4,201 research outputs found

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa

    Ground Systems Development Environment (GSDE) interface requirements analysis

    Get PDF
    A set of procedural and functional requirements are presented for the interface between software development environments and software integration and test systems used for space station ground systems software. The requirements focus on the need for centralized configuration management of software as it is transitioned from development to formal, target based testing. This concludes the GSDE Interface Requirements study. A summary is presented of findings concerning the interface itself, possible interface and prototyping directions for further study, and results of the investigation of the Cronus distributed applications environment

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Integrated Design and Implementation of Embedded Control Systems with Scilab

    Get PDF
    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.Comment: 15 pages, 14 figures; Open Access at http://www.mdpi.org/sensors/papers/s8095501.pd

    A conceptual model for megaprogramming

    Get PDF
    Megaprogramming is component-based software engineering and life-cycle management. Magaprogramming and its relationship to other research initiatives (common prototyping system/common prototyping language, domain specific software architectures, and software understanding) are analyzed. The desirable attributes of megaprogramming software components are identified and a software development model and resulting prototype megaprogramming system (library interconnection language extended by annotated Ada) are described

    A domain-specific language based approach to component composition, error-detection, and fault prediction

    Get PDF
    Current methods of software production are resource-intensive and often require a number of highly skilled professionals. To develop a well-designed and effectively implemented system requires a large investment of resources, often numbering into millions of pounds. The time required may also prove to be prohibitive. However, many parts of the new systems being currently developed already exist, either in the form of whole or parts of existing systems. It is therefore attractive to reuseexisting code when developing new software, in order to reduce the time andresources required. This thesis proposes the application of a domain-specific language (DSL) to automatic component composition, testing and fault-prediction. The DSL ISinherently based on a domain-model which should aid users of the system m knowing how the system is structured and what responsibilities the system fulfils. The DSL structure proposed in this thesis uses a type system and grammar hence enabling the early detection of syntactically incorrect system usage. Each DSL construct's behaviour can also be defined in a testing DSL, described here as DSL-test. This can take the form of input and output parameters, which should suffice for specifying stateless components, or may necessitate the use of a special method call, described here as a White-Box Test (WBT), which allows the external observer to view the abstract state of a component. Each DSL-construct can be mapped to its implementing components i.e. the component, or amalgamation of components, that implement(s) the behaviour as prescribed by the DSL-construct. User-requirements are described using the DS Land appropriate implementing components (if sufficient exist) are automatically located and integrated. That is to say, given a requirement described in terms of the DSL and sufficient components, the architecture (which was named Hydra) will be able to generate an executable which should behave as desired. The DSL-construct behaviour description language (DSL-test) is designed in such a way that it can be translated into a computer programming language, and so code can be inserted between the system automatically to verify that the implementing component is acting in a way consistent with the model of its expected behaviour. Upon detection of an error, the system examines available data (i.e. where the error occurred, what sort of error was it, and what was the structure of the executable), to attempt to predict the location of the fault and, where possible, make remedialaction. A number of case studies have been investigated and it was found that, if applied to the appropriate problem domain, the approach proposed in this thesis shows promise in terms of full automation and integration of black-box or grey-box software. However, further work is required before it can be claimed that this approach should be used in real scale systems

    Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach

    Get PDF
    In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach
    corecore