:A Activity:CActivity:B Activity:D

Activity:A

Resource:X

Activity:C

Resource:Z

Activity:B

Resource:W

Activity:D

Resource:X

Activity:C

Resource:Y

Activity:B

Resource:Y

Figure 5.13: Drill-down by adding the dimension Resource to nodes.

Figure 5.14 presents an example where a drill-down operation is performed over
edges. In this case, details regarding the given dimension are added to the edges.
Nodes are represented in the same abstraction level.

Activity:A Activity:CActivity:B Activity:D

Resource:

XY

Resource:

XW

Resource:ZW

Resource:YY

Resource:WZ

Resource:

YY
Resource:

YX

Resource:

ZX

Activity:A Activity:B Activity:DActivity:C

Figure 5.14: Drill-down by adding the dimension Resource to edges.

Roll-Up removes a dimension from the multidimensional process model. This means
that the process will be represented with less details (i.e., in a higher abstraction
level). The roll-up operation can be performed over either nodes or edges. Fig-
ure 5.15 shows an example where a roll-up operation is performed over nodes.
In this case, details regarding the given dimension are removed from the nodes.
Edges are represented in the same abstraction level.

5.3. Multidimensional Process Analysis 123

Activity:C

Resource:Z

Activity:B

Resource:W

Type:

IIII

Type:

IIII

Type:

IIII

Type:IIII

Type:II

Type:II

Type:

II

Type:

II

Type:IIII

Type:II

Type:II

Type:IIII

Type:

II

Type:

IIII

Type:II

Activity:A

Resource:X

Activity:D

Resource:X

Activity:C

Resource:Y

Activity:B

Resource:Y

Resource:X

Resource:Y

Resource:ZResource:W

Figure 5.15: Roll-up by removing the dimension Activity from nodes.

Figure 5.16 presents an example where a roll-up operation is performed over
edges. In this case, details regarding the given dimension are removed from the
edges. Nodes are represented in the same abstraction level.

Activity:AB

Type:II

Activity:AB

Type:IIII

Activity:CD

Type:IIII

Activity:CD

Type:II

Activity:CB

Type:II Activity:BC

Type:II

Activity:CC

Type:IIII

Activity:BC

Type:IIII

Resource:X

Resource:ZResource:W

Resource:Y

Type:IIII

Type:II

Type:II

Type:IIII

Type:

II

Type:

IIII

Type:II

Resource:X

Resource:Y

Resource:ZResource:W

Figure 5.16: Roll-up by removing the dimension Activity from edges.

124 Chapter 5. Process Analysis

Pivot permutes the dimensions of the nodes and edges. Therefore, the perspective
remains the same but the process information is presented in a different config-
uration. Figure 5.17 illustrates a pivot operation. In this case, the dimension
in the nodes subspace (Activity) is swapped with the dimension in the edges
subspace (Resources). The abstraction level of both nodes and edges remain the
same.

Resource:

XY

Resource:

XW

Resource:ZW

Resource:YY

Resource:WZ

Resource:

YY
Resource:

YX

Resource:

ZX

Activity:

AB

Activity:AB

Activity:CD

Activity:CD
Activity:CB

Activity:BC

Activity:CC

Activity:BCResource:X

Resource:ZResource:W

Activity:A Activity:B Activity:DActivity:C

Resource:Y

Figure 5.17: Pivot by permuting the dimensions of the nodes and edges.

5.3.4 Filtering Process Behavior

As in traditional data cubes, multidimensional views in Event Cubes can be constrained
interactively through some operations over the cuboids’ information. Designated fil-
tering operations, these operations facilitate the analysis of business process queries
by constraining the process behavior in analysis. Like discovery operations, filtering
operations can operate over both nodes and edges multidimensional subspaces. Fur-
thermore, these operations can be performed by applying filtering conditions over either
characterizing or measuring information.

Filtering edges consists of omitting (removing) specific dependency relations from
a multidimensional process model. The dependency relations to be filtered out
are determined by a filtering condition using workflow constraints. Whenever a
dependency relation does not satisfy the filtering condition the edge representing
the relation should be removed from the process model. Remark that filtering out
a dependency relation may require the recomputation of the input and output
bindings the relation is part of. Additionally, if the input and output bindings of
a specific event occurrence consist only of empty bindings (after binding recom-
putation), then that occurrence should be removed from the process model. An
example of filtering edges from a multidimensional process model is presented in
Figure 5.18.

5.3. Multidimensional Process Analysis 125

Activity:a

Activity:b

Activity:c

Activity:g
Activity:e

Activity:d

Activity:f

(a) The dependency relations (and event occurrences) to be omitted.

Activity:a Activity:c Activity:g

Activity:e

Activity:f

(b) The resulting multidimensional process model after filtering.

Figure 5.18: An example of filtering edges from a multidimensional process model.

Figure 5.18a identifies the dependency relations to be filtered out from the pro-
cess model as well as the event occurrences that will not have any non-empty
input and output bindings. These dependency relations and event occurrences
are represented by dashed lines. Figure 5.18b shows the result of the filtering
operation. Remark that, in this example, it was not necessary to recompute any
input or output binding. Another example is presented in Figure 5.19 to illustrate
the recomputation of bindings.

Activity:lActivity:j

Activity:i

Activity:k

(a) The dependency relations (and event oc-
currences) to be omitted.

Activity:l

Activity:i

Activity:k

(b) The resulting submodel after filtering.

Figure 5.19: An example of recomputing an input binding.

Figure 5.19a identifies the dependency relations to be filtered out from the pro-
cess model as well as the event occurrences that will not have any non-empty
input and output bindings. Once again, these dependency relations and event

126 Chapter 5. Process Analysis

occurrences are represented by dashed lines. Before filtering, the input bindings
of {Activity:l} are:

1. { ({Activity:i}, •) },

2. { ({Activity:j}, •), ({Activity:k}, •) },

3. { ({Activity:i}, •), ({Activity:j}, •) }, and

4. { ({Activity:i}, •), ({Activity:j}, •), ({Activity:k}, •) },

with • and • representing the dependency relations’ workflow constraints. By re-
moving the binding ({Activity:j}, •) from the input bindings, the input bindings
of {Activity:l} after filtering are:

1. { ({Activity:i}, •) },

2. { ({Activity:k}, •) }, and

3. { ({Activity:i}, •), ({Activity:k}, •) }.

Figure 5.19b shows the submodel as result of the filtering operation.

Filtering nodes consists of omitting (removing) specific event occurrences from a
multidimensional process model. The event occurrences to be filtered out are
determined by a filtering condition composed by event constraints. Whenever
an event occurrence does not satisfy the filtering condition not only the node
representing the occurrence should be removed from the process model but also
every adjacent edge. Remark that, in order to keep the consistency of the process
behavior, filtering out an event occurrence may require the insertion of artificial
dependency relations in the process model. This can be done by replacing the
event occurrence bindings by artificial dependency relations, linking these to the
binding’s activated inputs and outputs. An example of filtering a node from a
multidimensional process model is presented in Figure 5.20.

Definition 5.1 (Artificial Dependency Relation) An artificial dependency
relation is defined as a relation that is not supported in the process data but
exists in the process model to describe the process behavior of some filtered process
events.

Figure 5.20a identifies the event occurrence to be filtered out from the pro-
cess model as well as the corresponding adjacent dependency relations. These
event occurrences and dependency relations are represented by dashed lines. Fig-
ure 5.20b shows the result of the filtering operation. Remark that three artificial
dependency relations are introduced to replace the event occurrence bindings of
{Activity:E}.
The generation of artificial dependency relations is defined in Algorithm 7. Ba-
sically, this process updates the dependency graph of a mC-net by

• removing a specific event occurrence and its related dependency relations,
and

• adding – artificial – dependency relations to replace the process behavior
characterized by the event occurrence bindings of the removed event occur-
rence.

5.3. Multidimensional Process Analysis 127

Activity:a

Activity:b

Activity:c

Activity:g
Activity:e

Activity:d

Activity:f

(a) The event occurrence (and adjacent dependency relations) to be omitted.

Activity:a

Activity:b

Activity:c

Activity:g

Activity:d

Activity:f

(b) The resulting multidimensional process model after filtering.

Figure 5.20: An example of filtering nodes from a multidimensional process model.

Let us use Figure 5.21 to illustrate the generation process of artificial depen-
dency relations. The multidimensional process model to be filtered is depicted
in Figure 5.21a. Figure 5.21b identifies the objects to be removed from the pro-
cess model. From these objects, {Activity:j} is the event occurrence, while the
dependency relations are

• ({Activity:i}, {Activity:j}, {Resource:x→ y}),

• ({Activity:j}, {Activity:l}, {Resource:y → z}), and

• ({Activity:j}, {Activity:m}, {Resource:y → w}).

Not described in the process model, the event occurrence bindings of {Activity:j}
are B1 = (I1, O1) and B2 = (I1, O2), where

• I1 = { ({Activity:i}, {Resource:x→ y}) },

• O1 = { ({Activity:l}, {Resource:y → z}) }, and

• O2 = { ({Activity:m}, {Resource:y → w}) }.

Figure 5.21c presents the multidimensional dependency graph after filtering.
The identified objects in Figure 5.21b are replaced by two artificial depen-
dency relations. Remark that the dependency relations to be removed from
the model are not given as argument but determined by event occurrence
bindings (lines 3-8 in Algorithm 7). For example, the dependency relation

128 Chapter 5. Process Analysis

Algorithm 7: Generating Artificial Dependency Relations

Input : The multidimensional dependency graph (DG) to be filtered, and the
event occurrence X and its event occurrence bindings B.

Output: The filtered multidimensional dependency graph.

Method
1 R− ← ∅, R+ ← ∅;
2 foreach event occurrence binding b ∈ B do
3 I ← the input binding of b;
4 foreach activated input (ei, wi) ∈ I do
5 R− ← R− ∪ {(ei, X,wi)};

end
6 O ← the output binding of b;
7 foreach activated output (eo, wo) ∈ O do
8 R− ← R− ∪ {(X, eo, wo)};

end
9 foreach activated input (ei, wi) ∈ I do

10 foreach activated output (eo, wo) ∈ O do
11 W ← ∅;
12 foreach workflow constraint (D:dc → dd) ∈ wo do
13 (D:da → db)← the workflow constraint for dimension D in wi;
14 W ←W ∪ {D:da → dd};

end
15 R+ ← R+ ∪ {(ei, eo,W)};

end

end

end
16 return DG ∪R+ \R−;

({Activity:j}, {Activity:m}, {Resource:y → w}) is determined by O2, the out-
put binding of B2. The artificial dependency relations are also determined
by event occurrence bindings (lines 9-15 in Algorithm 7). For example, the
artificial dependency relation ({Activity:i}, {Activity:m}, {Resource:x → w})
(represented by the orange edge) is determined by I1 and O2, the input and
output bindings of B2. When the multidimensional dependency graph is up-
dated (i.e., after applying Algorithm 7), the event occurrence bindings need to
be recomputed over the new dependency graph. This can be done using Algo-
rithm 5. Finally, the multidimensional process model after filtering is depicted
in Figure 5.21d.

5.3. Multidimensional Process Analysis 129

Activity:i

Activity:mActivity:kResource:x®z

Resource:z®w

Resource:y®z

Resource:x®y Activity:lActivity:j

Resource:

y®w

(a) The mC-net to be filtered.

Activity:i

Activity:mActivity:kResource:x®z

Resource:z®w

Resource:y®z

Resource:x®y Activity:lActivity:j

Resource:

y®w

(b) The event occurrence (and adjacent dependency relations) to
be omitted.

Activity:i

Activity:mActivity:kResource:x®z

Resource:z®w

Resource:x®z

Activity:l

Resource:

x®w

(c) The multidimensional dependency graph after filtering.

Activity:i

Activity:mActivity:kResource:x®z

Resource:z®w

Resource:x®z

Activity:l

Resource:

x®w

(d) The mC-net after filtering.

Figure 5.21: An example of recomputing the event occurrence bindings.

Filtering Operators

OLAP operations such as slice-and-dice and top-k selection can be used to constraint
the multidimensional views of data by applying some filtering conditions. The same
operations can be used in the Event Cube for filtering process behavior in multidimen-
sional process models. Remark that, unlike the discovery operators that are performed
over the lattice of cuboids, filtering operators are applied on the process models gen-
erated from the cuboids.

Slice and Dice restricts the objects in the multidimensional process model by using
filtering conditions over the dimension values that characterize the object. The
objects that do not satisfy the filtering conditions are removed from the pro-

130 Chapter 5. Process Analysis

cess model. The perspective remains the same but less process information is
presented. The slice and dice operation can be performed over either nodes or
edges. Figure 5.22 shows an example where a slice operation is performed over
edges. In this case, only one filtering condition (Type = II → II) is applied.

Activity:A

Resource:X

Activity:C

Resource:Z

Activity:B

Resource:W

Activity:D

Resource:X

Activity:C

Resource:Y

Activity:B

Resource:Y

Type:

II Type:II

Type:II

Type:IIII

Type:IIII

Type:

IIII

Type:

IIII

Type:

II

Activity:A

Resource:X

Activity:D

Resource:X

Activity:C

Resource:Y
Activity:B

Resource:Y

Type:IIII

Type:IIII

Type:IIII Type:IIII

Figure 5.22: Slice and dice by using the filtering condition (Type = II → II).

Figure 5.23 presents an example where a slice and dice operation is performed
over edges and nodes. In this case, two filtering conditions (Type = II → II and
Resource = Y) are applied.

Activity:C

Resource:Z

Activity:B

Resource:W

Activity:D

Resource:X

Type:

II Type:II

Type:II

Type:IIII

Type:IIII

Type:

IIII

Type:

IIII

Type:

II

Type:IIII

Type:IIII

Activity:A

Resource:X

Activity:C

Resource:Y

Activity:B

Resource:Y

Activity:C

Resource:Y
Activity:B

Resource:Y

Figure 5.23: Slide and dice by using the filtering conditions (Type = II → II and Resource = Y).

Top-k Selection restricts the objects in the multidimensional process model by rank-
ing the objects with respect to some given measure that summarize the object.

5.3. Multidimensional Process Analysis 131

Eventually, filtering conditions over the measure may be used to restrict the rank-
ing. Only the first k objects in the ranking are considered in the process model.
The perspective remains the same but less process information is presented. The
top-k selection operation can be performed over either nodes or edges. Figure 5.24
shows an example where a top-k selection is performed over event occurrences.
In this case, the process model is built considering only the top-5 most frequent
event occurrences (i.e., every node representing an event occurrence outside the
top-5 ranking is filtered out).

Activity:A

Resource:X

1000

Activity:C

Resource:Z

900

Activity:B

Resource:W

900

Activity:D

Resource:X

1000

Activity:C

Resource:Y

375

Activity:B

Resource:Y

300

200

300 300

75

300

900700 700

Activity:A

Resource:X

1000

Activity:C

Resource:Z

900

Activity:B

Resource:W

900

Activity:D

Resource:X

1000

Activity:C

Resource:Y

375

200

300

75

300

900700 700

Figure 5.24: Top-k selection by considering the top-5 most frequent event occurrences.

Figure 5.25 presents an example where a top-k selection is performed over depen-
dency relations. In this case, the process model is built considering only the top-5
most frequent dependency relations (i.e., every edge representing a dependency
relation outside the top-5 ranking is filtered out). Remark that, no dependency
relation (or event occurrence) with an equal measure value as another case within
the top-k is discarded. This explains the fact that there are 6 dependency rela-
tions in the resulting model of Figure 5.25.

132 Chapter 5. Process Analysis

Activity:A

Resource:X

1000

Activity:C

Resource:Z

900

Activity:B

Resource:W

900

Activity:D

Resource:X

1000

Activity:C

Resource:Y

375

Activity:B

Resource:Y

300

200

300 300

75

300

900700 700

Activity:A

Resource:X

1000

Activity:C

Resource:Z

900

Activity:B

Resource:W

900

Activity:D

Resource:X

1000

Activity:C

Resource:Y

375

Activity:B

Resource:Y

300

300 300
300

900700 700

Figure 5.25: Top-k selection by considering the top-5 most frequent dependency relations.

5.4 Challenges

In this section, we discuss some challenges and issues related to the discovery and
analysis of business processes using Event Cubes.

5.4.1 Curse of Dimensionality

Multidimensional process models are defined in Subsection 3.2.2. These models are a
generalization of traditional process models in which event occurrences (i.e., group of
process events) as well as their dependency relations can be constrained by multiple
dimensions. Depending on the cardinality of each dimension considered in the model,
the number of event occurrences and/or dependency relations may be significant enough
to turn the process model unreadable. Known as curse of dimensionality, this issue is
even more evident if the process behavior is complex and unpredictable. Figure 5.26
depicts a well-known case of curse of dimensionality in traditional process models, a
spaghetti model.

Spaghetti models are process models characterized by a high number of dependency
relations (and, eventually, activities). Typically representing low-structured processes,
these process models are difficult to analyze once that the process behavior cannot be
clearly characterized by representative sequences of activities. This is a consequence
of the high cardinality of activity relationships (i.e., the pairs of activities that define
the dependency relations).

Spaghetti models can also exist as multidimensional process models. Figure 5.27
shows a multidimensional process model that can be considered as a – multidimensional
– spaghetti model. In this case, the high number of dependency relations is explained
mainly by the cardinality of the dimensions used to characterize the relations.

One possible solution to minimize the impact of the dimensionality is the usage of

5.4. Challenges 133

Figure 5.26: An example of a traditional spaghetti model.

simplified model representations such as the aC-net notation. Simply using two differ-
ent kinds of elements to represent aC-nets (nodes and edges), it is possible to provide
a clear picture of the process without omitting information. Complex relationships
between activities (i.e., the splits and joins patterns) are provided separately. This
representation has proven to be effective specially in low-structured processes [130].

Another strategy to handle the curse of dimensionality issue is the application of
filtering operations on the multidimensional process models. Introduced in Subsec-
tion 5.3.4, filtering operations can decrease the number of objects in the process model
by omitting nodes or edges according to a given criteria. For obvious reasons, fil-
tering is an effective solution for the curse of dimensionality, but it holds two main
disadvantages. First, it may not be easy to define a good filtering criteria, which
may lead to misadjusted results. Second, in order to ensure process behavior consis-
tency, some filtering operations generate the so-called artificial dependency relations.
Since these dependency relations do not occur explicitly in the process data, it is not
possible to compute any measuring information about artificial dependency relations.
Consequently, some of the process behavior cannot be evaluated with regard to some
measure.

An alternative solution – to the ones already considered in this thesis – is proposed in
the Fuzzy Miner approach [47]. Basically, this solution consists of presenting the process
model through multiple abstraction layers. The lowest abstraction layer represents
business process by considering all existing activities and dependency relations (i.e., all
the process behavior). As the abstraction level increases, simpler views of the business
process are provided by

• preserving the process behavior considered significant,

• aggregating closely related elements of the process behavior considered insignifi-
cant as individuals but significant as a group, and

• omitting unrelatable elements of the process behavior considered insignificant.

134 Chapter 5. Process Analysis

Figure 5.27: An example of a multidimensional spaghetti model.

Simplified process models (i.e., the Fuzzy models introduced in [47]) can indeed be
an effective solution for the curse of dimensionality issue. However, this approach is
based on a process notation in which some elements of the process behavior cannot be
characterized (e.g., splits and joins).

5.4.2 Measuring Artificial Dependency Relations

Filtering operations are described in Subsection 5.3.4. These operations can be per-
formed over either event occurrences or dependency relations. Filtering dependency
relations simply consists of removing – from the model – relations that do not satisfy
some specific filtering condition as well as event occurrences that become inactive with-
out the filtered dependency relations. Being more complex than filtering dependency
relations, filtering event occurrences consists of removing – from the model – occur-
rences that do not satisfy some specific filtering condition as well as their dependency
relations. This means that, for ensuring that the original process behavior is repre-
sented in the filtered process model, artificial dependency relations need to be added
to the process model. This can be achieved by replacing the event occurrence bindings,
but there still are some unsolved issues.

Figure 5.28 presents a multidimensional process model from which an event occur-

5.4. Challenges 135

rence is being removed through a filtering operation. Figure 5.28a identifies both event
occurrence and dependency relations to be removed from the model. Figure 5.28b
shows the resulting multidimensional process model after filtering. In both process
models, the numerical information describe the average waiting time between event
occurrences.

Activity:a Activity:d

Activity:b

Activity:c14.9 13.3

13.215.4

(a) The event occurrence (and adjacent dependency relations) to
be omitted.

Activity:a Activity:d

Activity:c14.9 13.3

?

(b) The resulting multidimensional process model after filtering.

Figure 5.28: Another example of filtering nodes from a multidimensional process model.

Generating an artificial dependency relation is based on event occurrence bindings.
For example, the artificial relation in the resulting process model is defined by the only
event occurrence binding of {Activity:b}:(

{ ({Activity : a}, •) } , { ({Activity : d}, •) }
)
,

with • representing a specific workflow constraint that characterize the dependency re-
lations. By using this binding, it is possible to determine that the process behavior de-
scribed by {Activity:b} can be replaced by an artificial dependency relation connecting
{Activity:a} to {Activity:d} and constrained by the workflow constraint represented
by •. However, since artificial dependency relations are not described explicitly in the
process data, the measuring information (in this case, the average waiting time) of this
new artificial relation is not materialized in the Event Cube. Therefore, no measuring
information can be provided for artificial dependency relations.

A potential solution for this issue relies on computing on-the-fly the measuring in-
formation of artificial dependency relations. This means that, after filtering a multidi-
mensional process model, the missing information can be computed using the inverted
index. For most measures, the measuring information can be derived directly using
the sets of event identifiers of the artificial dependency relation. Using the inverted
index, these sets can be easily computed through the event and workflow constraints
that characterize the dependency relation. For measures that rely on the positioning
of process events (e.g., the control-flow measure Direct Successor), the sets of event
identifiers must be first normalized in order to ensure the correct positioning of process
events taking into account the filtered cases.

136 Chapter 5. Process Analysis

Computing on-the-fly of the measuring information of artificial dependency rela-
tions seems to be an effective solution. However, this solution will necessarily have a
negative impact on the performance of the entire framework.

5.4.3 Parameter Selection

The Multidimensional Heuristics Miner is introduced in Subsection 3.3.2. Based on
the well-known Heuristics Miner algorithm, the Multidimensional Heuristics Miner is
a control-flow technique adapted to multidimensional process discovery. As any other
Heuristics Miner-based technique, this technique relies on a set of thresholds as well as
other parameters. All of these parameters allow the user to tune the process models
according to specific interests or requirements.

As demonstrated in Section 5.3.1, several distinct multidimensional process models
can be generated from an Event Cube. These process models can be built on-the-fly by
applying the Multidimensional Heuristics Miner over the cuboids of the Event Cube,
which represent the different perspectives of the same business process. This means
that, for the different process models, there may be the need of parameter tuning in
order to improve the quality of the process models. Even being possible to update
on-the-fly the process models with the different parameter settings, the parameter
selection may be a bottleneck in the discovery and analysis of business processes.

Parameter optimization is a potential solution for this issue. This approach has
been successfully employed in a benchmark in which C-nets can be evaluated [80].
The idea is to assess the best parameter setting by generating and evaluating several
process models. Following the cross-validation strategy, the model evaluation consists
of the parsing of some process instances on a process model. In this approach, not
only positive cases are considered but also artificial negative cases.3 By counting the
process instances and – inputs and outputs – bindings parsed correctly, it is possible
to determine the quality of the process model according to a specific fitness measure.
An overview of fitness measures is provided in [80].

There are some drawbacks in applying the parameter optimization in the Event
Cube materialization process. The first is the need of implementing an effective method
for generating negative cases. Even considering simple methods such as the random
noise injection [132], the generation of negative cases can easily have a significant
impact on the performance of the materialization process. The second main drawback
is the need of assessing a great number of parameter combinations. Although the search
space can be reduced by using heuristics, the parameter setup assessment also affects
negatively the performance of the materialization process.

5.4.4 Process Model Consistency across Perspectives

By performing discovery operations on the Event Cube (Subsection 5.3.3), it is possible
to exploit different perspectives of the business process. This exploitation consists of
discovering the business process by focusing on specific dimensions of interest. This
means that the behavior described in the process data can be analyzed from different
levels of abstraction.

3Positive cases can be described as process instances that describe behavior that occurred in a
business process. On the other hand, negative cases can be defined as process instances that describe
behavior that cannot occur in a business process. Usually, process data do not contain negative cases.

5.4. Challenges 137

The structure of an Event Cube consists of a lattice of cuboids representing the
different process perspectives. Each cuboid organizes the necessary measurements (i.e.,
the control-flow measures introduced in Subsection 5.2.3) to build multidimensional
process models according to specific dimensions of interest. By querying and retrieving
the cuboid’s information, it is possible to discover and analyze the business process from
multiple perspectives. It is imperative that the results of these analyses are consistent.

The process model consistency across perspectives depends directly on the control-
flow algorithm. Since each perspective consists of a partition of the process data,
assuring that the control-flow algorithm generates consistent process models across
perspectives is extremely difficult, if not impossible. This happens due to some rea-
sons. First, different partitions may have distinct characteristics (e.g., data quality
and quantity). Second, the considered control-flow algorithm (i.e., the Multidimen-
sional Heuristics Miner) is not able to mine very particular process behaviors. Third,
the process discovery on the Event Cube follows an unsupervised approach (i.e., the
results are not confirmed to be correct).

Figure 5.29 illustrates an example where a roll-up operation leads to inconsistency
in the results. By removing the dimension Activity from nodes of the two-dimensional
process model (i.e., the model at the top of the figure), it is expected that the one-
dimensional process model over the dimension Type (i.e., the model at the bottom of
the figure) represents the same process behavior. However, this does not happen in
this example once that the Multidimensional Heuristics Miner is not able to mine a
combination of length-one and -two loops such as the one that occurs in the process
model at the bottom of the figure. As a result, the length-two loop cannot be mined
(the dependency relations represented in the figure by the dashed lines).

Activity:A

Type:Complete

1000

Activity:B

Type:Complete

1250

Activity:B

Type:Start

1250

Activity:C

Type:Complete

1000

0.996

0.9990.99920.999

Type:Start

1250

Type:Complete

3250

0.999

Figure 5.29: Example of inconsistency in the results after performing a roll-up operation.

In Figure 5.29, the process model inconsistency exists because the event occurrences
{Type:Start} and {Type:Complete} have no dependency relation between them. Re-
mark that the dependency relations represented by the dashed lines simply identifies
the missing relations in the process model. Hence, the only dependency relations that
are consistently represented in both process models are the one that goes from activities
B to C and the length-two loop.

In order to get a better understanding of the root causes to the process model in-
consistency in Figure 5.29, the mining of the dependency graph is described as follows.

138 Chapter 5. Process Analysis

Let S = {Type:Start} and C = {Type:Complete} be the event occurrences being an-
alyzed. Assuming that there is no noise in the process data, the necessary dependency
measures for mining the dependency graph are calculated as follows.

C ⇒W C =
|C >W C|
|C >W C|+ 1

=
1000

1000 + 1
= 0.999

S ⇒W S =
|S >W S|
|S >W S|+ 1

=
0

0 + 1
= 0

C ⇒W S =
|C >W S| − |S >W C|
|C >W S|+ |S >W C|+ 1

=
1250− 1250

1250 + 1250 + 1
=

0

2501
= 0

S ⇒W C = C ⇒W S = 0

C ⇒2
W S =

|C �W S|+ |S �W C|
|C �W S|+ |S �W C|+ 1

=
1250 + 1250

1250 + 1250 + 1
=

2500

2501
= 0.9996

S ⇒2
W C = C ⇒2

W S = 0.9996

Assuming the thresholds default values (i.e., σD = σL1L = σL2L = 0.9 and σR =
0.05), the multidimensional dependency graph of the one-dimensional process model of
Figure 5.29 is computed as follows. According to Algorithm 4, E = {S,C} is the set of
event occurrences (line 1). Since C ⇒W C ≥ 0.9, D1 = {(C,C)} is the set of length-one
loops (line 2). Although C ⇒2

W S ≥ 0.9, the length-two loop CSC is not added to the
set of length-two loops (D2) because (C,C) ∈ D1. Hence, D2 = ∅ is the set of length-
two loops (line 3). Since S ⇒W C = C ⇒W S = 0, S cannot be considered as cause
or follower of C (and vice-versa). Consequently, Din = Dout = D′′in = D′′out = ∅ (lines
4, 5, 10 and 11), i.e., no further dependency relations are added to the dependency
graph. Finally, the final dependency graph is determined by union of D1, D2, D′′in and
D′′out (line 12). Therefore, as illustrated in Figure 5.29, the length-one loop (C,C) is
the only dependency relation in the dependency graph.

A potential solution for this issue relies on an alternative strategy for performing
process discovery on the Event Cube. Instead of materializing the control-flow measures
for all cuboids of the Event Cube, this is done only for the 1-D cuboid (Activity). Given
a parameter setting, a process model with 1-D nodes over dimension Activity and 0-D
edges is generated from this cuboid. This model is then indexed and used as reference
process model. Rather than considering the characteristics of the process behavior, the
index only takes into account the identifiers that define the dependencies relations in
the reference process model. Hence, given a pair of event occurrences (x,y), it is possible
to determine whether there is a dependency relation from x to y. Being Tx and Ty the
set of event identifiers of x and y, a dependency relation from x to y exists if the index
contains at least one pair of identifiers (a,b), where a ∈ Tx and b ∈ Ty. The dependency
graph of any multidimensional process model can be built by checking the existence of
dependency relations for every possible pair of event occurrences. The event occurrence
bindings of the new process model can be computed using Algorithm 5. Further details
about this solution are provided in Appendix A.

Building multidimensional process models from a reference process model seems
to be an effective solution to ensure process model consistency in the Event Cube.
However, applying this solution in the Event Cube requires not only the implementation

5.5. Summary 139

of an additional index but also the redesign of the Event Cube exploitation processes.
Additionally, further research is still necessary to validate and evaluate the approach.

5.5 Summary

Four components of the multidimensional process discovery approach were discussed
in this chapter.

• ETL (Extraction, Transformation, and Loading) is the process of extracting
process data from their sources, transforming the data according to specific re-
quirements (e.g., deriving process information as described in Subsection 5.2.2),
and indexing the data in an inverted index.

• Inverted index is presented in Subsection 5.2.1 as an indexing technique for
multidimensional datasets. This technique is introduced to facilitate the direct
access to process data characterized by specific constraints.

• Cube processor is described in Subsection 5.2.4 as a materialization process of
an Event Cube.

• Event Cube is introduced in Section 5.2 as a multidimensional data structure
designed to organize summarizing information about different perspectives of a
process described in some given process data. Summarizing information con-
sists of control-flow measures and performance measures. Control-flow measures
facilitate the execution on-the-fly of a control-flow algorithm (e.g., the Multi-
dimensional Heuristics Miner) on a specific business perspective. Performance
measures can be used to enhance the multidimensional process model with mea-
suring information.

All components described above are implemented as ProM 6 plugins, or objects that
can be executed in the ProM framework [123, 125].

Answering research questions q3 and q4, dynamic multidimensional process discov-
ery and analysis (cf. Section 5.3) can be achieved by exploiting an Event Cube. This
exploitation can provide insight into different perspectives of the business process. By
integrating the organization, time, and data perspectives into the control-flow one, dy-
namic multidimensional process discovery and analysis can provide the same kind of
knowledge as those process discovery perspectives, but in an integrated environment,
on-the-fly, and at different levels of abstraction.

Chapter 6

Process Patterns

In this chapter, we present some possible non-trivial patterns that can be automatically
extracted from a multidimensional process model. Designated as process patterns, these
patterns can be used to gain further insight into the business process. Process patterns
can be extracted by applying common data mining functionalities such as [40]:

Summarization: These functions describe the cases by providing a more compact
description of their characteristics. For example, calculating the average value of
a customer order.

Deviation Analysis: These functions detect significant changes in the data (e.g.,
outliers). For example, detecting fraud based on unusual call behaviors.

Rule Learning: These functions search for significant dependencies between vari-
ables. For example, determining which products are frequently bought together.

Classification: These functions map a case to one of several predefined classes. For
example, the classification of an e-mail as legitimate or spam.

Clustering: These functions describe the cases by grouping them into a finite set of
categories or clusters according to their similarity. For example, finding customer
groups with similar behavior.

For further details and an overview of data mining applications see [50].
Figure 6.1 positions this chapter with respect to the multidimensional process dis-

covery approach. In the next sections, we firstly identify the different types of patterns
that can be extracted from a multidimensional process model. Then, we characterize
the main data mining functionalities, discussing how those functionalities may be ap-
plied for extracting process patterns from a multidimensional process model. Finally,
we introduce some possible data mining-based techniques for extracting process pat-
terns. Remark that these techniques should be seen as examples of the application of
common data mining functionalities. Other techniques not considered in this thesis
may be used for extracting of process patterns as well.

142 Chapter 6. Process Patterns

Event Cube

Multidimensional
Heuristics Miner

Process
Data

Inverted
Index

Flexible
Heuristics Miner

10101010101010
10101011101010
11101010101010
1010101010

Process
Patterns

Process Pattern
Miners

ETL Cube
Processor

01

Augmented
Causal Net

Multidimensional
Causal Net

Figure 6.1: Positioning of Chapter 6 with respect to the multidimensional process discovery approach.

6.1 Pattern Characterization

A pattern derived from a multidimensional process model is called process pattern, and
is defined by the following definition.

A process pattern consists of a set of process instances, event occurrences
or dependency relations in which all the members are related to each other
by a specific rule.

There are three types of process patterns:

• Event based-patterns are process patterns formed by event occurrences.
Focusing on the execution of process events, this type of pattern identifies non-
trivial relationships among event occurrences such as the set of process events
that are frequently executed together.

• Flow based-patterns are process patterns formed by dependency relations
or event occurrence bindings. This type of process pattern focuses on the
execution relationships of process events described in the process model, providing
thus insight into how the events are executed. An example of a flow-based pattern
is given by following rule: for a specific product, a failed attempt of a simple repair
leads always to the execution of a complex repair.

• Instance based-patterns are process patterns formed by process instances.
Rather than process events or their relationships, this type of process pattern
focuses on the execution of process cases, from when the case starts (first process
event) till it ends (last process event). Hence, instance-based patterns provide
insight into the sequences of process events that define the process instances. An
example of an instance-based pattern is given by the following rule: the average
throughput time of a specific case of repair process is 25% higher than the average
throughput time of all cases of repair process.

6.2. Pattern Extraction 143

6.2 Pattern Extraction

The extraction of process patterns is model-driven. Hence, taking a multidimensional
process model as reference, different types of process patterns (i.e., instance, event, and
flow based-patterns) can be can be discovered by applying data mining functionalities.
In this section, we describe how these functionalities can be used in the business process
context. The main data mining functionalities are considered: (i) summarization, (ii)
deviation analysis, (iii) rule learning, (iv) classification, and (v) clustering.

6.2.1 Summarization

The summarization is the most straightforward function to be applied on process data.
By making use of the locations where process instances, event occurrences and depen-
dency relations appear in the process data (i.e., the identifiers), it is possible to compute
specific measures for analysis such as frequency or average throughput time. Consid-
ering the different multidimensional process model’s objects, there are three kinds of
summarization: instance based-summarization, event based-summarization, and flow
based-summarization.

Instance based-summarization is defined to describe specific characteristics of pro-
cess instances. This is achieved by computing instance-based measures on sets of
process instance identifiers that locate where the process instances appear in the
process data.

Event based-summarization is defined to describe specific characteristics of event
occurrences. This is achieved by computing event-based measures on sets of event
identifiers that locate where the event occurrences appear in the process data.

Flow based-summarization is defined to describe specific characteristics of depen-
dency relations or event occurrence bindings. This is achieved by computing
workflow-based measures on sets of event identifiers that locate where the depen-
dency relations appear in the process data.

6.2.2 Deviation Analysis

Since process instances, event occurrences and dependency relations do not explicitly
hold any numerical information, the deviation analysis needs to be combined with
– numerical – summarization. By making use of the summarization outcome, this
function computes a deviation measure (e.g., the standard score) that describes how
much the case deviates from the average. Then, by applying threshold values, it is
possible to identify – and eventually filter – the significantly deviated cases.

Considering the standard score (Z-Score) as deviation measure, the deviation anal-
ysis function can be defined as follows.

Definition 6.1 (Deviation Analysis Function) Let X be a set of multidimensional
process model’s objects, x ∈ X the object in analysis, and fsum(x) the summarization
function for x. The deviation analysis function is defined as follows

fdev(x) =
fsum(x)− µ

σ
, (6.1)

where µ and σ are the arithmetic mean and standard deviation of all objects in X.

144 Chapter 6. Process Patterns

The object x is considered significantly deviated (or outlier) if |fdev(x)| ≥ τdev, with
τdev being a given threshold value.

A potential application of the deviation analysis function is the identification of
process instances (or process events) that deviate significantly from the average in terms
of a given measure of interest (e.g., throughput time or execution cost). Table 6.1 shows
an example in which process instances are evaluated with respect to their standard
scores for a generic measure of interest. All process instances with standard score
absolute value greater than 3.0 (i.e., |fdev(ix)| ≥ 3.0) are considered as outliers.

Process Instance Measure Standard Score
ix fsum(ix) fdev(ix)

i1 150 1.3
i2 130 0.0
i3 125 -0.3
...
in 5 -8.3

µ = 130.0 τdev = 3.0
σ = 15.0

Table 6.1: Identifying significantly deviated process instances.

6.2.3 Rule Learning

Unlike the deviation analysis, the rule learning does not necessarily rely on summariza-
tion. Using the process instances as reference, the rule learning function determines
non-trivial relationships between process instances, event occurrences, or dependency
relations. These relationships are expressed as rules under different forms. Frequent
itemsets (groups of event occurrences or dependency relations) and subsequences, as-
sociation rules, and gradient relationships are common forms of rules produced by this
function.

Frequent itemsets and subsequences

Frequent itemsets are process patterns that express that a group of event occurrences
or dependency relations appear frequently together in a process instance. Similarly,
frequent subsequences are process patterns that focus on sequences of event occur-
rences or dependency relations instead of individual objects. As an example, let us
consider the product repair process depicted by the multidimensional process model
in Figure 6.2. The set of event occurrences {Register,Analyze, Test, Close} is a pos-
sible frequent itemset. The sequence of dependency relations Register → Analyse →
Simple Repair → Test (for the solid line dependencies) is a possible frequent subse-
quence.

Definition 6.2 (Frequent Itemset (or Subsequence)) An itemset (or subse-
quence) I is frequent if the support of I is greater or equal than a given minimum
support threshold τsup (i.e., support(I) ≥ τsup).

6.2. Pattern Extraction 145

Register Analyze

Complex

Repair

Simple

Repair

Test Close
Restart

Repair

Figure 6.2: Repair process by product type (as workflow constraint).

Depending on the minimum support threshold, the generated amount of itemsets
may be excessive. This happens because an itemset property that states that all
nonempty subsets of a frequent itemset must also be frequent. This is known as Apriori
property and implies that the support of all subsets of a specific itemset I is greater
or equal than the support of I. For example, a frequent itemset X = {x1, ..., x10} of
length 10 can be decomposed in 210− 2 = 1022 frequent sub-itemsets (i.e., 10 frequent
sub-itemsets of length 1, 45 frequent sub-itemsets of length 2, ..., and 10 frequent sub-
itemsets of length 9). A simple solution for this is achieved by introducing some extra
itemset properties. Basically, the idea of these extra properties aims at the selection
of representative itemsets.

Definition 6.3 (Itemset Properties) An itemset I can be characterized by the fol-
lowing properties:

• Apriori: The support of the itemset I is greater or equal than the support of all
of its super-itemsets.1

• Parent Itemset: The itemset I is a parent of the itemset J if J ⊂ I and
|I \ J | = 1.

• Closed Itemset: The itemset I is closed if I does not have any parent itemset
J such that both I and J have the same support.

• Closed Frequent Itemset: The itemset I is a closed frequent itemset if I is
both closed and frequent.

• Maximal Frequent Itemset: The itemset I is a maximal frequent itemset if
I is frequent and there is no other frequent itemset J such that I ⊂ J .

Remark that the itemset properties also apply to subsequences.

The Apriori property can be used to reduce the search space in the generation
of frequent itemsets (or subsequences). This means that if an itemset I is not fre-
quent then every super-itemset of I is also not frequent (i.e., the Apriori property is
anti-monotone). Therefore, the process of finding frequent itemsets starts with the
generation of single-element itemsets. Then, after discarding all non-frequent itemsets,
two-element itemsets are generated by combining pairs of single-element frequent item-
sets. The process of generating frequent itemsets one element bigger repeats until no
further itemsets can be generated. Note that every itemset is discarded after its gen-
eration if it is considered non-frequent. This process follows the candidate generation
approach for finding frequent itemsets and is based on the Apriori algorithm [7]. The
pseudo-code for this algorithm and its related functions is provided in Algorithm 8.

1J is a super-itemset of I if I ⊂ J .

146 Chapter 6. Process Patterns

Algorithm 8: Apriori

Input : an hashmap map = [(i1 7→ T1), ..., (in 7→ Tn)] in which each entry maps
the item ix to the set of identifiers Tx, and the minimum support
threshold.

Output: The frequent itemsets in map.

Step 1
L1 ⇐ ∅;
foreach (item 7→ TIDs) in map do

support ⇐ count(TIDs);
if support ≥ threshold then add {item} to L1;

end
return L1 ∪ execute Step 2;

Step n
Ln ⇐ ∅;
candidates ⇐ generateCandidates(Ln−1);
foreach itemset i ∈ candidates do

support ⇐ count(
⋂
x∈imap.get(x));

if support ≥ threshold then add {i} to Ln;

end
if Ln 6= ∅ then return Ln ∪ execute Step n+ 1;

function generateCandidates(L)
newCandidates⇐ ∅;
knownItemsets⇐ [];
foreach itemset i ∈ L do

foreach itemset j in knownItemsets do
candidate⇐ i ∪ j;
if candidate is parent of i and j then add candidate to newCandidates;

end
add i to knownItemsets;

end
return newCandidates;

Association rules

Based on frequent itemsets (or subsequences), association rules are process patterns
that state that two – nonempty – groups of event occurrences or dependency relations
are associated in terms of appearance in the same process instances. For example,
considering again the product repair process in Figure 6.2, the set of event occurrences
{Test} is associated with the sets {Simple Repair} and {Complex Repair}. The
association should be read as “if a repair is executed then a test is also executed”.

Definition 6.4 (Association Rule) An association rule (A ⇒ B) expresses that a
nonempty itemset A implies the appearance of another nonempty itemset B, with some
support (probability) and confidence. Being A = {a1, ..., an} and B = {b1, ..., bm}, an
association rule should be read as “ if a1 and ... and an then b1 and ... and bm”.

6.2. Pattern Extraction 147

Remark that the same logic applies to subsequences.

The process of building association rules relies on frequent itemsets (or subse-
quences). Hence, before this process starts, the Apriori algorithm needs to be executed
in order to find all frequent itemsets. Then, each itemset is decomposed in all possible
nonempty subsets. Each of these subsets will form the head of the rule (i.e., the item-
set that implies the appearance of another itemset). The remaining part of the rule is
formed by the substraction of the original itemset and the head of the rule. Finally,
when a rule is built, some measurements are computed in order to quantify the rule
interestingness. Eventually, the rule is discarded if it is considered not interesting (or
relevant).

There are two basic measures of rule interestingness: support and confidence. The
support of a rule (A ⇒ B) consists of the support of the itemset (or subsequence)
from which the rule was generated (i.e., the itemset A ∪ B). The confidence of a rule
(A⇒ B) consists of the ratio of the number of process instances where both A and B
appear to that where simply A appears.

support(A⇒ B) = P (A ∪B) (6.2)

confidence(A⇒ B) = P (A|B) =
support(A ∪B)

support(A)
(6.3)

Support and confidence are often used to quantify the significance and accuracy of
a given rule. However, by simply using these two measures, the amount of generated
rules may be excessive. Additionally, some of these rules may not be relevant or add
new information. Therefore, we introduce the lift, a measure that takes into account
the correlation between the itemsets that define the rule (i.e., the correlation between
A and B in (A⇒ B)). The lift of a rule (A⇒ B) consists of the ratio of the number
of process instances where both A and B appear to that if A and B were independent.
Hence, if the lift value is 1 then A and B are independent. A lift value greater than 1
indicates that A and B are positively correlated.

lift(A⇒ B) =
P (A ∪B)

P (A)× P (B)
(6.4)

For an overview of measures of interestingness for association rules see [105].

The process of building association rules is summarized as follows:

0. Generate the frequent itemsets.

1. For each frequent itemset i, generate all nonempty subsets of i.

2. For every nonempty subset j of i, build the rule (A ⇒ B) with A = j and
B = i− j.

3. Return all the rules (A⇒ B) that satisfy all of the following conditions:

• support(A⇒ B) ≥ τsup, with τsup being a given minimum support threshold

• confidence(A ⇒ B) ≥ τconf , with τconf being a given minimum confidence
threshold

• lift(A⇒ B) ≥ 1.0

148 Chapter 6. Process Patterns

Gradient rules

From OLAP Mining, gradient rules are process patterns that identify changes of com-
plex measures in multidimensional process models. This kind of process pattern can be
seen as a generalization of association rules once that it handles other measurements be-
sides the frequency. Basically, gradient rules show the differences between comparable
multidimensional objects with respect to a specific measure of interest. Multidimen-
sional objects can be process instances, event occurrences, dependency relations, or
event occurrence bindings.

Definition 6.5 (Multidimensional Relationships) Let A and B be multidimen-
sional objects of the same type (i.e., process instances, event occurrences, or depen-
dency relations), characterized by the dimension values DA = {a1, ..., an} and DB =
{b1, ..., bm}, with DA, DB ∈ D. The objects are

• Parent/Child if DX ⊂ DY and |DY | − |DX | = 1, with X,Y ∈ {A,B} and Y
being parent of X;

• Siblings if |DA| = |DB | and |DA ∪DB | − |DA| = 1.

A and B are comparable if they are siblings or one is parent of the other.

Definition 6.6 (Gradient Rule) Let A and B be multidimensional objects of the
same type that can be compared (cf. Definition 6.5). A gradient rule (A �f B) = α
states that f(A) is α times higher than f(B), and is defined as follows:

(A �f B) =
f(A)

f(B)
, (6.5)

where f : Object→ R is a summarization function.

In order to demonstrate how gradient rules are computed, we use an illustrative
example where some gradient rules on event occurrences are computed. Table 6.2
describes a list of six events occurrences measured by average execution time. Note
that these event occurrences are characterized by three dimensions: Activity, Product,
and Resource.

Event Occurrence Execution Time

E1 {Activity:Analyze, Product:X,Resource:Peter} 5.75 min
E2 {Activity:Analyze, Product:Y,Resource:John} 6.5 min
E3 {Activity:Repair, Product:Y,Resource:John} 9.3 min
E4 {Activity:Repair, Product:Y,Resource:Peter} 9.45 min
E5 {Activity:Repair, Product:X,Resource:Peter} 11.1 min
E6 {Activity:Repair, Product:X,Resource:John} 12.5 min

Table 6.2: List of six event occurrences measured by their average execution times.

Let us take the event occurrence E6 as reference for computing all possible gra-
dient rules from Table 6.2 (i.e., all possible (E6 �f ix) or (ix �f E6) values where
function f measures the average execution time of an event occurrence). According to
Definition 6.5, E1, E2, and E4 cannot be compared to E6 because

• |DE6
∪DE1

| − |DE6
| = 5− 3 6= 1,

• |DE6
∪DE2

| − |DE6
| = 5− 3 6= 1, and

6.2. Pattern Extraction 149

• |DE6
∪DE4

| − |DE6
| = 5− 3 6= 1.

All the other event occurrences can be compared to E6. Hence, one possible gradient
rule is (E6 �f E3) = 12.5/9.3 = 1.34, which means that the average throughput time of
E6 is 1.34 times higher than the average execution time of E3. Remark that E6 may also
form a gradient rule with a event occurrence in a higher level of abstraction (e.g., the
event occurrences {Activity:Repair, Product:X}, {Activity:Repair,Resource:John},
and {Product:X,Resource:John}).

One of the issues of computing gradient rules is the curse of dimensionality (see Sec-
tion 5.4). Hence, in order to reduce the search space, a gradient-based cubing strategy
to evaluate interesting gradient regions in multidimensional spaces is considered. In-
troduced in [9], this strategy consists of partitioning the search space into two distinct
regions. On the one hand, the positive region holds every case with measure value
greater or equal than the average of measure values of all cases in the dataset. On
the other hand, the negative region holds all the cases that do not fit in the positive
region. Using some statistics for the different dimensions, gradient rules can then be
incrementally generated by selecting pairs of cases from opposite regions.

The process of computing the top-k gradient rules from a dataset of multidimen-
sional objects can be described as follows.

1. Compute the measure value of every object in the dataset using a given function
f : Object→ R.

2. Create two regions of objects. The first, the positive region, consists of all objects
with measure value greater or equal than the average of measure values of the
entire dataset. The second, the negative region, holds the objects that do not fit
in the other region.

3. For each region

(a) Determine all the distinct dimension values characterizing the objects in the
region.

(b) For each distinct dimension value x, compute binx = [min;max]: the min-
imum and maximum measure values of the objects characterized by the
dimension value.

4. Compute all possible pairs of dimension values (x, y), ordering them by the
interval difference of the intersection of binx and biny. The intersection of
binx = [x1;x2] and biny = [y1; y2] is defined by binx∩y = binx ∩ biny =
[min(x1, y1);max(x2, y2)].

5. For each pair of dimension values (x, y) (considering the ordering determined in
the previous line)

(a) Stop if max/min is not greater than the magnitude of the current kth gra-
dient rule, where [min,max] = binx∩y.

(b) Compute all possible gradients rules (A �f B), where B and A are any
objects characterized by x and y.

(c) Update the list of top-k gradient rules with the computed gradients.

6. Return the computed gradient rules.

150 Chapter 6. Process Patterns

6.2.4 Classification

Like the rule learning, the classification does not necessarily rely on summarization.
Working on a multidimensional process model, the classification function finds rela-
tionships that characterizes and discriminates specific aspects described in the model.
Depending on the classification approach, these relationships can be expressed as deci-
sion trees, business rules, neural networks, etc. In this characterization of classification
functions, we will focus on one of the most common classifier techniques: the decision
tree induction.

Decision trees

Decision tree induction is one of the most common classifier techniques and basically
consists of learning of decision trees from a training dataset (i.e., a set of cases that can
be used to train a classifier). A decision tree is a flowchart-like structure consisting of
three types of objects: internal nodes (or simply nodes), branches, and leaf nodes (or
simply leaves). Each node represents a test (or decision) on a specific characteristic,
each branch identifies the outcome of the test, and each leaf defines the target value for
the business rule. The root node is the topmost node (or leaf) of the tree. Figure 6.3d
shows an example of a decision tree where nodes (tests) are represented by rounded
rectangles, while circles represent the leaves (target values).

The business rules represented by a decision tree are process patterns that charac-
terize specific process behavior or decision. The idea is that specific process behavior
(or decision) in a multidimensional process model may be explained by information
external to the model (i.e., instance- or event-based data not taken into account in the
process model but available in the data). For example, considering the product repair
process in Figure 6.3a, the choice of type of repair to be performed after the event
Analyze can be explained by the rule: “if the product type is X or the estimated
repair time is 30 minutes then execute Simple Repair else execute Complex Repair”.
Note that information about the product type and the estimated repair time is available
in the process data, but it is not considered in the process model.

Let us use the example from Figure 6.3 to introduce the process of learning a
decision tree. As mentioned before, this process relies on training dataset to generate
the business rules that form the decision tree. This dataset must contain information
about the case’s characteristics and the case’s target value (or class). In this example, a
case consists of the process behavior after the event Analyze, which means that we are
interested in knowing in what the choice of type of repair is based upon. By using the
binding information of event Analyze (Figure 6.3b), it is possible to determine which
process instances support each of the choices. Hence, the different event occurrence
bindings (m1 and m2) can be used as classes. The case’s characteristics can be retrieved
from the index by using the process instance identifiers of the bindings. Figure 6.3c
shows the training dataset where there are two characterization attributes and the
class. Figure 6.3d depicts the result of applying this process on the training dataset
(i.e., the decision tree).

The process of learning a decision tree is based on a top-down approach in which
the training dataset is recursively partitioned. In each step of this process, either a
node or a leaf of the tree is generated. On the one hand, a leaf is generated if (i)
the partition only contains one class, (ii) there are no characterization attributes to be
exploited, or (iii) the size of the partition is smaller than a given minimum support

6.2. Pattern Extraction 151

Register Analyze

Complex

Repair

Simple

Repair

Test Close
Restart

Repair

(a) Repair Process.

Binding Inputs Outputs Frequency

Simple Complex
Register Repair Repair

m1 • 7→ • 550
m2 • 7→ • 350

(b) Event Occurrence Bindings of Analyze.

Estimated Class:
Product Repair Time Binding

X 30m m1

X 1h m1

Y 30m m1

Y 1h m2

Y 2h m2

(c) Training data.

Product?

m1

m2

X

Estimated

Repair Time?

Y

m1 m2

30m 2h1h

(d) Decision Tree.

Figure 6.3: Induction of a decision tree on event occurrence bindings.

threshold. On the other hand, if none of the previous conditions is satisfied, a node
is generated to describe an attribute test condition. The selection of this attribute is
based on the concept of entropy used in information theory [101].2 Two entropy-based
measures are considered:

• Information gain quantifies the amount of information gained by partitioning a
dataset according to the values of a specific attribute. The attribute with highest
information gain is the one that needs less information to classify the cases in the
dataset, i.e., the one that provides the best partitioning of the dataset where the
randomness (or “impurity”) is minimized. The information gain of the attribute
A (Gain(A)) is given by the difference of the expected information needed to clas-
sify a case in the dataset D (Info(D)) and that on A (InfoA(D)). An illustrative
example of the information gain computation is provided in Subsection 6.3.4.

2Remark that entropy-based attribute selection cannot be performed on continuous-valued at-
tributes. Discretization techniques may be used to overcome this issue. Further details about these
can be found in [68].

152 Chapter 6. Process Patterns

Info(D) = −
n∑
i=1

|Ci|
|D|
× log2(

|Ci|
|D|

) (6.6)

InfoA(D) =

n∑
i=1

|Di|
|D|
× Info(Di) (6.7)

Gain(A) = Info(D)− InfoA(D) (6.8)

• Gain ratio normalizes the information gain in order to overcome its bias toward
attributes with many values. This normalization process relies on an analo-
gous value to Info(D), the split information. The gain ratio of the attribute A
(GainRatio(A)) is given by the ratio of the information gain of the attribute
A (Gain(A)) to the potential information generated by partitioning the dataset
D on A (SplitInfoA(D)). The attribute with highest gain ratio is the one that
provides the best partitioning of the dataset. An illustrative example of the gain
ratio computation is provided in Subsection 6.3.4.

SplitInfoA(D) = −
n∑
i=1

|Di|
|D|
× log2(

|Di|
|D|

) (6.9)

GainRatio(A) =
Gain(A)

SplitInfo(A)
(6.10)

A new partition of the dataset is generated on the selected attribute. This means
that the data is partitioned according to the different attribute values. A subtree is
generated by recursively applying this learning process on each generated partition and
considering the remaining characterization attributes (i.e., the ones not selected yet).
The induction of a decision tree using information gain is based on the ID3 algorithm
[89]. As an improved version of the ID3, the C4.5 algorithm [90] relies on the gain ratio
to generate a decision tree. The pseudo-code for the C4.5 algorithm and its related
functions is provided in Algorithm 9.

6.2.5 Clustering

Like other data mining functions, the clustering does not necessarily rely on summa-
rization. Working on a multidimensional process model, the clustering function groups
objects (elements) of the process model according to their similarity. A group of objects
is designated as cluster and comprises objects with common characteristics. Eventu-
ally, summarization functions are applied on clusters for characterization. For instance,
the average throughput time of a specific cluster of process instances.

There are two main clustering methods:

Partitioning methods distribute the objects by a user-specified number of clusters
(K). Clusters are typically represented by a centroid that provides the summary
description of all objects in the cluster.

Hierarchical methods generate a hierarchy of clusters in which the objects are dis-
tributed from a single cluster comprising all objects to several one-object clusters.
Two different approaches can be considered:

6.2. Pattern Extraction 153

Algorithm 9: Decision Tree Generation

Input : The training dataset, the set of characterization attributes, and the
minimum support threshold.

Output: A decision tree.

GenerateDecisionTree(dataset,attributes)
tree⇐ new node;
if C is the only class in dataset then

label tree with the class C;
return tree as a leaf node;

end
if attributes = ∅ ∨ size of dataset < threshold then

label tree with the most predominant class in dataset;
return tree as a leaf node;

end
A⇐ attributeSelection(dataset,attributes);
label tree with A;
remove A from attributes;
foreach value a of attribute A do
subset⇐ the selection of entries in dataset satisfying the condition A = a;
subtree⇐ the outcome of GenerateDecisionTree(subset,attributes);
attach subtree to tree;

end
return tree;

function attributeSelection(dataset,attributes)
bestAttribute⇐ null;
GainRatiobestAttribute ⇐ 0;

Info ⇐ −
∑n
i=1

|Ci|
|dataset| × log2(|Ci|

|dataset|);

foreach attribute A ∈ attributes do

InfoA ⇐
∑n
i=1

|Di|
|dataset| × Info(Di);

GainA ⇐ Info − InfoA;

SplitInfoA ⇐ −
∑n
i=1

|Di|
|dataset| × log2(|Di|

|dataset|);

GainRatioA ⇐ GainA

SplitInfoA
;

if GainRatioA > GainRatiobestAttribute then
GainRatiobestAttribute ⇐ GainRatioA;
bestAttribute⇐ A;

end

end
return bestAttribute;

• The agglomerative approach starts by considering every object as a cluster
and then successively merges the two most similar clusters until only one
cluster remains.

• The divisive approach starts by considering all objects as a single cluster and

154 Chapter 6. Process Patterns

then successively splits a cluster until all clusters consist of a single object.

Note that an object is a cluster that contains one of more process instances, event
occurrences, dependency relations, or event occurrence bindings.

Either partitioning or hierarchical methods can be considered to group elements of
multidimensional process models. Since the hierarchical methods provide more com-
prehensive results, we will focus this characterization of clustering functions on this
type of clustering method. Further details about agglomerative hierarchical clustering
are provided next.

Agglomerative Hierarchical Clustering

Clusters are process patterns that group similar process instances, event occurrences,
dependency relations, or event occurrence bindings. For example, the process instances
from which a multidimensional process model is built can be grouped into clusters. By
merging the most similar clusters one by one, it is possible to create an hierarchy that
explains the decomposition of the model into its subparts. More details of this example
are provided in Subsection 6.3.5.

The process of clustering multidimensional process model’s objects is summarized
as follows.

1. Assume that every object is a different cluster.

2. Compute the similarity matrix, i.e., the similarity value for every pair of clusters.

3. repeat

(a) Merge the two most similar clusters.

(b) Update the similarity matrix with the similarity of the new cluster and the
other clusters.

4. until only one cluster remains

Computing and maintaining the similarity matrix are the key operations of the clus-
tering function. Relying on the similarity measurements presented in Chapter 4, these
operations quantify how similar a specific cluster is to all of the other clusters.

6.3 Extraction of Process Patterns

Considering the data mining functionalities characterized in the previous section, some
possible approaches for process pattern extraction are introduced next.

6.3.1 Frequent Event Sets

Frequent event sets are process patterns that identify the event occurrences that are
frequently executed together in a process instance. These patterns are particularly use-
ful to identify dependencies among process events, which may not be explicitly shown
in the process model. A potential application of these patterns is the identification
of independent sub-processes. For instance, taking the process model in Figure 6.4 as
reference, it is possible to split the process into two distinct sub-processes. Another ap-
plication of these patterns is the identification of long-distance dependencies. Further
information about these dependencies is provided later in this subsection.

6.3. Extraction of Process Patterns 155

A GD

B

C

E

F

Figure 6.4: A C-net describing a process with parallel behavior.

Process Instance Frequency

1 〈ABCDEG〉 350
2 〈ABCDFG〉 300
3 〈ACBDEG〉 225
4 〈ACBDFG〉 275

Table 6.3: List of all possible process instances that fit in the process of the Figure 6.4.

The frequent event sets of a multidimensional process model can be computed by
simply applying the Apriori algorithm presented in Subsection 6.2.3. Table 6.4 presents
an explanatory example of the computation of frequent event sets from Table 6.3. Let
us assume that there is an index on Table 6.3, and it is possible to identify the exact
locations where each event occurrence appears in the process data (i.e., the event
occurrences’ identifiers). Remark that, for simplicity reasons, events A,B, and C will
not be taken into consideration. Considering a minimum support threshold of 50%,
the computation process is executed as follows:

1. The first step consists of the identification of distinct event occurrences. Ev-
ery event occurrence is considered as a single-element event set and, by using
the occurrence’s identifiers, its support is computed. The outcome of this step
is summarized in Table 6.4a. Remark that all event sets satisfy the minimum
support threshold.

2. In the second step, the one-element event sets of Table 6.4a are combined into two-
element sets. As in the previous step, the supports are computed for every event
set. This can be achieved by calculating the intersection of sets of identifiers from
the different event occurrences in the event set. Table 6.4b shows all possible two-
element event sets and their supports. Remark that the event set {E,G} does not
satisfy the minimum support threshold. Therefore, this event set is considered
as non-frequent and excluded from computation.

3. In the third step, the two-element event sets of Table 6.4b are combined into
three-element sets (Table 6.4c). This means that there are cases that cannot be
combined because the resulting event set would have more than three elements
(e.g., |{D,E} ∪ {F,G}| = 4). These cases should not taken into account once
that they will be eventually considered in a further step. As in the previous step,
the support calculation is performed by intersecting sets of identifiers. Remark
that the event sets {D,E, F} and {E,F,G} will also be discarded because they
not satisfy the minimum support threshold.

156 Chapter 6. Process Patterns

4. The fourth step is analogous to the third one. Four-element event sets are gen-
erated from the ones in Table 6.4c. The only possible four-element event set
is described in Table 6.4d. Remark that this is a non-frequent event set. The
computation is stopped in this step once that there are no further event sets to
be combined.

5. All the frequent event sets found in the four steps of the computation process
are described in Table 6.4e. However, some of these event sets are redundant
once that do not bring any new knowledge. For instance, the event set {D,G}
provides the same and further information than both {D} and {G}. Therefore,
only maximal frequent event sets (see Definition 6.3) should be considered in the
final results. Eventually, in order to provide results with higher supports, closed
frequent event sets can also be taken into account. Table 6.4f shows the final
frequent event sets. {D,E,G} and {D,F,G} are maximal frequent event sets,
while {D,G} is a closed frequent event set.

Event Set Support

{D} 100%
{E} 50%
{F} 50%
{G} 100%

(a) Step 1.

Event Set Support

{D,G} 100%
{D,E} 50%
{D,F} 50%
{E,F} 0%
{E,G} 50%
{F,G} 50%

(b) Step 2.

Event Set Support

{D,E,G} 50%
{D,F,G} 50%
{D,E, F} 0%
{E,F,G} 0%

(c) Step 3.

Event Set Support

{D,E, F,G} 0%

(d) Step 4.

Frequent Event Sets Support

{D,G} 100%
{D}{G} 100%

{D,E,G}{D,F,G} 50%
{D,E}{D,F}{E,G}{F,G} 50%

{E}{F} 50%

(e) All frequent event sets.

Frequent Event Sets Support

{D,G} 100%
{D,E,G}{D,F,G} 50%

(f) Final frequent event sets.

Table 6.4: Finding frequent event sets.

Long-Distance Dependencies

Introduced in Subsection 3.3.1 (p. 71), long-distance dependencies indicate cases where
an activity depends indirectly on another activity to be executed. For traditional pro-
cess models (C-nets), a solution for this issue is given in Algorithm 3. Nonetheless, an
alternative solution can be achieved by using frequent patterns such as frequent activ-
ity sets (i.e., the activities that are frequently executed together in a process instance).

6.3. Extraction of Process Patterns 157

For multidimensional process models (e.g., mC-nets), a similar process pattern-based
solution can be achieved by using frequent event sets.

By transforming frequent event sets into association rules, it is possible to identify
dependencies among process events. Instead of indicating that an event depends indi-
rectly on another event to be executed, these association rules indicate that an event
depends directly or indirectly on a non-empty set of events to be executed. Long-
distance dependencies can be found by filtering out the association rules describing
direct dependencies as well as other uninteresting dependencies (e.g., the dependencies
between start and end events).

6.3.2 Event Gradients

Event gradients are process patterns that identify changes of measures in the event oc-
currences of a multidimensional process model. These patterns are particularly useful
to compare automatically the performance of event occurrences. For instance, con-
sidering the event occurrences described in Table 6.5, it is possible to evaluate the
performance of activities and resources in terms of execution time.

Event Occurrence Execution Time

A {Activity:Register,Resource:Mary} 3.15 min
B {Activity:Analyze,Resource:Peter} 6.5 min
C {Activity:Analyze,Resource:John} 5.75 min
D {Activity:Repair,Resource:John} 8.3 min
E {Activity:Repair,Resource:Peter} 8.65 min
F {Activity:Test, Resource:Peter} 3.1 min
G {Activity:Test, Resource:John} 2.65 min
H {Activity:Archive,Resource:Mary} 3.9 min

Table 6.5: List of eight event occurrences measured by their average execution times.

Computing the top-k event gradients follows the strategy presented in Subsec-
tion 6.2.3. Taking the example of the Table 6.5 as reference, the computation of
the top-3 gradient rules is described as follows.

1. In the first step, the measure values of every event occurrence are computed
using a specific summarization function f . In this example, the measure values
are given in Table 6.5.

2. The second step consists of creating the positive and negative regions. Consider-
ing that the average of measure values of the entire dataset is 5.25, the regions
are defined as:

R+ : The event occurrences in the positive region are: B, C, D, and E.

R− : The event occurrences in the negative region are: A, F , G, and H.

3. In the third step, the bins for every dimension value characterizing the event
occurrences in the regions are computed.

R+ : The dimension values in the positive region are: Analyze, Repair, Peter,
and John. The corresponding bins are:

• bin+Analyze = [5.75; 6.5]

158 Chapter 6. Process Patterns

• bin+Repair = [8.3; 8.65]

• bin+Peter = [6.5; 8.65]

• bin+John = [5.75; 8.3]

R− : The dimension values in the negative region are: Register, Test, Archive,
Mary, Peter, and John. The corresponding bins are:

• bin−Register = [3.15; 3.15]

• bin−Test = [2.65; 3.1]

• bin−Archive = [3.9; 3.9]

• bin−Mary = [3.15; 3.9]

• bin−Peter = [3.1; 3.1]

• bin−John = [2.65; 2.65]

4. The fourth step consists of computing all combinations of bins, ordering them by
the interval difference of their intersection. The top-5 combinations of bins are:

• bin−Test ∩ bin
+
Repair = [2.65; 8.65]

• bin−Test ∩ bin
+
Peter = [2.65; 8.65]

• bin−John ∩ bin
+
Repair = [2.65; 8.65]

• bin−John ∩ bin
+
Peter = [2.65; 8.65]

• bin−Test ∩ bin
+
John = [2.65; 8.3]

5. In the fifth step, the combined bins are used to search gradient rules. Let us use
the top combination bin−Test ∩ bin

+
Repair to explain this process. The maximum

gradient that can be found in this combination is 8.65/2.65 = 3.26. bin−Test
represents the event occurrences F and G, while bin+Repair represents the event
occurrences D and E. Therefore, four candidate rules can be directly formed:
(D �f F), (D �f G), (E �f F), and (E �f G). From these, (D �f F) and
(E �f G) are discarded because they are not comparable (cf. Definition 6.5). The
magnitude of the remaining gradients are then calculated as (D �f G) = 3.13 and
(E �f F) = 2.79. Gradient rules formed by event occurrences in higher levels
of abstraction are also searched at this stage. I = {Activity:Test} and J =
{Activity:Repair} are the only event occurrences in higher levels of abstraction
covered by bin−Test and bin+Repair. If not known yet, the measure values for I and
J should be computed: f(I) = 2.88 and f(J) = 8.48. Again, candidate rules
can be formed by considering these new event occurrences. (J �f I) = 2.94,
(F �f I) = 1.08, (I �f G) = 1.09, (J �f D) = 1.02 and (E �f J) = 1.02 are
the resulting gradient rules. The top-3 gradient rules at the end of this step is
(D �f G) = 3.13, (J �f I) = 2.94, and (E �f F) = 2.79. Remark that the
other combinations of bins are searched until the maximum gradient that can be
found in the combination is smaller than the kth gradient found so far.

6. In the last step, the list with the top-3 gradient rules is returned. There rules
can be read as:

• (D �f G) = 3.13: In average, John needs 3.13 times more time to perform
a repair than to execute a test.

6.3. Extraction of Process Patterns 159

• (J �f I) = 2.94: In average, a repair takes 2.94 times more time than a
test.

• (E �f F) = 2.79: In average, Peter needs 2.79 times more time to perform
a repair than to execute a test.

6.3.3 Frequent Binding Sets

Frequent binding sets are process patterns that identify the bindings that are frequently
executed together in a process instance. Like frequent event sets, these patterns also
identify dependencies among process events, but at a different level. An event occur-
rence binding describes a multidimensional relationship of input and output bindings of
a specific event occurrence. Hence, frequent binding sets provide insight into frequent
behaviors in the business process.

Activity:A Activity:GActivity:D

Activity:B

Activity:C

Activity:E

Activity:F

Figure 6.5: A mC-net of the process of the Figure 6.4.

Like frequent event sets (Subsection 6.3.1), the frequent binding sets of a multidi-
mensional process model can be computed by simply applying the Apriori algorithm
presented in Subsection 6.2.3. Table 6.8 provides an explanatory example of the com-
putation of frequent binding sets from Table 6.7. Let us assume that there is an index
on Table 6.7, and it is possible to identify the exact locations where each binding ap-
pears in the process data (i.e., the bindings’ identifiers). Remark that, for simplicity
reasons, the binding of A, B, and C will not be taken into consideration. Considering a
minimum support threshold of 33.3%, the computation process is executed as follows:

1. The first step consists of the identification of distinct bindings. Every binding is
considered as a single-element binding set and, by using the binding’s identifiers,
its support is computed. The outcome of this step is summarized in Table 6.8a.
Remark that all binding sets satisfy the minimum support threshold.

2. In the second step, the one-element binding sets of Table 6.8a are combined into
two-element sets. As in the previous step, the supports are computed for every
binding set. This can be achieved by intersecting sets of identifiers. Table 6.8b
shows all possible two-element binding sets and their supports. Remark that
the binding sets {d2, e2}, {d2, g2}, {d3, f1}, {d3, g3}, {e2, g2}, and {f1, g3} are
considered as frequent and, therefore, taken into account for further computation.

3. In the third step, the two-element binding sets of Table 6.8b are combined into
three-element sets (Table 6.8c). Remark that sets with more than three elements
are not considered at this step. As in the previous step, the support calculation
is performed by intersecting sets of identifiers. {d2, e2, g2} and {d3, f1, g3} are
the only binding sets considered as frequent in this step.

160 Chapter 6. Process Patterns

ID Inputs Outputs Frequency

B C

a1 7→ • • 750
a2 7→ • • 400

(a) Bindings of A.

ID Inputs Outputs Frequency

A D

b1 • 7→ • 750
b2 • 7→ • 400

(b) Bindings of B.

ID Inputs Outputs Frequency

A D

c1 • 7→ • 750
c2 • 7→ • 400

(c) Bindings of C.

ID Inputs Outputs Frequency

B C E F

d1 • • 7→ • 175
d2 • • 7→ • 400
d3 • • 7→ • 575

(d) Bindings of D.

ID Inputs Outputs Frequency

D G

e1 • 7→ • 175
e2 • 7→ • 400

(e) Bindings of E.

ID Inputs Outputs Frequency

D G

f1 • 7→ • 575

(f) Bindings of F .

ID Inputs Outputs Frequency

E F

g1 • 7→ 175
g2 • 7→ 400
g3 • 7→ 575

(g) Bindings of G.

Table 6.6: The event occurrence bindings of Figure 6.5’s mC-Net.

6.3. Extraction of Process Patterns 161

Process Instance Binding Sequence Frequency

1a 〈ABCDEG〉• 〈a1b1c1d1e1g1〉 100
1b 〈ABCDEG〉• 〈a2b2c2d2e2g2〉 250
2a 〈ABCDFG〉• 〈a1b1c1d3f1g3〉 300
3a 〈ACBDEG〉• 〈a1c1b1d1e1g1〉 75
3b 〈ACBDEG〉• 〈a2c2b2d2e2g2〉 150
4a 〈ACBDFG〉• 〈a1c1b1d3f1g3〉 275

Table 6.7: List of all possible process instances that fit in the process of the Figure 6.5, and corre-
sponding binding sequences.

4. The fourth step ends without any four-element binding set. This happens because
the combination of {d2, e2, g2} with {d3, f1, g3} generates a set with six elements
({d2, d3, e2, f1, g2, g3}). Therefore, since no valid four-element binding set can be
formed, the computation is stopped.

5. All the frequent binding sets found in the computation process are described in
Table 6.8d. Table 6.8e shows the maximal frequent binding sets ({d3, f1, g3} and
{d2, e2, g2}).

Binding Set Support

{d1} 15.2%
{d2} 34.8%
{d3} 50%
{e1} 15.2%
{e2} 34.8%
{f1} 50%
{g1} 15.2%
{g2} 34.8%
{g3} 50%

(a) Step 1.

Binding Set Support

{d2, d3} 0%
{d2, e2} 34.8%
{d2, f1} 0%
{d2, g2} 34.8%
{d2, g3} 0%
{d3, e2} 0%
{d3, f1} 50%
{d3, g2} 0%
{d3, g3} 50%
{e2, f1} 0%
{e2, g2} 34.8%
{e2, g3} 0%
{f1, g2} 0%
{f1, g3} 50%
{g2, g3} 0%

(b) Step 2.

Binding Set Support

{d2, e2, g2} 34.8%
{d3, f1, g3} 50%

(c) Step 3.

Frequent Binding Sets Support

{d3, f1, g3} 50%
{d3, f1}{d3, g3}{f1, g3} 50%

{d3}{f1}{g3} 50%
{d2, e2, g2} 34.8%

{d2, e2}{d2, g2}{e2, g2} 34.8%
{d2}{e2}{g2} 34.8%

(d) All frequent binding sets.

Frequent Binding Sets Support

{d3, f1, g3} 50%
{d2, e2, g2} 34.8%

(e) Final frequent binding sets.

Table 6.8: Finding frequent binding sets.

162 Chapter 6. Process Patterns

Sequence Patterns

Sequence patterns are process patterns that describe frequent sequences of bindings in
a collection of process instances. This kind of pattern can be seen as a specialization
of frequent binding sets once that it identifies sequential relationships on binding sets.
Hence, sequence patterns provide insight into frequent behavior sequences in the busi-
ness process. A potential application of these patterns is the resources management.
By identifying frequent sequences of activities, teams can be trained to perform more
effectively those activities.

Analogously to computation of frequent bindings, finding sequence patterns relies
on the Apriori algorithm to identify frequent binding sequences in a multidimensional
process model. The example provided in Table 6.8 can be used to explain the com-
putation process of sequence patterns. Let us assume again that there is an index on
Table 6.7, and it is possible to identify the exact locations where each binding appears
in the process data (i.e., the bindings’ identifiers). Considering the same minimum
support threshold of 33.3%, the computation process is executed as follows:

1. Like for frequent binding sets, the first step consists of the identification of distinct
bindings. The only difference is that, instead of single-element sets, length-one
sequences are considered.

2. In the second step, the length-one sequences are combined into length-two se-
quences. For frequent binding sets, this can be achieved by intersecting sets of
identifiers. For – frequent – sequence patterns, this should be handled in a differ-
ent way. Intersecting sets of identifiers can be used to select the process instances
in which both elements of the sequence appear. If the number of selected pro-
cess instances does not satisfy the minimum support threshold the length-two
sequence is discarded. If not, the actual frequency of the sequence is computed
by comparing the positions of the sequence elements in every process instance
selected previously. Therefore, the frequency of sequence patterns consists of the
number of times the sequence elements appear in a consecutive positioning in
the process instances. Remark that the binding sets {d2, e2}, {d2, g2}, {d3, f1},
{d3, g3}, {e2, g2}, and {f1, g3} are considered as frequent. From these combina-
tions only the binding sequences 〈d2e2〉, 〈d3f1〉, 〈e2g2〉, and 〈f1g3〉 are frequent
and, therefore, taken into account for further computation. The sequences 〈d2g2〉
and 〈d3g3〉 are discarded because they do not appear in a consecutive positioning
in any process instance.

3. In the third step, the length-two sequences are combined into length-three se-
quences. The combination of length-n sequences into length-(n + 1) sequences
consists of finding two length-n sequences X and Y in which the last n − 1 ele-
ments of X are the same as the first n−1 elements of Y . The new length-(n+ 1)
sequence is constructed by appending the last element of Y into X (at the end).
For example, 〈d2e2〉 and 〈e2g2〉 can be combined into 〈d2e2g2〉 because the last el-
ement of the first sequence is the same as the first element of the second sequence.
The same applies to 〈d3f1〉 and 〈f1g3〉. The supports of these new length-three
sequences are computed using the same strategy as in the previous step. Remark
that both 〈d2e2g2〉 and 〈d3f1g3〉 are considered as frequent sequence patterns.

4. Like for frequent binding sets, the fourth step ends without any length-four se-
quences. This happens because 〈d3f1g3〉 and 〈d2e2g2〉 cannot be combined (see

6.3. Extraction of Process Patterns 163

previous step). Since no valid length-four sequences can be formed, the compu-
tation is stopped.

5. All the frequent sequence patterns found in the computation process are described
in Table 6.9a. Table 6.9b shows the maximal frequent sequence patterns (〈d3f1g3〉
and 〈d2e2g2〉).

Frequent Process Patterns Support

〈d3f1g3〉 50%
〈d3f1〉〈f1g3〉 50%
〈d3〉〈f1〉〈g3〉 50%
〈d2e2g2〉 34.8%
〈d2e2〉〈e2g2〉 34.8%
〈d2〉〈e2〉〈g2〉 34.8%

(a) All frequent sequence patterns.

Frequent Process Patterns Support

〈d3f1g3〉 50%
〈d2e2g2〉 34.8%

(b) Final frequent sequence patterns.

Table 6.9: Finding sequence patterns.

6.3.4 Binding Classification

The main idea of binding classification is the characterization of bindings. For ev-
ery event occurrence in a multidimensional process model, the bindings are classified
according attributes not represented in the model but available in the index. An illus-
trative example of this type of process pattern is given in Figure 6.3. Focusing on the
event occurrence Analyze in Figure 6.3a, this example intends to build a decision tree
to explain the execution of the existing bindings (Figure 6.3b). This can be done by
(i) generating a learning dataset through the index, and (ii) applying the decision tree
generation algorithm (i.e., Algorithm 9) on that dataset. Hence, using the bindings as
predicting classes and the Product and Estimated Repair T ime as characterization
attributes (Figure 6.3c), it is possible to generate a decision tree (Figure 6.3d) that
characterizes the behavior of the process for that specific part.

A learning dataset refers exclusively process data related to a specific event occur-
rence. The main reference of these datasets is the binding information, which is used
as predicting class. Using the references that identify in which process instances the
bindings occur (i.e., the bindings’ identifiers), it is possible to retrieve – using the index
– information about attributes related to the classes to be predicted. Being considered
as characterization attributes in the learning dataset, these attributes can be either
event- or instance-based attributes.

Building a decision tree follows the strategy presented in Subsection 6.2.4. Taking
the example of the Figure 6.3 as reference, we intend to explain the computation
process of building a decision tree for the bindings of the event occurrence Analyze
(Figure 6.3b). Considering the information of the Figure 6.3c as learning dataset and a
minimum support threshold of 50%, the decision tree generation process (Algorithm 9)
is executed as follows:

1. The decision tree generation process starts by creating the root node of the tree.
{Product, Estimated Repair T ime} is the set of characterization attributes and
{m1,m2} is the set of classes in the learning dataset. Hence, none of the first two
conditions of Algorithm 9 (lines 2 and 6) is satisfied. Then, the characterization

164 Chapter 6. Process Patterns

attribute with highest – information – gain ratio is selected. For the attribute
Product, this measure is computed as follows:

(a) First, the information gain needed to classify a tuple in the dataset is com-
puted.

Info(D) = −550

900
log2

550

900
− 350

900
log2

350

900
= 0.964 bits

(b) Next, assuming that the dataset is partitioned according to the attribute
Product, it is computed the expected information needed to classify a tuple
in the dataset and the gain in information from such partitioning.

InfoProduct(D) =
400

900
× (−400

400
log2

400

400
− 0

400
log2

0

400
)

+
500

900
× (−150

500
log2

150

500
− 350

500
log2

350

500
)

= 0.49 bits

Gain(Product) = Info(D)− InfoProduct(D) = 0.964− 0.49 = 0.474 bits

(c) Then, a normalization operation is applied to information gain in order to
minimize the bias towards tests with many outcomes. Finally, the gain ratio
can be determined.

SplitInfoProduct(D) = −400

900
log2

400

900
− 500

900
log2

500

900
= 0.991

GainRatio(Product) =
Gain(Product)

SplitInfoProduct(D)
=

0.474

0.991
= 0.478

A summary of the calculation process of the gain ration for both attributes
Product and Estimated Repair T ime is provided in Table 6.10. Since Product
is the attribute with highest gain ration, this attribute should be removed from
the set of characterization attributes, and the root node should be labeled with
the text “Product?”. Finally, for every attribute value v of attribute Product
(i.e., X and Y), a subtree based on the remaining characterization attributes and
a subset of the learning dataset containing the entries that satisfy the condition
Product = v will be generated and attached to the root node.

2. The subtree representing the test Product = X is generated by executing the
method GenerateDecisionTree on the subset of the learning dataset containing
the entries that satisfy the condition Product = X (i.e., the first two rows of the
Figure 6.3c). The subtree generation process starts by creating the root node of
the subtree. Since m1 is the only class in this subset, the first condition of the
algorithm (line 2) is satisfied. Therefore, the root node is labeled with the text
“m1” and converted into a leaf node. The process is terminated by returning the
subtree.

6.3. Extraction of Process Patterns 165

3. The subtree representing the test Product = Y is generated by executing the
method GenerateDecisionTree on the subset of the learning dataset contain-
ing the entries that satisfy the condition Product = Y (i.e., the last three rows
of the Figure 6.3c). The subtree generation process starts by creating the root
node of the subtree. {Estimated Repair T ime} is the set of characterization at-
tributes, {m1,m2} is the set of classes in the learning dataset, and 55, 56% is the
– relative – size of the subset. Hence, none of the first two conditions of the al-
gorithm (lines 2 and 6) is satisfied. Then, the attribute Estimated Repair T ime
is selected and removed from the set of characterization attributes. Remark
that, since this is the only attribute available, there is no need to compute
the gain ratio measure. After labeling the subtree’s root node with the text
“Estimated Repair T ime?”, further subtrees will be generated for every at-
tribute value v of attribute Estimated Repair T ime (i.e., 30m, 1h, and 2h),
and attached to the root node. The subsets of the learning dataset for these
new subtrees should contain the entries that satisfy the conditions Product = Y
and Estimated Repair T ime = v. Since any of these subsets satisfies the min-
imum support threshold, all of these new subtrees will be defined by leaf nodes
representing the most predominant class of each subset.

Attribute Estimated
Measure Product Repair Time

InfoA(D) 0.49 0.496
Gain(A) 0.474 0.468

SplitInfoA(D) 0.991 0.981
GainRatio(A) 0.478 0.477

Table 6.10: Summary of attribute measures for Product and Estimated Repair Time.

6.3.5 Instance Clustering

The main idea of instance clustering is the aggregation of similar process instances.
Taking a multidimensional process model as reference, process instances (i.e., traces)
are grouped according to similarity.

Definition 6.7 (Process Instance Equivalence) Let a process instance T be a fi-
nite sequence of process events 〈e1e2...en〉 that can be translated into the sequence of
event occurrence bindings T ′ = 〈m1m2...mn〉. The equivalence of two process instances
T1 and T2 is determined by the appearance of bindings in T ′1 and T ′2, i.e., every binding
in T ′1 must appear the same number of times in T ′2 and vice versa. This can be checked
through the function id(T ′) which transforms a sequence of event occurrence bindings
into a multiset of event occurrence bindings. Two process instances T1 and T2 are
considered equivalent if id(T ′1) = id(T ′2).

The following example is used to demonstrate the rationale behind this definition.
Let us assume that there are two binding sequences T ′1 = 〈a1b1c1d1e1g1〉 and T ′2 =
〈a1c1b1d1e1g1〉. Due to the different ordering of bindings (i.e., b1 and c1 appear in
a different order in different sequences), T ′1 and T ′2 cannot be considered equivalent
simply by comparing the sequences. However, since event occurrence bindings define

166 Chapter 6. Process Patterns

the behavior of event occurrences (i.e., the relationship of activated inputs and outputs
of a specific event occurrence), the ordering in binding sequences become irrelevant.
Therefore, checking that every binding in a sequence appears the same number of
times in another (i.e., id(T ′1) = id(T ′2)) is enough to determine equivalence between
binding sequences. So, one can conclude that T1 and T2 are equivalent once that
id(T ′1) = id(T ′2) = [a1, b1, c1, d1, e1, g1].

A cluster of process instances is a group of one or more process instances. Consid-
ering the set representation of process instances (i.e., the multiset of event occurrence
bindings obtained from function id(T ′) in Definition 6.7), the aggregation of process
instances can be simply defined by the union of the instances’ event occurrence bind-
ings in which their frequencies are taken into account. The result of aggregating two
process instances is also a multiset of event occurrence bindings, and can be seen as a
cluster containing those two instances. The aggregation of clusters of process instances
is analogous to the definition provided above in this paragraph. Remark that a process
instance can be seen as a single-element cluster.

Definition 6.8 (Process Instances Aggregation) Let A = [aα1
1 , ..., aαn

n] and B =

[bβ1

1 , ..., b
βm
m] be process instances or clusters of them. The aggregation of A and B is

defined by the sum of A and B (i.e., A+B).

The following example is used to explain how process instances (or clusters of them)
can be aggregated. Let us consider the following single-element clusters of process
instances from Figure 6.6: CA = [a1, b1, c1, d1, e1, g1] and CB = [a1, b1, c1, d3, f1, g3].
Applying the definition provided above, the result of aggregating CA and CB is:

CAB = CA + CB = [a1, b1, c1, d1, e1, g1] + [a1, b1, c1, d3, f1, g3]

= [a21, b
2
1, c

2
1, d1, d3, e1, f1, g1, g3]

The similarity between clusters of process instances is calculated according to Def-
inition 4.4. Therefore, applying this definition, the similarity matrix of the instance
clusters in Figure 6.6 is presented in Table 6.11. As depicted in the figure, CA, CB
and CC are single-element clusters (or process instances), CAB is a two-element cluster
representing CA and CB , and CABC is a three-element cluster representing CA, CB
and CC .

CA CB CC CAB CABC
CA 1.0 0.89 0.72 0.31 0.23
CB 0.89 1.0 0.61 0.31 0.22
CC 0.72 0.61 1.0 0.22 0.23
CAB 0.31 0.31 0.22 1.0 0.47
CABC 0.23 0.22 0.23 0.47 1.0

Table 6.11: Similarity matrix of the instance clusters in Figure 6.6.

The instance clusters of a multidimensional process model can be computed by
applying an agglomerative hierarchical clustering method (see Subsection 6.2.5). Ta-
ble 6.12 provides an explanatory example of the clusters computation on Table 6.7’s
process instances. The computation process is divided by three steps that are described
as follows:

6.3. Extraction of Process Patterns 167

1. The first step consists of the identification of distinct process instances. There-
fore, the list of six process instances is reduced to three once that there are three
pairs of process instances that can be considered equivalent: (1a,3a), (2a,4a)
and (1b,3b). Each one of these three process instances is considered as a single-
element cluster. The instance clusters generated in this step are described in
Table 6.12a. To finalize this step, it is necessary to build a similarity matrix,
which means that the similarity value for every pair of clusters must be com-
puted. The similarity between these clusters is calculated according to the ap-
proach introduced in Chapter 4. sim(CA, CB) = 0.89, sim(CA, CC) = 0.72 and
sim(CB , CC) = 0.61 are the similarity values (Table 6.11).

2. In the second step, the the two most similar clusters are merged. So, clusters
CA and CB are integrated in a new cluster CAB (Table 6.12b). The similarity
matrix needs to be updated with the similarity values of the new cluster and
all other remaining clusters. sim(CC , CAB) = 0.22 is the new similarity value
(Table 6.11).

3. The third and final step is analogous to the second one. Clusters CC and CAB
are integrated in a new cluster CABC (Table 6.12c). The computation is stopped
in this step once that there are no further clusters to be aggregated.

Remark that some summarization function may be applied on a specific cluster (e.g., to
describe the cluster’s frequency). This can be achieved by using the process instances’
identifiers.

Cluster Process Instances Frequency

CA 1a/3a 175
CB 2a/4a 575
CC 1b/3b 400

(a) Step 1.

Cluster Process Instances Frequency

CAB 1a/3a and 2a/4a 750
CC 1b/3b 400

(b) Step 2.

Cluster Process Instances Frequency

CABC 1a/3a, 2a/4a and 1b/3b 1150

(c) Step 3.

Table 6.12: Computing instance clusters.

The final result of computing instance clusters is an hierarchy that explains the
decomposition of the mC-net of the Figure 6.5 into its subparts. This cluster hierarchy
is depicted in Figure 6.6. The cluster at the top represents the aggregation of all
process instances and can be seen as the entire process model. At the bottom, all
distinct process instances are identified. Middle layers represent partial aggregations
of clusters. The solid lines define which clusters are being aggregated.

168 Chapter 6. Process Patterns

A GD

B

C

E

A GD

B

C

E

A GD

B

C

E

F

CA CB CC

CAB

CABC

F

A GD

B

C F

A GD

B

C

E

Figure 6.6: Cluster hierarchy of the mC-net of the Figure 6.5.

6.4 Summary

Two components of the multidimensional process discovery approach were discussed in
this chapter.

• Characterized in Section 6.1, process patterns consist of any kind of pattern
extracted from a multidimensional process model. Instance-, event-, and flow-
based patterns are the three types of process patterns described in this thesis.

• Process patterns miners are introduced in Section 6.3 as a set of possible
knowledge discovery techniques for extracting process patterns from multidimen-
sional process models. By applying data mining functionalities on process data,
it is possible to get further insight into the process behavior described in a mul-
tidimensional process model.

As instances of the process patterns miners component, the instance clustering and the
frequent event sets techniques are implemented as objects that can be executed in the
ProM framework [123, 125].

Answering research questions q4 and q5, the extraction of process patterns from
multidimensional process models and the hypothesis-driven analysis (discussed in the
previous chapter) are two approaches for knowledge discovery on multidimensional
process models. Instance-, event-, and flow-based patterns are possible patterns that
can be extracted from a multidimensional process model.

Chapter 7

Evaluation

In the previous chapters, we introduced the Multidimensional Process Explorer frame-
work, an approach for process discovery and analysis taking into account the dimen-
sionality of business processes. In this chapter, we present a study that aims at the
evaluation of that approach. By conducting a set of experiments as well as a case study
in real-life environments, it is intended to assess

i. the efficiency of the different components of the framework (experiments),

ii. the types of problems that can be solved by applying the proposed approach
(experiments and case study), and

iii. the perception the users have after using the framework (experiments and case
study).

Remark that the main goal of this chapter is the evaluation of the multidimensional
framework. Once that no alternative approach is known, it is not possible to perform
a comparative study of the performance of the Multidimensional Process Explorer
framework. Hence, a software quality model is considered to evaluate the framework.

In the next sections, we firstly introduce the software quality model used as basis
of the evaluation study. Then, we describe an implementation of the Multidimensional
Process Explorer framework as a prototype. Next, we explain how the considered
aspects of the software quality model are evaluated. Finally, we present and discuss
the evaluation results.

7.1 Software Quality Model

In order to evaluate the Multidimensional Process Explorer framework, a model for
assessing the quality of software is introduced in this section: the ISO 9126-1 Software
Quality Model [1, 79]. Six software quality characteristics are considered in this model.

Functionality determines the capability of the framework to provide functions which
satisfy stated and implied needs when it is used under specified conditions. The
framework functionality can be evaluated according to four aspects.

• Suitability: the capability of providing the appropriate functionality for
the required tasks.

170 Chapter 7. Evaluation

• Accuracy: the capability of providing the correct results with the needed
degree of precision.

• Interoperability: the capability of interaction with other systems.

• Security: the capability of prevention of unauthorized access to functions
or data.

Reliability determines the capability of the framework to maintain its level of perfor-
mance when used under specified conditions. The framework reliability can be
evaluated according to three aspects.

• Maturity: the capability of avoiding failures, as a result of faults in the
framework.

• Fault Tolerance: the capability of maintaining a specified level of perfor-
mance in case of fault in the framework.

• Recoverability: the capability of recovering from failures.

Usability determines the capability of the framework to be understood, learned, and
used by a stated or implied group of users. The framework usability can be
evaluated according to three aspects.

• Understandability: the capability of enabling the users to understand the
functionality provided in the framework.

• Learnability: the capability of enabling the users to learn the application
of the framework.

• Operability: the capability of enabling the users to operate and control
the framework.

Efficiency determines the capability of the framework to accomplish its functionality
in reasonable time considering the available resources. The framework efficiency
can be evaluated according to two aspects.

• Time Behavior: the response time, processing time and throughput rates
of the computational process.

• Resource Behavior: the amount of resources required in the computation.

Maintainability determines the capability of the framework to be updated. Up-
dates may include corrections, improvements or adaptations of the framework
to changes in the environment and in requirements and functional specifications.
The framework maintainability can be evaluated according to four aspects.

• Analyzability: the capability of identification of root causes of failures.

• Changeability: the capability of incorporation of updates into the frame-
work.

• Stability: the capability of avoiding unexpected effects from updates.

• Testability: the capability of validation of a specific update.

Portability determines the capability of the framework to work in different environ-
ments. The framework portability can be evaluated according to four aspects.

7.2. Implementation 171

• Adaptability: the capability of adaptation to specified environments.

• Installability: the capability of installation in a specified environment.

• Co-Existence: the capability of co-existence with other independent soft-
ware in a common environment, sharing common resources.

• Replaceability: the capability of replacement of components within a spec-
ified environment, without changing the original functionality.

Figure 7.1 presents an overview of ISO 9126-1 Software Quality Model. The char-
acteristics and aspects identified by the gray color are the ones considered in the eval-
uation of the Multidimensional Process Explorer framework. Basically, this selection
takes into account the fact that the current implementation of the framework simply
consists of a prototype and not a commercial product. Also, the considered aspects can
provide insight into the added value of the proposed framework to the stakeholders.

Software
Quality

Functionality

Suitability

Accuracy

Interoperability

Security

Reliability

Maturity

Fault
Tolerance

Recoverability

Usability

Understandability

Learnability

Operability

Efficiency

Time
Behavior

Resource
Behavior

Maintainability

Analyzability

Changeability

Stability

Testability

Portability

Adaptability

Installability

Co-existence

Replaceability

Figure 7.1: Overview of the ISO 9126-1 Software Quality Model.

7.2 Implementation

In this section, we characterize the implementation of the Multidimensional Process
Explorer framework. This implementation consists of several components, which are
described in the previous chapters. Figure 7.2 presents a component diagram of the
implemented components according to the concept architecture presented in Section 2.4
(Figure 2.11). In this diagram, the data provider component is not considered, while the
Event Cube and Process Explorer components are represented by the (sub-)components
in the green and blue boxes. Representing the traditional process discovery approach,
the components in the red box are external to the concept architecture. Remark that,
besides the identified components, the augmented Causal-Nets are implemented as
an instance of traditional process models, and the multidimensional Causal-Nets are
implemented as an instance of multidimensional process models.

172 Chapter 7. Evaluation

«file»

Event Log

«datacube»

Event Cube Engine

«tool»

Process Explorer UI

 OLAP Server

 Data Sources

 Front-End

 Tools

«load»
«index structure»

Inverted Index

«retrieve»

«tool»

Flexible Heuristics Miner UI

«processor»

Multidimensional Heuristics Miner

«processor»

Instance Clustering

«processor»

Frequent Binding Sets Miner

«call»

«load»

«call»

«query»

«processor»

Process Similarity

«call»

«processor»

Flexible Heuristics Miner

«call»

Process

Explorer

Event Cube

Figure 7.2: Component diagram of the implemented components of the Multidimensional Process
Explorer framework.

The implemented components can be characterized as follows.

Augmented Causal-Net (aC-net) is a Java package that implements the process
notation defined in Definition 3.6 (see Subsection 3.2.1). The main functions of
this component are:

• Augmented Causal-net constructor: builds an aC-net from a multiset
of input and output bindings.

• Augmented Causal-net visualizer: provides a graphical representation
of an aC-net.

• Augmented Causal-net to Petri net converter: converts an aC-net
into a Petri net.

Multidimensional Causal-Net (mC-net) is a Java package that implements the
process notation defined in Definition 3.10 (see Subsection 3.2.2). The main
functions of this component are:

• Multidimensional Causal-net constructor: builds a mC-net from a
multiset of event occurrence bindings.

• Multidimensional Causal-net visualizer: provides a graphical repre-
sentation of a mC-net.

Flexible Heuristics Miner (FHM) is a Java package that implements the control-
flow mining technique introduced in Subsection 3.3.1. The main function of this
component is:

7.2. Implementation 173

• FHM processor: mines an aC-net according to algorithms 1, 2, and 3
(pages 64, 69, and 73).

Multidimensional Heuristics Miner (MHM) is a Java package that implements
the control-flow mining technique introduced in Subsection 3.3.2. The main func-
tion of this component is:

• MHM processor: mines a mC-net according to algorithms 4 and 5 (pages
75 and 80).

Inverted Index is a Java object that implements the information retrieval function-
ality described in Subsection 5.2.1. The main functions of this inverted index
implementation are:

• Time discretizer: derives new time categories from the timestamps in the
process data (see Subsection 5.2.2).

• Index processor: creates an inverted index of all attributes in the process
data.

• Normalizer of event-based attributes: converts event-based attributes
into instance-based ones.

• Query processor: retrieves the set of process events or instances that
satisfy a given filtering condition (cf. Subsection 5.2.1).

Event Cube is a Java package that implements the data cube described in Section 5.2.
The main functions of this component are:

• Measures: consist of a set of – predefined – control-flow and performance
measures that can be used to generate measuring information of multidi-
mensional cells (see Subsection 5.2.3).

• Aggregation Functions: consist of a set of – predefined – aggregation
functions that can be used to summarize measuring information of multidi-
mensional cells (see Subsection 5.2.3).

• Cube processor: builds a data cube from the process data, as described
in Subsection 5.2.4. Remark that this processor applies a multithreading
method for computing measuring information.

• Query processor: retrieves – from the data cube – the measuring infor-
mation of a specific cuboid or multidimensional cell.

Process Explorer is a Java package that implements a graphical interface for exploit-
ing an Event Cube (see Subsection 5.3.3). The main functions of this component
are:

• Discovery operators: define the characterizing information to be provided
in the mC-net graphical representation.

• Filtering operators: constraint the – characterizing and measuring – in-
formation to be provided in the mC-net graphical representation.

• Measure selector: identifies the measuring information to be provided in
the mC-net graphical representation.

• Parameter selector: regenerates on-the-fly the mC-net in analysis accord-
ing to new parameter settings.

174 Chapter 7. Evaluation

Process Similarity is a Java object in which the similarity measures introduced in
Chapter 4 can be computed. The main function of this component is:

• Similarity processor: computes the similarity between objects of multi-
dimensional process models.

Instance Clustering is a Java package in which clusters of process instances as de-
scribed in Subsection 6.3.5 can be mined. The main functions of this component
are:

• Miner processor: computes the instance clusters from a mC-net.

• Instance cluster visualizer: provides a graphical representation of an
instance cluster.

Frequent Binding Sets Miner is a Java package in which sets of event occurrence
bindings that are frequently executed together in a process instance can be mined
(cf. Subsection 6.3.3). The main functions of this component are:

• Miner processor: computes the frequent binding sets from a mC-net.

• Binding set visualizer: provides a graphical representation of a frequent
binding set.

Remark that the components of the Multidimensional Process Explorer framework
are implemented as ProM 6 plugins, or objects that can be executed in the ProM
framework [123, 125].

7.3 Evaluation Method

In this section, we describe the used methodology to assess the five selected character-
istics of the software quality model presented in Section 7.1. This methodology aims
at the gathering of evaluating information and consists of three different approaches:

i. Execution data approach consists of a set of experiments from which the per-
formance aspect of the framework can be evaluated.

ii. Results approach consists of a case study where an explorative analysis of a
real-life process is conducted. The analysis results are used to get feedback from
the business analysts.

iii. User experience approach consists of a workshop where different kinds of users
can use the framework to discover and analyze a specific repair process. Their
feedback is gathered thought a questionnaire.

Remark that these three approaches have direct mapping to the three aspects men-
tioned in the introduction of this chapter.

Structure

The structure of this evaluation is presented as follows. First, in the next subsections,
the different evaluation analyses (performance experiments, case study, and workshop)
are introduced. Next, the results of these analyses are presented in sections 7.4, 7.5,
and 7.6. Finally, the conclusions of all evaluation analyses as well as a final discussion
are provided at the end of this chapter (Section 7.7).

7.3. Evaluation Method 175

7.3.1 Experiments

An experimental study was conducted to evaluate the efficiency aspect of the Mul-
tidimensional Process Explorer framework. Using synthetic process data, the main
framework’s components are assessed in terms of time behavior in order to identify the
system bottlenecks.

Applying the method described in [3], a repair process is defined to support the
generation of synthetic process data. Basically, this process is composed by 12 activities
in which 12 human resources attempt to repair 3 different kinds of products. Each case
is characterized by a problem types (out of 10), which determine how the problem
should be handled. The case management is provided by a system, which is – together
with the human resources – one of the resources of the process. The generated process
data consist of simulation results over the repair process.

Table 7.1 characterizes the 13 datasets (event logs) artificially generated for these
experiments. Datasets d1−6 vary in terms of size (i.e., process instances and events).
Datasets da−g vary in terms of resources and products in the process. This means that
the human resources and the products are multiplied (cloned) by a factor from 2 to 8.
Considering the computing time as the main performance indicator, these experiments
aim at the analysis of the impact of three main aspects: (i) the size of the dataset, (ii)
the Event Cube’s dimensionality, and (iii) the dimensions’ cardinality. The size aspect
(i) will be analyzed using datasets d1−6, which are characterized by different amount
of process events. In these datasets, the number of process events per process instance
is about the same (around 11 events per instance). The characteristics of the repair
process are preserved over the datasets (e.g., the number of activities and resources
are the same in all datasets). The aspects related to dimensionality (ii and iii) will be
analyzed using datasets d2 and da−g, which are characterized by different amount of
resources and products. The sizes of these datasets are about the same.

Process Process Problem
Dataset Instances Events Activities Resources Products Types

d1 500 5615 12 12+1 3 10
d2 1000 11345 12 12+1 3 10
d3 2000 22895 12 12+1 3 10
d4 4000 45610 12 12+1 3 10
d5 8000 91710 12 12+1 3 10
d6 16000 182110 12 12+1 3 10

da 1000 11215 12 24+1 6 10
db 1000 11135 12 36+1 9 10
dc 1000 11025 12 48+1 12 10
dd 1000 11105 12 60+1 15 10
de 1000 11165 12 72+1 18 10
df 1000 11155 12 84+1 21 10
dg 1000 10905 12 96+1 24 10

Table 7.1: The event logs artificially generated.

All the experiments were run on an Intel Core 2 Quad Q9650 3.0GHz machine with
4Gb RAM on Microsoft Windows XP OS. The maximum heap size of the Java Virtual

176 Chapter 7. Evaluation

Machine (JVM) was set to 1Gb. The results of these experiments are presented in
Section 7.4.

7.3.2 Case Study

A large global company that designs and manufactures high-end medical systems such
as X-ray machines and MRI systems1 provides technical and customer support for its
products. In order to offer appropriate support services under a limited budget, the
business analysts have been putting many efforts in optimizing the support services by
monitoring and assessing the performance of service cases. Although service cases are
described by a sequence of events, the process behavior described in service cases is
not considered yet in the performance assessment of support services.

A case study was conducted to assess the performance of technical and customer
support services taking into account the process behavior of the service cases. As
outcome of this study, a methodology is developed to retrieve process data from a data
repository, transform these data into process instances, and integrate these process
instances into an event log. Additionally, an explorative analysis of the support services
is conducted using the Multidimensional Process Explorer framework. The results of
this analysis are used to get feedback about the added value of the multidimensional
process discovery approach from the business analysts.

Description and purpose of existing corporate data

The case study aims at the assessment of technical and customer services. Typi-
cal examples of service cases are planned system maintenances, remote assistances,
or mal-functioning component replacements. All the data about technical and cus-
tomer services are maintained in a data warehouse, which integrates data from multiple
sources. Basically, four main aspects are described in service data: systems, service
cases, tasks, and components. Information about systems can be seen as instance-based
information that describes the system being maintained or repaired in a specific service
case. Information about service cases can be seen as process instances. A service case
is characterized by one or more tasks, which can be seen as process events. Infor-
mation about components can be seen as event-based information that describes the
components being analyzed, repaired or replaced in a specific task.

Currently, the performance of service cases is assessed using statistical-based tools.
So far, this approach has proven to be effective, but it misses the characterization of
the business processes. For example, the throughput times of process instances can
be easily computed from the existing data. However, the performance assessment of
these process instances simply can be done by analyzing the sequences of events that
characterize the instances. This means that the business process is assumed exactly
as described in the process instances, disregarding eventual low-frequent or parallel
behavior. By characterizing the process behavior of service cases, it is possible to
extend the current performance assessment with process analysis. In this case study, a
potential application of this extension is the comparison of the performance of similar
service cases (i.e., cases characterized by similar process behavior) in different markets,
for different systems and contract types.

1MRI stands for Magnetic Resonance Imaging.

7.3. Evaluation Method 177

Data preparation and explorative analysis

Firstly, a data analysis was performed to characterize the available data as well as to
assess the data quality. Four data views describing the main aspects of the business
process (i.e., systems, service cases, tasks, and components) can be generated from the
data warehousing system. The relationships between these aspects can be described
as follows. One service case is performed on one system and is defined by one or more
tasks. One task is performed on zero or more components of a specific system. The
quality of service data (i.e., integrity and consistency) is ensured by the data warehouse
system.

Three steps are necessary to prepare the service data to process discovery and
analysis. First, the different aspects of service data should be integrated into a single
data view. In this process, only the data to be analyzed should be considered. This
means that some attributes can be disregarded. Additionally, filtering conditions can
be used to reduce the amount of data (e.g., considering the service data of a specific
period). Second, the integrated service data should be exported to a CSV (comma-
separated values) file. Third, an event log should be generated from the CSV file. This
can be done by using import tools such as ProM Import2 or Nitro3.

In this case study, three aspects of the support services are considered: systems
as instance-based information, service cases as process instances, and tasks as process
events. From the data views describing these aspects, eight attributes are selected for
analysis:

• Case ID is a unique identifier of a service case. The service data contains about
280000 distinct cases.

• Task ID is a categorical attribute that describes the task performed in a specific
service case. The service data contains about 1.4 million tasks (44 distinct tasks).
This attribute is used as the activity of the process event.

• Task Beginning is a timestamp that identifies the beginning of a task. This
attribute is used to compute the throughput time of service cases.

• Task End is a timestamp that identifies the end of a task. This attribute is used
to compute the throughput time of service cases.

• Market is a categorical attribute that identifies the market where a specific service
was performed. 14 distinct markets can be found in the data. This attribute is
considered as instance-based information.

• System ID is a categorical attribute that describes the system on which a specific
service was performed. 100 distinct systems can be found in the data. This
attribute is considered as instance-based information.

• Contract Type is a categorical attribute that describes the type of contract asso-
ciated to a specific system. 8 distinct contract types can be found in the data.
This attribute is considered as instance-based information.

• Cost is a numerical attribute that describes the total cost of a specific task. This
attribute is used as performance measure.

In order to reduce the amount of data, a subset of these service data is generated
by applying some filtering conditions. This subset is characterized by 6 systems, 4

2http://www.promtools.org/promimport/
3http://fluxicon.com/nitro/

http://www.promtools.org/promimport/
http://fluxicon.com/nitro/

178 Chapter 7. Evaluation

markets, and 5 contract types, characteristics defined with the support of a business
analyst. Using this subset, an event log with about 7000 cases and 48000 tasks is finally
generated.

The explorative analysis of the service data consists of discovering and analyzing
the business processes using the Multidimensional Process Explorer framework. Mul-
tidimensional process models are generated to characterize the process behavior of the
different business perspectives. Additionally, process patterns related to these process
models are also derived. The most representative results are selected to be discussed
with a committee formed by five business analysts of the involved company. The goal of
this discussion is the assessment of the suitability and accuracy of the presented process
models and patterns. The feedback gathered in this discussion is used to determine
the added value of the multidimensional process discovery approach. The results of
this discussion are presented in Section 7.6.

7.3.3 Workshop

A workshop was organized to demonstrate the functionalities of the Multidimensional
Process Explorer framework to an audience composed by both academics and indus-
trials. Two workshop sessions were held at Eindhoven University of Technology in two
distinct events: (i) in September 2011, during a meeting in the context of the DataFu-
sion project where the industrial partners were present, and (ii) in April 2012, as part
of the process mining course.

The structure of the workshop can be described as follows. First, a presentation was
given to the participants in order to introduce the Multidimensional Process Explorer
framework as well as related concepts (e.g., multidimensional process models and busi-
ness process queries). Second, an interactive session where the participants could use
the framework to discover and analyze a specific repair process was organized. Finally,
a questionnaire was given to the participants in order to gather information about them
and their experience with the framework. Further details as well as the results of this
experiment are presented in sections 7.5 and 7.6.

Participants Profile

In total, there were 25 participants from which 60% are academics (process mining
students) and 40% are industrials (managers or engineers). The following question was
posed to the workshop participants in order to characterize them in terms of domains
of expertise: In a scale of 1 (unfamiliar) to 10 (familiar), how familiar are you with
the following terms?

• Business Intelligence (BI)

• Business Process Management (BPM)

• Online Analytic Processing (OLAP)

• Data Mining

• Process Mining

The answers to this question are summarized in the chart of Figure 7.3. The solid line
represents the average domain familiarity for all respondents. Similarly, the dashed
lines show the average domain familiarity for academics and industrials.

7.4. Efficiency 179

0

2

4

6

8

10

Business
Intelligence

(BI)

Business
Process

Management
(BPM)

Online
Analytic

Processing
(OLAP)

Data Mining

Process
Mining

Academics

Industrials

All

Figure 7.3: The domains of expertise of the workshop participants.

The results of Figure 7.3 show that the respondents are reasonably familiar with
the subjects covered in the workshop experiment. On the one hand, industrials have
a more homogeneous familiarity with all the covered subjects. On the other hand,
academics are more familiar with process mining, BPM, and data mining, subjects
which are part of their academic programs.

7.4 Efficiency

In this section, we present the results of the performance evaluation of the Multidimen-
sional Process Explorer framework. This evaluation is based on execution data from
the set of experiments described in Subsection 7.3.1. The discussion about the results
of this evaluation is presented in Section 7.7.

Flexible Heuristics Miner

The evaluation of the Flexible Heuristics Miner consists of measuring the computational
time of mining an aC-net from some given process data. Since this miner is a one-
dimensional process discovery technique, the only aspect considered in this evaluation is
the size of the dataset. Remark that this evaluation aims especially at the comparison of
the efficiency aspect of the traditional and the multidimensional approaches. Therefore,
the mining of long-distance dependencies (Algorithm 3) is not considered in these
experiments once that this step does not exist in the multidimensional process discovery
approach.

The computational complexity of the Flexible Heuristics Miner can be analyzed
in two different aspects: the mining of the dependency graph (Algorithm 1), and the
mining of the splits and joins (Algorithm 2).

Mining the dependency graph depends firstly on computing the dependency mea-
sures for all distinct activities appearing in the process data. The computational
time required to compute this measuring information is quadratic (O(n2)) to (a)

180 Chapter 7. Evaluation

the number of distinct activities, and linear (O(n)) to (b) the total amount of
process events. Similarly, the computational time required to build the depen-
dency graph is quadratic (O(n2)) to (c) the number of distinct activities, and
linear (O(n)) to (d) the number of process events.

Mining the splits and joins consists basically of parsing process instances to find
the activated inputs and outputs of activities (i.e., the splits and joins). The
computational time required to compute splits and joins is quadratic (O(n2))
to (e) the number of process events in the process instances (i.e., the instance
length), and linear (O(n)) to (f) the number of process instances.

Presenting the mining time of the Flexible Heuristics Miner over datasets d1−6, Fig-
ure 7.4 provides insight into the complexity characterization described above (items b,
d, and f). The dark gray bars represent the computational time required to compute
the splits and joints, while the light gray ones represent that for the dependency graph.
The datasets are identified by number of process instances.

0

1

2

3

4

5

6

7

8

9

10

½1 2 4 8 16

S
e
c
o

n
d

s

Process Instances (x1000)

Splits&Joins Dependency Graph

Figure 7.4: Mining time of an aC-net from datasets d1−6.

Multidimensional Heuristics Miner

The evaluation of the Multidimensional Heuristics Miner consists of measuring the
time required to mine mC-nets from some given process data. Three aspects are
considered in this evaluation: the dimensionality of the data cube, the size of the
dataset, and the cardinality of the dimensions. Remark that this evaluation assumes
the existence of an Event Cube on which the Multidimensional Heuristics Miner can
be executed. Any aspect related to Event Cube is not considered in this evaluation
(e.g., the materialization time of the dependency measures).

The computational complexity of the Multidimensional Heuristics Miner can be
analyzed in two different aspects: the mining of the multidimensional dependency graph
(Algorithm 4), and the computing of the event occurrence bindings (Algorithm 5).

Mining the multidimensional dependency graph consists basically of retrieving
the dependency measures from an Event Cube and building the dependency
graph. The computational time required to retrieve – from an Event Cube – all

7.4. Efficiency 181

the necessary information to build the dependency graph is linear (O(n)) to (a)
the number of distinct event occurrences, and constant (O(1)) to (b) the number
of process instances and to (c) the number of process events. The computational
time required to build the dependency graph is quadratic (O(n2)) to (d) the
number of distinct event occurrences, and linear (O(n)) to (e) the number of
process events.

Computing the event occurrence bindings consists basically of parsing process
instances to find the activated inputs and outputs of event occurrences (i.e.,
the input and output bindings that define the event occurrence bindings). The
computational time required to compute event occurrence bindings is quadratic
(O(n2)) to (f) the number of process events in the process instances (i.e., the
instance length), and linear (O(n)) to (g) the number of process instances.

Presenting the mining time of a mC-net with 1-D nodes over dimension Activity and
0-D edges, Figure 7.5 provides insight into the complexity characterization described
above (items b, c, e, and g). The dark gray bars represent the computational time
required to compute the event occurrences, while the light gray ones represent that
for the multidimensional dependency graph. The datasets are identified by process
instance amount.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

½1 2 4 8 16

S
e
c
o

n
d

s

Process Instances (x1000)

Event Occurrences Dependency Graph

Figure 7.5: Mining time of a 1-D mC-net with 1-D nodes over dimension Activity and 0-D edges,
from datasets d1−6.

Further insight into the complexity characterization described above (items a − e
and g) is provided in figures 7.6 and 7.7. Figure 7.6 presents the mining time of a
2-D mC-net with 2-D nodes over dimension Activity and Resource and 0-D edges.
Figure 7.7 presents the mining time of a 3-D mC-net with 2-D nodes over dimension
Activity and Resource and 1-D edges over dimension Product. Figures 7.6a and 7.7a
describe the computing time of the multidimensional dependency graph (line) as well as
the amount of computed event occurrences (dark gray bars) and dependency relations
(light gray bars). Similarly, Figures 7.6b and 7.7b describe the computing time of the
event occurrence bindings (line) as well as the amount of computed bindings (bars).

182 Chapter 7. Evaluation

0

100

200

300

400

500

600

700

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1 2 3 4 5 6 a b c d e f g

O
b

je
c
ts

S
e

c
o

n
d

s

Dataset (dx)

Dependency Relations Event Occurrences Computing Time

(a) Mining the dependency graph.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

0,1

0,2

0,3

0,4

0,5

1 2 3 4 5 6 a b c d e f g

B
in

d
in

g
s

S
e

c
o

n
d

s

Dataset (dx)

Event Occurrence Bindings Computing Time

(b) Mining the event occurrence bindings.

Figure 7.6: Mining time of a 2-D mC-net with 2-D nodes over dimension Activity and Resource
and 0-D edges.

0

1000

2000

3000

4000

5000

6000

7000

0

1

2

3

4

5

6

7

1 2 3 4 5 6 a b c d e f g

O
b

je
c
ts

S
e

c
o

n
d

s

Dataset (dx)

Dependency Relations Event Occurrences Computing Time

(a) Mining the dependency graph.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

0,5

1

1,5

2

2,5

1 2 3 4 5 6 a b c d e f g

B
in

d
in

g
s

S
e

c
o

n
d

s

Dataset (dx)

Event Occurrence Bindings Computing Time

(b) Mining the event occurrence bindings.

Figure 7.7: Mining time of a 3-D mC-net with 2-D nodes over dimension Activity and Resource
and 1-D edges over dimension Product.

Inverted Index

The evaluation of the Inverted Index consists of measuring the time required to index
some given process data. In this evaluation, the indexing process is defined as:

i. Transformation: Deriving new time information (i.e., seven new time-based
attributes) from the timestamps, as described in Subsection 5.2.2.

ii. Indexation: Indexing all attributes in the process data as well as the seven
new time-based attributes. The list of the indexed attributes is provided in
Table 7.2. In this table, A1−8 represent the attributes directly retrieved from the
process data, while A4a−4g the time-based attributes derived from A4 (i.e., the
timestamp). The cardinality of each attribute in the evaluating datasets (d1−6
and da−g) is also provided in the table.

iii. Normalization: Converting the event-based attributes Product and Problem
Type into instance-based attributes, as described in Subsection 5.2.1.

The computational complexity of the indexing process can be characterized as fol-
lows.

• The computational time required to derive new information is linear (O(n)) to (a)
the number of process events and to (b) the number of attributes to be derived.

7.4. Efficiency 183

ID Attribute Cardinality

d1 d2 d3 d4 d5 d6

A1 Case Identifier 500 1000 2000 4000 8000 16000
A2 Activity 12 12 12 12 12 12
A3 Resource 13 13 13 13 13 13
A4 Timestamp 1903 2902 5784 11415 22888 45122
A5 Product 3 3 3 3 3 3
A6 Problem Type 10 10 10 10 10 10
A7 Repair Number 3 3 3 3 3 3
A8 Test Result 2 2 2 2 2 2

A4a Hour 24 24 24 24 24 24
A4b Date 2 3 5 9 18 36
A4c Day of Week 2 3 5 7 7 7
A4d Day of Month 2 3 5 9 18 31
A4e Month 1 1 1 1 1 2
A4f Quarter 1 1 1 1 1 1
A4g Year 1 1 1 1 1 1

(a) Datasets d1−6.

ID Attribute Cardinality

da db dc dd de df dg

A1 Case Identifier 1000 1000 1000 1000 1000 1000 1000
A2 Activity 12 12 12 12 12 12 12
A3 Resource 25 37 49 61 73 85 97
A4 Timestamp 2252 2266 2260 2282 2270 2277 2256
A5 Product 6 9 12 15 18 21 24
A6 Problem Type 10 10 10 10 10 10 10
A7 Repair Number 3 3 3 3 3 3 3
A8 Test Result 2 2 2 2 2 2 2

A4a Hour 24 24 24 24 24 24 24
A4b Date 2 2 2 2 2 2 2
A4c Day of Week 2 2 2 2 2 2 2
A4d Day of Month 2 2 2 2 2 2 2
A4e Month 1 1 1 1 1 1 1
A4f Quarter 1 1 1 1 1 1 1
A4g Year 1 1 1 1 1 1 1

(b) Datasets da−g .

Table 7.2: List of the indexed attributes.

184 Chapter 7. Evaluation

• The computational time required to index process data is linear (O(n)) to (c) the
number of process instances, to (d) the number of process events, and to (e) the
number of attributes to be indexed. Furthermore, this time is constant (O(1)) to
(f) the number of distinct attributes values (i.e., the cardinality of the attribute).

• The computational time required to normalize event-based attributes is linear
(O(n)) to (g) the number of process instances and to (h) the number of process
events to be normalized. Furthermore, this time is constant (O(1)) to (i) the
instance length.

Presenting the processing time of the indexing process of datasets d1−6, Figure 7.8
provides insight into the complexity characterization described above (items a − e, g,
and h). Similarly, presenting the processing time of the indexing process of datasets
d2 and da−g, Figure 7.9 provides insight into the items f and i. In both figures,
the transformation, indexation, and normalization steps of the indexing process are
identified by different colors. The datasets are identified by process instance amount.

0

1

2

3

4

5

6

7

½1 2 4 8 16

S
e

c
o

n
d

s

Process Instances (x1000)

Indexation Normalization Transformation

Figure 7.8: Processing time of the indexing process of datasets d1−6.

0

0,1

0,2

0,3

0,4

0,5

2 a b c d e f g

S
e
c
o

n
d

s

Dataset (dx)

Indexation Normalization Transformation

Figure 7.9: Processing time of the indexing process of datasets d2 and da−g .

7.4. Efficiency 185

Event Cube

The evaluation of the Event Cube consists of measuring the time required to build
(materialize) a data cube from some give process data. Materializing the control-
flow and performance measures described in Table 7.3, three aspects are considered in
this evaluation: the dimensionality of the data cube, the size of the dataset, and the
cardinality of the dimensions.

ID Measure Aggregation Function

m1 Event Entry Count
m2 Event Start Count
m3 Event End Count
m4 Direct Successor Count
m5 Indirect Successor Count
m6 Length-Two Loop Count
m7 Direct Successor Dependency
m8 Indirect Successor Dependency

ma Instance Entry Count
mb Throughput Time Average

Table 7.3: Control-flow and performance measures used in the materialization process.

Four data cubes characterized by different number of dimensions are defined in
order to assess the dimensionality aspect. A characterization of these data cubes is
provided in Table 7.4. Table 7.4a identifies the dimensions of the data cubes, while
Table 7.4b summarizes their number of cuboids and multidimensional cells.

n-D Dimensions

1-D Activity
2-D Activity and Resource
3-D Activity, Resource and Product
4-D Activity, Resource, Product and Problem Type

(a) Dimensions of the data cubes.

n-D Cuboids Multidimensional Cells

d1−6 da db dc dd de df dg

1-D 2 13 13 13 13 13 13 13 13
2-D 4 182 338 494 650 806 962 1118 1274
3-D 8 728 2366 4940 8450 12896 18278 24596 31850
4-D 16 8008 26026 54340 92950 141856 201058 270556 350350

(b) Characteristics of the data cubes.

Table 7.4: Four possible data cubes with different dimensionality.

The computational complexity of the Event Cube can be analyzed in two different
aspects: building the lattice of cuboids, and computing the measuring information of
all multidimensional cells in the Event Cube.

186 Chapter 7. Evaluation

Building the lattice of cuboids consists basically of computing all cuboids and cor-
responding multidimensional cells. The computational time required to compute
all cuboids is exponential (O(2n)) to (a) the dimensionality of the data cube. The
same time required to compute the multidimensional cells of a specific cuboid is
exponential (O(2n)) to (b) the dimensionality of the cuboid, and linear (O(n)) to
(c) the cardinality of the cuboid’s dimensions.

Computing measuring information consists basically of computing the informa-
tion related to specific measures, for all multidimensional cells in the Event Cube.
The computational time required to compute this information is linear (O(n)) to
(d) the number of non-empty multidimensional cells (i.e., cells that have support
in the data), and to (e) the number of process instances. Furthermore, the com-
putational time required to compute list- or set-based measures is linear (O(n))
to (f) the number of process events, while that for map-based measures (g) is
quadratic (O(n2)).

Presenting the materialization time of the data cubes described in Table 7.4 (datasets
d1−6), Figure 7.10 provides insight into the complexity characterization described above
(items a− c and e). The cube dimensionality is identified by different colors. The solid
lines represent actual materialization time measurements, while the dotted ones consist
of interpolated values. The datasets are identified by process instance amount.

0

2

4

6

8

10

12

14

16

½1 2 4 8 16

M
in

u
te

s

Process Instances (x1000)

1-D 2-D 3-D 4-D

Figure 7.10: Materialization time of the data cubes described in Table 7.4, using datasets d1−6.

Further insight into the complexity characterization described above (items a− e)
is provided in Figure 7.11, which presents the materialization time of the 2-D and
3-D data cubes described in Table 7.4 (datasets d2 to da−g). In this figure, the solid
line represents the materialization time. The dark gray bars represent the number of
non-empty multidimensional cells in the data cube, i.e., the cells that have support
in the data. The light gray bars identify the total number of multidimensional cells
in the data cube. The datasets are identified by amount of distinct dimension values
considered in the data cube.

The materialization process can be characterized as a two-step process. In the first
step, the lattice of cuboids of the data cube is built. This means that not only the

7.4. Efficiency 187

0

300

600

900

1200

1500

0

0,5

1

1,5

2

2,5

C
e
ll
s

M
in

u
te

s

Dimension Values

Total Cells Non-Empty Cells Materialization Time

(a) 2-D data cube.

0

6000

12000

18000

24000

30000

36000

0

10

20

30

40

50

60

C
e
ll
s

M
in

u
te

s

Dimension Values

Total Cells Non-Empty Cells Materialization Time

(b) 3-D data cube.

Figure 7.11: Materialization time of the 2-D and the 3-D data cubes described in Table 7.4, using
datasets d2 and da−g .

structure of the data cube is built but also the cuboids and their multidimensional cells.
In the second step, the measuring information of each multidimensional cell is computed
with respect to a given set of control-flow and performance measures. Figure 7.12
provides insight into the complexity characterization described above (items f and g).
Figure 7.12a presents the impact of these steps in the materialization process of the
2-D data cube described in Table 7.4. Figure 7.12b presents the impact of the measures
considered in the materialization process (see Table 7.3) in the second step (i.e., the
measure computation).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 a b c d e f g

Dataset (dx)

Measures

Lattice

(a) The impact of building the lattice of
cuboids and computing the measuring infor-
mation in the materialization process.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 a b c d e f g

Dataset (dx)

mb

m6

m5

m4

others

(b) The impact of the measures in the process
of computing the measuring information.

Figure 7.12: Characterization of the materialization time of the 2-D data cube described in Table 7.4.

Instance Clustering

The evaluation of the Instance Clustering technique consists of measuring the time
required to mine all instance clusters from a mC-net with 2-D nodes over dimensions
Activity and Product, and 0-D edges. Two aspects are considered in this evaluation:
the size of the dataset and the cardinality of the dimensions.

The computational complexity of the Instance Clustering technique can be analyzed
in two different aspects: the computation of all distinct process instances, and the
grouping of process instances according to instance similarity.

188 Chapter 7. Evaluation

Computing all distinct process instances consists basically of transforming pro-
cess instances into multisets of event occurrence bindings. The set of these mul-
tisets of bindings can be considered the set of distinct process instances. The
computational time required to compute the multisets of bindings is linear (O(n))
to (a) the number of process instances and to (b) the number of process events.

Grouping process instances consists basically of computing the similarity between
instances (or clusters of instances) and grouping the most similar cases iteratively
until only one cluster remains. The computational time required to compute the
similarity between instances (or clusters of instances) is quadratic (O(n2)) to (c)
the number of distinct process instances.4 The computational time required to
compute all instance clusters is linear (O(n)) to (d) the number of distinct process
instances.5

Figure 7.13 provides insight into this complexity characterization (items a − d). Fig-
ure 7.13a presents, for datasets d1−6, the mining time of all instance clusters as well as
the amount of mined clusters. Similarly, Figure 7.13b presents the same information
for datasets d2 and da−g. The solid lines represent actual mining time measurements,
while the dotted ones consist of interpolated values. The dark gray bars represent
the number of one-element clusters mined from the mC-net, i.e., the distinct process
instances that define the multidimensional process model. The light gray bars identify
the total number of clusters mined from the mC-net. The datasets are identified ei-
ther by process instance amount (Figure 7.13a) or by amount of distinct activities and
products (Figure 7.13b).

0

30

60

90

120

150

180

0

3

6

9

12

15

18

½1 2 4 8 16

C
lu

s
te

rs

S
e
c
o

n
d

s

Process Instances (x1000)

Total Clusters One-Element Clusters Mining Time

(a) Datasets d1−6.

0

100

200

300

400

500

600

0

10

20

30

40

50

60

C
lu

s
te

rs

S
e
c
o

n
d

s

Dimension Values

Total Clusters One-Element Clusters Mining Time

(b) Datasets d2 and da−g .

Figure 7.13: Mining time of all instance clusters from a 2-D mC-net.

Frequent Binding Sets Miner

The evaluation of the Frequent Binding Sets Miner consists of measuring the time
required to mine 1000 frequent binding sets from a mC-net with 1-D nodes over di-
mension Resource and 0-D edges. Two aspects are considered in this evaluation: the
size of the dataset and the cardinality of the dimensions.

The computational complexity of the Frequent Binding Sets Miner technique can
be analyzed in two different aspects: the candidate generation for frequent binding
sets, and the computation of binding set supports.

4 (n− 1)2 is the number of similarity computations needed to group n process instances.
5 2n− 1 is the number of distinct instance clusters that can be generated from n process instances.

7.5. Usability 189

Generating candidates for frequent binding sets consists basically of combin-
ing known frequent binding sets into new binding sets. The computational time
required to compute all possible binding sets is exponential (O(2n)) to (a) the
number of distinct bindings.6 Remark that this is the worst-case scenario. Typ-
ically, the candidate generation takes a threshold on the bindings set supports
into account, which can lead to a significant reduction of the search space.

Computing the frequency of binding sets consists basically of intersecting sets
of process event identifiers of bindings (or sets of bindings). The computational
time required to compute the frequency of binding sets is linear (O(n)) to (b) the
number of distinct bindings and to (c) the number of process events.

Figure 7.14 provides insight into this complexity characterization (items a − c). Fig-
ure 7.14a presents, for datasets d1−6, the mining time of 1000 frequent sets as well
as the amount of distinct event occurrence bindings from which the frequent sets are
computed. Similarly, Figure 7.14b presents the same information for datasets d2 and
da−g. The solid lines represent actual mining time measurements, while the dotted
ones consist of interpolated values. The bars represent the number of event occurrence
bindings that define the mC-net. The datasets are identified either by process instance
amount (Figure 7.14a) or by amount of distinct resources (Figure 7.14b).

0

50

100

150

200

250

300

350

400

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

½1 2 4 8 16

B
in

d
in

g
s

S
e
c
o

n
d

s

Process Instances (x1000)

Distinct Bindings Mining Time

(a) Datasets d1−6.

0

125

250

375

500

625

750

875

0

0,5

1

1,5

2

2,5

3

3,5

13R 25R 37R 49R 61R 73R 85R 97R
B

in
d

in
g

s

S
e
c
o

n
d

s

Dimension Values

Distinct Bindings Mining Time

(b) Datasets d2 and da−g .

Figure 7.14: Mining time of 1000 frequent binding sets from a 1-D mC-net.

7.5 Usability

In this section, we present the results of the usability evaluation of the Multidimensional
Process Explorer framework. This evaluation is based on the feedback gathered in the
workshop described in Subsection 7.3.3. Two usability aspects are considered in this
evaluation: understandability and operability. The discussion about the results of this
evaluation is presented in Section 7.7.

7.5.1 Understandability

In order to assess the understandability of the functionality provided by the Multidi-
mensional Process Explorer framework, the following question was posed to the work-
shop participants: In a scale of 1 (difficult) to 10 (easy), how easy are the results (i.e.,

6 2n − 1 is the number of distinct binding sets that can be generated from n bindings.

190 Chapter 7. Evaluation

the process analysis) to understand? The answers to this question are summarized in
the box plot of Figure 7.15.

0

1

2

3

4

5

6

7

8

9

10

Academics Industrials All

Min Outlier Max Outlier

Figure 7.15: Feedback results about understandability. The boxes represent the interquartile range
(IQR), which is the range between the 25th percentile (Q1) and the 75th percentile (Q3). The band in
the box represents the 50th percentile (Q2), i.e., the median. The vertical line represent the interval
[Q1− 1.5 · IQR; Q3 + 1.5 · IQR]. Any value outside this interval is considered as an outlier.

The results of Figure 7.15 show that the majority of the respondents consider that
the framework provides understandable results. On the one hand, the feedback from the
industrials is exclusively positive. On the other hand, the feedback from the academics
is mainly positive but contains a few negative results (i.e., a few students consider
the results not easy to understand). In general, it can be concluded that the results
provided by the framework are understandable for the majority of users but not for all.

7.5.2 Operability

In order to assess the operability of the Multidimensional Process Explorer framework,
the following question was posed to the workshop participants: In a scale of 1 (difficult)
to 10 (easy), how easy is the framework to use? The answers to this question are
summarized in the box plot of Figure 7.16.

0

1

2

3

4

5

6

7

8

9

10

Academics Industrials All

Min Outlier Max Outlier

Figure 7.16: Feedback results about operability. The boxes represent the interquartile range (IQR),
which is the range between the 25th percentile (Q1) and the 75th percentile (Q3). The band in the
box represents the 50th percentile (Q2), i.e., the median. The vertical line represent the interval
[Q1− 1.5 · IQR; Q3 + 1.5 · IQR]. Any value outside this interval is considered as an outlier.

The results of Figure 7.16 show that the majority of the respondents consider that
the framework is easy to use but there still is some space for improvements. On the one

7.6. Functionality 191

hand, the feedback from the industrials is quite homogeneous with the results varying
from 7 to 8. On the other hand, the feedback from the academics is more broad with
some extremely high results but also a few negative results (i.e., a few students consider
the framework not easy to use). In general, it can be concluded that the framework is
easy to operate and control.

7.6 Functionality

In this section, we present the results of the functionality evaluation of the Multidi-
mensional Process Explorer framework. This evaluation is based on the results of the
case study described in Subsection 7.3.2, and the feedback gathered in the workshop
described in Subsection 7.3.3. Two functionality aspects are considered in this evalu-
ation: suitability and accuracy. The discussion about the results of this evaluation is
presented in Section 7.7.

7.6.1 Suitability

In order to assess the suitability of the Multidimensional Process Explorer framework,
the following question was posed to the workshop participants (industrials): Could this
framework

• reduce the amount of work to solve specific problems in your business?

• solve problems that cannot be solved by any other tool in your business?

• help on discovering new problems in your business?

• be a useful tool for business monitoring?

• be a useful analytic tool for decision making?

• increase your process awareness?

Remark that, this question was not posed to academics because it concerns the frame-
work application in industry. The answers to this question are summarized in the chart
of Figure 7.17. The solid line represents the amount of positive answers to a specific
sub-question.

0%

25%

50%

75%

100%

increase process
awareness

reduce the amount
of work to solve

problems

solve problems that
cannot be solved by

other tools

discover new
problems

decision making

monitoring
business

Figure 7.17: Feedback results about the suitability of the framework.

192 Chapter 7. Evaluation

The results of Figure 7.17 show that the industrials totally agree that the frame-
work could be used to improve the process awareness and to monitor the business.
Additionally, they also agree that the framework could be a useful tool for decision
making, discovering unknown problems, or even reducing the amount of work to solve
problems. The respondents are more skeptical of using the framework to solve prob-
lems that cannot be solved by other tools. In general, it can be concluded that the
framework provides appropriate functionality for the discovery and analysis of business
processes.

In order to assess the suitability of the business process queries introduced in Sub-
section 5.3.2, the following question was asked to the workshop participants: What
combination of queries defines better your analysis needs? Figure 7.18 summarizes
the given answers to this question. The solid line represents the amount of positive
answers to a specific query for all respondents. Similarly, the dashed lines show that
amount for academics and industrials. Remark that the how query is not included in
this evaluation because the current implementation of the framework cannot produce
results without this query.

0%

25%

50%

75%

100%
What

Who

WhenWhich

Why

Academics

Industrials

All

Figure 7.18: Feedback results about the suitability of business process queries.

The results of Figure 7.18 show that the respondents identify the how + what
and how + who as the most suitable combinations of queries to their analysis needs.
For the other queries, the results show that academics and industrials have distinct
analysis needs. It is identified that how + which is also an interesting combination
for academics, while how + when and how + why also suit the analysis needs of the
industrials.

In order to assess the suitability of the knowledge discovery techniques described
in Chapter 6, the following question was posed to the workshop participants: What
knowledge discovery techniques should be part of this framework? The answers to
this question are summarized in the chart of Figure 7.19. The solid line represents
the amount of positive answers to a specific knowledge discovery technique for all
respondents, while the dashed lines show that amount for academics and industrials.

The results of Figure 7.19 show that the respondents identify the association rules
and the classification as the most suitable knowledge discovery techniques to their anal-
ysis needs. For the academics, the clustering is a technique that might be considered

7.6. Functionality 193

0%

25%

50%

75%

100%

Association
Rules

Classification

PredictionClustering

Gradient
Analysis

Academics

Industrials

All

Figure 7.19: Feedback results about the suitability of knowledge discovery techniques.

as well. For the industrials, the gradient analysis is also identified as an interesting
technique. Both academics and industrials consider the prediction as the less suitable
knowledge discovery technique.

Complementing the workshop results, feedback about the suitability of the results
of the Multidimensional Process Explorer framework was gathered in the case study.
In general, business analysts consider that the multidimensional process models are the
most suitable results. The characterization of process behavior for different aspects of
the business process is identified as the functionality they would like to have available
in their analyses. Furthermore, the comparison of process models (or sub-models) is a
functionality the analysts believe that could produce interesting results. For example,
the comparison of process behavior of support services performed in different countries.
In contrast, business analysts consider that the process patterns do not bring new in-
sight into the support services. This can be explained by the fact that the most frequent
instances selected for analysis are characterized by simple process behavior (e.g., one
or two tasks executed sequentially). Hence, similar insight into the performance of
support services can be achieved by using existing analytical tools.

7.6.2 Accuracy

A simple evaluation of the accuracy of the Multidimensional Process Explorer frame-
work was performed in the case study. Basically, this evaluation consisted of a discus-
sion with five business analysts where some representative results of the explorative
analysis were analyzed in terms of accuracy.

In general, the business analysts consider that the results provide a good and cor-
rect overview of the business processes in analysis. At a high level of abstraction,
the generated process models describe the support services according to the analysts
expectations. At lower levels of abstraction, it was not possible to derive any con-
crete conclusions once that results are too restrict. Regarding the accuracy of process
patterns, the results suggest that measuring information provided in the patterns is
accurate. All results describing unexpected behavior (or measuring information) were
confirmed to be well-computed (i.e., the unexpected outcomes are supported in the
data). Remark that the outcome of this discussion simply represents opinions based

194 Chapter 7. Evaluation

on their experience. A further evaluation is still necessary to obtain a clear insight into
the accuracy aspect of the Multidimensional Process Explorer framework.

7.7 Discussion

Three different analyses were conducted to evaluate a prototype that implements the
multidimensional approach for discovery and analysis of business processes introduced
in this thesis. The main focus of this evaluation concerns the feasibility and applica-
bility of the approach as well as the efficiency aspects of the software.

Experiments

The results of the performance evaluation of the framework concerns the quantitative
aspects of the functionality provided by the prototype, i.e., the efficiency characteristic
of the software quality model. Using synthetic process data, the main framework’s
components were assessed in terms of time behavior in order to identify the system
bottlenecks.

Process Discovery: The results suggest that the process discovery techniques in-
troduced in this thesis are characterized by linear computational times to the
amount of process instances and process events. An interesting observation is
that almost all computational effort of building the dependency graph is related
to the dependency measures computation. This explains the fact that the Mul-
tidimensional Heuristics Miner is capable of building a dependency graph in a
fraction of time of the traditional approach once that the dependency measures
are computed beforehand in the Event Cube. Another interesting observation is
that the computation of splits and joins (or event occurrence bindings) supported
by an inverted index is at least four times faster than the traditional approach
(i.e., accessing directly the process data). Remark, however, that this observation
does not take into account the time required to build the index. One of the con-
clusions of this evaluation is that, as claimed in this thesis, a multidimensional
process model can indeed be generated on-the-fly using an Event Cube.

Process Analysis: The results confirm that the indexation process introduced in this
thesis is characterized by linear computational times to the amount of process
instances and process events. However, further experiments are needed to as-
sess the performance of the inverted index with respect to retrieval operations.
Regarding the Event Cube, the results suggest that the computational time re-
quired to materialize a data cube is (i) linear to the amount of process instances,
process events, and non-empty multidimensional cells in the data cube, and (ii)
exponential to the dimensionality of the data cube. The scalability of an Event
Cube cannot be compared to traditional data cubes for some reasons. Apart
implementation aspects and issues, an Event Cube is designed to hold several
complex measures, which in this evaluation represent about three quarters of the
materialization time. Nonetheless, the results show that the process discovery
and analysis of business processes can be performed on low-dimensional Event
Cubes. This limitation on dimensionality is not expected to have negative impact
in application of the proposed approach. Discovery operations (e.g., drill-down

7.7. Discussion 195

and roll-up) basically consist of navigating the lattice of cuboids, retrieving mea-
suring information from the cuboids, and generating a mC-nets according to some
process perspective. Therefore, the performance of these operations mainly and
directly depends of the performance of the Multidimensional Heuristics Miner.
Filtering operations (e.g., slice and dice) not only depends on the Multidimen-
sional Heuristics Miner but also on the generation artificial dependency relations.
Therefore, further experiments are needed to assess the performance of these op-
erations.

Process Patterns: The results demonstrate that the mining of process patterns on
an Event Cube is feasible. Two different mining techniques are implemented in
the prototype: the Instance Clustering and the Frequent Binding Sets Miner. On
the one hand, the computational time required to run the Instance Clustering
technique seems to be linear to the number of distinct process instances. On the
other hand, the computational time required to mine frequent binding sets seems
to be linear to the number of process events.

The main conclusion of this performance evaluation is that the prototype provides
a reasonable performance for process mining. Unlike traditional OLAP tools, the pro-
posed approach is not designed to handle high-dimensional data cubes with millions
of entries. This high-dimensional scenario would lead to an impractical process anal-
ysis because of the curse of dimensionality issue (i.e., almost every perspective would
produce spaghetti models). Therefore, it is expected that the number of dimensions
in the discovery and analysis of business processes using the proposed approach is not
higher than five. This low-dimensionality scenario turns possible the execution of the
proposed approach on desktop computers (instead of dedicated servers), especially if
the amount of process data is not significantly high (up to a quarter of a million of
process events).

Workshop

The results of the workshop experiment concerns the qualitative aspects of the function-
ality provided by the framework, i.e., the usability and functionality characteristics of
the software quality model. In general, positive and encouraging feedback was received
from the workshop participants.

As expected, understandability results show that the majority of the respondents
consider that the framework provides understandable results. Since the multidimen-
sional process models (mC-nets) adopt a similar representation as the traditional pro-
cess models (aC-nets), it is expected that the results can be easily understood by
anyone familiar with process models. It is also expected that some understandability
issues represented in the results by some negative feedback are related to the curse of
dimensionality.

Operability results show that the majority of the respondents consider that the
framework is easy to use but there still is some space for improvements. As an OLAP-
based tool, it is expected that the framework can be used intuitively by performing
OLAP operations on an Event Cube. This expectation is confirmed by the results.
However, it is identified that some functionalities of the framework’s user interface
should be easier to use (e.g., the filtering operations).

Suitability results show that the respondents consider that the framework provides
appropriate functionality for the discovery and analysis of business processes. As men-

196 Chapter 7. Evaluation

tioned before, the same kind of functionality could be performed by using traditional
process mining techniques, but in a laborious and non-integrated way. Some feedback
from the industrials confirms this fact. They consider that the strongest functionality
of the framework is the integrated environment, especially in complex analysis. The
results also characterize the analysis needs of the participants in terms of business pro-
cess queries and process patterns. This feedback provides insight into what kind of
functionality should be part of the framework.

Case Study

The results of the case study concern one of the qualitative aspects of the functional-
ity provided by the framework, the functionality characteristic of the software quality
model. These results consist basically of feedback from business analysts about the
results of an explorative analysis using the Multidimensional Process Explorer frame-
work.

Suitability results show that business analysts consider that the multidimensional
process models are the most suitable results. Furthermore, although the functionality
is not implemented, the comparative analysis of process models (or sub-models) is a
functionality the analysts believe that could bring added value to their analyses. In
contrast, business analysts consider that the process patterns do not bring new insight
into the support services. This can be explained by the fact that the most frequent
instances selected for analysis are characterized by simple process behavior (e.g., one
or two tasks executed sequentially). Hence, similar insight into the performance of
support services can be achieved by using existing analytical tools.

Accuracy results show that business analysts consider that the framework provides
correct results. However, as stated before, this evaluation is based on feedback from a
restrict number of analysts. Hence, the feedback about accuracy gathered in this case
study should be seen simply as an indicator. A further evaluation is still necessary to
obtain a clear insight into the accuracy of multidimensional process models and process
patterns.

Conclusions

Two main conclusions can be drawn from the evaluation presented in this chapter.
First, the feasibility of the multidimensional approach for discovery and analysis of
business processes introduced in this thesis is demonstrated in an experimental study.
Second, usability and functionality aspects of the Multidimensional Process Explorer
framework are studied in a workshop experiment as well as a case study in industry. The
gathered feedback indicates that the approach can provide new insight into business
processes. Additionally, according to business analysts, the added value of the approach
is the characterization of process behavior for different business perspectives. This
cannot be achieved by any other tool.

Chapter 8

Conclusions

In this thesis, a multidimensional process discovery approach is proposed for knowledge
discovery on process data. An overview of this approach is presented in Figure 8.1.

Event Cube

Multidimensional
Heuristics Miner

Process
Data

Inverted
Index

Flexible
Heuristics Miner

Process Pattern
Miners

ETL Cube
Processor

Instance Based-
Patterns

Augmented
Causal Net

Multidimensional
Causal Net

Event Based-Patterns

Flow Based-Patterns

Figure 8.1: Overview of the multidimensional process discovery approach. Layers in gray color
characterize data transformations, while the others identify process data or results. Arrows represent
the data flow.

The multidimensional process discovery approach presented in this thesis consists of
a sequence of steps in which process data are transformed first into process information,
and then into process knowledge. In traditional process discovery approaches, process
data are analyzed directly in order to get insight into the behavior of the business pro-
cess described in the data. The Flexible Heuristics Miner is introduced as a traditional
process discovery application in which process data can be transformed into process

198 Chapter 8. Conclusions

information (i.e., a process model). The insight gained from the analysis of process
information can be considered as process knowledge. In the multidimensional process
discovery approach, process data are firstly structured to enable the data exploitation
according to different business perspectives. The inverted index and the Event Cube
are introduced to facilitate the dynamic exploitation of process data, which can be
performed by a multidimensional process discovery application. As a generalization of
the Flexible Heuristics Miner, the Multidimensional Heuristics Miner is introduced to
exploit the different business perspectives by also transforming process data into – mul-
tidimensional – process information (i.e., a multidimensional process model). Process
knowledge can then be achieved either by analyzing multidimensional process informa-
tion or by extracting non-trivial patterns from that information. Several techniques
for extracting process patterns from a multidimensional process model are introduced
in this thesis.

A discussion covering the research questions investigated in this thesis is provided
next. Then, the contributions, applications, and limitations of the multidimensional
process discovery approach are discussed in sections 8.1, 8.2, and 8.3. Finally, this
thesis is concluded by presenting future work directions (Section 8.4).

Research Questions

The research work presented in this thesis is defined by one main research question (Q),
and six related sub-questions (q1−6). A final discussion about these research questions
is provided next.

(q1) Which traditional process mining techniques can be extended with multidi-
mensional capacity (i.e., be applied using different dimensions, by turning
traditional analyses into multidimensional)?

An overview of the process mining domain is presented in Chapter 1. Discovery, con-
formance, and enhancement are identified as the main applications of process mining.
From these, discovery is identified as the most suitable application once that it simply
relies on process data to be applied. Enhancement can also be considered for extending
the process discovery results with performance information. Under the process discov-
ery scope, four perspectives are identified: control-flow, organization, time, and data.
The different aspects (dimensions) of the business process are described in these per-
spectives. Therefore, by integrating dynamically all of these perspectives, it is possible
to extend the process discovery with multidimensional capacity.

(q2) How can traditional process discovery be extended with multidimensional
capacity?

The link between traditional and multidimensional process discovery and analysis is
established in chapters 3 and 4. Generalizing traditional process models, multidimen-
sional process models are defined to represent the different process discovery perspec-
tives (i.e., control-flow, organization, time, and data). Multidimensional capacity is
achieved by combining process discovery perspectives.

(q3) What kind of knowledge can be achieved with dynamic multidimensional
process discovery and analysis?

As described in Chapter 5, business process queries can be used to characterize the
different kinds of analyses that can be performed by process discovery techniques. By

199

integrating the organization, time, and data perspectives into the control-flow one,
dynamic multidimensional process discovery and analysis can provide the same insight
into a business process as those process discovery perspectives, but in an integrated
environment, on-the-fly, and at different levels of abstraction.

(q4) How can multidimensional process discovery results be exploited for knowl-
edge discovery?

As described in Chapter 5, the Event Cube organizes the process data according to
multiple business perspectives. Each business perspective is characterized by a distinct
set of dimensions and can provide insight into specific aspects of a business process.
Knowledge discovery on an Event Cube can be achieved by exploiting these perspec-
tives. Based on main OLAP operators, discovery and filtering operations are introduced
to facilitate hypothesis-driven analysis of business processes (cf. Section 5.3). Based on
data mining functionalities, techniques for automatic extraction of non-trivial process
patterns are also proposed (cf. Chapter 6).

(q5) What kind of non-trivial patterns can be – automatically – derived from
multidimensional process discovery results?

Process patterns as described in Chapter 6 are the answer to this sub-question.
Instance-, event-, and flow-based patterns are possible patterns that can be derived
from a multidimensional process model.

(q6) What is the added value of dynamic multidimensional process discovery
and analysis to the stakeholders?

This sub-question is partially answered in Chapter 7. A workshop and a case study were
conducted to collect feedback from industrials and academics about the functionality
and the usability of a prototype implementing a framework for dynamic multidimen-
sional process discovery and analysis. Additionally, some experiments were conducted
to get insight into the efficiency aspect of the framework. The results suggest that
dynamic multidimensional process discovery and analysis can play an important role
in understanding and monitoring business processes in enterprises, improving thus the
process awareness of stakeholders. However, due to the limited scope of the current
evaluation, it is not possible to provide a complete answer to this sub-question. A fur-
ther evaluation where the framework is used by process analysts in real-life applications
is still needed.

(Q) What is the impact – and the benefit – of the dynamic multidimensional
discovery and analysis of business processes?

The dynamic multidimensional discovery and analysis of business processes is discussed
in the core chapters of the thesis. The potential of this approach is the dynamic discov-
ery and analysis of business processes according to specific perspectives, in an integrated
environment and at different levels of abstraction. Therefore, using hypothesis-driven
analysis, different aspects of business processes can be taken into account in the process
discovery and analysis, which enables the process analyst to explore dynamically the
business process according specific requirements. As stated before, this could eventu-
ally be done using traditional process mining techniques by filtering and transforming
the process data, but in a laborious, time-consuming and non-integrated way. For
instance, comparing the process behavior of the repair of 10 different products over

200 Chapter 8. Conclusions

the last 12 months would require the partition of the process data into 120 datasets
(10 products × 12 months). After partitioning the process data, a control-flow mining
algorithm (e.g., the Flexible Heuristics Miner) needed to be applied on each of these
datasets. As result, 120 process models would be generated separately. Comparing the
process behavior represented in all of these process models only could be performed by
model matching. All of these steps would take several hours to be achieved. Using the
approach proposed in this thesis, the process behavior characterized by product and
month would be generated on-the-fly from the process data, and the results would be
presented in a single – multidimensional – process model.

Besides the research questions discussed above, a preliminary research question
was investigated to position the main focus of this thesis (the knowledge discovery on
process data) with respect to the main goal of the DataFusion project (the integration
of information from the existing NPD datasets).

(Q′) How to establish an effective connection between the – operational – data
sources and the knowledge discovery techniques?

This research question is addressed in Chapter 2. Conceptually, a data provider can
be used to establish an effective connection between the data sources and the knowl-
edge discovery techniques (e.g., the framework for multidimensional process discovery
described in this thesis). Two different approaches were identified as data providers:
the data warehousing systems and the enterprise search engines. The first one can be
seen as the logical option once that this kind of system is optimized to integrate data
from heterogeneous sources for decision supporting. However, since NPD processes
are dynamic and multidisciplinary, some of the prerequisites for implementing a data
warehousing system may not be met. Hence, as an alternative approach, the search
engine systems are considered for overcoming these issues.

8.1 Contributions

The contributions of this thesis to the data mining, OLAP, and process mining domains
can be summarized as follows.

Process Representation

Defined in Chapter 3, the Causal nets [117] are designed to provide a simple
and clear overview of processes mined from process data. Extending this pro-
cess modeling formalism, augmented Causal nets are defined to complement
the process model with measuring information (e.g., frequency) about activities,
dependency relations, and input and output bindings (i.e., joins and splits). By
characterizing the elements of process models (i.e., the process events and de-
pendency relations) through multiple dimensions, multidimensional process
models can be considered as a generalization of traditional (one-dimensional)
process models. While the representation of a traditional process model consists
of a directed graph, a multidimensional process model is represented by a directed
multigraph. Generalizing augmented Causal nets, multidimensional Causal
nets are defined as an instance of this type of process model.

Discussed in Chapter 4, the similarity assessment on multidimensional process
models can be performed by using similarity functions [16, 35]. These func-
tions are defined to compute the similarity between elements of multidimensional

8.1. Contributions 201

process models, i.e., (i) event occurrences, (ii) dependency relations, (iii) event
occurrence bindings, or (iv) sets of event occurrence bindings.

Control-Flow Mining

Presented in Chapter 3, the Flexible Heuristics Miner consists of an exten-
sion of Heuristics Miner algorithm [131, 132] where a new method for computing
splits and joins is introduced. This control-flow algorithm produces an augmented
Causal net representing the process described in some given process data. As an
adaptation of the Flexible Heuristics Miner, the Multidimensional Heuris-
tics Miner produces a multidimensional Causal net characterized by multiple
aspects (dimensions) of the business process. The resulting Causal net represents
a specific perspective of the process described in some given process data.

Process Discovery and Analysis

Presented in Chapter 5, the Event Cube (a data cube of process events [29,
50, 73]) is designed to organize summarizing information about different per-
spectives of a process described in some given process data. Summarizing in-
formation consists of control-flow measures and performance measures.
Control-flow measures facilitate the execution on-the-fly of a control-flow mining
algorithm (e.g., the Multidimensional Heuristics Miner) on a specific business
perspective. Performance measures can be used to enhance the multidimensional
process model with measuring information. An Event Cube relies on an inverted
index (a data structure that facilitates the direct access to data characterized
by specific constraints [145]) and can be considered as a framework for multidi-
mensional discovery and analysis of business processes.

The multidimensional discovery and analysis of business processes can be
achieved by exploiting an Event Cube. Based on typical OLAP operators [29, 50],
discovery operations and filtering operations are introduced to facilitate
the Event Cube exploitation. Discovery operations can be used to characterize
the process perspective in analysis in terms of dimensions. As result, a multi-
dimensional process model representing the perspective is generated on-the-fly.
Filtering operations can be used to omit irrelevant information from the process
model in analysis. A filtering methodology is introduced to ensure process
behavior consistency. Challenges related to the multidimensional discovery and
analysis of business processes are raised and discussed in this thesis.

Process Patterns

Discussed in Chapter 6, the extraction of process patterns can be achieved by
applying some data mining functionalities on multidimensional process models.
Summarization, deviation analysis, rule learning, classification, and clustering are
presented as potential functionalities [40, 50]. Relying on these functionalities,
frequent process patterns, process gradients, and – process – instance
clustering are introduced as examples of techniques for extraction of process
patterns.

The contributions of this thesis to the enterprise information systems, information
retrieval, and NPD domains can be summarized as follows.

Concept architecture

Introduced in Chapter 2, this architecture consists of an enterprise search engine
[53] capable of

202 Chapter 8. Conclusions

i. searching and retrieving data from heterogeneous systems,

ii. transforming data according specific requirements,

iii. performing knowledge discovery, and

iv. storing knowledge and sharing it within the organization.

According to the DataFusion project requirements, this architecture is designed
to establish an effective connection between the data sources and the knowl-
edge discovery techniques. The framework for multidimensional discovery and
analysis of business processes described in this thesis is identified as part of this
architecture.

Knowledge discovery on process data

The knowledge discovery on process data according to the DataFusion project
requirements is demonstrated in this thesis through two case studies.

8.2 Applications

Developed under the scope of the DataFusion project, the framework for multidimen-
sional discovery and analysis of business processes introduced in this thesis was re-
quired to apply knowledge discovery techniques on New Product Development (NPD)
datasets. A case study conducted in industry demonstrated that NPD – especially the
customer support service – is a possible application for the proposed multidimensional
approach. Other industry-related applications are also possible.

As any other process discovery technique, the multidimensional process discovery
approach described in this thesis can be applied on data describing any kind of business
process. Concrete process-related applications of the approach can be described as
follows.

Control-flow mining can be applied to discover a – traditional or multidimensional
– process model that reflects the process behavior observed in process data.

Hypothesis-driven process analysis consists of exploring the different business
perspectives in order to discover and analyze the corresponding processes.

Temporal analysis can be performed by considering any time-related dimension.
This type of analysis can provide insight into differences in process behavior
that happen at different points in time.

Organizational analysis can be performed by considering any resource-related di-
mension. The handover of work is the most straightforward resource-related
analysis in this multidimensional approach.

Decision point analysis consists of characterizing decisions in process models. In
this multidimensional approach, this type of analysis can be performed either
by applying classification techniques on multidimensional process models or by
hypothesis-driven process analysis.

Performance analysis can be achieved by enhancing the multidimensional process
models with performance information.

Sequence analysis can be performed by characterizing process instances according to
some performance measure. In this multidimensional approach, process behavior
(e.g., parallel behavior) is taken into account to group similar process instances.

8.3. Limitations 203

Process pattern extraction consists of applying data mining functionalities on mul-
tidimensional process models in order to find non-trivial patterns. These patterns
can provide further insight into the process behavior represented in the process
model.

8.3 Limitations

The main limitations of the multidimensional process discovery approach can be de-
scribed as follows.

Results consistency can be considered one of the main limitations of the multidi-
mensional process discovery approach. Described in Subsection 5.4.4, this issue
describes the difficulty to generate consistent process models across business per-
spectives. Although this issue can be minimized by user intervention, alternative
strategies for exploiting Event Cubes (to the one presented in Chapter 5) should
be developed to ensure the results consistency. For example, the solution intro-
duced in Appendix A.

Result quality assessment is not considered in the proposed approach. Therefore,
information about the accuracy of both multidimensional process models and
process patters cannot be provided to the user at any moment in time. Considered
also as a main limitation of the multidimensional process discovery approach, this
issue may be solved by applying conformance and validation techniques on the
approach results.

Curse of dimensionality is a known issue in the multidimensional process discovery
approach. Discussed in Subsection 5.4.1, this issue describes the excessive com-
plexity of process models by representing too much information. Although some
approaches are proposed in this thesis to minimize the complexity of process
models (e.g., using simplified model representations or applying filtering oper-
ations), the curse of dimensionality issue is still considered a limitation of the
multidimensional process discovery approach.

8.4 Future Work

Besides the limitations and issues discussed in the previous section, five further topics
are identified as future work.

Discovery-driven exploration of Event Cubes

Currently, the hypothesis-driven exploration is the only approach considered to
explore Event Cubes. Basically, this approach relies exclusively on the user input
to characterize the business perspective to be analyzed. A different exploration
approach, the discovery-driven exploration [99], can be considered to provide
support to the user on the Event Cube exploration. In this approach, poten-
tially interesting information (e.g., exceptions or outliers) can be computed as
measures, guiding the user in the process analysis of every business perspective.

Applying other process discovery techniques on Event Cubes

Currently, the Multidimensional Heuristics Miner is the only process discovery
technique applied on the Event Cube. Nonetheless, other techniques can also be
applied to gain further insight into different aspects of the business process. For

204 Chapter 8. Conclusions

example, social network analysis may be performed on any process perspective
containing information about resources.

Visualization of multidimensional process models

New forms of visualizing multidimensional process models can be studied. Cur-
rently, multidimensional process models are represented as directed multigraphs,
adopting almost the same representation as traditional process models. These
representations have proven to be relatively effective on describing traditional
– and low-dimensional – process models. Nonetheless, different representations
may also be considered to highlight specific aspects of the process.

Further discovery and filtering operations

New discovery and filtering operations can be developed to improve the Event
Cube exploitation. For example, new discovery operations can focus simply on
specific process elements, leaving the remaining elements unaltered. Drilling
down simply an event occurrence (instead of the entire process model) may im-
prove the process analysis by adding a limited amount of information.

Further process pattern extraction techniques and strategies

New process pattern extraction techniques can be developed to gain insight into
different aspects of multidimensional process models. For example, graph mining
techniques [50] can be applied on the process model structure to identify the
most relevant nodes and edges in the graph. Another interesting possibility is the
application of process pattern extraction techniques across business perspectives
(e.g., comparing process behavior in models from different perspectives).

Appendix A

Building Multidimensional
Process Models from a
Reference Process Model

Let R be a multidimensional process model given as reference model and I the index
over R that identifies whether a pair of identifiers is associated to a dependency relation
in R. A multidimensional process model M can be built from R by:

i. Determining the set of event occurrences in M .

ii. Generating the set of candidate dependency relations in M . For each candidate
dependency relations, the set of pair of identifiers that support the candidate
relation should be computed as well.

iii. Checking, for each candidate dependency relation, whether at least a pair of
identifiers that supports the candidate relation exists in I. If so, the candidate
dependency relation is added to the dependency graph of M .

iv. Computing the event occurrence bindings of M using Algorithm 5. Note that
this step does not take into account any information of R.

The following example is presented to illustrate how a multidimensional process
model can be derived from another model. Let’s consider that the process data consist
of five process instances. The characteristics of these process instances are presented
in Figure A.1.

Each process event is characterized by two attributes: Activity and Type. Addi-
tionally, an event identifier is also provided (the label in brackets). This information
can be summarized as follows.

• {Activity:A}: {a, e, k, o, s}
• {Activity:B}: {b, c, f, g, h, i, l,m, p, q, t, u, v, w}
• {Activity:C}: {d, j, n, r, x}
• {Type:Start}: {b, f, h, l, p, t, v}
• {Type:Complete}: {a, d, e, g, i, j, k,m, n, o, q, r, s, u, w, x}
Figure A.2 presents the process model with 1-D nodes over dimension Activity

and 0-D edges to be used as reference. The extra information provided in nodes

206Appendix A. Building Multidimensional Process Models from a Reference Process Model

Activity:A

Type:Complete

Activity:B

Type:Complete

Activity:B

Type:Start

Activity:C

Type:Complete

Activity:A

Type:Complete

Activity:B

Type:Complete

Activity:B

Type:Start

Activity:B

Type:Start

Activity:C

Type:Complete

Activity:B

Type:Complete

Activity:A

Type:Complete

Activity:B

Type:Complete

Activity:B

Type:Start

Activity:C

Type:Complete

Activity:A

Type:Complete

Activity:B

Type:Complete

Activity:B

Type:Start

Activity:C

Type:Complete

Activity:A

Type:Complete

Activity:B

Type:Complete

Activity:B

Type:Complete

Activity:B

Type:Start

Activity:B

Type:Start

Activity:C

Type:Complete

(a) (b) (c) (d)

(e) (f) (g) (h) (i) (j)

(k) (l) (m) (n)

(o) (p) (q) (r)

(s) (t) (u) (v) (w) (x)

Figure A.1: Five possible process instances of a random business process.

represent the set of event identifiers that define the event occurrence. Analogously,
that information on edges identify the causal dependencies in terms of process events.

Activity:A

{a,e,k,o,s}

Activity:B

{b,c,f,g,h,i,l,m,

p,q,t,u,v,w}

Activity:C

{d,j,n,r,x}
(a,b) (e,f) (k,l)

(o,p) (s,t)

(c,d) (i,j) (m,n)

(q,r) (w,x)

(b,c) (f,g) (g,h) (h,i) (l,m)

(p,q) (t,u) (u,v) (v,w)

Figure A.2: The reference process model.

By indexing the information about the causal dependencies of the reference process
model, it is possible to derive any other multidimensional process model of the same
business process. For instance, the process model with 1-D nodes over dimension Type
and 0-D edges can be generated as follows.

i. First, the set of event occurrences to be represented in the process model should
be identified. Using the summarized information about event identifiers, this set
can be easily defined as E = { {Type:Start}, {Type:Complete} }.

ii. Second, the set of candidate dependency relations is defined as

D = {(x, y) | ∃a,b∈E [x = a ∧ y = b]}.

As the dependency relations of the reference process model, each dependency
relation in D can be characterized by a set of pairs of identifiers. For a given
candidate dependency relation (x,y), this set can be defined as

Tx→y = {(i, j) | ∃a∈Tx,b∈Ty [a 6= b ∧ i = a ∧ j = b]},

where Tx and Ty are the sets of event identifiers of x and y.

In the running example, the candidate dependency relations are:

1. ({Type:Start}, {Type:Start}),

207

2. ({Type:Start}, {Type:Complete}),
3. ({Type:Complete}, {Type:Start}), and

4. ({Type:Complete}, {Type:Complete}).
Considering T{Type:Start} = {a, e, k, o, s} as the set of event identifiers of
{Type:Start}, the set of pairs of identifiers of the first candidate is defined
as T{Type:Start}→{Type:Start} = {(a, e), (a, k), (a, o), ..., (s, k), (s, o)}.

iii. Next, the dependency relations to be added to the dependency graph are selected
from the candidate dependency relations. This selection can be defined as follows.
Let I be the set of pairs of identifiers of the dependency relations of the reference
process model. A given candidate dependency relation (x, y) ∈ D is selected to
be added to the dependency graph if I contains at least one element of Tx→y.

For the running example, Figure A.3 presents the multidimensional dependency
graph with the selected dependency relations. Like in the reference process model,
the extra information represents the object’s identifiers.

Type:Start

{b,f,h,l,p,t,v}

Type:Complete

{a,d,e,g,i,j,k,m,

n,o,q,r,s,u,w,x}

(c,d) (i,j) (m,n)

(q,r) (w,x)

(a,b) (e,f) (g,h) (k,l)

(o,p) (s,t) (u,v)

(b,c) (f,g) (h,i) (l,m)

(p,q) (t,u) (v,w)

Figure A.3: The multidimensional dependency graph of the derived process model.

iv. Finally, the event occurrence bindings of the new process model can be computed
using Algorithm 5.

Remark that no constrained dependency relation was considered in this example.
Nonetheless, this issue can easily be overcome by applying the same approach as in
Algorithm 4. First, both event and workflow constraints are combined to character-
ize exclusively the event occurrences. Then, based of these event occurrences, the
dependency relations are computed without any constraint. At the end, the event oc-
currences and dependency relations can be normalized by applying the function split()
(cf. Algorithm 4).

Bibliography

[1] ISO/IEC 9126-1:2001 - Software Engineering – Product Quality – Part 1: Quality Model,
2001. (cited on p. 169)

[2] A.K. A. de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University of
Technology, Eindhoven, 2006. (cited on p. 10)

[3] A.K. A. de Medeiros and C.W. Günther. Process Mining: Using CPN Tools to Create
Test Logs for Mining Algorithms. In Proceedings of the Sixth Workshop and Tutorial on
Practical Use of Coloured Petri Nets and the CPN Tools, pages 177–190, 2005. (cited
on p. 175)

[4] A.K. A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Workflow Mining:
Current Status and Future Directions. In R. Meersman, Z. Tari, and D.C. Schmidt, edi-
tors, On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE,
volume 2888 of Lecture Notes in Computer Science, pages 389–406. Springer Berlin Hei-
delberg, 2003. ISBN 978-3-540-20498-5. (cited on p. 10)

[5] A.K. A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Quantifying
process equivalence based on observed behavior. Data and Knowledge Engineering, 64
(1):55–74, January 2008. ISSN 0169-023X. (cited on p. 87)

[6] A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Towards Robust Confor-
mance Checking. In Proceedings of the 6th Workshop on Business Process Intelligence
(BPI 2010), 2010. (cited on pp. 9, 11, and 43)

[7] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings
of the 20th International Conference on Very Large Data Bases, VLDB ’94, pages 487–
499, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc. (cited on pp. 5
and 145)

[8] R. Agrawal, T. Imieliński, and A. Swami. Mining Association Rules between Sets of
Items in Large Databases. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’93, pages 207–216, New York, NY,
USA, 1993. ACM. ISBN 0-89791-592-5. (cited on p. 5)

[9] R. Alves, O. Belo, and J.T.S. Ribeiro. Mining top-k multidimensional gradients. In
Proceedings of the 9th International Conference on Data Warehousing and Knowledge
Discovery, pages 375–384, Berlin, Heidelberg, 2007. Springer-Verlag. (cited on p. 149)

[10] R. Alves, J.T.S. Ribeiro, and O. Belo. Mining significant change patterns in multidi-
mensional spaces. International Journal of Business Intelligence and Data Mining, 4
(3/4):219–241, November 2009. ISSN 1743-8195. (cited on p. 8)

[11] R. Alves, J.T.S. Ribeiro, O. Belo, and J. Han. Ranking gradients in multi-dimensional
spaces. Complex Data Warehousing and Knowledge Discovery for Advanced Retrieval
Development: Innovative Methods and Applications. Hershey, PA, EUA: IGI Global,
pages 251–269, 2009. (cited on p. 8)

210 BIBLIOGRAPHY

[12] S. Angelov, P.W.P.J. Grefen, and D. Greefhorst. A framework for analysis and design of
software reference architectures. Information and Software Technology, 54(4):417–431,
April 2012. ISSN 0950-5849. (cited on pp. 23 and 24)

[13] M. Ankerst, M.M. Breunig, H.P. Kriegel, and J. Sander. OPTICS: Ordering Points to
Identify the Clustering Structure. In Proceedings of the 1999 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’99, pages 49–60, New York, NY,
USA, 1999. ACM. ISBN 1-58113-084-8. (cited on p. 7)

[14] E. Badouel and P. Darondeau. Theory of Regions. In W. Reisig and G. Rozenberg, edi-
tors, Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes in Computer
Science, pages 529–586. Springer Berlin / Heidelberg, 1998. ISBN 978-3-540-65306-6.
(cited on p. 10)

[15] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, Second Edition.
Addison-Wesley Professional, April 2003. ISBN 0321154959. (cited on p. 23)

[16] M. Becker and R. Laue. A comparative survey of business process similarity measures.
Computers in Industry, 63(2):148–167, 2012. ISSN 0166-3615. (cited on pp. 87 and 200)

[17] I.E. Ben-Gal. Outlier detection. In The Data Mining and Knowledge Discovery Hand-
book, pages 131–146. Springer, 2005. (cited on p. 103)

[18] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser. Process Mining Based on Regions
of Languages. In Proceedings of the 5th International Conference on Business Process
Management, BPM’07, pages 375–383, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
3-540-75182-3. (cited on p. 10)

[19] S. Betz, D. Eichhorn, S. Hickl, S. Klink, A. Koschmider, Y. Li, A. Oberweis, and
R. Trunko. 3D representation of business process models. In MobIS’08, pages 73–87,
2008. (cited on p. 16)

[20] K. Beyer and R. Ramakrishnan. Bottom-Up Computation of Sparse and Iceberg CUBEs.
In Proceedings of the 1999 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’99, pages 359–370, New York, NY, USA, 1999. ACM. ISBN 1-58113-
084-8. (cited on p. 8)

[21] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A Training Algorithm for Optimal Margin
Classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, COLT ’92, pages 144–152, New York, NY, USA, 1992. ACM. ISBN 0-89791-
497-X. (cited on p. 6)

[22] C. Bratosin, N. Sidorova, and W.M.P. van der Aalst. Distributed genetic process min-
ing. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2010,
Barcelona, Spain, 18-23 July 2010, pages 1–8. IEEE, 2010. (cited on p. 10)

[23] C. Bratosin, N. Sidorova, and W.M.P. van der Aalst. Distributed Genetic Process Mining
Using Sampling. In V. Malyshkin, editor, Parallel Computing Technologies, volume 6873
of Lecture Notes in Computer Science, pages 224–237. Springer Berlin Heidelberg, 2011.
ISBN 978-3-642-23177-3. (cited on p. 10)

[24] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984. (cited on p. 6)

[25] A.C. Brombacher, E.E. Hopma, R.A. Ittoo, Y. Lu, I.M. Luyk, L. Maruster, J.T.S.
Ribeiro, A.J.M.M. Weijters, and J.C. Wortmann. Improving product quality and relia-
bility with customer experience data. Quality and Reliability Engineering International,
2011. ISSN 1099-1638. (cited on p. 12)

[26] P.R. Carlile. Transferring, Translating, and Transforming: An Integrative Framework for
Managing Knowledge Across Boundaries. Organization Science, 15(5):555–568, October
2004. ISSN 1526-5455. (cited on p. 4)

BIBLIOGRAPHY 211

[27] J. Carmona, J. Cortadella, and M. Kishinevsky. A Region-Based Algorithm for Discov-
ering Petri Nets from Event Logs. In Proceedings of the 6th International Conference
on Business Process Management, BPM ’08, pages 358–373, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 978-3-540-85757-0. (cited on p. 10)

[28] A.V. Castro. The Customer Service in Philips Cardio/Vascular Unit: Modeling and
Improvement Strategies for the Current Process. Master’s thesis, Eindhoven University
of Technology, Eindhoven, 2009. (cited on p. 29)

[29] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
SIGMOD Record, 26:65–74, March 1997. ISSN 0163-5808. (cited on pp. 7 and 201)

[30] C. Chen, X. Yan, F. Zhu, J. Han, and P.S. Yu. Graph OLAP: A multi-dimensional
framework for graph data analysis. Knowledge and Information Systems, 21:41–63,
October 2009. ISSN 0219-1377. (cited on p. 8)

[31] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing Petri Nets
from State-Based Models. In Proceedings of the 1995 IEEE/ACM International Con-
ference on Computer-Aided Design, ICCAD ’95, pages 164–171, Washington, DC, USA,
1995. IEEE Computer Society. ISBN 0-8186-7213-7. (cited on p. 10)

[32] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets from
Finite Transition Systems. IEEE Transactions on Computers, 47(8):859–882, August
1998. ISSN 0018-9340. (cited on p. 10)

[33] B.V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques.
IEEE Computer Society Press, Los Alamitos, CA, 1991. (cited on p. 6)

[34] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood from Incomplete
Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Method-
ological), pages 1–38, 1977. (cited on p. 7)

[35] R. Dijkman, M. Dumas, B.F. van Dongen, R. Krik, and J. Mendling. Similarity of
Business Process Models: Metrics and evaluation. Information Systems, 36(2):498–516,
2011. ISSN 0306-4379. (cited on pp. 86, 87, and 200)

[36] G. Dong, J. Han, J.M.W. Lam, J. Pei, and K. Wang. Mining Multi-Dimensional Con-
strained Gradients in Data Cubes. In Proceedings of the 27th International Conference
on Very Large Data Bases, VLDB ’01, pages 321–330, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc. ISBN 1-55860-804-4. (cited on p. 8)

[37] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley, New York, 2nd
edition, 2001. (cited on pp. 6 and 7)

[38] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. SpringerVerlag,
2003. ISBN 3540401849. (cited on pp. 6 and 10)

[39] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J.D. Ullman. Computing
Iceberg Queries Efficiently. In Proceedings of the 24rd International Conference on Very
Large Data Bases, VLDB ’98, pages 299–310, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-566-5. (cited on p. 8)

[40] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge dis-
covery in databases. AI Magazine, 17:37–54, 1996. (cited on pp. 141 and 201)

[41] D. Fisher. Improving Inference through Conceptual Clustering. In Proceedings of the
sixth National conference on Artificial intelligence - Volume 2, AAAI’87, pages 461–465.
AAAI Press, 1987. ISBN 0-934613-42-7. (cited on p. 7)

[42] K. Gerke, J. Cardoso, and A. Claus. Measuring the Compliance of Processes with Ref-
erence Models. In Proceedings of the Confederated International Conferences, CoopIS,
DOA, IS, and ODBASE 2009 on On the Move to Meaningful Internet Systems: Part
I, OTM ’09, pages 76–93, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-
05147-0. (cited on p. 87)

212 BIBLIOGRAPHY

[43] D. Greefhorst and E. Proper. Architecture Principles: The Cornerstones of Enterprise
Architecture. The Enterprise Engineering Series. Springer, 2011. ISBN 9783642202780.
(cited on p. 22)

[44] P.W.P.J. Grefen. Business Information System Architecture. Reader, January 2012.
Version Spring 2012. (cited on pp. 21, 22, 24, and 27)

[45] D. Grigori, J.C. Corrales, M. Bouzeghoub, and A. Gater. Ranking BPEL Processes for
Service Discovery. IEEE Transactions on Services Computing, 3(3):178–192, July 2010.
ISSN 1939-1374. (cited on p. 86)

[46] C.W. Günther. Process Mining in Flexible Environments. PhD thesis, Eindhoven Uni-
versity of Technology, Eindhoven, 2009. (cited on pp. 9, 10, 11, and 41)

[47] C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Simpli-
fication Based on Multi-perspective Metrics. In Proceedings of the 5th International
Conference on Business Process Management, BPM’07, pages 328–343, Berlin, Heidel-
berg, 2007. Springer-Verlag. (cited on pp. 9, 10, 11, 133, and 134)

[48] J. Han. OLAP Mining: An Integration of OLAP with Data Mining. In In Proceedings of
the 7th IFIP 2.6 Working Conference on Database Semantics (DS-7), pages 1–9, 1997.
(cited on p. 8)

[49] J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 27(1):
97–107, March 1998. ISSN 0163-5808. (cited on p. 8)

[50] J. Han and M. Kamber. Data Mining: Concepts and Techniques. The Morgan Kaufmann
Series in Data Management Systems. Elsevier, 2006. ISBN 9781558609013. (cited on
pp. 4, 6, 7, 8, 96, 98, 110, 141, 201, and 204)

[51] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation.
In Proceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’00, pages 1–12, New York, NY, USA, 2000. ACM. ISBN 1-58113-217-4.
(cited on p. 5)

[52] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of Iceberg cubes with
complex measures. In Proceedings of the 2001 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’01, pages 1–12, New York, NY, USA, 2001. ACM.
ISBN 1-58113-332-4. (cited on p. 8)

[53] D. Hawking. Challenges in enterprise search. In Proceedings of the 15th Australasian
Database Conference - Volume 27, ADC ’04, pages 15–24, Darlinghurst, Australia, Aus-
tralia, 2004. Australian Computer Society, Inc. (cited on pp. 30 and 201)

[54] D. Heckerman. Advances in knowledge discovery and data mining. chapter Bayesian
Networks for Knowledge Discovery, pages 273–305. American Association for Artificial
Intelligence, Menlo Park, CA, USA, 1996. ISBN 0-262-56097-6. (cited on p. 6)

[55] J. Hipp, U. Güntzer, and G. Nakhaeizadeh. Algorithms for Association Rule Mining: a
General Survey and Comparison. SIGKDD Explorations Newsletter, 2(1):58–64, June
2000. ISSN 1931-0145. (cited on p. 6)

[56] K. Huang, Z. Zhou, Y. Han, G. Li, and J. Wang. An Algorithm for Calculating Process
Similarity to Cluster Open-Source Process Designs. In H. Jin, Y. Pan, N. Xiao, and
J. Sun, editors, Grid and Cooperative Computing - GCC 2004 Workshops, volume 3252
of Lecture Notes in Computer Science, pages 107–114. Springer Berlin / Heidelberg,
2004. ISBN 978-3-540-23578-1. (cited on p. 86)

[57] S.C. Hui and G. Jha. Data Mining for Customer Service Support. Information and
Management, 38(1):1–13, 2000. ISSN 0378-7206. (cited on p. 8)

[58] T. Imieliński, L. Khachiyan, and A. Abdulghani. Cubegrades: Generalizing Association
Rules. Data Mining and Knowledge Discovery, 6(3):219–257, July 2002. ISSN 1384-5810.
(cited on p. 8)

BIBLIOGRAPHY 213

[59] W.H. Inmon. Building the Data Warehouse,3rd Edition. John Wiley & Sons, Inc., New
York, NY, USA, 3rd edition, 2002. ISBN 0471081302. (cited on p. 26)

[60] W.H. Inmon, C. Imhoff, and R. Sousa. Corporate Information Factory. John Wiley &
Sons, Inc., New York, NY, USA, 2nd edition, 2000. ISBN 0471399612. (cited on p. 27)

[61] R.A. Ittoo, L. Maruster, J.C. Wortmann, and G. Bouma. Textractor: A Framework for
Extracting Relevant Domain Concepts from Irregular Corporate Textual Datasets. In
W. Abramowicz and R. Tolksdorf, editors, Business Information Systems, volume 47 of
Lecture Notes in Business Information Processing, pages 71–82. Springer Berlin Heidel-
berg, 2010. ISBN 978-3-642-12813-4. (cited on p. 5)

[62] S. Jablonski and M. Goetz. Perspective oriented business process visualization. In
Proceedings of the 2007 International Conference on Business Process Management,
BPM’07, pages 144–155, Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 3-540-78237-
0, 978-3-540-78237-7. (cited on p. 16)

[63] R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis. Prentice
Hall, 5th edition, 2002. ISBN 0-130-92553-5. (cited on p. 6)

[64] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley and Sons, New York, 1990. (cited on p. 7)

[65] R. Kimball, L. Reeves, W. Thornthwaite, M. Ross, and W. Thornwaite. The Data
Warehouse Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying
Data Warehouses. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1998.
ISBN 0471255475. (cited on pp. 12, 28, and 96)

[66] E. Kindler, V. Rubin, and W. Schäfer. Process Mining and Petri Net Synthesis. In
J. Eder and S. Dustdar, editors, Business Process Management Workshops, volume
4103 of Lecture Notes in Computer Science, pages 105–116. Springer Berlin Heidelberg,
2006. ISBN 978-3-540-38444-1. (cited on p. 10)

[67] A. Koca, M. Funk, E. Karapanos, A. Rozinat, W.M.P. van der Aalst, H. Corporaal,
J.B.O.S. Martens, P.H.A. van der Putten, A.J.M.M. Weijters, and A.C. Brombacher.
Soft Reliability: An Interdisciplinary Approach with a UserSystem Focus. Quality and
Reliability Engineering International, 25(1):3–20, 2009. ISSN 1099-1638. (cited on p. 9)

[68] S. Kotsiantis and D. Kanellopoulos. Discretization techniques: A recent survey. GESTS
International Transactions on Computer Science and Engineering, 32(1):47–58, 2006.
(cited on p. 151)

[69] S.B. Kotsiantis. Supervised machine learning: A review of classification techniques. In
Proceedings of the 2007 conference on Emerging Artificial Intelligence Applications in
Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Infor-
mation Retrieval and Pervasive Technologies, pages 3–24, Amsterdam, The Netherlands,
2007. IOS Press. ISBN 978-1-58603-780-2. (cited on p. 7)

[70] R.W.M. Kuijpers. Merging Field Feedback Data for Product Design Improvement:
Enterprise Search Tools versus Ad Hoc Solutions. Master’s thesis, Eindhoven University
of Technology, Eindhoven, 2011. (cited on p. 34)

[71] C.C. Lee and C. Hu. Analyzing Hotel Customers’ E-Complaints from an Internet Com-
plaint Forum. Journal of Travel and Tourism Marketing, 17(2-3):167–181, 2004. (cited
on p. 5)

[72] X. Li and J. Han. Mining approximate top-k subspace anomalies in multi-dimensional
time-series data. In Proceedings of the 33rd International Conference on Very Large Data
Bases, VLDB ’07, pages 447–458. VLDB Endowment, 2007. ISBN 978-1-59593-649-3.
(cited on p. 8)

[73] X. Li, J. Han, and H. Gonzalez. High-dimensional OLAP: A minimal cubing approach.
In Proceedings of the 30th International Conference on Very Large Data Bases, VLDB
’04, pages 528–539, 2004. (cited on pp. 8, 111, and 201)

214 BIBLIOGRAPHY

[74] S.L. Liao. Knowledge Management Technologies and Applications: Literature Review
from 1995 to 2002. Expert Systems with Applications, 25(2):155–164, 2003. ISSN 0957-
4174. (cited on p. 4)

[75] H. Liu, F. Hussain, C.L. Tan, and M. Dash. Discretization: An enabling technique.
Data Mining and Knowledge Discovery, 6(4):393–423, October 2002. ISSN 1384-5810.
(cited on p. 105)

[76] M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and A. Mehta.
E-Cube: Multi-dimensional event sequence processing using concept and pattern hier-
archies. Data Engineering, International Conference on, 0:1097–1100, 2010. (cited on
p. 8)

[77] R. Lorenz, R. Bergenthum, J. Desel, and S. Mauser. Synthesis of Petri Nets from
Finite Partial Languages. In Proceedings of the Seventh International Conference on
Application of Concurrency to System Design, ACSD ’07, pages 157–166, Washington,
DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2902-X. (cited on p. 10)

[78] R. Lorenz, S. Mauser, and G. Juhás. How to Synthesize Nets from Languages: a Survey.
In Proceedings of the 39th Conference on Winter Simulation, WSC ’07, pages 637–647,
Piscataway, NJ, USA, 2007. IEEE Press. ISBN 1-4244-1306-0. (cited on p. 10)

[79] F. Losavio, L. Chirinos, N. Lévy, and A. Ramdane-Cherif. Quality characteristics for
software architecture. Journal of Object Technology, 2(2):133–150, 2003. (cited on
p. 169)

[80] L. Ma. How to Evaluate the Performance of Process Discovery Algorithms: A Bench-
mark Experiment to Assess the Performance of Flexible Heuristics Miner. Master’s
thesis, Eindhoven University of Technology, Eindhoven, 2012. (cited on p. 136)

[81] J.B. MacQueen. Some Methods for Classification and Analysis of Multivariate Obser-
vations. In L. M. Le Cam and J. Neyman, editors, Proceedings of the 5th Berkeley
Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297. Uni-
versity of California Press, 1967. (cited on p. 7)

[82] E. Maeland. On the Comparison of Interpolation Methods. IEEE Transactions on
Medical Imaging, 7(3):213 –217, September 1988. ISSN 0278-0062. (cited on p. 104)

[83] S. Mansmann, T. Neumuth, and M.H. Scholl. Multidimensional data modeling for
business process analysis. In Proceedings of the 26th International Conference on Con-
ceptual Modeling, ER’07, pages 23–38, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
3-540-75562-4, 978-3-540-75562-3. (cited on p. 16)

[84] H. Min, H. Min, and A. Emam. A Data Mining Approach to Developing the Profiles of
Hotel Customers. International Journal of Contemporary Hospitality Management, 14
(6):274–285, 2002. (cited on p. 5)

[85] M. Minor, A. Tartakovski, and R. Bergmann. Representation and Structure-Based
Similarity Assessment for Agile Workflows. In R. Weber and M. Richter, editors, Case-
Based Reasoning Research and Development, volume 4626 of Lecture Notes in Computer
Science, pages 224–238. Springer Berlin / Heidelberg, 2007. ISBN 978-3-540-74138-1.
(cited on p. 86)

[86] G. Monakova and F. Leymann. Workflow ART. In Proceedings of the 2010 International
Conference on On the Move to Meaningful Internet Systems - Volume Part I, OTM’10,
pages 376–393, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-16933-3, 978-3-
642-16933-5. (cited on p. 16)

[87] E.W.T. Ngai, L. Xiu, and D.C.K. Chau. Application of Data Mining Techniques in
Customer Relationship Management: A Literature Review and Classification. Expert
Systems with Applications, 36(2, Part 2):2592–2602, 2009. ISSN 0957-4174. (cited on
p. 4)

BIBLIOGRAPHY 215

[88] OMG. Business Process Model And Notation (BPMN) (Version 2.0). Technical
Report OMG Document Number: formal/2011-01-03, Object Management Group,
http://www.omg.org/spec/BPMN/2.0/, January 2011. (cited on p. 9)

[89] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, March 1986.
ISSN 0885-6125. (cited on pp. 6 and 152)

[90] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993. ISBN 1-55860-238-0. (cited on pp. 6 and 152)

[91] W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1 edition, 1998.
ISBN 3540653066. (cited on p. 9)

[92] J.T.S. Ribeiro and A.J.M.M. Weijters. Event cube: Another Perspective on Business
Processes. In Proceedings of the 2011th Confederated International Conference on On
the Move to Meaningful Internet Systems - Volume Part I, OTM’11, pages 274–283,
Berlin, Heidelberg, 2011. Springer-Verlag. (cited on p. 34)

[93] A. Rozinat. Process Mining: Conformance and Extension. PhD thesis, Eindhoven
University of Technology, Eindhoven, 2010. (cited on pp. 11 and 43)

[94] A. Rozinat and W.M.P. van der Aalst. Conformance testing: Measuring the fit and
appropriateness of event logs and process models. In Proceedings of the 3rd Interna-
tional Conference on Business Process Management, BPM’05, pages 163–176, Berlin,
Heidelberg, 2006. Springer-Verlag. ISBN 3-540-32595-6. (cited on p. 11)

[95] A. Rozinat and W.M.P. van der Aalst. Decision Mining in ProM. In Proceedings of the
4th International Conference on Business Process Management, BPM’06, pages 420–
425, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-38901-6. (cited on pp. 10
and 11)

[96] A. Rozinat and W.M.P. van der Aalst. Conformance checking of processes based on
monitoring real behavior. Information Systems, 33(1):64–95, March 2008. ISSN 0306-
4379. (cited on p. 11)

[97] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Parallel distributed processing: ex-
plorations in the microstructure of cognition, vol. 1. chapter Learning Internal Rep-
resentations by Error Propagation, pages 318–362. MIT Press, Cambridge, MA, USA,
1986. ISBN 0-262-68053-X. (cited on p. 6)

[98] J. Sander, M. Ester, H.P. Kriegel, and X. Xu. Density-Based Clustering in Spatial
Databases: The Algorithm GDBSCAN and its Applications. Data Mining and Knowl-
edge Discovery, 2(2):169–194, June 1998. ISSN 1384-5810. (cited on p. 7)

[99] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-Driven Exploration of OLAP
Data Cubes. In H.J. Schek, G. Alonso, F. Saltor, and I. Ramos, editors, Advances in
Database Technology EDBT’98, volume 1377 of Lecture Notes in Computer Science,
pages 168–182. Springer Berlin Heidelberg, 1998. ISBN 978-3-540-64264-0. (cited on
p. 203)

[100] B. Schnhage, A. van Ballegooij, and A. Elins. 3D gadgets for business process visual-
ization - a case study. In Proceedings of the 5th Symposium on Virtual Reality Modeling
Language (Web3D-VRML), United States, 2000. (cited on p. 16)

[101] C.E. Shannon. A Mathematical Theory of Communication. Bell System Technical
Journal, 27, 1948. (cited on p. 151)

[102] A. Sidi. Practical Extrapolation Methods: Theory and Applications. Cambridge Univer-
sity Press, New York, NY, USA, 1st edition, 2002. ISBN 0521661595, 9780521661591.
(cited on p. 104)

216 BIBLIOGRAPHY

[103] M. Song and W.M.P. van der Aalst. Supporting Process Mining by Showing Events at
a Glance. Proceedings of the 17th Annual Workshop on Information Technologies and
Systems (WITS), pages 139–145, 2007. (cited on p. 9)

[104] M. Song and W.M.P. van der Aalst. Towards Comprehensive Support for Organizational
Mining. Decision Support Systems, 46(1):300–317, December 2008. ISSN 0167-9236.
(cited on p. 9)

[105] P. Tan, V. Kumar, and J. Srivastava. Selecting the right objective measure for associa-
tion analysis. Information Systems, 29(4):293–313, June 2004. ISSN 0306-4379. (cited
on p. 147)

[106] A. Tiwari, C.J. Turner, and B. Majeed. A Review of Business Process Mining: State-of-
the-Art and Future Trends. Business Process Management Journal, 14(1):5–22, 2008.
(cited on p. 16)

[107] K.T. Ulrich and S.D. Eppinger. Product Design and Development. McGraw-Hill/Irwin
series in marketing. McGraw-Hill/Irwin, 2003. ISBN 9780071232739. (cited on p. 4)

[108] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers, 8(1):21–66, 1998. (cited on p. 10)

[109] W.M.P. van der Aalst. Formalization and verification of event-driven process chains.
Information and Software Technology, 41(10):639–650, 1999. ISSN 0950-5849. (cited on
p. 9)

[110] W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer, Berlin, 2011. ISBN 978-3-642-19344-6. (cited on pp. 8, 9,
16, and 43)

[111] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow mining: A survey of issues and approaches. Data and
Knowledge Engineering, 47:237–267, November 2003. ISSN 0169-023X. (cited on p. 9)

[112] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and Data
Engineering, 16(9):1128–1142, September 2004. ISSN 1041-4347. (cited on pp. 9 and 10)

[113] W.M.P. van der Aalst, A.K. A. de Medeiros, and A.J.M.M. Weijters. Genetic Process
Mining. In G. Ciardo and P. Darondeau, editors, Applications and Theory of Petri Nets
2005, volume 3536 of Lecture Notes in Computer Science, pages 48–69. Springer Berlin
Heidelberg, 2005. ISBN 978-3-540-26301-2. (cited on p. 10)

[114] W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks from
Event Logs. Computer Supported Cooperative Work, 14(6):549–593, December 2005.
ISSN 0925-9724. (cited on p. 9)

[115] W.M.P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H.M.W. Verbeek. Con-
formance checking of service behavior. ACM Transactions on Internet Technology, 8(3):
13:1–13:30, May 2008. ISSN 1533-5399. (cited on p. 11)

[116] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler, and
C.W. Günther. Process mining: A two-step approach to balance between underfitting
and overfitting. Software and Systems Modeling, 9:87–111, 2010. ISSN 1619-1366. (cited
on p. 10)

[117] W.M.P. van der Aalst, A. Adriansyah, and B.F. van Dongen. Causal nets: A modeling
language tailored towards process discovery. In Proceedings of the 22nd International
Conference on Concurrency Theory, CONCUR’11, pages 28–42, Berlin, Heidelberg,
2011. Springer-Verlag. (cited on pp. 43 and 200)

[118] W.M.P. van der Aalst, A. Adriansyah, A.K. A. de Medeiros, F. Arcieri, T. Baier,
T. Blickle, J.C. Bose, P. Brand, R. Brandtjen, J.C.A.M. Buijs, A. Burattin, J. Car-
mona, M. Castellanos, J. Claes, J. Cook, N. Costantini, F. Curbera, E. Damiani,

BIBLIOGRAPHY 217

M. Leoni, P. Delias, B.F. van Dongen, M. Dumas, S. Dustdar, D. Fahland, D.R. Fer-
reira, W. Gaaloul, F. Geffen, S. Goel, C.W. Günther, A. Guzzo, P. Harmon, A. Hofst-
ede, J. Hoogland, J.E. Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. Rosa, F. Maggi,
D. Malerba, R.S. Mans, A. Manuel, M. McCreesh, P. Mello, J. Mendling, M. Mon-
tali, H.R. Motahari-Nezhad, M. Muehlen, J. Munoz-Gama, L. Pontieri, J.T.S. Ribeiro,
A. Rozinat, H. Seguel Pérez, R. Seguel Pérez, M. Sepúlveda, J. Sinur, P. Soffer, M. Song,
A. Sperduti, G. Stilo, C. Stoel, K. Swenson, M. Talamo, W. Tan, C. Turner, J. Van-
thienen, G. Varvaressos, H.M.W. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. Weber,
M. Weidlich, A.J.M.M. Weijters, L. Wen, M. Westergaard, and M. Wynn. Process min-
ing manifesto. In F. Daniel, K. Barkaoui, and S. Dustdar, editors, Business Process
Management Workshops, volume 99 of Lecture Notes in Business Information Process-
ing, pages 169–194. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-28107-5. (cited
on p. 16)

[119] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process
Discovery Using Integer Linear Programming. In Proceedings of the 29th International
Conference on Applications and Theory of Petri Nets, PETRI NETS ’08, pages 368–387,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-68745-0. (cited on p. 10)

[120] B.F. van Dongen and W.M.P. van der Aalst. A meta model for process mining data.
In Proceedings of the CAiSE 2005 Workshops, EMOI-INTEROP Workshop. (cited on
p. 41)

[121] B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Building
Instance Graphs. In International Conference on Conceptual Modeling (ER 2004), vol-
ume 3288 of Lecture Notes in Computer Science, pages 362–376. Springer-Verlag, 2004.
(cited on p. 10)

[122] B.F. van Dongen and W.M.P. van der Aalst. Multi-Phase Process Mining: Aggregating
Instance Graphs into EPCs and Petri Nets. Proceedings of the Second International
Workshop on Applications of Petri Nets to Coordination, Workflow and Business Pro-
cess Management (PNCWB), pages 35–38, 2005. (cited on p. 10)

[123] B.F. van Dongen, A.K. A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A new era in process mining tool support.
In ICATPN, pages 444–454, 2005. (cited on pp. 84, 94, 108, 118, 139, 168, and 174)

[124] B.F. van Dongen, A.K. A. de Medeiros, and L. Wen. Transactions on petri nets and
other models of concurrency ii. chapter Process Mining: Overview and Outlook of Petri
Net Discovery Algorithms, pages 225–242. Springer-Verlag, Berlin, Heidelberg, 2009.
ISBN 978-3-642-00898-6. (cited on p. 10)

[125] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. ProM 6:
The Process Mining Toolkit. In Demo at the 8th International Conference on Business
Process Management. (cited on pp. 84, 94, 108, 139, 168, and 174)

[126] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst. XES,
XESame, and ProM 6. In P. Soffer, E. Proper, W.M.P. van der Aalst, J. Mylopoulos,
M. Rosemann, M.J. Shaw, and C. Szyperski, editors, Information Systems Evolution,
volume 72 of Lecture Notes in Business Information Processing, pages 60–75. Springer
Berlin Heidelberg, 2011. ISBN 978-3-642-17722-4. (cited on p. 41)

[127] W. Wang, J. Yang, and R.R. Muntz. STING: A Statistical Information Grid Approach
to Spatial Data Mining. In Proceedings of the 23rd International Conference on Very
Large Data Bases, VLDB ’97, pages 186–195, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc. ISBN 1-55860-470-7. (cited on p. 7)

[128] H.J. Watson and T. Ariyachandra. Data warehouse architectures: Factors in the selec-
tion decision and the success of the architectures. Technical report, Terry College of
Business, University of Georgia, July 2005. (cited on p. 27)

218 BIBLIOGRAPHY

[129] M. Weidlich, J. Mendling, and M. Weske. Efficient Consistency Measurement Based on
Behavioral Profiles of Process Models. IEEE Transactions on Software Engineering, 37
(3):410–429, May 2011. ISSN 0098-5589. (cited on p. 86)

[130] A.J.M.M. Weijters and J.T.S. Ribeiro. Flexible Heuristics Miner (FHM). In Proceedings
of the IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2011,
Paris, France. IEEE, 2011. (cited on pp. 9, 34, 43, and 133)

[131] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering, 10(2):
151–162, April 2003. ISSN 1069-2509. (cited on pp. 10, 11, 61, 83, and 201)

[132] A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. A. de Medeiros. Process Mining
with the HeuristicsMiner Algorithm. Technical Report 166, Eindhoven University of
Technology, 2006. (cited on pp. 10, 11, 61, 83, 136, and 201)

[133] L. Wen, J. Wang, and J. Sun. Detecting Implicit Dependencies Between Tasks from
Event Logs. In X. Zhou, J. Li, H. Shen, M. Kitsuregawa, and Y. Zhang, editors,
Frontiers of WWW Research and Development - APWeb 2006, volume 3841 of Lecture
Notes in Computer Science, pages 591–603. Springer Berlin / Heidelberg, 2006. ISBN
978-3-540-31142-3. (cited on p. 10)

[134] I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques. Data Management Systems. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2nd edition, 2005. ISBN 0120884070. (cited on p. 5)

[135] D. Xin, J. Han, X. Li, and B.W. Wah. Star-cubing: Computing iceberg cubes by top-
down and bottom-up integration. In Proceedings of the 29th International Conference
on Very Large Data Bases - Volume 29, VLDB ’03, pages 476–487. VLDB Endowment,
2003. ISBN 0-12-722442-4. (cited on p. 8)

[136] D. Xin, Z. Shao, J. Han, and H. Liu. C-Cubing: Efficient Computation of Closed Cubes
by Aggregation-Based Checking. In Proceedings of the 22nd International Conference on
Data Engineering, ICDE ’06, pages 4–, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2570-9. (cited on p. 8)

[137] D. Xin, J. Han, X. Li, Z. Shao, and B.W. Wah. Computing Iceberg Cubes by Top-
Down and Bottom-Up Integration: The StarCubing Approach. Knowledge and Data
Engineering, IEEE Transactions on, 19(1):111–126, jan. 2007. ISSN 1041-4347. (cited
on p. 8)

[138] R. Xu and II Wunsch. Survey of Clustering Algorithms. Neural Networks, IEEE Trans-
actions on, 16(3):645–678, 2005. ISSN 1045-9227. (cited on p. 7)

[139] Z. Yan. Business Process Model Repositories: Efficient Process Retrieval. PhD thesis,
Eindhoven University of Technology, Eindhoven, 2012. (cited on p. 85)

[140] Z. Yan, R. Dijkman, and P.W.P.J. Grefen. Fast business process similarity search with
feature-based similarity estimation. In Proceedings of the 2010 International Conference
on On the Move to Meaningful Internet Systems - Volume Part I, OTM’10, pages 60–77,
Berlin, Heidelberg, 2010. Springer-Verlag. (cited on p. 85)

[141] L.A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965. (cited on p. 6)

[142] M.J. Zaki. Scalable Algorithms for Association Mining. IEEE Transactions on Knowl-
edge and Data Engineering, 12(3):372–390, May 2000. ISSN 1041-4347. (cited on p. 5)

[143] C. Zhang and S. Zhang. Association Rule Mining: Models and Algorithms. Springer-
Verlag, Berlin, Heidelberg, 2002. ISBN 3-540-43533-6. (cited on p. 6)

[144] Y. Zhao, P.M. Deshpande, and J.F. Naughton. An array-based algorithm for simulta-
neous multidimensional aggregates. In Proceedings of the 1997 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’97, pages 159–170, New York,
NY, USA, 1997. ACM. ISBN 0-89791-911-4. (cited on p. 8)

BIBLIOGRAPHY 219

[145] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing Surveys,
38(2), July 2006. ISSN 0360-0300. (cited on pp. 100 and 201)

Summary

Multidimensional Process Discovery

Typically represented in event logs, business process data describe the execution of
process events over time. Business process intelligence (BPI) techniques such as pro-
cess mining can be applied to get strategic insight into business processes. Process
discovery, conformance checking and enhancement are possible applications for knowl-
edge discovery on process data. By applying process mining techniques on data that
describe the behavior of process instances, it is possible to discover and analyze the
business as it is being executed. However, so far, these techniques are typically designed
to focus on specific process dimensions, omitting information potentially relevant for
the analysis comprehension.

Specially designed to support dynamic hypothesis-driven exploration of data, online
analytic processing (OLAP) systems are commonly used as reporting tools in almost
every application for business intelligence. Exploiting the data by combining differ-
ent dimensions with some measures of interest, it is possible to adjust on-the-fly the
analysis’ level of abstraction in an interactive way. Pivot tables are a good example
of reporting tools that support hypothesis-driven analysis. One typical application of
these tables is the sales analysis where the total amount of sales in a company can be
characterized dynamically by multiple dimensions (e.g., product, customer, and time).

This thesis presents our research into the extension of process mining techniques
with OLAP functionalities. Making use of OLAP concepts, a multidimensional data
structure is designed to hold the different dimensions of business processes in such
a way that process discovery and analysis are facilitated. Extending the traditional
OLAP data cubes, these structures can improve the process analysis by providing im-
mediate results under different levels of abstraction. For example, the process behavior
described in a process model can be constrained by activity, resource, or time, or by
any combination of these dimensions.

The dynamic integration of business process dimensions into process mining can
bring process analysis to another level. Considering the event log’s attributes as di-
mensions, process analysis can be performed in such a way that events and workflow
can be constrained by specific process information. Traditionally, only a single dimen-
sion (or a static set of dimensions) is considered. For example, the activity is typically
the only considered dimension in a process model. In a multidimensional approach,
process analysis can be dynamically constrained by the dimensions the analyst consid-
ers relevant. The elements of a process model (i.e., nodes describing process events and

222 Summary

arcs representing the workflow) can be constrained by any set of dimensions. Eventu-
ally, these elements can also be annotated with measures of interest. Both dimensions
and measures of interest are described in – or derived from – the process data.

The work presented in this thesis is supported by concrete implementations as plug-
ins in the ProM framework1, and has been applied to real-life case studies. Besides the
multidimensional data structure described above, a process discovery technique based
on the Heuristics Miner algorithm is introduced to demonstrate the applicability of
process mining techniques in a multidimensional context. By building a data cube of
process events, it is possible to construct on-the-fly – multidimensional – process models
according to specific process perspectives and levels of abstraction. Furthermore, by
applying data mining functionalities, it is possible to extract non-trivial patterns from
multidimensional process models. A characterization of these patterns as well as a
number of techniques for process pattern extraction are presented in this thesis. A
qualitative and quantitative evaluation is conducted to demonstrate the feasibility of
the multidimensional approach as well as its added value to the stakeholders.

1www.processmining.org

www.processmining.org

Samenvatting

Multidimensional Process Discovery

Bij het uitvoeren van bedrijfsprocessen kunnen we, in een zogenaamde event log, re-
gistreren op welk moment welke activiteit wordt uitgevoerd. Business Process Intelli-
gence (BPI) technieken zoals process mining kunnen gebruikt worden om deze event
logs te analyseren, om zo een beter inzicht te verkrijgen in het betreffende bedrijfs-
proces. Process discovery (proces reconstructie), conformance checking (het bepalen
van de mate van overeenstemming tussen event log en proces model) en enhancement
(uitbreiding of verbetering van het proces model) zijn mogelijke process mining toe-
passingen. Door analyseren van event logs met behulp van process mining technieken
is het mogelijk een beter inzicht te verkrijgen in wat er werkelijk gebeurt tijdens het
uitvoeren van een bedrijfsproces. Echter, de tot nu toe ontwikkelde process mining
technieken richten zich veelal op een of meerdere specifieke proces dimensies, waardoor
andere potentieel bruikbare proces dimensies worden verwaarloosd.

Traditioneel worden bedrijfsgegevens opgeslagen in database systemen. Online
analytic processing (OLAP) systemen zijn special ontwikkeld voor het flexibel en
hypothese-gestuurd analyseren van dit soort bedrijfsgegevens. Gebruikmakend van
relevante dimensies (omzet, tijdsintervallen, regio’s, enz.) is het mogelijk interactief de
bedrijfsgegevens vanuit verschillende invalshoeken te analyseren. Zogenaamde Pivot
tabellen zijn een goed voorbeeld van een hypothese-gestuurde analyse techniek. Deze
Pivot tabellen kunnen gebruikt worden om de verkoopcijfers van een bedrijf te analy-
seren waarbij gebruik wordt gemaakt van meerdere dimensies zoals product, klant en
tijd.

In dit proefschrift presenteren we ons onderzoek om process mining technieken uit te
breiden met de beschreven OLAP functionaliteit. Gebruikmakend van OLAP concep-
ten, is een data structuur ontworpen die multidimensional process discovery en analyse
mogelijk maakt. Gebruikmakend van deze nieuwe multidimensionale data structuur is
het mogelijk zeer flexibel proces analyses uit te voeren waarbij gebruik wordt gemaakt
van relevante proces aspecten en verschillende niveaus van abstractie. Zo is het moge-
lijk proces modellen te genereren waarbij de focus ligt op de activiteiten, de uitvoerders
van activiteiten, of tijdsaspecten. Ook is het mogelijk beschikbare dimensies (proces
aspecten) te combineren.

De dynamische integratie van de verschillende dimensies van bedrijfsprocessen
maakt een andere manier van process mining mogelijk. Door attributen die zijn
opgenomen in een event log te beschouwen als dimensies, is het mogelijk deze te

224 Samenvatting

gebruiken bij het analyseren van een event log. Traditioneel, wordt tijdens process
mining enkel gebruik gemaakt van één enkele dimensie of een vaste combinatie van
dimensies. Bijvoorbeeld, de activiteit, is normaal de enige dimensie die wordt gebruikt
bij mining van een proces model. In de hier ontwikkelde multidimensionale aanpak kan
de analist dynamisch de dimensies kiezen die hij in de gegeven situatie relevant acht.
De verzameling van elementen van een proces model (d.w.z. knopen die activiteiten
aangeven en verbindingen die overgangen representeren) kan bëınvloed worden met
behulp van iedere mogelijke combinatie van dimensies. Bovendien kunnen elementen
van het proces model voorzien worden van relevante extra informatie zoals frequenties,
gemiddelde tijden, enz. Deze extra informatie wordt afgeleid uit de data in de event
log.

Het werk gepresenteerd in dit proefschrift wordt ondersteund door de implementa-
tie van verschillende plug-ins in het ProM framework2. Deze plug-ins zijn toegepast in
enkele case studies op data afkomstig van real-life bedrijfsprocessen. Naast de hiervoor
beschreven multidimensionale data structuur (de zogenaamde data cube) wordt in het
proefschrift ook een process discovery techniek gëıntroduceerd die gebaseerd is op het
Heuristics Miner algoritme. Door dit process discovery algoritme toe te passen op een
data cube met process events is het mogelijk on-the-fly multidimensionale proces mo-
dellen te genereren vanuit een gespecificeerd proces perspectief en van het gewenste
abstractie niveau. Door het toevoegen van traditionele data mining functionaliteit is
het mogelijk niet-triviale patronen in multidimensionale proces modellen te achterha-
len. Enkele technieken voor het achterhalen van patronen in proces modellen worden
in dit proefschrift gepresenteerd en aangevuld met een typologie van deze patronen.
Tenslotte volgt een kwalitatieve en kwantitatieve evaluatie van de voorgestelde aanpak.
Deze evaluatie laat zien dat multidimensional process mining realistisch is, en laat ook
zien dat deze techniek voor proces eigenaren bruikbare inzichten oplevert.

2www.processmining.org

www.processmining.org

Acknowledgements

Many people have contributed to this thesis. Here, I would like to take the opportunity
to express my gratitude to them.

First of all, I would like to thank my supervisors Ton Weijters and Paul Grefen
for giving me the opportunity to pursue this PhD and for their guidance throughout
the last four years. It was really a pleasure to work with you. Secondly, I want to
thank the people involved in the DataFusion project with whom I had the privilege to
collaborate with. From the academic side, they are Lu Yuan, Ashwin Ittoo, Renate
de Bruin, Eva Hopma, Matthijs Zwinderman, Hans Wortmann, Aarnout Brombacher,
and Laura Maruster. From the industry side, they are Leif Sørensen, Susanne Korsch,
Karl Kurz, Ludwig Nooyens, Guillaume Stollman, Frank Spronck, Edwin Noordman,
Gert van Lieshout, and Irina Sepkhanova. From AgentschapNL, they are Michiel de
Boer and Joop Postema. I would also like to thank Roel Kuijpers and Lulu Ma for
their contribution as MSc students.

Further, I would like to thank the people with whom I have been collaborating
with at the IS group at the faculty of Industrial Engineering & Innovation Sciences.
In particular, I would like to thank Zhiqiang Yan, Heidi Romero, Jana Šamaĺıková,
Marco Comuzzi, Vassil Stoitsev, Egon Lüftenegger, Ronny Mans, Shaya Pourmirza,
Nan Shan, Hui Yan, Rob Vanwersch, Rik Eshuis, and Dániel Kelemen for their support
and companionship. Thanks also to the secretaries of the group Annemarie van der Aa
and Ada Rijnberg-Wielaard for their help and assistance. I would also like to thank
the people from the process mining community for their discussions and feedback.
In particular, I want to thank Arya Adriansyah, Wil van der Aalst, Boudewijn van
Dongen, Eric Verbeek, Anne Rozinat, and Christian Günther.

Last but not least, I would like to express my thanks and gratitude to my family
for their support and guidance throughout my life. Also, I would like to express my
sincere gratitude to Lúısa Benta and her family for their support over many years.
Finally, I want to thank my friends Joana Laranja, Angela Félix, Nuno Ribeiro, José
Fontão, José Moreira, and Jorge Santos for always being there.

Curriculum Vitae

Joel Ribeiro was born on 5 August 1980 in Vila de Cucujães, Portugal. From 1995 to
1999 he attended secondary school at the Escola Secundária Dr. Serafim Leite in São
João da Madeira.

After finishing secondary school, Joel studied Informatics and Systems Engineering
at University of Minho in Braga, Portugal from 2000 to 2006. He obtained his Licentiate
degree in September 2006 after completing an internship about detection and analysis of
churn in a telecom company, under supervision of prof. dr. O.M.O. Belo. The following
two years, he followed a Master’s program in Data Systems and Analytic Processing
at University of Minho, receiving his Master of Science degree in November 2008. The
title of his Master’s thesis, supervised by prof. dr. O.M.O. Belo, is “Multidimensional
Top-k Gradients”.

In December 2008, Joel became a PhD candidate in the department of Industrial
Engineering and Innovation Sciences at Eindhoven University of Technology in the
Netherlands. The focus of his doctoral studies, supervised by prof. dr. ir. P.W.P.J.
Grefen and dr. A.J.M.M. Weijters, was on the multidimensional discovery and analysis
of business processes. He completed his doctoral studies in 2013 with a thesis titled
“Multidimensional Process Discovery”.

Since 2006, Joel has been involved in a number of industry projects such as
FRATELO (fraud detection on telecommunication systems), SFonTel (graph mining
in telecommunication data), and DataFusion3 (merging of incoherent field feedback
data into prioritized design information). Joel can be reached at joel.ribeiro@mail.com.

3www.iopdatafusion.org

www.iopdatafusion.org

	1 Introduction
	1.1 DataFusion Project
	1.1.1 New Product Development
	1.1.2 Field Feedback Information

	1.2 Knowledge Discovery
	1.2.1 Data Mining
	1.2.2 Online Analytic Processing
	1.2.3 Process Mining

	1.3 Motivating Case Study
	1.3.1 Knowledge Discovery in Customer Experience Databases

	1.4 Multidimensional Process Mining
	1.5 Research Questions
	1.6 Outline

	2 Concept Architecture
	2.1 Reference Architecture
	2.2 Data Warehousing System
	2.3 Enterprise Search Engine
	2.4 Multidimensional Process Explorer
	2.5 Summary

	3 Process Discovery
	3.1 Process Data
	3.1.1 Event Logs
	3.1.2 Event Streams

	3.2 Process Representation
	3.2.1 Traditional Process Models
	3.2.2 Multidimensional Process Models

	3.3 Control-Flow Mining
	3.3.1 Flexible Heuristics Miner
	3.3.2 Multidimensional Heuristics Miner

	3.4 Summary

	4 Process Similarity
	4.1 Process Similarity in Traditional Process Models
	4.2 Process Similarity in Multidimensional Process Models
	4.2.1 Similarity between Event Occurrences
	4.2.2 Similarity between Event Occurrence Bindings
	4.2.3 Similarity between Process Instances
	4.2.4 Similarity between Sub-Processes

	4.3 Summary

	5 Process Analysis
	5.1 Multidimensional Data Model
	5.2 Event Cube
	5.2.1 Information Retrieval on Process Data
	5.2.2 Deriving Process Information
	5.2.3 Measures of Interest
	5.2.4 Materializing the Event Cube

	5.3 Multidimensional Process Analysis
	5.3.1 Multidimensional Process Discovery
	5.3.2 Business Process Querying
	5.3.3 Cube Exploitation
	5.3.4 Filtering Process Behavior

	5.4 Challenges
	5.4.1 Curse of Dimensionality
	5.4.2 Measuring Artificial Dependency Relations
	5.4.3 Parameter Selection
	5.4.4 Process Model Consistency across Perspectives

	5.5 Summary

	6 Process Patterns
	6.1 Pattern Characterization
	6.2 Pattern Extraction
	6.2.1 Summarization
	6.2.2 Deviation Analysis
	6.2.3 Rule Learning
	6.2.4 Classification
	6.2.5 Clustering

	6.3 Extraction of Process Patterns
	6.3.1 Frequent Event Sets
	6.3.2 Event Gradients
	6.3.3 Frequent Binding Sets
	6.3.4 Binding Classification
	6.3.5 Instance Clustering

	6.4 Summary

	7 Evaluation
	7.1 Software Quality Model
	7.2 Implementation
	7.3 Evaluation Method
	7.3.1 Experiments
	7.3.2 Case Study
	7.3.3 Workshop

	7.4 Efficiency
	7.5 Usability
	7.5.1 Understandability
	7.5.2 Operability

	7.6 Functionality
	7.6.1 Suitability
	7.6.2 Accuracy

	7.7 Discussion

	8 Conclusions
	8.1 Contributions
	8.2 Applications
	8.3 Limitations
	8.4 Future Work

	A Building Multidimensional Process Models from a Reference Process Model
	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae

