
Durham E-Theses

A domain-speci�c language based approach to

component composition, error-detection, and fault

prediction

Ingham, James

How to cite:

Ingham, James (2001) A domain-speci�c language based approach to component composition,

error-detection, and fault prediction, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/3954/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3954/
 http://etheses.dur.ac.uk/3954/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

A Domain-Specific Language Based

Approach to Component

Composition, Error-Detection, and

Fault Prediction

PhD Thesis

James Ingham
The copyright of this thesis rests with
the author. No quotation from it should
he published in any form, including
Electronic and the Internet, without the
author's prior written consent. All
information derived from this thesis
must he acknowledged appropriately.

1 7 SEP 2001

Abstract
Current methods of software production are resource-intensive and often require a

number of highly skilled professionals. To develop a well-designed and effectively

implemented system requires a large investment of resources, often numbering into

millions of pounds. The time required may also prove to be prohibitive. However,

many parts of the new systems being currently developed already exist, either in the

form of whole or parts of existing systems. It is therefore attractive to reuse

existing code when developing new software, in order to reduce the time and

resources required.

This thesis proposes the application of a domain-specific language (DSL) to

automatic component composition, testing and fault-prediction. The DSL IS

inherently based on a domain-model which should aid users of the system m

knowing how the system is structured and what responsibilities the system fulfils.

The DSL structure proposed in this thesis uses a type system and grammar hence

enabling the early detection of syntactically incorrect system usage. Each DSL

construct's behaviour can also be defined in a testing DSL, described here as DSL

test. This can take the form of input and output parameters, which should suffice

for specifying stateless components, or may necessitate the use of a special method

call, described here as a White-Box Test (WBT), which allows the external observer

to view the abstract state of a component.

Each DSL-construct can be mapped to its implementing components i.e. the

component, or amalgamation of components, that implement(s) the behaviour as

prescribed by the DSL-construct. User-requirements are described using the DSL

and appropriate implementing components (if sufficient exist) are automatically

located and integrated. That is to say, given a requirement described in terms of the

DSL and sufficient components, the architecture (which was named Hydra) will be

able to generate an executable which should behave as desired. The DSL-construct

behaviour description language (DSL-test) is designed in such a way that it can be

translated into a computer programming language, and so code can be inserted

1

between the system automatically to verify that the implementing component is

acting in a way consistent with the model of its expected behaviour.

Upon detection of an error, the system examines available data (i.e. where the error

occurred, what sort of error was it, and what was the structure of the executable), to

attempt to predict the location of the fault and, where possible, make remedial

action.

A number of case studies have been investigated and it was found that, if applied to

the appropriate problem domain, the approach proposed in this thesis shows

promise in terms of full automation and integration of black-box or grey-box

software. However, further work is required before it can be claimed that this

approach should be used in real scale systems.

2

Copyright notice

This thesis was funded by a research grant by BT. The content in this thesis, except

parts declared to be the property of other individuals, remains the intellectual

property of the author. This work may not be copied in whole or in part for any

commercial purposes, unless explicit permission is given to do so by the author.

Use of information contained within this thesis should be acknowledged. All rights

reserved. Use of any trademarks within this report is not intended in any way to

infringe on the rights of the trademark bearer.

3

Acknowledgements

First, I would like to thank my supervisor, Professor Munro, for his help, advice,

and tolerance to my "individual" style of working. Also thanks to the following for

their varied and interesting discussions: Dr Steven Glover, Mark Jarvis, Dr Nigel

Thomas , and Dr Uwe Krohn.

Thanks to my family for their help and support, especially Heather (especially for

her help in proofreading), Gordon (for his advice and support), Stuart (you'll have

to read it now!), Rosie (for her voice of sanity, in an otherwise rather confused

world), and Adrian (for being short). Also thanks to Robert and Anne for their

encouragement. I got there in the end.

Cheers to the following for their friendship and in some cases advice: Andrew

"you're not wearing that?" Frith, Antony "classic" Hofton, Dr Pete "have you

installed quake yet?" Young, Dr Claire Knight (for putting up with watching

United/Everton games with me) and everyone else at the University of Durham.

Honourable mentions also go to: Steve, Anna, Tim, Siobhan, Claire, Lorna, Gaynor,

Dr Andreas and Sara, Dr Nathan, Ben, Dr Loc, Sam, and everyone else I missed

out...

Some thanks should also go to the staff at Ryburn Valley High School, Ripponden

J&I and Stones school, for their often overlooked contributions. Special thanks to

Mrs Rachowski (hope I spelt it right), who seemed to know I'd end up doing

something like this long before I did.

4

Table of contents
1. Introduction

1.1 Problem Statement

1.2 Research Aims

1.2.1 Hypothesis overview

1.3 Thesis Deliverables

1.4 Criteria for success

1.5 Thesis structure

2. Reuse

2.1 Types of re-use

2.1.1 Encapsulation

2.1.2 Code Domain

2.1.3 Designed for reuse versus designed with reuse.

2.2 Why re-use?

2.2.1 Increased system reliability

2.2.2 Reduced overall risk

2.2.3 Effective use of specialists

2.2.4 Organisational standards can be used

2.2.5 Reduced development time

2.3 What prevents Software reuse

2.3.1 Quality

2.3.2 Behavioural Specification

2.3.3 Design assumptions

2.3.4 Adaptation required for reuse

2.3.5 Location of relevant code

2.4 Software Components.

2.5 Software libraries

2.5.1 Keyword libraries

2.5 .2 Classification libraries

2.6 Frameworks

2. 7 Software Architectures

2. 7.1 Domain-specific software architectures

5

9

9

10

10

12

12

12

14

14

15

17

18

19

19

19

20

21

21

21

22

23

23

24

24

25

27

28

28

29

32

33

2.8 Summary 34

3. Related work 37

3.1 Software Testing 37

3.1.1 Errors 38

3.1.2 Faults 38

3.1.3 Black-Box tests 39

3.1.4 White-Box tests 40

3.1.5 Debugging 41

3.1.6 Self-testing 41

3.2 Alternative approaches to reuse 42

3.2.1 Software Agents 42

3.2.2 Domain-Specific languages 47

3.2.3 Automated Programming 48

3.3 Summary 52

4. Concept 53

4.1 Introduction 53

4.2 Hypothesis 54

4.3 Support architecture 57

4.3.1 Software generation 58

4.3.2 Component store 62

4.3.3 Fault profiling system 63

4.4 Domain-Specific Languages 63

4.4.1 Semantic specification 65

4.4.2 Parametric specification 65

4.4.3 White-box test specification. 66

4.4.4 Behavioural specification. 67

4.5 Error detection 69

4.6 Fault prediction 71

4.6.1 Fault prediction strategies 72

4.7 Summary 73

5. Implementation 75

5.1 Smart Components? 75

5.2 Architecture 75

5.3 Software generator 77

6

5.3.1 Requirements Entry 77

5.3.2 Parsing requirements 78

5.3.3 Component Matching and Solution Selection 78

5.3.4 Executable generation 80

5.4 Component Store 81

5.5 Fault Profiling System 81

5.6 Summary 81

6. Case studies 83

6.1 Introduction 83

6.2 The sorting domain 84

6.3 The mathematical domain 85

6.4 The accounting domain 86

6.5 Summary 93

7. Evaluation 95

7.1 Original evaluation criteria 96

7.1.1 Investment required 96

7.1.2 Return on investment 97

7.1.3 Error detection capabilities 97

7.1.4 Fault-prediction capabilities 101

7.1.5 Evolution 113

7.1.6 Feasibility of using this type of system 115

7.2 Additional issues 115

7.2.1 Method of combination 116

7.2.2 Introduction of transformations 117

7.2.3 Granularity 118

7.2.4 Type of domain 118

7.2.5 DSL systems (DwR or DfR) 119

7.3 Summary 120

8. Conclusion 122

8.1 Summary of research 122

8.2 Further work 126

8.2.1 Integrating DSL systems with other systems 126

8.2.2 Optimising solutions 127

8.2.3 Advanced error-detection 128

7

8.2.4 Advanced fault-prediction

8.2.5 Different DSL architectures

8.2.6 Application as a Metric evaluation system.

8.3 Summary

9. References

10. Appendix A

10.1 Types in the system

1 0.1.1 String

10.1.2 Bool

1 0.1.3 Int

10.1.4 Real

10.1.5 Data

10.1.6 List

10.2 Operations in the system

10.2.1 Add

1 0.2.2 UpdateAmountOwedOnOrderNo

1 0.2.3 UpdateNameOnOrderNo

1 0.2.4 UpdateAddressOnOrderNo

10 .2. 5 UpdateDateOnOrderN o

1 0.2.6 RemoveOnOrderNo

1 0.2. 7 GetAllWithDate

10.2.8 GetAllWithDateBefore

1 0.2.9 GetAllWithDateAfter

1 0.2.1 0 GetAllWithCompanyName

10.2.11 GetAllWithCompanyAddress

10.2.12 SumLists

10.2.13 AddLists

10.2.14 SubtractList2FromListl

8

128

128

129

130

132

140

141

141

141

142

142

142

143

143

143

144

144

145

145

146

147

147

148

148

149

149

150

150

1. Introduction
The aim of this chapter is to discuss the underlying driving forces of this research,

namely that the development of software is resource intensive and the resulting

software is often unreliable. One group of methods designed to combat these

undesirable characteristics is the field of software reuse. High quality software

reflects an investment in confidence that the code will act as desired, and in the

future maintainability and usefulness of the code. Software reuse aims to reuse

existing high-quality software when developing similar or new systems. However,

software reuse is non-trivial. This chapter aims to provide an overview, at abstract

level, of the underlying concepts in this thesis. It then outlines the thesis

deliverables and criteria for success before describing the structure of the rest ofthis

thesis.

1.1 Problem Statement

Current methods of software production are resource-intensive and often require a

number of highly skilled professionals. To develop a well-designed and effectively

implemented system requires a large investment of resources, often numbering into

millions of pounds. The time required may also prove to be prohibitive. However,

many parts of the new systems being currently developed already exist, either in the

form of whole or parts of existing systems. It is therefore attractive to reuse

existing code when developing new software, in order to reduce the time and

resources required. If the required investment for developing software is considered

in conjunction with the savings made when the software is reused, there is also a

strong case for suggesting that software reuse is a method of improving software

quality without necessitating increased investment.

Although it is widely acknowledged that software reuse is a desirable concept,

most new software is still produced by redeveloping previously existing solutions.

There are a number of factors which may make software reuse difficult. These are

discussed in depth in chapter 2.

9

1.2 Research Aims

It is the aim of this research to focus on one way of addressing some or all of the re

use problems. It is acknowledged that a number of other methods for addressing

reuse have been applied. They are discussed in Chapters 2 and 3. However, when

undertaking this research, a conscious effort was made to not be constrained by

current approaches. An important question that should be asked at this stage is "do

we really need a new method?". It is the contention of this thesis that current

methods are not successful in achieving reuse, a point which can be illustrated by

the fact that most software is still re-developed from first principles. It should,

however, be noted that applying the approach outlined to some or all of a problem

domain will not necessarily exclude the application of other techniques and

technologies which are also found to alleviate problems in reuse. In fact it is the

author's intention that, where appropriate, other reuse focussed approaches should

be applied.

1.2.1 Hypothesis overview

This thesis proposes the application of a domain-specific language (DSL) to

automatic component composition, testing and fault-prediction. The DSL IS

inherently based on a domain-model which should aid users of the system m

knowing how the system is structured and what responsibilities the system fulfils.

The DSL structure proposed in this thesis uses a type system and grammar hence

enabling the early detection of syntactically incorrect system usage. Each DSL

construct's behaviour can also be defined in a testing DSL, described here as DSL

test. This can take the form of input and output parameters, which should suffice

for specifying stateless components, or may necessitate the use of a special method

call, described here as a White-Box Test (WBT), which allows the external observer

to view the abstract state' of a component.

1 A term used to describe a view of the data which must be stored, in some form, by all implementing
components. It is abstract state because the result from the WBT for all components implementing the same
persistent (i.e. requires state) DSL-construct should be the same, independent of actual representation.

10

Each DSL-construct can be mapped to its implementing components i.e. the

component, or amalgamation of components, that implements the behaviour as

prescribed by the DSL-construct. User-requirements are described using the DSL

and appropriate implementing components (if sufficient exist) are automatically

located and integrated. That is to say, given a requirement described in terms of the

DSL and sufficient components, the architecture (which was named Hydra) will be

able to generate an executable which should behave as desired. The DSL-construct

behaviour description language (DSL-test) is designed in such a way that it can be

translated into a computer programming language, and so code can be inserted by

the system automatically to verify that the implementing component is acting in a

way consistent with the model of its expected behaviour.

It is also important that, although the system of code generation from a DSL

description is automated, it should work in a traceable manner. In particular, the

mechanisms underlying the system must be dependable.

A final aim of the research is to, upon detection of an error, make the system

examine available data (i.e. where the error occurred, what sort of error was it, and

what was the structure of the executable), to attempt to predict the location of the

fault and, where possible, make remedial action.

To summarise, the aims of this thesis are to:

• Use a DSL as a component specification mechanism. This mechanism will be

used to define behaviour in terms of semantic naming and behavioural pre-post

conditions.

• Translate the requirements, which are in terms of the DSL, into an executable

program, assuming sufficient components exist.

• Upon detection of an error in the resulting system, ensure the supporting

architecture will use all available data to predict the location of the fault. The

supporting architecture (Hydra) should then attempt to generate an alternative

solution.

11

1.3 Thesis Deliverables

The overall deliverables for this project are as follows:

1. The definition of an architecture that will enable the automated composition of

components, and to also include self-testing and structural information in any

executables developed. This is shown in chapter 4.

2. To provide guidelines on how to apply the concepts and techniques as proposed

in this thesis. These are described in chapter 4 and amended in chapter 7.

3. A prototype, or prototypes, which illustrate the ideas and enable evaluation of

concepts. These are described in chapter 6.

It was deemed important that the theoretical architecture should be implemented

and tested in order to evaluate the success of the proposed system.

1.4 Criteria for success

The criteria for success in the context of this research are the following factors,

which should be evaluated as they pertain to the hypothesis:

1. The investment required to develop the proposed system in comparison to a

conventional system.

2. The return on the investment for the proposed system.

3. The types of error which can be detected by the proposed system.

4. The types of fault which the system can handle.

5. The 'evolvability' of the proposed system.

6. The overall feasibility of using this type of system.

It is acknowledged that these factors are not easily quantified. They were selected

because it was hoped that they would give an accurate view of whether the

approach could be successful, in preference to easily quantifiable, but not

necessarily relevant, factors or criteria.

1.5 Thesis structure

The following chapters of this thesis are structured as follows:

12

Chapter Topics covered

2 Reuse - Software reuse in general, including reasons for reusing,

barriers to software reuse and some common techniques for

software reuse.

3 Other related work - covering techniques which are, although

not usually considered part of the software reuse discipline, have

relevant areas of commonality.

4 Concept - A description of the hypotheses which form the

backbone of this research, along with detailed description of the

approach and architecture.

5 Implementation - A discussion of some of the relevant

implementation issues and technologies which were applied in

the prototype.

6 Case studies - A walk-through of the prototype and then

outlining issues which are discussed in later chapters.

7 Evaluation - The concept and implemented prototypes are

evaluated in terms of the success criteria and in terms of other

criteria, the importance of which became evident during the

research.

8 Conclusion - The research is overviewed, and suggestions for

further work are made.

9 References.

10 Appendix A.

13

2.Reuse
The investment required to develop certain types of software can be financially

significant. It is not uncommon for software projects to cost millions of pounds.

However there are many existing pieces of software that could perform, all or part

of, the required tasks. It is an attractive proposition to leverage the existing

software when developing new solutions. This a major concern for the field of

software reuse.

It is a mistake to believe that reusable software is easy to achieve. In fact there have

been many different attempts to achieve software reuse, which have met with

limited success. This chapter aims to highlight types of software reuse, why exactly

reuse is important, why software reuse is so hard to achieve and finally some

current approaches to software reuse.

At this stage the concept of a software artefact is introduced. This is used to

describe the notion of software which is not necessarily structured in some way and

to prevent ambiguity by using a term which means a number of different concepts

to different disciplines. The informal definition of a software artefact is:

A collection of code which may be reused.

The main purpose of this chapter is to provide a general overview of software reuse

issues and some common methods of addressing these issues.

2.1 Types of re-use

There are a number of different important factors in reuse. These include:

• Encapsulation

• Code domain

o Designed for reuse versus designed with reuse.

14

2.1.1 Encapsulation

For the purposes of this thesis, encapsulation is used to refer to the accessibility of

a software artefact's implementation. The main ways to encapsulate code are

black-box, white-box, and grey-box.

The definition of black-box reuse that has been used during this research is:

"A style of reuse based on ... [software artefact] composition. Composed

... [software artefacts] reveal no internal details to each other and are thus

analogous to "black boxes"" Gamma et al. [1]

A black-box reusable software artefact should have three parts. First, the object

code, which is typically not accompanied by the source code in cases where the

company which developed and the company which reuse the software artefact are

different. The second part is the interface specification which is a means to access

the functionality of the software artefact. The final, often neglected, part is the

documentation which should describe how the software artefact is to be reused.

There are two main assumptions to black-box reuse.

1. The reuser of the code is able to gain the information required in order to reuse

the code without having access to the implementation.

2. The code provides the correct functionality, within required non-functional

characteristics, to perform some or all of the required task.

Pre/post condition semantics have been applied in order to aid in the documentation

of black-box software artefacts. However it has been argued, particularly by Buichi

and Week [2], that this is insufficient for describing certain types of problems.

Szyperski [3] found that although pre/post condition specification was very

important for black-box reuse, it was almost totally unused in industry.

In addition to specifying pre/post conditions, the context of a software artefact may

also be documented. This may consist of environmental requirements, such as

which operating system the reusable software will function correctly on, or other

such requirements.

15

The importance of knowing, and in some cases controlling, certain design and

implementation decisions for the reusable software has been described by Kiczales

[4].

Black-box reuse suffers from a number of problems:

• The software artefacts often have design decisions made too early in

development. This means that otherwise functionally correct reusable software

fails to perform satisfactorily, requiring a duplicate to be developed. The

problem of multiple versions being required due to differing non-functional

characteristics are described by Kiczales [4] as "haematomas of duplication".

• It is very rare that the design decisions are documented. This means that the

reuser may not have the relevant data at time of reusing the software.

• Black-box reuse works only if the environment in which it is situated conforms

to what it requires. Because the code cannot be altered (without extensive

reverse engineering) even very simple changes such as exchanging "dir" with

"ls" are impossible. To avoid this category of problem, commonly changing

factors are parameterised. Unfortunately this relies on the developer of the

software artefact predicting all the parts of the program which need to change.

• It is extremely difficult to ascertain the actual behaviour of a black-box

software artefact without having to devise and study interface tests. Therefore

if the behavioural specification is insufficient for the reuser to know whether

the software artefact is appropriate then considerable effort must be expended

in acquiring sufficient information.

The definition of white-box reuse that has been used during this research is:

Reuse where access to the source code and object code is not restricted. That is

to say that the source code is available and the software artefact may be

addressed directly rather than through an interface.

White-box reuse relies, to a certain extent, on the "re-user's" ability to comprehend

the software's structure when attempting to re-use the code. This places a strain on

16

the re-user and requires that they are fluent in the language in which the original

software artefact was implemented. Often this also means that the new software

artefact will have to be implemented in the same language as the original.

It has been shown that white-box reuse relying on the actual implementation of the

code rather than interfaces (as in Black-Box) can produce systems which are more

fragile to changes. Szyperski, in particular, discusses this in (3].

White-box reuse has the additional problem that due to the lack ofhiding of internal

workings, there is an implicit risk to the intellectual property. This is of great

concern where the software may reflect a substantial investment. There is a strong

case that black-box reuse, although flawed in the ways described earlier in this

chapter, is the only realistic option for reuse of software artefacts across separate

compames.

A middle ground between the two polarities of black-box and white-box reuse has

been described by some authors, e.g. Buichi and Week [2], as grey-box software

reuse. They define it as:

"A grey box reveals parts of its internal workings, not just relations between

input and output. The information can become as detailed as necessary where

needed, for instance, to state under what conditions external ... [software

artefacts] are called. In other places it may remain very abstract and simply

state a condition that is established"

This breaking, or at least reducing, of abstraction can be used to aid in improving

performance, Kiczales [4], or pre/post condition specification testing, Principle 5 of

Hollingsworth [5].

2.1.2 Code Domain

Another important classification of code reuse is by how the code will be reused, in

particular whether the code will belong to an application family or will be used

generically. There are two categories:

17

--------- - - ----------- - --------

Vertical re-use: the reuse of software artefacts which are used in a series of

systems that all belong to the same application family.

Vertical reuse has a focused domain. Vertically reusable software artefacts are often

quite specialised in functionality or in optimised performance. It has been

suggested by the Honeywell institute [6] that vertical reuse has a much greater

potential saving than horizontal reuse. A substantial quantity of vertical reuse

research has been in the field of Avionics, Poulin [7], overviewed in Taylor et al

[8], Batory et al. [9], and an overview in Batory et al [1 0].

Horizontal reuse: the reuse of code which spans several different types of

applications.

Horizontal reuse is the reuse of code whose functionality crosses many application

domains. Examples of horizontal reuse include user interfaces and databases. Since

horizontal reuse is not designed for a particular application, horizontally reusable

components usually cannot be tailored to particular circumstances and as such may

have unfavourable non-functional characteristics. The need for horizontally

reusable software artefacts is often reduced because modem languages are designed

with constructs or libraries which perform these tasks (for example S.T.L. in C++

Stroustrup [11])

2.1.3 Designed for reuse versus designed with reuse.

Another important consideration is the method by which the software artefact was

created. Software artefacts which are designed for reuse (DfR), as per Becker [12],

have been designed specifically to be reused. They are typically "heavily

parameterised", as per Becker [12], that is to say they usually have as many options

as possible at the function interface level. The context requirements for the software

artefacts are usually quite undemanding in order to maximise the reuse potential,

due to the specific context being unknown at development time.

Software artefacts which are designed with reuse (DwR Becker [12]) have been

developed for a previous application and then generalised to allow them to become

18

reusable. The context is usually quite focused. One technique used to recover

reusable software is to reverse engineer part of the software resulting in reusable

objects as described in Burd and Munro [13].

2.2 Why re-use?

There are many possible advantages to successful re-use. Sommerville [14] states

the following reasons:

• Increased system reliability

• Reduced overall risk

• Effective use of specialists

• Organisational standards can be used.

• Reduced development time

2.2.1 Increased system reliability

It is more cost-effective to produce high quality software if it is to be reused as

stated by Tracz [15]. The cost of undergoing the process of specifying, designing,

implementing and testing can be prohibitive if the artefact is not necessarily going

to be used again. If the software has been reused a number of times already,

limitations and dependencies may have been discovered which otherwise may have

been unknown. Therefore the need for a high quality software product is an

incentive to reuse.

Whether software reuse actually improves system reliability is still a matter of

debate, since although software quality can increase, incompatibilities and

unforeseen problems may arise. Some of these reuse issues are discussed further in

Section 2.3.

2.2.2 Reduced overall risk

For many companies the risk of investing in software development may not pay-off.

Therefore it is attractive to share the investment risk with other companies. This

19

can be achieved by reusing software artefacts developed by an external company

who will have invested in the software artefact.

In addition to allowing other companies to take risks on behalf of code developers,

investment in software development may also be reduced by leveraging existing

internally produced software. However this is usually a long-term goal. Leveraging

existing software may be achieved by developing reusable software, by

restructuring as in Brooke et al. [16] or by recovering reusable objects as in Burd

and Munro [13].

By reusing existing code which may have been developed internally or externally to

the company, a new software artefact may be developed using significantly less

resources2
.

Figure 2:1 shows savings achieved in a vertical reuse project, according to the

Honeywell institute [6]:

Stage in the software Iifecycle Minimum Maximum

reduction reduction

observed observed

Requirements 50% 80%

Design 90% 95%

Implementation 95% 95%

Testing 90% 95%

Documentation 50% 80%

Figure 2:1

2.2.3 Effective use of specialists

The reusable software artefact may belong to a domain which the software

developers have no experience in. It is beneficial for this highly specialised part of

2 The word "resources" at this point is used to refer to concepts such as cost, time and personnel, not
computer system resources.

20

the system to be developed by experts in that domain, assuming that the rest of the

system can abstract the complexity of that part of the system.

An illustrative example of successful abstraction of expert domains is security.

According to Robben et al. [17] encryption/decryption code can be re-used with

only a very basic understanding of how the encryption works.

2.2.4 Organisational standards can be used

The use of standards across an organisation can provide a uniform way of

performing certain tasks rather than re-solving the same problems, where each

software artefact would require maintaining independently. Another useful attribute

of this mechanism is that intra-company code should be structured in a more

familiar manner and this has been shown to ease the comprehension task for new

code developed within that organisation.

2.2.5 Reduced development time

Rapid Application Development (RAD) is very attractive to business, especially

those that rely on software to support the services they provide. Shortening the time

between problem identification and solution development will constitute a

significant competitive advantage. It is the opinion of the author that reducing the

development time of new functionality will become the primary concern for

companies reliant on IT in the near future.

2.3 Whlat prevents Software reuse

It is well accepted that software reuse is a desirable undertaking for a company

which relies on I. T. However it has been found that reuse of assets is in many cases

not performed. According to Tracz [15], and Judicibus [18] there are technical and

sociological barriers to software reuse. However, reuse of modem code is non

trivial and it should be noted that taking an overly-negative view of programming

practice may be counter-productive.

21

2.3.1 Quality

There have been a number of attempts to quantify the quality of a piece of software,

commonly known as software metrics. Although software metrics do exist that

address reusability and software quality as in Fenton [19], they are by no means

definitive. A good software metric rating is an indicator that the software fulfils the

desired criteria. However, there are many factors which the metrics do not take into

account. Poulin [20] takes a contrary stance, stating that:

"We have solved the Metrics Problem ... This work has succeeded in that

(Poulin [21})

• We have defined what to count as reuse and how to count it.

• We have defined metrics for reuse and can recommend these metrics

for immediate use on projects within organizations.

• We know how to assess the financial benefits of reuse both in short

and long term. "

However, it is the author's opinion that this is overly optimistic. Although metrics

are helpful in measuring software reusability, as documented in Poulin [22], they

are a long way from solving the problem of evaluating how "good" software really

is. To re-iterate, currently existing metrics can not be used as the sole basis to make

reliable informed decisions on how and when to reuse.

Uncertainty over software quality is both a sociological and technical barrier to

software reuse. It is also cited as one of the main contributing factors to the "not

invented here syndrome"3
.

Possible software quality measures include software process measures, SEI [23] , or

run-time measures (such mean-time to failure as described in Sommerville [14]).

3 The phrase used to describe the reluctance of a software engineers to reuse code which they did not develop
themselves.

22

2.3.2 Behavioural Specification

It has been documented by a number of authors, including Syzperski [3], that it is

extremely difficult to document the actual function of software. Formal methods

such as Z (e.g. Lightfoot [24] or Bowen [25]) have been applied to this problem, as

have algebraic specifications (as in Bergstra et al. [26] or Horebreek [27]). These

have been found hard to read or even incomprehensible by many programmers. The

specification of interfaces and semantic naming schemes is prevalent in most

imperative programming languages. However, this relies on the re-user and

original developer having a common terminology, which is not necessarily the case.

A number of authors, including Kiczales [4], suggest that specification usmg

Pre/Post condition semantics (as in Black box reuse) is only effective at describing

certain aspects ofreusable software.

2.3.3 Design assumptions

When the developer(s) of the re-usable code makes design or implementation

decisions, these decisions may restrict the conditions that the code can be re-used.

Often it is very difficult to be able to predict exactly how one decision can impinge

on future decisions so it is possible that the developer will not be fully aware of the

consequences. That is to say each decision may affect many other areas

simultaneously, and there may be many such decisions made implicitly throughout

the development phase, for example due to choice of implementation technology.

Figure 2:2 lists a number of examples of design assumptions.

Examples of a design or implementation decisions causing
unforeseen clashes

• A deadlock scenario, where two software artefacts require
each other's resources before they will release their
resources.

• A software artefact being used concurrently with itself,
when it was not designed for such a task.

• One piece of code relying on the state of an external
system to remain unchanged even though this is not
necessarily true.

• A system having a fixed memory size which the software
artefact does not always obey.

Figure 2:2

23

It is very unlikely that the developer can exhaustively document these in-built

assumptions. Therefore even when are-user has a reasonable amount of confidence

in the actual function of the software artefact, the underlying implementation may

act unexpectedly due to hidden dependencies or other assumptions. The problem of

such decisions being made too early, i.e. at design time, is described from the

perspective of performance in Kiczales [4].

2.3.4 Adaptation required for reuse

There is rarely a direct mapping between the code which can be reused and the

problem which is needed to be solved, as described in Samentinger [28].

Therefore certain types of software reuse will rely heavily on the innovations of the

reusers, rather than the plug and play system usually proposed for black-box reuse.

There may be a narrow line between appropriate and inappropriate software

artefacts.

A number of different code adaptation and combination techniques exist, most of

which are described in Bosch [29] and Szyperski [3]. However further discussion is

outside the scope of this research.

An important point, raised in Neighbors [30], is the difficulty involved in joining

different systems which encompass differing abstractions. This often results in

unmaintainable code.

2.3.5 Location of relevant code

The decision to reuse code should be based on the motivation of economy. That is

to say it should be less effort to reuse code than to redevelop it.

Independent of which requirements and design processes are undertaken, the

location of existing resources is one of the most important tasks in the development

of a system which is based on reused code. If the effort taken to find and reuse the

code is greater than that of redeveloping the solution then the decision to reuse is

uneconomical. That is to say if a software engineer has to waste time and effort

24

looking for code to reuse then s/he will be less willing to attempt to reuse code next

time due to frustration alone.

Another important, yet often implicit, consideration is how to shorten the time in

which a software artefact can be found to be appropriate or inappropriate for reuse

after the location of possible candidates. The amount of effort required to perform

this task can be made prohibitive if the documentation of the software artefact is of

insufficient detail.

2.4 Software Components.

A software component is a piece of reusable code. There are many descriptions of

what exactly a component is, often from differing perspectives. Many of these are

summarised in Szyperski [3]. In the same book, Szyperski defines a component to

be:

" ... a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed

independently and is subject to composition by third parties. "

It should be noted that although this definition is useful, it is unclear whether any

code can realistically have only explicit context dependencies (See 2.3.3 - "Design

assumptions" earlier in this chapter). Current difficulties with documenting

components are described in Brown and Wallnau [31]. However, the notion of

components being units of composition is helpful in that it emphasises the

reusability aspect.

Tracz [32] defines components in terms of their traits:

" ... A component is defined in terms of the following attributes:

• name,

• responsibility or capability

• constraints

• dependencies

• interface "

25

Component naming schemes should be relatively free to allow for components

which were designed for a different system to be integrated. However a sensible

naming scheme would be preferable as is good practice in programming.

Capabilities can be described in a number of ways. The attempt to describe "What

do I do" has also been undertaken by, in research into software agents, using

architectures such as Beliefs, Desires and Intentions. However, the usual method of

documentation is to describe the component with respect to some terminology that

is assumed to be universal across all the systems for which the component is used.

Constraints are the conditions in which the component can be expected to perform

satisfactorily, other than dependencies on other components. Common constraints

include the underlying architecture issues such as the OS the component is expected

to execute on, methods of communication and the sort of structures which the

component will rely on. Further discussion of architectural issues is in section 2. 7.

Component dependencies, or to be more accurate component inter-dependencies,

should document the reliance of components in terms of other external components.

The component interface is a list of the services that the component offers. The

interface conventionally describes the type and name of any externally accessible

variables or methods. Some form of documentation to aid the re-user to understand

what the component is, and in some cases how it works, should also accompany

them. In some research component interfaces also include pre/post conditions,

although in other work pre/post conditions may be described in a place which

approximates to the constraints field.

It should be emphasised that not all software artefacts which may be reused are

components. Components are a sub-category of software artefacts which fulfil the

criteria described in this section.

Components can be organised in a number of methods, including libraries (section

2.5) and frameworks (section 2.6). According to Traas [33], a survey of component

reuse, most component collections are currently offered by third party resellers.

26

However, component behaviour specification is currently not standardised (i.e. not

universal) and this is considered to be a substantial barrier to component reuse.

However third party resellers are expected to classify by a standard software library

indexing method or framework.

In Baggiolini and Harms [34], the process of automatic fault-management is

described as it relates to component-based applications. Of particular relevance is

the identification of the problems of fault-propagation and distributed failure.

Henderson [35] describes architectures which can be used in dynamic systems

(system where new components can be added at run-time without restarting) using a

architecture modelling language called ARC.

Components attempt to document the relevant data at the component level, hence

reducing the amount of time required to decide whether the component is

appropriate for the problem at hand. However, it may be difficult to know certain

aspects of the component (for example the exact component constraints for a semi

generic, cross-platform component with a few hard-coded requirements.)

2.5 Software libraries

Software libraries are a well founded method for achieving reuse. They aim to

collect commonly used fragments of code in an easy to find manner. A potential

reuser looks for code that will fulfil their needs by navigating through the library.

The main difficulties for software libraries in general are

• It is difficult to document all of the relevant data that a user may need,

especially when this information may not be known about the software

artefacts.

• The user must know what they are looking for, in terms of the methods by

which the library is indexed.

• A significant investment is required to produce a software library, independent

of whether developing new software artefacts or recovering existing software

artefacts.

27

According to Ostertag [36] the main methods of indexing software libraries are:

• The Keyword library system, by which the user locates data by searching for

certain words which the user expects to be present in the desired software

artefacts. The library may have no solid structure.

• The Classification library system, examples of which are classification

bygeneral type (as used in traditional libraries) and facetted reuse libraries.

2.5.1 Keyword libraries

Keyword libraries are informal and unstructured. There is no guarantee that

necessary information will be present and the library itself provides no guidance to

the type of information required. This means there is poor support for finding

software artefacts that require adaptation before reuse. A user would have to guess

what sorts of software artefacts existed and how they were referred to in the

software library. The indexing mechanism is reliant on the user knowing the

terminology used by the documentation of the software artefact. This is not always

a sensible assumption.

2.5.2 Classification libraries

There are a number of different methods of indexing in a classification library. The

two main variants are:

• Classification by general type

• Facetted classification.

Classification by general type is based on a universal description hierarchy. A

familiar example of a classification hierarchy is shown in Figure 2:3:

Animal

-+Mammal

-+ Dog

-+ Cat

-+ Reptile·

-+ Lizard

Figure 2:3

28

This type of classification is easy to understand but is inherently fragile to changes

in categorisation. This makes this form of categorisation only suitable for very well

known domains where the underlying categorisation is highly stable.

Facetted classification, as in Prieto-Diaz (37], is a method of categorising software

by criteria which are considered important for this particular software library. This

method is less vulnerable to changes because new facets can be added where

needed, although updating existing software artefacts can be problematic. It has

been found, as by Mili [38] that facetted systems are often hard to use and the effort

of classification is not always justified. There is considerable disagreement, for

example Poulin [20], to whether the invested effort of classification results in a

sufficient rise in productivity to justify the classification methods.

A classification software library can provide more guidance to what information

should be recorded about a software artefact. However, it is still unusual for a

classification software library to contain all the necessary data that would be

required for a user to know if a software artefact is appropriate. Classification

systems also require the user to learn how the library is structured before use.

2.6 Frameworks

An alternative method of organising reusable software artefacts is via frameworks:

" A framework helps developers provide solutions for problem domains and

better maintain those solutions. It provides a well-designed and thought out

infrastructure so that when new pieces are created, they can be substituted

with minimal impact on other pieces in the framework. "Nelson (39]

According to Jacobson et al.[40] and Pree [41] frameworks are not simply

collections of software artefacts. A framework element has a place in the system. If

it is specialised (i.e. it is altered by some mechanism) the behaviour of that

particular context will be altered.

29

The most common usage of the term object-oriented framework is to describe a

framework designed for white-box reuse of classes where the form of specialisation

used is totally, or at least predominantly, inheritance (described in Mauth [42] as

whitebox frameworks) . A more exhaustive definition is provided by Taligent

software [43] who classify frameworks on a number of categorisations as shown in

Figure 2:4:

Categorisation Examples

Domain Horizontal, Vertical, System level (as in an OS API)

Architecture Top-down, peer-peer, or many other variants.

Specialisation Architecture driven- mostly via inheritance

Data-Driven- mostly via composition.

Figure 2:4

The specialisation mechanism of a framework reflects a number of other framework

design decisions. Architecture driven specialisation, that is specialisation based on

inheritance, indicates that the framework will be mostly focussing on white-box

reuse. Data-driven specialisation, that is specialisation based on composition,

indicates that the framework may be able to support both black-box and white-box

reuse but usually is more focussed on black-box reuse.

Taligent classifies the two different specialisation mechanisms in terms of their

usability and extendibility:

Architecture-driven Data-driven

Usability Often very hard to initially Found to be initially much

comprehend the framework. easier than architecture-driven.

Extendibility Very flexible, as long as Often quite limited as the

architectural issues are met. framework is encoded into the

component.

Figure 2:5

They also suggest that a successful framework should initially combine the two

specialisation mechanisms.

30

However, a contradictory stance over the flexibility of black-box and white-box

frameworks is taken in Fayad and Schmidt [44]

"Many framework experts (Johnson and Foote [45}) favor black-box

frameworks over white-box since black-box frameworks emphasize dynamic

object relationships (via patterns like Bridge and Strategy in Gamma at al.

[1}) rather than static class relationships. Thus, it is easier to extend and

reconfigure black-box frameworks dynamically. "

There are also instances of component frameworks, such described in Szyperski [3],

where the framework is focussed at the component abstraction level rather than at

the level of objects/classes:

"A component framework is a software entity which supports components

conforming to certain standards and allows instances of these components to

be 'plugged' into the component framework. The component framework

establishes environmental conditions for the component instances and

regulates the interaction between component instances. " Szyperski [3]

The most common form of reuse in component frameworks is black-box although

grey-box has been applied too, as by Buichi and Week [2]. White-box, as described

earlier in this chapter, is not nom1ally used for components because it has a

tendency to create unnecessary and implicit program inter-dependencies that black

and grey-box reuse control more strictly.

Frameworks are useful for behavioural specification, as each place in the

framework has a documented purpose. The documentation is extremely important

as stated in Traas [33]. Software frameworks are based on the assumption that the

individual framework elements cannot interact in unforeseen ways. Although the

assumption holds in well designed frameworks, unpredictable behaviour can still

occur. As frameworks are often organised in complex ways, for example with non

hierarchical models, faults can be difficult to locate. Frameworks support

specialisation, although the exact method of specialisation is dependent upon the

31

type of framework used. The additional advantage is that frameworks have a notion

of where certain functionality should be placed, in structural terms.

It has been stated, e.g. Poulin [20], that further research is necessitated on how to

integrate frameworks with other frameworks or different systems.

2. 7 Software Architectures

The field of software architectures (Shaw and Garlan [46], [4 7], Hofman et al. [48])

can be defined to involve:

" ... the description of elements from which systems are built, interactions

among those elements, patterns that guide their composition, and constraints

on these patterns ... "

Software architectures are useful because they encourage well-documented high

level system designs. One implication is that these designs can be reused

(Clements and Northrop [49]).

The documentation of system-wide architectural decisions is important in terms of

consistent maintenance and of development of new systems. More relevantly, it is

only feasible to reuse code when it is based on an architecture which is, or can be

made to be, compatible with the current system. Difficulties with differing

architectural constraints has been documented for Windows™ components by

Richardson [50].

Software components are developed upon the assumption that these architectural

constraints will hold. Examples of these architectural decisions are event and

resource handling. The system architecture may require a component which is

interested in a certain event to register with the event handler or alternatively it may

require the component to launch its own event monitor. The policy upon which a

system resource may be re-allocated could vary between architectures, for example

by reference counting or only on explicit release of the resource.

32

If these policies are not known at development time, then this reduces the certainty

that the component can be successfully reused. Such a reduced certainty could also

be viewed as a contributing factor to the "not invented here" syndrome.

2. 7.1 Domain-specific software architectures

A number of domain-specific software architectures (DSSAs) have been developed

according to Mettala and Graham [51], for example in the field of avionics as in

Coglianese et al [52], Lockheed [53], and Lockheed [54] and in the field of on ship

command and control Clements [55].

According to Tracz [32] a DSSA consists of:

• " ... a software architecture with reference requirements and domain model

• ... [an] infrastructure to support it

• ... [a] process to instantiate/refine it."

The improvement of a DSSA (Honeywell [6]) over a Software Architecture is that

the system is situated, that is to say certain design and implementation decisions

have been explicitly made. Certain aspects can be specialised to improve suitability

for the system, for example in terms of focussing the system on the class of

problems usually found in that domain, or in terms of optimising the system to

perform in a manner acceptable to the application of the system. This removes

many of the main barriers to re-using black-boxes which are described in Section

2.1.1 and in detail in Kiczales [4].

Czarnecki [56] is very definite about the importance ofDSSAs in reuse:

"We believe that domain-specific software architectures are currently the

only feasible way to achieve ''plug-and-play" component reuse. A domain

specific software architecture provides a common framework for component

interoperability within a domain. "

33

2.8 Summary

This chapter has described issues which the author considers particularly salient to

modem software reuse.

The different categories of reuse were found to be:

• Types of code reuse (e.g. Black box, White box)

• The domain of code to be reused (e.g. Horizontal, Vertical domain)

• The origin of the code to be reused (developed to be reused or reused

afterwards)

It was found that black-box reuse was often difficult to implement partially due to

the intrinsic difficulties of describing software. However, white-box reuse has the

problem of not protecting intellectual property. A middle ground of grey-box reuse

was also discussed (leaving some of the implementation details available). It was

also claimed that for inter-company reuse only black-box and grey-box reuse are

feasible.

Vertical reuse allows for more tailored solutions to be produced but horizontal reuse

has the potential to cover more application domains. As discussed in the context of

DSSAs, vertical reuse makes black-box reuse feasible due to many of the

implementation decisions which would not be documented at software artefact level

being documented at architectural level. The implication is that horizontal reuse is

overly general, often resulting in un-reusable software due to poor non-functional

characteristics.

The consideration of how the software artefact was produced either specifically to

be reused (DfR), or by re-engineering an existing artefact was also discussed

(DwR). Typically DfR artefacts are more generally applicable, but are more

restricted in which implementation assumptions they are allowed to make than

DwR artefacts.

A number of factors which need to be addressed in order for successful reuse were

found. They were:

• The quality of the software.

34

o The behaviour of the software

e Hidden design assumptions in the software

• The code requiring changes before reuse

• The identification of relevant code

It was also found reuse needed to be addressed both in terms of technical and

sociological terms.

Software quality is a well accepted pre-cursor to reuse. If the software appears to

be of inferior quality then software developers have been found to be, with good

reason, reluctant to reuse it. Also previously stated, behavioural specification of

software is often difficult due in part to its abstract nature. There must be a way of

conveying "what the software artefact does" between developer and reuser or re-use

will be infeasible. Hidden design assumptions are inevitable in software reuse.

However, steps can be made to minimise them, by for example DSSAs that

document many of the decisions at architectural level. Better standards on what

needs to be present in interface specifications are needed.

In general software reuse, it is unreasonable to expect that the re-user will have

exactly the right software artefacts in the form in which s/he expect. In fact there

will often be some modification required before reuse as described in Bosch [29].

Important issues such as how to change software artefacts in order for them to fulfil

the new requirements without creating new maintenance problems and how to store

software artefacts for retrieval need to be addressed. Another way of addressing the

reuse issue is by communicating to the re-user what functionality they should

expect. Also there should be an effort to reduce the time between finding a potential

reuse candidate and knowing whether the candidate will fulfil the re-users

requirements.

The following methods have been identified as addressing reuse:

• Software Components

• Software Libraries

• Software Frameworks

• Software Architectures (and DSSAs)

35

These methods have been discussed in terms of the reuse issues, in order to see how

they address software reuse.

36

3. Related work
There are a number of other areas in computer science that have an influencing

factor on software reuse whilst not usually referred to as being part of the field. One

of the aims of this chapter is to describe one such important factor, the field of

software testing.

A number of alternative approaches to software reuse also exist. This chapter

highlights a number of related examples which although often not considered

directly related to reuse, aim to achieve some or all of the same goals.

3.1 Software Testing
The aims ofthe testing section are as follows:

• to clarify terminology

• to provide the reader with a brief background into testing methods

• to outline basic concepts so they can be built upon in later chapters

• to outline related research in automating software component testing/testability

As the last chapter noted, it is important to maintain confidence that the reusable

software artefact will perform as expected. However, the reuser often has not

developed the code that is to be reused. Therefore it is important to attempt to

maintain the reuser's confidence by other means, such as verifying that the software

is ofhigh quality.

The field of software process metrics defines a number of ways of quantifying

controlling quality throughout the phases of software production. In addition to

these metrics, to ensure that the finished product behaves as expected, the

component should be tested. However, unexpected problems may arise due to

substantially different environments or unexpected usage cases. Hence, component

testing is a very difficult task in practice. There may be multiple target environment

configurations, all of which could potentially cause difficulties for the implemented

system. There is a combinatorial explosion of variants to be tested, including

component inter-compatibility testing, OS variant compatibility and hardware

environment compatibility. In general, it is impractical to test components to this

37

high level. Hollingsworth [5] researched methods for localised testing and

certification of components although could not eliminate all possible unforeseen

interactions. Before further discussion, this section will explicitly define terms in

order to avoid ambiguity.

3.1.1 Errors
An error is defined as a category of event or state as per Beizer [57]. For example

an error may occur due to incorrect data being entered into a system, or by the

system reacting inconsistently or incorrectly. It is an indicator that something has

not performed as expected. This terminology should not be mistaken for the

statistical notion of the value of the difference between the expected and the

observed values e.g. the IEEE/ANSI definition. (Std 610.12-1990 in [58])

Examples of errors include 'Out of range values', incorrect values, exceptions and

the systems internal state deviating from what is expected.

3.1.2 Faults
Beizer' s definition of fault is appropriate for this research:

A deficiency in a program that causes the resulting effect to be in some way

incorrect and hence causes an Error. This is conventionally held to be a

inconsistency between the specification and the implementation. [57]

Testing can be performed in a number of ways, dependent upon what is known

about the software being tested. Black-box testing is based on interface

specification and consists of a number of tests which are only concerned with the

external behaviour of the code being tested. Software for which there is no source

code available can only be tested by black-box methods. White-box testing, that is

testing based on the actual code, consists of tests which are based on the actual

internal structure of the code.

The purpose of testing is to evaluate the quality of the software being tested by

ensuring it performs as expected (Beizer [57]). Testing is performed in order to

detect errors. Another, closely related concept to testing is debugging. Debugging

38

is performed if a system is known to perform incorrectly, i.e. an error has been

detected, in order to locate a fault. Many of the techniques used in testing can be

used in the debugging process.

The following section mms to summanse a number of appropriate testing

techniques.

3.1.3 Black-Box tests
In the context of this thesis, this category of testing is appropriate for ensuring that

externally developed applications behave as expected.

A common black-box testing technique is Boundary condition testing. The aim is to

ensure that the code behaves as expected in locations where faults are often

prevalent, the boundaries of the acceptable values for input. This category of test

catches common mistakes such as in Figure 3: 1.

if(a>=5)
{
print "Hello world\n";
};

Figure 3:1

When the program should actually be as in Figure 3:2:

if(a>5)
{
print "Hello world\n";
};

Figure 3:2

There are a number of techniques for automatically or semi-automatically

generating black-box tests. For example, it is possible to generate random test data

from interface specifications alone, and this has been performed by Grossman [59].

However, this category of testing is by no means exhaustive, or even satisfactory

for a moderately complex system.

39

Other research into automated testing include rule-based test generation as in

Deason et al. [60] and extended-UML based automatic test generation as

implemented by Aonix [61].

It should be noted that Black-box tests are limited in so far as they can only test

upon factors which are externally visible. Therefore it may be very difficult to test

components which contain a large amount of internal state without a way of making

certain parts of the internal state externally visible.

As stated in Beizer [57], these techniques should be combined with White-box tests

where possible.

3.1.4 White-Box tests
This category of tests requires that in addition to the executable code, the source

code is available to the testers. This means that white-box tests are usually

performed by the developers4 of the code. White-box testing techniques include

• Path testing, which attempts to ensure that some/all of the possible execution

paths occur. It is not usually possible to test all paths, especially when the

program being tested contains loops.

• Data flow testing, where the tester attempts to ensure that the data in the system

conforms to the expected pattern of data-flow in a system i.e. being defined,

being manipulated and de-allocated. This sort of test is implementation

dependent, because certain programming languages have automatic initial

values and may also have automatic data de-allocation.

• Transaction flow testing, where the tester runs test cases along use cases of the

system. That is to say the tester will ensure that commonly performed

operations are functioning correctly.

These techniques are very useful for testing a system when the source code is

available. However, they are not applicable on interface level only e.g. when the

developer and reuser are different people working for different companies. White

box tests are also more difficult to automate. As previously stated, 100% coverage

40

for Path testing may not be possible for a number of reasons, such as the

combinatorial explosion or that the structure of program may prevent it.

3.1.5 Debugging
If the result of the system I subsystem is found to be incorrect, a technique such as

program slicing is useful. A program slice (Weiser [62]) is performed with respect

to a certain variable, or set of variables, typically when such a variable has been

found to be incorrect. The underlying concept is that if a certain result is incorrect

then it is useful to examine the parts of the system which could have affected the

result. The resulting code is known as a program dice

There are many different program slicing techniques but conventionally they are

separated into static and dynamic program slicing. Dynamic program slicing can

remove more code, due to run-time decision paths being available.

3.1.6 Self-testing
Self-testing software, as discussed in this thesis, aims to verify its behaviour. In

order for this to be performed, there must exist an alternative route or method by

which a result can be generated.

A typical example of self-testing in the field of software is N-version programming.

Different methods of producing the same system are employed in a parallel

development process, often with no interaction between the groups developing the

code. These systems are run concurrently and the results compared. If they produce

the same answer5 then there is agreement and the system can assume to be acting

reliably. If there are alternative answers, a mechanism for deciding which answer is

most likely to be correct will be used (polling).

In the domain of mathematics, the concept of self-testing functions has been

researched, as in Rubinfeld [63] and Blum [64]. These functions can be

4 By developers, it is mean the department or company which developed the code, not necessarily the actual
people who implemented the system.
5 The concept of same is not necessarily simple here. For example there may be numerical inaccuracies
which differ dependent upon what method is used.

41

approximated, within a n% degree of accuracy, by less complex alternatives. The

general characteristic of mathematical functions that can be approximated in this

way is called random self-reducible functions. One disadvantage of this approach is

errors may be detected when none actually exist.

In the field of components and software agents the function of the software artefact

may be encoded along with the actual functionality. This quality is often referred to

as reflection. However reflection is usually applied to components and agents as a

guide to the software artefact can be used for, rather than in order to check that it is

functioning correctly.

A different approach to increasing component testability is taken in Hollingsworth

[5], that every component should export operations sufficient for its pre/post

conditions to be tested by an external client. However, Hollingsworth proposes two

versions of each component to be produced, one for testing and one for use.

Although this is attractive in terms of performance, it carries the added risk that the

component behaviour could change between versions.

3.2 Alternative approaches to reuse
One of the main driving factors for software reuse is to increase the productivity,

flexibility and reliability of software by leveraging existing investment. There has

been significant related research into achieving the same objective by alternative

means. The aim of this section is to survey some of the alternative ways of

addressing the same issues along with an overview of how they achieve it.

The following approaches are described:

• Software agents

• Domain-Specific languages

• Automated programming

3.2.1 Software Agents
Software agents address reuse by aiming to increase software flexibility. That is to

say by creating systems that can alter their behaviour, software agents aim to

42

increase the domain of applications that a system can provide services for without

the need for human intervention.

The traditional procedural method of creating such a system is to write a sub

program to solve the problem for each differing case. It should be noted, however,

that extra complexity will almost certainly be introduced by doing this.

One way of viewing software agents is that they are structured in a way which is

analogous to how humans work together to solve problems. Rather than a software

artefact dealing with one task and being called when necessary by the controlling

program (as is typical in hierarchical systems) each agent may act when necessary

and in the manner in which it "believes" to be appropriate.

As previously stated, agent technology has been advocated as a solution for

developing flexible software. However the field of agents, although extremely

promising, has not yet fulfilled this claim. It can be argued that agents are

successful in describing problems that map well to the architecture that they use.

Agent architecture, as with many new research fields, lacks a universal definition

mechanism. In fact what actually constitutes an agent is still under discussion. For

this reason, this thesis will discuss common attributes of agents, in conjunction with

how they achieve or, as is more usual, aim to achieve dynamically re-configurable

behaviour.

The following are often considered to be defining properties of agents:

• Autonomy

• Pro-Active and/or Reactive behaviour

• Temporal continuity

When an agent is described as Autonomous, it is meant that there is a non

hierarchical flow of control. Each agent has the capacity to behave independently

to stimuli. There exists debate to what extent agents have to be autonomous. At one

extreme are agents that will simply perform their tasks with no interaction of any

type with other agents (human or otherwise). These could be said to be highly

43

autonomous because all decisions are made by that agent only. At the other

extreme is an agent which asks for advice when reaching any form of decision,

which could be said to have no autonomy. It is unclear if the autonomy

characteristic increases the flexibility of the resulting system.

Wooldridge and Jennings [65] describes an agent to be reactive if it only acts upon

external stimuli. That is to say it only acts in response to its environment. An agent

is Pro-Active if, rather than waiting for certain conditions to arise, it affects the

environment in order to achieve an effect.

There are a number of supporters for the argument that agents must not just react to

the environment. Instead at some point in the agent's "life" it must take control and

behave proactively (e.g. Franklin and Graesser [66] and also as the "weak notion of

agency" Wooldridge and Jennings [67]). This implies a combination of an event

driven (Reactive) and a goal driven (Pro-Active) control system rather than simply

an event driven one. However other authors claim that Pro-Active agents are just

one of many different agent system types as in Farhoodi and Graham [68].

The temporal continuity quality of agents is often described informally as " ... a

continuously running process". However, there is no reason why an agent should

not be able to suspend execution for a specified amount of time or terminate. If the

system contains mobile agents, that is to say agents which can move from one

system to another by some mechanism, then there is definitely a time when the

agent is actually in transit and not actually present on any machine. The concept

that the agent must be able to maintain its execution state is preferred here. As has

been pointed out in the agents mailing list [69], it may be unnecessary to be able to

suspend execution at every state, rather that the state may be stored at certain points

in an agent's execution and the agent re-assembled at another point with the same

state. To re-iterate the point that temporal continuity concerns more of continuity of

the program execution state rather than the continuity of the actual program which

of course is an illusion in a multitasking uni-processor system. Temporal continuity

does not appear to have any direct bearing on software agent's flexibility.

44

Having discussed potentially defining properties of agents, it is also important to

consider possible attributes that may be included in agents. These attributes directly

address the flexibility issue:

• Communicative agents

• Co-operative agents

• Learning agents

• Mobile agents

• Negotiating agents

Communicative agents communicate with other agents to help solve distributed

tasks. Communication can be achieved by using an Agent Communication

Language, such as KQML (Knowledge Query Manipulation Language) and KIF

(Knowledge Interchange Format) or FIP A (Foundation for Intelligent Physical

Agents[70]). Communicative agents may achieve flexibility by requesting services

from other agents, rather than calling specific code, in a similar way that Object

Oriented programs maintain a degree of flexibility by requesting for an object of a

base-class type rather than simply identifying the specific class of the original

usage.

Co-operative agents have the ability to team up to solve problems. Much research

has been performed on the problems associated with agent cooperation in the field

of planning. Co-operation is possible over systems where there exists a common

understanding. Agent co-operation has great promise in improving flexibility as

new behaviour could be produced when necessary. However, conflicting ontologies,

lack of a method of expressing the task, or ambiguity can make co-operation

infeasible.

Learning agents interpret and maintain an abstract model of the environment in

which they are situated. Learning agents can be seen as flexible in that they can

tailor themselves to their environment and may act, in a non-repetitive manner, to

these external stimuli. The success of the agent is dependent upon the learning

algorithm used, and whether the abstract model is sufficiently accurate in

representing the external conditions. Learning agents have the added disadvantage

45

that they often act in unforeseen ways that are undesirable as documented by

Caglayan et al [71]. An example of a learning agent is the Microsoft Office

assistant, which monitors the way in which the user interacts and "helps" the user.

Mobile agents can suspend their state and then move themselves to a new computer

system and restart with the same internal state. This mobility can also be seen as a

type of flexibility, as the software is not confined to one computer. Mobile agents

can have very serious security implications.

Negotiating agents are useful in systems where there is no clear optimal solution,

or where the optimal solution is dependent on perspective. For example, if an agent

is trying to sell a commodity to a second agent, then each agent has a different

concept of the best result. The seller would prefer to sell at a high price, and the

buyer would prefer to buy at a low price. Negotiation allows for flexibility between

two parties with quite different goals and has been implemented in market

simulations as in Chavez and Maes [72] and for network quality of service Nygren

etal. [73].

In some agent systems the knowledge bases are distributed and maintained

separately for different agents. This is analogous to people who work in a company

having different knowledge and views. Problems may arise when different agents

share information, especially when they may use different ontologies creating

contradictions or at least inconsistencies. The analogy continues in that certain

people may not agree with each other despite their individual goals being

compatible.

Distributed agents are a promising method of providing a natural metaphor with

which to describe certain types of systems which otherwise would probably be

made centralised. This is helpful because systems which are developed using

appropriate metaphors and architectures can be easier to understand and hence to

maintain.

One area of difficulty in software agents is the way in which the requirements are

described and for communicative and co-operative systems, how the sub-

46

requirements are interchanged. One attempt to solve this is contract-based agents as

in Krogh [74]. Contract-based agents are based on the way that humans actually

offer services, i.e. the two parties enter a contract of service. There are clear

analogies between interface specifications for components and these contract-based

agents.

It is unclear whether software agents are not currently delivering upon their promise

due to impossible expectations, or because new design and implementation methods

are required in order to make them feasible. This topic is discussed in greater depth

on agents in general (Wooldridge and Jennings [67], Shoham [75], UMBC [76]

Ingham [77]), on agent communication (Labrou [78], Pearson [79]), on agent

architectures (Wooldridge and Jennings [65], [67] and Franklin [66]) and designing

and building agents (Farhoodi and Graham [68])

3.2.2 Domain-Specofic languages
A common question asked by people who have never programmed a computer is

"What is the best language?". Usually the answer is that different languages are

good at performing different tasks. This is true even of so called generic languages.

C is good for developing low-level applications and for maintaining control of the

performance of the resulting system. However there are a number of applications

for which C is particularly weak. Arrays, for example, are not bound-checked.

However if C was "fixed" by altering array implementation then its applicability to

other problem domains may be hampered, i.e. array access may impose a higher

overhead.

The underlying philosophy of Domain-Specific languages (DSLs) is that although

there is a place for generic, cross-application languages, the most optimal way of

expressing a new system is often by using specialised languages.

There seem to be two differing structures to DSLs:

• Extension to other languages such as P++ as in Singhal [80] (called DSL

extensions)

47

• A restricted language which only deals with the problem domain (as in Bentley

[81], Ward [82], Deursen and Klint [83], and Spinellis and Guruprasad [84]).

By extending languages, certain weaknesses in the language can be overcome. For

example the weak support for component interface description in C++ has been

enhanced by P++.

Alternatively, creating restricted languages emphasises a clear separation of

concerns. It must be possible to integrate the DSL system with other commonly

occurring systems or it will not be accepted into general use. A possible solution is

to provide a mechanism in which this language can plug into a generic language, as

sometimes performed in SQL. According to Deursen and Klint [83], a restricted

DSL should:

• have a focussed domain with clear boundaries.

• have as few constructs as possible whilst retaining the ability to define the

range of problems for the target user.

• be unambiguous.

3.2.3 Automated Programming
For the purposes of this research automated programming is the attempt to reduce

the effort and associated financial risk when developing a new system/adding a new

functionality. By this definition, automated programming is a wide field that

sometimes is defined to include reuse and software development technology.

Many of the systems developed under the label of automated programming have

become very well accepted, such as high-level languages including COBOL and

FORTRAN. An excellent survey of some automatic programming techniques is

given by Rich and Waters [85]. Many older surveys exist, a number of which are

outlined in Neighbors [86]. However there is an inherent difficulty in surveying

software production techniques as per Feldman [87].

"Almost anything in computer science can be made relevant to the problem of
helping to automate programming. "

48

A few, well known, examples of automated programmmg systems have been

chosen to illustrated concepts relevant to this thesis:

• DRACO

• RESOLVE

• GenVoca

3.2.3.1 DRACO
DRACO (Neighbors [88],[86]) is a semi-automated transformation-driven software

generation process. The user specifies their problem in terms of a domain-specific

language, after performing domain analysis. This description is then transformed,

with help from an expert user, into a functioning system. This process is useful in

that domain-analysis and problem refinement process can be seen as an investment

which, if performed correctly, can be reused later in the product lifecycle. That is to

say DRACO can be used to develop similar systems by reusing the data collected

during the process of previous system developments.

DRACO is significant in that it emphasises the importance of domain analysis and

vertical reuse, although Neighbors acknowledges Balzer [89] provided this

philosophy. From this analysis a DSL is formulated. Problem specifications are

developed using this language. This is an effective method of defining a well

understood problem domain. The reliance on developing a DSL has been viewed as

a strength (Taylor et al. [8]) and as a weakness (Singhal [90]). However the process

of transforming the specification from one form to the next still requires expert user

assistance. This process of refinement is non-trivial and, as documented by

Neighbors [86], can involve a large investment of effort in paths of investigation

which do not lead to the goal state. This is a barrier to reuse as a programmer is

likely to lose confidence in using a system will not definitely provide a solution

after a substantial investment.

3.2.3.2 RESOLVE
RESOLVE, Hollingsworth [5], Bucci et al.[91] provides an interface specification

language which extends the ADA programming language, along with some

programming "principles" or guidelines. The aim is to maximise re-usability by

49

developing components in conjunction with certain standards. Although the work

claims to be language independent, a significant quantity is ADA specific.

Of particular interest is the method of introducing component testability.

Hollingsworth [5] addresses this need by developing components so that they can

be tested in isolation, rather than having to consider the client in conjunction with

the component. Although it is an extremely attractive proposition to be able to

develop and test the components in isolation, it should be noted that this makes

many assumptions about whether one software artefact can affect another software

artefact, even indirectly. It is unrealistic to assume that each component can only be

affected directly, even if the principles outlined in Hollingsworth [5] were adhered

to. Therefore, the system would still need conventional tests at each stage of

component composition.

The principles highlight some important concepts. Principle 5, "a component must

export sufficient operations such that it's preconditions can be ensured", is often left

unconsidered in component design. However, this leaves the problem of accessing a

component's internal state through an abstract interface. There must be a

standardised way of reporting the external state. This means that even the internal

state of the component must be displayed as an abstract state rather than in the way

most natural for its implementation. It also means that the specification of the

system must be detailed enough to consider this level of detail.

3.2.3.3 GenVoca
The Gen Voca paradigm describes the construction of Software System Generators

(SSGs). Singhal and Batory [80] describe three main features ofGenVoca systems:

• The amount of code which is typically reused is larger than one function or

class. They refer to this quantity as a subsystem or a component.

• Components must refer to each other through explicit interfaces.

• Components are composed and customized by parameter only.

The following are examples of the GenVoca paradigm.

50

• ADAGE - Batory et al. [9] This marks a cross-over between the domains of

DSSAs and SSGs. The Domain Analysis is used to develop a model of the

domain. This model is used to help describe the reusable components.

• P++ - Singhal and Batory [80], Singhal [90]. P++ is an extension to the C++

language. The extensions are concerned with describing components in terms

of the Gen Voca model. This research highlights ways of overcoming

weaknesses in C++, such as templates, by better dealing with parameterization

at differing levels of abstraction. However, as outlined in Singhal [90], these

extensions to component specification do not consider conditions in which the

component will perform satisfactorily.

3.2.3.4 Automatic programming methods.

There are a number of alternative methods for automatically generating programs.

A survey of these is performed in Rich and Waters [85]. Of particular interest for

this thesis are the two alternatives of Transformational or Compositional

programming methods.

Transformation programming methods, as applied in DRACO, are characterised by

requiring user intervention in order to generate code. This is due to the enormous

number of possible applications of each transformation. The strengths of

transformation systems, as stated in Rich and Waters [85], are that

"they provide a very clear representation for certain kinds of programming

knowledge, such as Horner's rule. "

As previously stated, DRACO IS based on a transformation programmmg

methodology.

Compositional programming methods (described as a kind of procedural method

Rich and Waters [85]) are used to compose code from other constructs.

Compositional programming usually involves constructs of a larger scale than

single programming constructs. Much of the research in the Gen Voca project has

been compositional in nature, especially their Software System Generators.

51

3.3 Summary
This chapter has dealt with two separate issues. The first issue was that of software

debugging and testing. This is provided to give a brief outline of testing methods

and to provide the terminology to be used later in the thesis. The underlying

philosophy of this section was to reduce the risk of ambiguity due to clashes in

terminology.

The second issue covered by this chapter was alternative methods of achieving the

same goals as the more conventionally accepted software reuse methodologies

outlined in Chapter 2. These are Software Agents, Domain-Specific languages and

Automated Programming. Each of these was described in terms of a brief overview

and how they address problems which are similar to the reuse one. The concepts

described in the last two chapters are now applied to the thesis, that of applying a

DSL-based approach to component composition, error-detection, and fault

prediction.

52

4. Concept

4.1 Introduction

As discussed in chapter 2, black-box reuse has currently more potential than white

box for inter-company reuse. This is due in part to the lack of protection of

intellectual property inherent in white-box reuse. This requires no small amount of

trust that the reuser will not reverse engineer the software artefact6
• A particularly

salient field to modern black-box software artefact reuse is software components.

As discussed in chapter 2, software components are software artefacts which obey

certain stipulations in order to maximise their reusability.

In software component reuse, significant difficulties still exist because there is no

clear concept of what information should be recorded and what can be abstracted.

It is not reasonable for a software developer to be expected to record all data about a

component when the conditions of reuse are not known at development time. This

problem can also be viewed from the potential reuser's perspective. There is often

no guide for the re-user as to under what conditions software components are

designed to function. Even when such a guide is present there is no guarantee that

there is sufficient data to make a fully informed decision. A method of reducing

this problem is Domain-Specific Software Architectures. By making certain

decisions at design time and documenting them extensively there is the potential for

the contextual dependencies and design decisions to become standardised across the

domain. This explicit information will ease the decision process of whether a

component can be reused but at the cost of generality. This cost must be weighed

against the cost of documenting and understanding the individual component

specification Issues at component development time and location and

comprehension of the documentation at reuse time.

6 It should be noted that black-box systems can also be reverse engineered to create a prototype, typically to
create a specification of how the system acts. There are also a number of techniques to attempt to recover
source code from the object code. However these are both significantly more resource intensive than simply
reading the source code.

53

An important issue in software component reuse is component faults. It is assumed

that the software will be developed using good practice in software engineering and

that it has been tested to a reasonable degree. Unforeseen behaviour may still result.

This may be because the model upon which the software was developed is

insufficient to describe the complex interactions (a design error), a compiler fault,

an ambiguity in requirements or simply an error in coding.

As previously stated in chapter 2, there is also a large incentive to reduce time taken

for the stages of requirement analysis to implementation. Achieving this can create

a competitive advantage for companies who are increasingly reliant on computer

systems to help provide new services. This has been made possible by using more

problem focussed development and programming environments. Because these

Rapid Application Development systems are focussed on certain types of common

problems they are based upon domain-specific reuse.

The approach outlined in this thesis is also described in Ingham [92].

4.2 Hypothesis

This chapter contains the concepts proposed in this thesis. They are described in

terms of a main hypothesis, and where deemed appropriate, sub-hypotheses which

describe concepts in more detail. It is hoped that by separating the hypotheses, a

separation of concerns can be achieved, hence enabling the separation of certain

lSSUeS.

The main underlying hypothesis of this research is:

Given a sufficient number of components, described in sufficient detail, it is

possible to automatically develop systems in a manner such that human

intervention is minimised.

By "a sufficient number of components" it is meant that there must be sufficient

components in existence to describe the new software, assuming that they could be

54

assembled by some mechanism. A more vague term in this hypothesis is "in

sufficient detail". Before it is known what level of detail is required, the problem

description must be formulated. As stated earlier (chapter 2) this is a non-trivial

problem for a developer of reusable components who may not be able to foresee

which factors are important. More importantly, a potential reuser should know what

detail to expect in such a system. In order to develop such a description

mechanism, a model of the problem domain is required, or Domain model as in

Taylor et al. [8]. Requiring the existence of an unambiguous problem domain model

made a DSL a very attractive specification mechanism because it has been used

under those conditions in conjunction with DSSAs Batory et al. [9]. By utilising a

DSSA where possible, common architectural issues could be abstracted away to the

level of the entire system. That is to say every component in the architecture would

operate under the defined conditions. This mechanism reduces the number of

factors that the reuser needs to consider at component level and hence makes their

task easier.

Further investigation into component specification, in particular into how DSLs

could be used, yielded the following sub-hypothesis:

A DSL can be applied to specify the behaviour of components. The

specification can be used for the purposes of locating components and

verifying that their behaviour matches what is expected.

A DSL requires a stable and well-understood domain. If the domain does not fulfil

these requirements, then it would not be economically sound to use this method of

software development. Sacrificing generality for an unambiguous problem

requirement which could be translated into code by automatic means was viewed in

this research as an acceptable compromise. Furthermore the requirements can be

described in more tailored terminology making it possible to improve confidence

that an operation is successfully completed by automatically generating pre/post

operation tests. This was described using the following sub-hypothesis:

55

Given a specification of the problem modelled in sufficient detail it is possible

to detect some errors occurring in a system and in some cases find the cause

of those errors (i.e. faults).

The question of what constitutes sufficient detail is discussed, in terms of error

detection and fault prediction, later in this chapter (sections 4.5 and 4.6). Since the

automated programming environment may have redundancy in the system, it could

be possible to reconfigure its behaviour to attempt to avoid the faulty component.

This is described using the following sub-hypothesis:

Upon detection of an error, the system will attempt to ascertain where the

fault lies. Then a new solution will be created if such an alternative is

feasible within the system.

To summarise the hypotheses, they state this research will:

• Use a DSL as a component specification mechanism. This mechanism will be

used to define behaviour in terms of semantic naming and behavioural pre-post

conditions.

• Translate the requirements, which are in terms of the DSL, into an executable

program, assuming sufficient components exist.

• Upon detection of an error in the resulting system, ensure the supporting

architecture will use available data to predict the location of the fault. The

supporting architecture may then attempt to generate an alternative solution.

This chapter discusses the concepts that this thesis is based upon, and to emphasise

the original contributions made here. They fall into these categories:

1. Support architecture

2. Domain-Specific languages.

3. Error detection

4. Fault prediction

56

ORIGINAL IN COLOUR

4.3 Support architecture

As previously stated, this thesis proposes the use of an architecture which supports

the underlying cycle of generate executable, detect error, predict fault and then re

generate code. An implementation of this architecture should, where possible, keep

any underlying complexity separate from the generated executable. It is important

to keep the executable as simple as possible as complexity is often an indicator of

faults.

Another design consideration is that the architecture should be robust, that is to say

that certain parts of the architecture could change (e.g. different fault prediction

strategies) without unnecessary changes being impacted on the rest of the system.

Figure 4:1 shows the data-flow around the architecture:

User

Request to generate new system

available components

Generate executable

Executable

error event

request for executable to continue

Figure 4:1

Each part of the architecture is now described:

1. Software generation

2. Executable

57

disallow
components

3. Component store

4. Fault profiling system

4.3.1 Software generation

There are a number of possible alternatives for translating a high level problem

definition into an executable. Traditional compiling techniques are quite successful

in translating one language into another, typically a lower-level one. However this

task involved translating requirements, described in terms of a DSL, into a

collection ofblack-box components, verification code and glue code. Such a system

may often be referred to as being an "automated programming" system.

An important requirement, often omitted, in automated programming is reliability.

If the user does not have confidence in the executable produced then there is a high

likelihood that future executables will be produced by other means. To remain

reliable, an automated programming system must control complexity because:

• There is a direct link between complexity and faults.

• Too much complexity will make tracing how the resulting system was

produced difficult, which may be required in fault-diagnosis, in cases where a

software generation technique is responsible rather than the software being

reused.

Data about the structure of the executable is encoded into the executable itself, in

order to allow for reflection. This is used in the fault diagnosis process.

Some common automated-programming techniques have been outlined in chapter 3.

The compositional programming technique, based upon the DSL requirement

definition language approach is most appropriate for this thesis. There were a

number of criteria for this decision:

• There had been a number of successes in this field as documented in Batory et

al. [9], Rich and Waters [85] and Stichnoth and Gross [93].

• The concept of the code generation process would be well-understood, as it has

been applied by many authors (e.g Mueller [94] and Batory [95]).

58

ORIGINAL IN COLOUR

• The system can scale to any number of components, providing they are all

specified in terms of the DSL.

• Compositional model code lends itself well to error-detection and fault

prediction, as the boundaries of components are well defined.

The software generation process could be separated into a number of simple steps,

as illustrated in Figure 4:2.

Requirements in

DSL

Parse requirements

Component Matching

Match available components to parsed

requirements

Solution selection
Select a solution

(if there is one)

Executable generation

Figure 4:2

This section will now explain each stage of solution generation.

59

ORIGINAL IN COLOUR

4.3.1.1 Parse Requirements

The requirements are parsed, checking that the type of each parameter obeys those

specified in the DSL.

I A { Al A2 { A2.I A2.II} A3 }

Figure 4:3

They are broken down into a tree. For example, the DSL requirement as shown in

Figure 4:3, where A, Ax, A.x.y are components such that Ax is a parameter of A

and Ax.y is a parameter of Ax and Al is the first parameter and A2 the second

parameter of A, will generate a tree as illustrated in Figure 4:4

Figure 4:4

4.3.1 .2 Component Matching

Each component is described in tenns of the DSL constructs. This means that every

component can fulfil the behaviour described by one or a collection of DSL

constructs. The algorithm which is deemed most appropriate is bottom-up matching

of sub-trees, as it avoids infinite recursion, given that the requirements tree and

number of components in the system are both finite .

60

ORIGINAL IN COLOUR

A solution for the component matching is found when the whole tree has been

matched to components. Typically there will be more than one way to assemble the

components

For the purposes of example in Figure 4:5, there could be three components:

Component 1 fulfils the

requirements of DSL Component 2 fulfils

Constructs A, A. 1, A.2 the requirements of

and A.3 .
DSL Constructs A.2,

Component 3 fulfils all the
A.2.I and A.2.II.

DSL requirements

Figure 4:5

In this very simple example two solutions are available. Component 3 fulfils the

requirements on its own. Component 1 and component 2 used in conjunction also

fulfil the requirement.

If a component's behaviour is suspected of being faulty then the component may be

omitted from the pattern matching algorithm.

When the matching algorithm finishes there are a list of complete solutions. Each

solution should contain:

• The structure ofthe solution.

• The rules which were applied to make this solution.

• Any metrics or solution scoring systems which have been applied.

61

4.3.1.3 Solution selection

After the system has generated alternative component compositions which fulfil the

requirement, one solution must be selected which will be used to generate the actual

executable. Each component may be scored with reliability metrics which may be

used in the decision making process. These metrics may be updated with further

run-time information for the system. Alternative approaches for systems with no

metrics guidance include:

• selecting the solution with as many components as possible as this is the

nearest solution to the DSL granularity level and as such will have more tests

based on DSL construct specifications.

• selecting the solution with as few components as possible as if something does

not work there are less components which can be suspected.

• Select a solution at random.

4.3.1.4 Executable generation

The selected solution is converted into source code. For each component, the pre

condition, post-condition and WBT tests are inserted automatically, in the target

language. This stage is the only one which needs to be language dependent.

Alternative languages could be used as implementations by changing this stage

only.

Extra data is encoded into the executable. This includes:

• At each component level, a program slice of what has executed before this

point. This data is used in the fault-prediction stage.

• Error messages which correspond to those defined m the DSL construct

behaviour specification.

• Code which, upon an error event, communicates with the fault-prediction

system

4.3.2 Component store

The component store is an abstraction for a, potentially distributed, collection of

components which may be stored in many different locations. Any component

which is to be used in the architecture must be registered with the component store.

62

This is not a new concept (it appears in a very similar form as a Object Request

Broker (ORB) in the CORBA Orfali and Harkey [96]) and has only been included

for completeness. It should be noted that ORBs do not usually use DSL encoded

data, although they could easily be made to do so.

4.3.3 Fault profiling system

The fault-profiling system is continuously waiting for the executable to request its

services. Upon detection of an error the executable reports the error message, the

component in which it was detected and also the structure of the system.

If there is run-time profiling of components (for example to measure performance

or reliability) the executable may report this data as well.

The fault-profiling system then acts in a way consistent to the algorithm chosen for

it. Possible actions include:

1. Telling the executable to continue.

2. Requesting a new system from the system generator.

4.4 Domain-Specific Languages

The term Domain-Specific language (DSL) is ambiguous (as is described in chapter

3). However, for the task outlined in the hypothesis, it was necessary to extend the

notion of what the DSL should define. Guidelines for developing DSLs have been

developed.

The approach taken here, and in much research connected with DSSAs is that a

DSL should be designed in conjunction with a domain model. Developing a DSL

should be a tool for recording the terminology that a certain class of user expects to

use.

For this research a DSL should have a target category of user. Each different

category of user may require their own DSL although there is scope for combining

the interests of sufficiently related user categories. For example a database may

63

have a category of user such as data-entry personnel who may need operations such

as add and delete record. An administrator would have a different focus with

operations such as back-up database and check integrity. The DSLs could be used

as a totally separate system or, as is more usual, integrated into a generic system.

There is a compromise between having one DSL covering all the categories of users

in the system and a DSL for every different type of user. The former leads to

difficulties due to complex grammar and an unfocussed DSL which is not optimally

designed for anyone. The latter option means that people whose jobs fall into

several categories may have to learn several DSLs. The optimal solution lies

somewhere between these two extremes.

All the DSLs which belong to the same category of problem as viewed by different

users (i.e. problem domain) should have the same architectural constraints in order

to maximise the reuse of components which fulfil user's roles in different

categories. This will also alleviate some of the difficulties for users who still need

to utilise a number of DSLs, as some degree of familiarity should be maintained.

The DSLs could be used in isolation or, as would be more usual, integrated into a

generic system.

A DSL construct is the smallest unit available by which to describe a component. If

a component is smaller in granularity than the DSL construct, then before it can be

used in the system it must be composed with other components until it reaches the

construct scale.

Each DSL construct has the following parts:

1) Semantic specification.

2) Parametric specification.

3) White-box specification.

4) Behavioural specification.

This section will discuss each part of the DSL construct and show how a sample

DSL construct may be described (in this case an Add operation for a database

system)

64

4.4.1 Semantic specification

The semantic specification is the name of the construct. Ideally the name should

maximise the familiarity of the target user with the concept which is available.

However there is an inherent risk that by using familiar terminology, some

ambiguity may also be associated with that term. To reduce the risk of such

ambiguity and increase comprehension, each DSL term should be accompanied

with a detailed description of how this construct is to be used, in natural language

(e.g. Figure 4:6).

Operation Name:

Add.

Description:

This operation adds a record to the database. The record must not

already exist in the context of the database.

Figure 4:6

4.4.2 Parametric specificatoon

This outlines the arguments which should accompany the DSL construct. Each

field has a type. The underlying representation of the type should be considered

independently. For example a type could be "surname" and the underlying

representation could be "string". There is a distinction to maximise the evolution

potential as it may be necessary to alter the underlying representation to encompass

more types whilst allowing existing user requirements to remain unchanged.

However, there must be a method for providing input for the parameter when

specifying a value. The mechanism for data-entry in this system is making all the

types in the system support a string interpretation. See Figure 4:7.

e.g. the parametric specification for Add could be:

Surname, Firstname, UseriD and return type HasWorked

(a Boolean value)

An instantiated request may look like:

Add Surname "Ingham", Firstname "James", Userld "25"

Figure 4:7

65

4.4.3 White~box test specification.

To define the behaviour of certain components requires more than the concept of

input parameters and output parameters. Components may also contain state,

meaning that the behaviour may not be purely dependent on input for its next

output. In order to verify that such categories of components are behaving

correctly, the concept of a white-box test (WBT) specification is proposed. This

breaks abstraction in order to provide information that may be necessary to ensure

the component is operating as expected. However, by breaking abstraction, this can

limit the categories of components which fulfil the DSL requirement. Therefore it

is important that the WBT is discussed in terms of abstract state.

By abstract state, it is meant that every foreseeable component or collection of

components which implements this requirement must hold sufficient data to be able

to calculate these values. See Figure 4:8.

e.g.

For the add component, there is the abstract concept of the number of

records.

NoRecords (Type Integer)

This provides a method of ascertaining how many entries have been made

independent of how many entries each record is actually stored as.

Figure 4:8

Although it would be attractive to specify the behaviour of the component in a less

abstract manner, this is not necessarily a good idea. For example, the behaviour of

the database could be described in terms of the actual records. This is also in terms

of abstract state, since the records have to exist in some form for all

implementations. However, the performance overhead to perform these checks may

be prohibitive. There may be a case for differentiating between WBTs which are

designed to be completed every time the component is used and WBTs for detailed

testing. For the purposes of this thesis, the former are more appropriate.

66

In the current system every WBT that is used to specify behaviour at an abstract

level for the DSL construct must be defined for every component which implements

that construct.

4.4.4 Behavioural specification.

The aim of the behavioural specification section IS to provide an abstract

representation of the component's behaviour defined in terms of preconditions,

post-conditions and WBTs. This specification is based on a model of the

component. This is achieved by defining the behavioural specification in terms of a

different DSL. To reduce ambiguity the DSL which considers the abstract

behaviour of a DSL construct will be referred to as DSLTest. Any reference to DSL

is concerning the construct whose behaviour is being specified. The task of

DSLTest is to provide a mechanism for translating automatically the description

into executable code. DSLTest has the following inbuilt constants (Figure 4:9):

Variable name Purpose of variable

Inp<n>, n is >= 1 For a DSL construct, Inpl takes the value of the first

argument, lnp2 the second and so on. This provides

the language with a mechanism with which to discuss

input parameters. The Inp values are defined before

the operation is performed, to allow them to be used in

preconditions.

Out This provides the language with a mechanism with

which to discuss return values. Out is only defined

after the software component has been executed and

hence can only appear in post-conditions.

WBTPre This variable holds the value of the WBT before the

software component is executed. Therefore it may be

used in the precondition.

WBTPost This variable holds the value of the WBT after the

software component is executed. It may only be used

in the post-condition.

Figure 4:9

67

In addition to the inbuilt constants DSLTest also contains the following operations

(Figure 4:10):

Operation Description of function

DefineCondition This is used to define a behavioural rule such as the

first input variable must be greater than 5.

CheckCondition Will use a behavioural rule as per DefineCondition.

It is also used to define the error message which is

output ifthe condition is broken.

Define Variable This can be used to create a new variable. The

variable's type must also be considered when creating.

AssignToVariable Allows a variables value to be altered

Equal Comparison check.

NotEqual Comparison check.

Greater Comparison check.

Less Comparison check.

GTOEqual Comparison check (Greater than or Equal).

LTOEqual Comparison check (Less than or Equal).

Figure 4:10

If the behaviour of the implementation of the DSL construct (i.e. the component or

components) deviates from the behavioural specification, then an error has

occurred. Further guidelines on the behavioural specification process is discussed

in more detail in the section on error-detection. Figure 4:11 gives an example of the

behavioural description in terms ofDSL-test.

e.g.

PreCondition of Add.

<none>

Postcondition of Add.

DefineCondition(CheckDataAdded,Equal(WBTPost, WBTPre+ 1)

CheckCondition(CheckDataAdded, "The number of records in the

database did not increase by one")

!* This check verifies that the number of records currently present in the

68

database is one more than before the record was added. *I

Figure 4:11

4.5 Error detection

The process of detecting errors in systems is non-trivial. In more conventional

program systems this is the task of system testers. In automated systems, error

detection is sometimes performed by using alternative versions of the system or

perhaps encoded data about the task, to provide robust behaviour. In the approach

described in this thesis, automated error-detection is achieved by comparing the

model of the component (or group of components) behaviour which is encoded at

DSL construct level to the actual behaviour as exhibited by the components.

The error-detection system is based on the following principles:

1) The system should only detect errors when faults are present

2) The system may not, in certain cases, detect an error when it occurs.

These principles have a number of implications. By only detecting errors when one

has actually occurred, a working system will not be needlessly altered. Hence, the

behavioural specification of the component(s) at construct level cannot be stronger

than necessary, as it will contravene principle 1. However the behavioural

specification can be weaker than necessary, as stated by principle 2. The

importance of this principle is that it is not always easy to specify the behaviour of a

DSL construct in abstract terms. For example, it is difficult to specify a user

interface in abstract terms.

To restate, it may not always be possible to generate tests which have the same

strength as the component's requirements. In these cases a test which is weaker

than the components requirements should be used.

The error detection scheme is totally reliant on the underlying model of the domain

being sufficiently detailed to describe the behaviour of the system. In cases where

the model becomes too complex, architectural assumptions can be made which

greatly simplify the model. In the Database example, if the Database is

69

concurrently accessed by external clients then the behavioural specification used is

too simplistic i.e. the number of records may change arbitrarily while the system is

adding a record. This could cause random error events despite no fault being

presene in the implementation. However if details of concurrent access can be

omitted without degrading the functionality of the system then this makes the

domain significantly simpler.

Other examples of architectural issues potentially making the model of the problem

domain more complex include memory allocation issues, and communication link

availability.

This is why the DSL must be developed in conjunction with a domain model which

is detailed enough for the system to be predictable. In practice this requires

developers who are familiar with the domain and the problems associated with it.

Although this can be viewed as a limiting factor there is evidence that the effort of

domain modelling can improve the quality of the resulting system and, if done

correctly, will mean that the systems have more predictable development times

because there are fewer surprises8
. Domain models have also applied in the Unified

Modelling Language approach (Booch et al. [97]).

Despite the effort of modelling it is still accepted that the system will not be totally

predictable. This is due to the inherent complexity of the hardware and software

which still acts unexpectedly under certain conditions, which could be viewed as

emergent behaviour. As total predictability is not feasible, the improvement in the

confidence in the system must be worth the effort expended.

7 By considering a fault to be an inconsistency between the specification and implementation, the
implementation does not contain a fault. The problem lies in the model of the system and hence is resident in
the specification.
8 The example of concurrent access to a database is a very simple issue which in practice would not be
overlooked by an experienced programmer.

70

4.6 Fault prediction

This process is started upon detection of an error. The system has the following

information:

• An error which has been detected at a certain point in the program provided by

the error-detection scheme.

• A program slice of the components provided by the executable itself and

generated at compile time.

With this information the system must predict where the fault has occurred. There

are potentially many different fault-prediction strategies which are dependent upon

which assumptions can be made.

The following assumptions have been made for all the strategies:

1. The architecture is not directly causing the fault.

2. The fault can be corrected by removing some or all of the components.

In terms of automated reconfiguration, without these assumptions there is no point

in finding where the fault is as there is nothing that can be done about it.

Assumption 1 's meaning is that although the architecture may cause faults by

unforeseen interactions with certain components, it is assumed to not simply

generate random data between components.

There is an extra level of indirection present in this system which may also be at

fault, the component specification mechanism. For example a functioning database

component may be accidentally mapped to a user interface DSL construct.

Unfortunately there is no way of distinguishing between a faulty component and

one which is being used for the wrong task. There needs to be some underlying

notion of the behaviour which is trusted or otherwise the system has no frame of

reference

However the rules which are an intrinsic part of the component matching algorithm

could potentially contain faults. Although the system maintains a list of the rules

71

which were used in system generation there is currently no fault-prediction strategy

based on this data.

4.6.1 Fault prediction strategies

This section explicitly lists a number of strategies that can be applied. Chapter 7

contains the detailed evaluation of some of these strategies, considering strengths

and weaknesses.

One assumption that can be made to considerably simplify the fault-prediction

strategy is that only components which appear in the program slice could be at fault.

This reduces the fault-prediction problem to selecting items from a list.

Strategies include:

• Do nothing - The fault may be intermittent.

• Select any one component and remove its use from the system.

• Remove the component in which the error was detected.

• Select any one component but make the component in which the error was

detected more statistically likely to be chosen.

• Select any one component but make any components which have been

suspected of faults before more statistically likely to be chosen.

• Utilise metrics on the components to help decide which component is at fault.

This requires the underlying system to maintain statistics on the number of

times a component has been suspected.

• Select multiple components with one of these schemes.

Similar strategies for systems which do not rely on the faulty component being

present in the program slice, but are based on the list of all components used. This

could be easily compiled from collected data.

• Do nothing- The fault may be intermittent.

• Select any one component which has been used and remove its use from the

system.

• Remove the component in which the error was detected.

72

• Select any one component but make the component in which the error was

detected more statistically likely.

• Select any one component but make any components which have been

suspected of faults before more statistically likely to be chosen.

• Utilise metrics on the components to help decide which component is at fault.

This requires the underlying system to maintain statistics on the number of

times a component has been suspected.

• Select multiple components with one of these schemes.

Some of these fault-prediction algorithms are evaluated in chapter 7.

4.7 Summary

The aim of this chapter is to explain the underlying philosophy of the approach

taken, to outline the original contributions made and to provide an outline of the

parts of the system which are discussed later in the thesis.

The following main hypothesis was proposed in this chapter:

Given a sufficient number of components, described in sufficient detail, it is

possible to automatically develop systems in a manner such that human

intervention is minimalised.

In addition, the following sub-hypotheses were proposed:

A DSL can be applied to specify the behaviour of components. The

specification can be used for the purposes of locating components and

verifying their behaviour matches what is expected.

Given a specification of the problem modelled in sufficient detail it is possible

to detect some errors occurring in a system and in some cases find the cause

of those errors (i.e. faults).

73

Upon detection of an error, the system will attempt to ascertain where the

fault lies. Then a new solution will be created if such an alternative is

feasible within the system.

To emphasis the original content, the following are concepts, deliverables, theories

or approaches which, to the author's knowledge, did not exist before this thesis:

• The concept of using a DSL for component specification to achieve automatic

program generation, automatic error detection, automatic fault prediction and

reconfiguration.

• The automatic error-detection theory and approach taken.

• The automated strategies and examples for fault-prediction algorithms for a

component combination driven system.

• Automatic error detection and fault prediction based on DSL specification

without necessitating additional user interaction.

• The importance of selecting a component combination technique that is

explicitly traceable, predictable, avoids recursion and can, assuming sufficient

components, produce alternative solutions.

• The concept of a DSL as illustrated in this chapter.

74

5. Implementation
The aim of this chapter is to describe some of the methods and technologies applied

in implementing the architecture as described in the last chapter. In particular, this

chapter describes the implementation of the Solution Generation phase, from

finding potential matches to generating an executable version. The overall

prototype was named Hydra, after the mythical beast which could regenerate when

a head was severed.

5.1 Smart Components?

One design decision made quite early in this research was that each part of the

system should be as simple as possible. This was of particular importance when

considering how the components would work together. There were two obvious

alternatives:

• Components which provided functionality only.

• "Smart components" which configured themselves.

It was evident that "smart components" and software agents shared a great deal of

common ground, e.g. some degree of autonomy in decision making, self

configuration, decentralised control structures. It was decided that "smart

components" were unsuited to this application as a strict control hierarchy and

centralised decision making allowed the architecture as a whole and the individual

components to deal with their own respective tasks without additional complexity.

5.2 Arclhitecture

The architecture has already been outlined m the last chapter. The run-time

interactions are described in Figure 5: 1:

75

ORIGINAL IN COLOUR

Generate executable

Executable

User

Request to generate new system

available components

error event

request for executable to continue

Figure 5:1

disallow
components

The inter-communication between the elements in the run-time architecture has

been implemented using CORBA (Common Object Request Broker Architecture).

CORBA was selected because it allows distributed objects implemented in a

number of supported languages (such as Java™ and C++) to be interconnected with

little extra client-side complexity. This is an attractive proposition if one of the

stages becomes resource-intensive as it could be placed on a separate server. The

intrinsic parts of the executable, i.e. the interconnected components, are also inter

cOimected using COREA. This is important as one useful form of redundancy is to

have backup hardware which provides similar services to be used in the case of a

sub-system failing. This also allows vendors to provide services on their own

machines rather than having to distribute executables, of particular use for

applications with specific hardware requirements. To summarise, there is a great

deal of potential for reuse using CORBA as a means of locating and inter

connecting components. It should be noted that other technologies exist which also

implement similar capabilities, specifically Microsoft's DCOM and Sun' s RMI.

Comparisons between the three technologies are available in Harkey and Orfali in

[98] and direct comparisons between CORBA and DCOM are available in

Szyperski [99] .

76

ORIGINAL IN COLOUR

5.3 Software generator

As previously stated in the last chapter, Figure 5:2 shows the stages in generating

the executable.

Requirements in

DSL

Parse requirements

Component Matching

Match available components to parsed

requirements

Solution selection
Select a solution

(if there is one)

Executable generation

Figure 5:2

5.3.1 Requirements Entry

The requirement entry process was achieved by entering data using a rudimentary

GUI implemented in Java, of which screen-shots are shown in chapter 6.

77

ORJGINAL IN COLOUR

5.3.2 Parsing requirements

The method of parsing the requirements is not conceptually original and hence has

not been outlined here. The input is a DSL-requirement and the output is a tree of

the DSL constructs as shown in Figure 5:3 , also previously stated in chapter 4.

Figure 5:3

5.3.3 Component Matching and Solution Selection

The component matching algorithm was implemented in a Java implementation of

CLIPS, called JESS (Java Expert System Shell [1 00]). This system was easily

extendable, as new rules and facts could be added and removed in CLIPS (a fact

based programming language) with ease, and also new basic operations in CLIPS

could be defined in Java and added to JESS .

The pattern matching algorithm is relatively simple. The tree of data is split into a

list of facts in CLIPS, each fact containing four parts, as shown in Figure 5:4. The

component rules9
, which are held in the component store as shown in Figure 5:1,

are then added to the rule base. A solution is reached when the DSL-construct

which is the base node in the tree (i .e. Level 1 -construct A (Figure 5:3) is matched

by a component and has no further dependencies unfulfilled. A match signifies that

a DSL-construct can be implemented by a component. In this system, only DSL-

9 Only rules for component which are not disallowed are introduced into the system

78

construct-to-component mappings are permitted. Upon each match, a new fact is

added to the fact-base. The fact contains the following data (see Figure 5:4)

1. Construct number

2. Description of Solution so far, in terms of components

3. Rules applied so far

4. Any dependencies still not fulfilled

Figure 5:4

The construct number is required for knowing where in the tree this current fact

belongs. The second field is used to represent the solution as it is created. Without

this field, the system would be able to ascertain whether a solution is possible but

would not know what the solution was. Field 3 was introduced in order for extra

fault-prediction information to be used. This provides a representation of exactly

which rules were applied and in what order they occurred. However, it should be

stated that no fault-prediction algorithms have been implemented which use this

information. The final field is used to see whether this component has been

implemented fully, i.e. all of the items upon which it depends have been matched to

components.

The scheme for component combination used in this prototype is that after one or

more DSL-constructs has been matched to a component A, it can be combined with

other components (e.g. B, C, ..) that implement constructs upon which component A

depends, if all of the components upon which A depends no longer have

dependencies of their own. That is to say, the fourth field of each component upon

which A depends must be empty for component A and the dependent components

(B, C, ..) to be combined. This algorithm implements the bottom-up matching of

constructs. It should be noted that because there are only a finite number of

component rules and once each rule has matched, it cannot match again to the old

fact (due to the way CLIPS deals with facts "firing" rules) or continue to match on

the new fact (because only DSL-construct-to-component match rules are allowed),

the solution generation system will always terminate. There are two ways in which

the system can terminate:

1. There are no more rules to match and a solution has not yet been found.

79

2. A solution has been found.

At this stage, the prototype deviated from the original concept, because, as stated in

chapter 4, all solutions should be found and then one selected. In the prototype, the

first solution found is selected. This was done because the prototype had no method

of distinction between solutions therefore it makes sense to stop at the first one. If

no solution can be found then it may be necessary to re-allow components which

are suspected of containing faults.

5.3.4 Executable generation

The final executable is generated by creating an intermediate Java and CORBA

implementation, from the Software generator, and compiling the source code into

byte-code, to be executed on the Java Virtual Machine.

The scheme for code generation is very simple. For every component in the

solution, there will be a method call. The base method call will call the next level,

which will call the next level and so on. Therefore this scheme is unsuitable for

systems which are likely to have a very high number of constructs because it

consumes a large amount of stack space. Inside each method, the generated code

will contain the error-detection code (pre- and post-conditions) which is generated

by transforming the high-level behavioural description (in DSL-test) into Java.

Extra data is encoded into each method, such as the purpose of the executable (i.e.

the DSL requirement), the structure of the executable (i.e. the order and name of the

components), and how the solution was formulated (i.e. the rules applied to

generate this solution).

Upon an error-event, Java Exceptions are used to provide a dynamic trace of what

has executed, and where the error has occurred in the current component (i.e. pre

conditions or post-conditions). The outer-most calling method (i.e. the method

which is called first) contains code which connects to the Fault-Profiling System

(FPS), informs it of the error and then exits.

80

5.4 Component Store

The component store maintains a list of all the components available in the current

system. Figure 5:5 shows the data stored about each component in the component

store:

1. Component name

2. Component rules

3. Connection Code

4. Actual execution code

5. DSL construct name

6. WBT code (if any)

Figure 5:5

Therefore, in order to introduce a new component to the system, it simply needs the

relevant data to be entered in the component store. The component store plays

many similar roles to an Object Request Broker (ORB), which is part of CORBA ™.

However, the Component Store was introduced due to certain ORB services not

being available in the CORBA implementation used. For large systems, there

would typically be more than one Component Store, and a request for a component

could be forwarded to other component servers. A similar scheme exists for ORBs

in current CORBA standards.

5.5 Fau~t Profiling System

This was implemented in Java™ and CORBA™. A number of fault-profiling

strategies were applied to this problem, which are detailed in chapter 7.

5.6 Summary

This chapter has provided a brief overview of the implementation of the system, the

prototype implementation of which was named Hydra. The majority of the details

concerning the underlying architecture have been, where possible, abstracted upon.

The conceptual description of these stages appears in chapter 4. However, the

strategy for generating new solutions and creating code has been described briefly

in order to demonstrate the methods applied and to emphasise the compositional

rather than transformational approach taken in this thesis. Examples of the system

81

executing are described in chapter 6 and the data and techniques applied are

discussed and critically evaluated in chapter 7.

82

6. Case studies

6.1 Introduction

This chapter describes a number of sample uses of the Hydra architecture which

was developed to verify the ideas proposed in chapter 4. The main aim of this

chapter is to highlight the experimental prototypes in sufficient detail in order that

the issues can be described in chapter 7.

The components which are used in these systems are artificial in that they were not

previously existing code. This means for the purpose of actual scientific discussion,

the components were all designed for reuse (DfR) rather than with reuse (DwR). An

implication of this is that further investigation is necessary before claims about

DwR components can be made.

During the course of the research, three main prototypes were studied. The first

one, dealing with sorting mechanisms, never reached implementation. The reasons

for this are explained more fully in chapter 7. This first attempt is documented here

for a number of reasons

• The failure was very instructive in the learning process of how to apply the

DSL.

• To illustrate the limitations which have been found.

• To avoid repetition of this category of mistake.

The second prototype system generates executables using components without any

persistent data. That is to say the executable would comprise of stateless

components. Persistent components were seen to be the more difficult case and

hence dealt with in the next prototype.

83

A third and final prototype was developed to verify the hypothesis' would work

with components with state and components without state. It is based on a cost

accounting domain. This domain was chosen because of its need for persistent data.

This section now describes the three domains. For the sake of brevity, the first two

domains are only described in sufficient detail to illustrate the difficulties involved.

These are discussed in chapter 7. The third domain is covered in more detail, in

order to give the reader an idea of what the DSL systems are like.

6.2 The sorting domain

As previously stated this domain was never implemented. The original concept was

to develop a DSL which would describe the sort domain so that a list of data could

be sorted. The type of data and the sorting algorithm used would be described by a

DSL. The only factor to be considered in this prototype was

• Maintaining type integrity.

The mam consideration was that compansons m the sort routines would be

performed by the correct operations for the types of data being sorted.

Many different formations of languages were investigated. The main problem

observed was that for the DSL to be expressive enough to describe the problem

would require the constructs to be at the same level or smaller than the target

components would potentially be. This was aggravated by the fact that each

component would have to be so fine grained that it could be implemented in some

languages using less that 10 lines of code. Many of the DSL language structures

were found to be so near to certain choices of implementation language (such as

C++ with Standard Template Library) that the DSL was deemed not worth

implementing. As previously stated the underlying decision of what or when to

reuse should be based on economy. This was obviously not an efficient usage of

resources.

84

6.3 The mathematical domain

This domain was chosen in order to implement a simple system where the

components would not require persistent state. Mathematics seemed an ideal

domain.

A DSL was designed with the following considerations, m addition to those

described in chapter 4.

• The requirement should be described in as few constructs as possible. This

will shorten the time to express the requirement and probably reduce the

chance ofuser-error.

• The DSL should contain as small a number of domain constructs as possible.

This means that the DSL-user will have less constructs to remember.

The system would have each DSL construct encoded with what was sufficiently

accurate as an answer. In order to do this each construct had an approximation

defined in its behavioural specification. However, as stated in chapter 4, the

approximation would not be permitted to be too strong. This is a quite different

approach to the self-testing mathematics by Rubinfeld [63].

For this scheme, inaccuracy is a common form of error. This is another example of

a component behaving in an undesirable manner. The inconsistency occurred

because the overall design contained the assumption that a certain degree of

accuracy was acceptable. As illustrated in this example these assumptions may not

be made by the component itself (i.e. the inaccuracies can be due to the

representation of the underlying architecture). In the presence of an unacceptable

result the system generated alternatives which in tum self-tested to see if they

complied.

One weakness found was that the pattern-matching algorithm could not express

"this construct can be implemented using the following combination of DSL

constructs". The system could instead express "this construct can be implemented

using the following combination of components".

85

6.4 The accounting domain

This domain has been covered in most detail because it embodies the general theme

of the thesis. The problem domain is vertical not horizontal, the components

contain persistent data and they require white box tests in addition to the standard

interface tests. However, the description in this section will only cover the general

use of the system, highlighting the results attained from the system in order to

discuss them in later chapters. This section does not provide a user manual, or even

a general notion of how the implementation can be used. It is the author's advice

that the reader should concentrate on the general issues raised rather than how to

use the system. In fact, it should be emphasised that a real implementation system

should have a more usable GUI and may have a completely different method of data

entry. As this system was an evaluation prototype, the usability aspect was not the

focus. A more detailed description of the DSL developed for this domain ts

described in Appendix A.

This implementation performed well above expectations. For example,

inconsistencies between the DSL construct and the component were located in a

small number oftest-runs. The user could add, remove, query and manipulate data

in ways which should be familiar to a user who has experience with accountancy

(according to data taken from Weygandt et al. [101])

The system, built upon the Hydra architecture, interacts using a GUI as shown in

(Figure 6:1), which is used to help guide the user with entering requirements in the

DSL.

86

ORIGINAL IN COLOUR

Please enter DSL requirement

{Store-Add { AbsVal STRING "Database1")
{ AbsVal DATA "James&Durham&24&5.5&1811 011999&"))

List of Constructs IAbsVal --- - ---I"'
Add construct Save DSL req To File

Generate soln with file Compile Soln II Run Soln

List Components List Forbidden components

Figure 6:1

In Figure 6: 1, the user has signalled the desire to add a record to the database called

"Database I". The record is of type Data and is entered via the user interface. The

second line of the DSL requirement is a string representation of the record. The

user does not typically deal with the raw textual representation but instead

manipulates the data through the GUI.

The data in the record to be added is ofthe form described in Figure 6:2:

Field Value

Name James

Address Durham

Order No 24

AmountOwed 5.5

Date 18/10/1999

Figure 6:2

This entry is entered and the system attempts to locate components which fulfil this

requirement. In this example there is only one component which can implement the

DSL construct ("Add"). In this example JAVA code can be generated and executed

successfully with no errors. The system automatically verifies that after the

operation is completed there is one more record than before it was executed.

87

ORIGINAL IN COLOUR

Please enter DSL requirement

{Store-Add { AbsVal STRING "Database! "}
{ AbsVal DATA "Ro sie&Wimbledon&22&27.0&28105/1999&")}

List of Constructs

Add conetru,_c~t -~f=--~~~~~~=

Generate aoln wtth ftle

Uet Components

Figure 6:3

This operation is repeated two more times, successfully with records containing the

data described in Figure 6:4.

Field Value of record 2 Value of record 3

Name Stuart Rosie

Address London Wimbledon

Order No 27 22

AmountOwed 99.0 27.0

Date 18/10/1999 28/05/1999

Figure 6:4

The black DOS window behind the GUI window in Figure 6:3 shows the output

supplied by the component implementing the add operation. It displays a string

representation of the Record, along with the abstract number of records in the

component before and after the execution (i .e. 0 - no records, 1 - 1 record after the

operation).

88

ORIGINAL IN COLOUR

Having populated the component with data the user wishes to query the database.

They need to know the sum of the amounts owed in "Databasel" where the date

occurred before the 30th of July. The system generates a solution that uses two

components, "SAB" which provides the implementation to the SumAmount

construct and "Add" which implements the GetAllWithDataBefore construct.

Please enter DSL requirement

(Math-SumAmounts (Store-GeiAIIWithDateBefore
(AbsVal STRING "Database1"" }
(AbsVal STRING "30/06/1999" } } }

Figure 6:5

As shown in Figure 6:5, the correct answer (126) is produced. However it should

be noted that the behaviour of the component implementing the "SumAmounts"

construct is not well defined. An incorrect answer could also have been generated

and the system may not have detected the error.

Figure 6:6 illustrates the case that same operation is performed later but this time

the "SAB" component has failed and is not currently operating.

89

ORIGINAL IN COLOUR

Please enter DSL requirement

{ Math-SumAmounts { Store-GeiAIIWithDateBefore
{ AbsVal STRING "Database1"}
{ AbsVal STRING "3 0/06/1999" }

Figure 6:6

The executable detects that an error has occurred and reports the error to the Fault

Prediction system. It passes any information about the error that has been detected

along with the structural information about the program which has been encoded at

Code Generation stage (as described in detail in chapter 4).

The fault-prediction stage then examines the structure and attempts to predict where

the fault lies. The algorithm used in this example is to take all the components that

have already executed in this example. In this example, a random mechanism is

used to decide which component is to blame but the component where the error was

detected is three times more likely to be chosen than any other component

(described as Algorithm 1 in chapter 7).

In this case the "SAB" component is blamed and forbidden for use m future

systems, as shown in the GUI in Figure 6:7.

90

ORIGINAL IN COLOUR

Please enter DSL requirement

{ Malh-SumArnounls { store-GeWIWilhDaleBefore
{ AbsVal STRING "Dalabase1 "}

AbsVal STRING "3010611999"

Figure 6:7

The system then generates an alternative solution, this time usmg a second

component which implements the SumAmounts construct. The system has

recovered from one of the components breaking by using existing redundancy, as

shown in Figure 6:8.

Please enter OSL requirement

{ lrltath-SumAmounts (store-OeWIWithDateBefore
tAl>sVal STRINO ·oatabaset"}
(Al>sVal STRING "3010611999" } } }

Figure 6:8

91

ORIGINAL IN COLOUR

As stated in chapter 4 the system requires a way of expressing incorrect input. If

there is no concept of user input error without component error, problematic side

effects can occur. For example the database has a constraint that the order number

must be uruque. However it is possible to enter a record with the same order

number. As shown in Figure 6:9, the actual component does not allow this to

happen. This creates an inconsistency with respect to the abstract behaviour of the

construct because the number of records has stayed the same. This is detected by

the executable and reported to the Fault-Prediction System. This breaks the

underlying philosophy in chapter 4 that an error should only be detected when a

fault is present.

Please enter DSL requirement

(Store-Add (AbsVal STRING "Database1 ")
(AbsVal DATA "James&Durham&24&5.5&1811 011999&"))

List or constructs

Add construct

[AbsVal _

Save 081. req To File
~1\Pturn Dntn from p:acc utwn E1

Figure 6:9

This case is serious because the component that will be blamed also contains the

system data as shown in Figure 6:10. This illustrates another problem with

persistent components, that of how to recover the state to a component which is to

be eliminated from the system. It is evidently not sufficient to simply ignore the

data which is contained in that component.

92

ORIGINAL IN COLOUR

Please enter DSL requirement

Store-Add (AbsVal STRING ·oatabase1")
AbsVal DATA "James&Durham&2U5.5&18/1 0/1999&"))

Figure 6:10

6.5 Summary

This chapter has gtven a number of example implementations of the Hydra

architecture which was produced during this research. The level of detail has been

kept minimal to aid in the understanding of the process of using the system.

Three main domains were researched. The first example, that of the sort domain

was deemed too fine grained to be worthwhile as the components were too small to

realistically map to single DSL constructs. The second domain used only stateless

components; these can be readily interchanged and are easier to test at interface

level. This domain was a success but the architecture could not express one DSL

construct being implemented in terms of other DSL constructs, only a DSL

construct being implemented in terms of components. This was unsuitable for the

mathematics domain where one construct could often be built from others. The third

prototype system, which was in the accounting domain contained persistent and

stateless components. This prototype was successful to a surprising extent. It

highlighted inconsistencies between implementations and specifications even after a

very small number oftest runs.

93

Even though the third prototype was successful, a number of issues were found.

The primary issue was that a scheme was needed by which the DSL could take into

account user-error so that user-related errors such as incorrect input would not cause

the system to disallow components. Another important issue was how to recover

the state of a persistent component when it was at fault.

94

7. Evaluation
The purpose of this chapter is to evaluate the concept of applying a DSL based

approach to component composition, error-detection and fault-prediction. The

underlying concepts involved in this approach has been described in chapter 4. To

enable evaluation of this concept some prototype architectures have been

developed. These have been described in chapter 6.

The overall aim of this research is to discover whether the thesis proposed is

feasible and to create an architecture and guidelines for developing systems. It

would have been unrealistic and unwise to attempt to develop a comprehensive

system without knowing what was to be made, how it was to be made or even if it

should be done this way.

Although statistical profiling has been performed, it will not be used as the main

form of discourse. This is because the components have all been designed with

reuse by a single developer, for a restricted number of domains and in a restricted

number of languages (as stated in chapter 4 these systems have been developed as

initial illustrations of the concept proposed). Hence the issue of whether the data is

representative could not be resolved without significant further investigation.

Therefore the principal means of discourse for this evaluation is natural language.

A fair criticism can be made of the prototype systems, in that they are all

unrealistically simple. Unfortunately this was unavoidable given the limited

experimental conditions. There was a conscious decision that it was better to learn

the way the hypothesis performed in restricted conditions than developing a

realistically-scaled system and risking the findings because of external conditions.

However this issue needs to be addressed before the approach can confidently be

proposed as a realistic way of addressing reuse.

This chapter is in three parts. The first section evaluates the research in terms of the

criteria which were considered upon commencing this research, as described in

chapter 1. The next section describes the issues which were discovered

95

experimentally, particularly those highlighted in chapter 6. The final section is a

summary of this chapter.

7.1 Original evaluation criteria

The evaluation criteria, as appearing in chapter 1, are as follows:

1) The investment required to develop the proposed system m comparison to

conventional system.

2) The return on the investment for the proposed system.

3) The types of error which can be detected by the proposed system.

4) The types of fault which the system can handle.

5) How the proposed system can evolve.

6) Feasibility ofusing this type of system

The aim of this section is to describe the approach in terms of these criteria.

7 .1.1 ~nvestment required

As stated in chapter 2, investment is a significant factor when creating a new

system. The long-term aim of most software companies is to reduce the required

investment in software while maintaining, or improving, quality. As with most

methods of reducing long-term costs the approach proposed here requires increased

short-term investment. The current methods of creating the DSL construct

specification system are tailor-made and hence more resource intensive than is

necessary. However, the architecture (Hydra, chapter 4) proposed in this thesis is

generic for any DSL with a compatible grammar and therefore it should be possible

to implement new DSLs without redeveloping the architecture, assuming the overall

syntactic structure of the DSLs remain the same. Even ignoring the extra

investment required due to developing and using new methods, specialising Hydra

still requires significant additional effort in order to design the language, tailor the

generic tools to implement the system, categorise the components in terms of the

DSL and help familiarise users with the new methods. An implication of the

investment required is that the system must be used a sufficient number of times to

make this investment worthwhile. Other methods of categorising software are also

susceptible to this problem, for example classification libraries as in chapter 2.

96

7.1.2 Return on investment

The automation of black-box component reuse is of great commercial interest for

most medium to large scale companies, and all software developers. Although the

user still needs to program in some form, albeit high-level, the DSL should make

this task easier. It should be emphasised that the term "programming" is used here

to describe the process of communicating the user-requirements to the system.

There is no reason why this would have to be represented in text-form. Some

research has already been done into visual programming languages (e.g. Korfhage

[102]) but visual programming-environments are already commonly used, for

example the modem spreadsheet. There is great scope for applying innovative user

interfaces in this field.

The foreseen return on investment for using the proposed methods and architecture

is that the user has a RAD system which should allow them to describe their

requirements in well-defined and familiar terminology. This allows the actual

programming to be delayed to stages as late as the end-user, rather than being

performed by the developer. As stated in Szyperski [3] this can give a considerable

competitive advantage to companies.

Another aim of this research is that the return on investment also will manifest itself

in increased confidence that the components are behaving as desired hence

addressing, in part, the "not-invented here" syndrome. This may help to encourage

the external development of software which, as stated in chapter 2, can be viewed as

a method of sharing investment risk. Although substantial research remains before

this can be claimed to be achieved for real-scale systems, the methods and

architecture proposed in this thesis have been shown to achieve these aims for

simpler domains.

7 .1.3 Error detection capabilities

The ability of the system to detect errors if, and only if, there is a fault is critical to

the success of this work. This is dependent upon the model of the system and the

domain, acceptable non-functional requirements and the level of error-detection

97

detail desirable. The dependencies of the error-detection model upon the system are

described in chapter 4.

When devising error-detecting systems, there is an important issue of non

functional requirements, one of compromise. The system may require an operation

to be performed within 'x' seconds or using 'y' units of main storage. Introducing

extremely detailed inter-component tests may unnecessarily degrade system

performance. Even systems with less demanding performance requirements cannot

satisfactorily use arbitrarily large quantities of resources for no observed gain.

Conversely there is a restricted category of tests which can be performed while

holding to non-functional requirements, an implication of which is that the system

will not be able to detect errors optimally.

Two issues requiring consideration for the level of detail in the error-detection

model are the conflict of abstraction with verification and the expressiveness of the

DSL-test language.

7 .1.3.1 Abstraction and verification

The issue of abstraction and verification reqmres senous consideration when

designing a new architecture and associated DSL. A very abstract description at

DSL construct level, i.e. one which is tailored to describing generic traits rather than

being tailored to specific implementations, will maximise the potential for reusing

existing components at the expense of ensuring that they are behaving correctly.

An implementation-driven system can maximise the test detail in order to ensure

that the operation was performed correctly at the expense of not being able to map

to as many components. In chapter 4, the concept of the abstract state of a

component was proposed which partially addresses this issue. Each component

which implements the abstract concept denoted by the DSL construct must, by

definition, have sufficient data to provide the abstract state of a component. That

means that the tests which are introduced must be implemented for all instantiations

of the DSL construct (i.e. components).

98

7.1.3.2 Expressiveness of testing language

The last issue, that of the expressiveness of DSL test, was highlighted particularly

well in the third prototype(Accountancy Domain). The native types of the system

were originally as shown in Figure 7:1

String

Bool

Int

Real

Figure 7:1

They had the following operations defined for them (chapter 4), where any

inappropriate operations were marked as undefined (see Figure 7:2)

Equal

NotEqual

Greater

Less

GTOEqual

LTOEqual

Figure 7:2

They were, at design time, satisfactory decisions10 for the tasks at hand. Figure 7:3

shows the two extra types that were introduced:

Data

List

Figure 7:3

As stated in appendix A, Data is a composite record of a number of other elements,

which reflects the information which will be stored in the accountancy database.

List is a representation of a sequence of Data records. These types were added

without extending the operations.

10 In retrospect String should have had a "length of string" operation and a "contains" operation.

99

The operations of the types in DSL-test were originally defined generically in order

to reduce the overhead of learning the language. Unfortunately the language became

ambiguous and confusing. Therefore, the generic operations approach was

discarded in favour of the type-dependent operations. To illustrate this point

consider the type List, which represents a list of Data entities. None of the

operations outlined are appropriate for this type. For example, does Equal mean that

every element is the same and in the same order or that every element is the same

and in any order? The GreaterThan/LessThan comparisons have more ambiguity.

Does GreaterThan, when applied to two lists, describe whether there are more

elements in the list or whether the totals of the amounts owed is greater? Although

the issue of DSL-test construct semantics is of concern to the DSL designers and

component developers, confusion will inevitably lead to incorrect implementations

and frustration. This issue can be addressed by defining each type's operations

independently.

7.1.3.3 Violation of principle 1

It was demonstrated in chapter 6 that it is possible to break the error-detection

principle 1.

Principle 1 - The system should only detect errors when faults are present

A scenario that illustrates the difficulties involved is that of adding a record to a

database. Records in the database should not contain duplicate order numbers. The

behavioural description modelled the add operation in terms of the abstract concept

of the number of records in the database. Specifically, there was a check that there

was one more record in the database after the operation than before the operation.

However this operation fails in terms of the description, without any fault being

present. If the user enters a record with an existing order number, the component(s)

implementing the DSL construct may refuse to add the new record. Therefore the

number of records remains constant and an error is detected. This directly

contravenes principle 1 of the error detection philosophy because the user of the

system was at fault, rather than the implementing components.

100

The divergence of behaviour between model and implementation was caused by a

weakness in the model of the system. In order to guarantee that an 'Add' operation

did increase the number of elements in the database, it would be necessary to check

that the data entered was not a duplicate. The cause of this problem was inability to

describe whether an element was already in a database. This problem was actually

caused by the poor expressiveness ofDSL-test.

7.1.3.4 Undoing operations

The issue of how to undo operations is important for considering any component

system which contains state. For example, if one part of a requirement (e.g. a

requirement which is implemented by multiple components) is executed and then an

error is detected, it is important the system should be returned to the state before the

execution the requirement. Rollback, as used in the field of databases, is a method

of achieving this. The data is not permanently changed until a commit, that is until

the operation is declared by all participating entities to be complete. There are a

number of potential methods of implementing this. One method is to make all

persistent components (i.e. components which map to constmcts containing abstract

state) implement an undo mechanism which is called when required. However,

there is a high likelihood that faults could be present in the undo mechanisms. An

alternative method is for the architecture to implement the undo mechanism by

copymg persistent components before the operation is executed. This could

potentially be performed by the architecture at a binary level. As this is a

conceptually simpler and more reliable method of providing rollback functionality it

seems more appropriate. Some other relevant methods and techniques are used in

Transaction Processors and in CORBA (Orfali et al. [96]).

7 .1.4 Fault-prediction capabilities

As previously stated, upon detection of an error the system should attempt to find

the source of the problem. Unfmiunately, current software methods often allow

errors to propagate. For example, a missing file name in a user interface may cause

an error in a database which verifies the data before storing. Therefore it is

insufficient to rely on the fault being present in the system where the error occurred.

In fact, there is a complex relationship between faults and errors. If the error

101

always occurred in the faulty component, i.e. the behavioural specification was a

perfect representation of the system, then fault-prediction would be trivial.

7.1.4.1 Fault-prediction strategies

Chapter 4 outlined a number of fault-prediction strategies. These are listed below.

These strategies can be applied in two ways. The first is to only consider

components which have executed , or were executing, at time of error-detection and

the second is to consider all components present in the system.

The algorithms described were as follows 11
:

1. Select any one component but make the component in which the error was

detected more statistically likely.

2. Select any one component but make any components which have been

suspected of faults before more statistically likely to be chosen.

3. Select any one component which has been used and remove its use from the

system.

4. Utilise metrics on the components to help decide which component is at fault.

This requires the underlying system to maintain statistics on the number of

times a components has been suspected.

5. Do nothing - The fault may be intermittent.

6. Remove the component in which the error was detected.

7. Select multiple components with one ofthese schemes

Investigation was undertaken into each of these algorithms. These can be separated

into 2 categories:

• Dynamic algorithms

• Static algorithms

Dynamic algorithms can create different results from execution to execution from

the same data. This may be due to a random element in the algorithm or because

the algorithm learns and hence adapts over time. Algorithms 1-4 are dynamic

11 These have been re-ordered, but are the same algorithms.

102

algorithms. This research investigated algorithms 1-3 in detail, but not 4 due to lack

of time.

While dynamic algorithms may provide a different answer using the same data,

static algorithms always give the same answer. The static algorithms proposed

were 5 and 6. They are highly reliant on the actual fault being what was expected.

For example, if the error did not occur in the component where it was detected, then

the algorithm will have no probability of getting the correct answer. The advantage

of the static algorithms proposed in this thesis is that they are very easy to

implement, quick to execute and easy to understand.

Algorithm 7 was not investigated because there was significant complexity for a

single component prediction without considering multiple components. This has

been proposed as a line of further work.

7 .1.4.2 Dynamic algorithm profiling

As previously stated, for the purposes of this research, the first 3 algorithms have

been statistically profiled:

1. All components are equally likely to be at fault, apart from the one where the

error was detected. The component where the error was detected is more likely

to be blamed.

2. Every time a component is selected for blame, the chance that it will be

reselected next time is increased. The system can provide feedback to inform

the fault-prediction system that the executable did not work.

3. Select any component at random (with equal probability).

It is acknowledged that the behaviour of Algorithm 3, due to its simplicity, is not of

interest and has only been explicitly considered in this section as a means of

comparing the success of Algorithms 1 and 2.

The behaviours of both strategies 1 and 2 can be altered by changing the emphasis,

or "weight" as it is referred to here, for the components. For example, in strategy 1

the weighting of the strategy (the amount by which the component where the error

was detected can be made to be more likely to be selected than other components)

103

ORIGINAL IN COLOUR

can be varied. If either algorithm is applied with "weight" 0, then it will result in an

equivalent probability distribution as algorithm 3.

Strategies 1 and 2 are particularly interesting because of their diversity of approach.

Strategy 1 is based on the assumption that the error-detection model is, in general,

strong enough to detect an error in the component where it occurs and Strategy 2 is

based on the assumption that a system can provide reliable feedback, which can be

used to learn which component is to blame. In addition to the two strategies, a

separate issue was raised, that of whether to reduce the component search space. As

previously stated, there were two alternatives:

(a) Only consider components which have executed before or are executing when

the error is detected.

(b) Consider all components present in the executable.

Reducing the search space, as by using (a), relies on the error occurring during

execution of, or after execution of that part of the system (as illustrated in Figure

7:4). Although certain types of fault can escape this form of fault-prediction, for

example hidden inter-component interference, it allows the use of the meta

infornlation encoded into the generated executable. The executable provides a

dynamic program slice upon detection of an error, which is used to help provide this

information.

RONc:t exro.rtim ---+

Figure 7:4

104

7.1.4.3 Test cases

The algorithms were both evaluated using eight test cases:

Test Number of Error detected Component at Feedback

case components at fault

1 4 4 4 No

2 4 4 2 No

3 20 10 10 No

4 20 10 4 No

5 20 10 10 Yes

6 20 10 4 Yes

7 20 10 15 No

8 20 10 15 Yes

Cases (1) and (2) were selected to test how a system would function with a small

number of components. Test case (1) illustrates how many times the system is

correct when the fault lies in the component where the error was detected, and Test

case (2) tests how the system will react when the fault is not present in the

component where the fault was detected. The purpose oftest cases (3) and (4) is to

cover the same cases as (1) and (2) but for an executable with a larger number of

components. Test cases (5) and (6) are the same as (3) and (4) but the system

provides feedback, that is to say if the prediction is incorrect, the algorithm is

informed of the fact. Test case (7) is designed to illustrate how the system will

react if the error is caused by a component which has not been executed yet and test

case (8) is the same as (7) but with feedback.

7 .1.4.4 Algorithm 1

If x is the component where the fault was located, probability of x being blamed

P(x) is equal to:

P(x) = (w+ 1) /(n+w)

Where w= weight, and n= number of components being considered.

105

ORIGINAL IN COLOUR

If x is not the component where the fault was located, probability of x being blamed

P(x) is equal to :

P(x) = 1 I (n+w)

Figure 7:5 illustrates how algorithm 1 performed after 1,000,000 test runs when

pruning has occurred and using the pruning strategy(a). It is evident that when the

algorithm is correct, as in Test cases (1), (3) and (5) 12
, satisfactory results can be

achieved and the more weight added to the algorithm, the better the results in

comparison to Algorithm 3 (or weight 0) . When the algorithm is incorrect, i.e. the

component where the error was detected is not the component containing the fault,

as per test cases (2), (4) and (6), the results deteriorate with weight. The algorithm

also becomes consistently less effective with more components. Test cases (7) and

(8) give no correct answers as only components which have been executed at time

of error-detection are considered, when using the pruning strategy(a).

Note that Algorithm 3 is equivalent in behaviour to either Algorithm 1 or 2 with a

"weight" of 0, and has only been included as a basis for comparison.

700000

600000

500000

400000

300000

200000

100000

The number of correct answers per 1.000.000 for algorithm 1. predicting on ly components executed during or
before the detection of an error.

-

-

-

-

- !-

ITI ITI
Test 1 Test 2 Test 3 Test4 Test S Test S Test 7 Test 8

Test cases

Figure 7:5

Weight

12 Algorithm 1 does not use previous data to learn. Therefore the pairs of tests (3) and (5); (4) and (6); and
(7) and (8) are effectively the same tests .

106

ORIGINAL IN COLOUR

The same algorithm has been applied whilst considering any component which is a

part of the executable as a potential suspect, as shown in Figure 7:6. In an

executable with a small number of components, as in (1) and (2), the results are

very similar. However, Algorithm 1 does not perform well when applied to an

executable with a larger number of components for tests (3), (4), (5) and (6) as the

same algorithm with pruning (using strategy (a)) . In contrast, test cases (7) and (8)

are improved, as shown in Figure 7:6.

The num bet of correct • n ew era per 1 ,0 00 ,000 for algorith m 1 , p red icting any components.

700000

600000

500000 -
Walght

-400000 -

i
~

300000 -

200000 -

100000 -:-

~ fll r-. r-1 I I rll fll rll I I rll
Tes t I Tut 2 Tut3 Tes t4 lest 5 Tes l 6 Test7 Tes l 8

Teal c••••

Figure 7:6

These results suggest that Algorithm 1 IS applicable for fault-prediction in

executables with a small number of components and a detailed error-detection

model.

7 .1.4.5 Algorithm 2

The probability of a component ' x' being selected, 'P(x)' is defined as :

P(x) = (1 + yw) I (n+tw)

where component 'x' has been selected for blame 'y' times previously, 'n' is the

number of components considered in the system, 't' is the number of times the

algorithm has been executed and 'w' is the algorithm weighting.

The same tests (1-8) were applied to Algorithm 2 for 1,000,000 iterations, whilst

only considering components which had been executed. Test cases (1) to (4) were

107

ORIGINAL IN COLOUR

found to generate random results. This is because the algorithm 1s not supplied

feedback. Test cases (7) and (8) both result in no correct answers because

components which have not been executed when the error occurs are not

considered.

The results are shown for a in Figure 7:7.

The amount of correct answers per 1,000,000 for test cases 5 and 6 where only components executed before or
during detection of the error can be selected

TestS Test 6

Test cases

Figure 7:7

The results for the same experiment without the application of pruning strategy (a)

are shown in Figure 7:8.

108

1000000

900000

800000

700000

800000

500000

400000

300000

200000

100000

ORIGINAL IN COLOUR

The amount of correct answers per 1,000,000 for test cases 5, 6, and 7 where any component can be selected

Test 5 Test 6

Test cases

Figure 7:8

Test 8

As can be seen, the results are very near to perfect for all variants of the algorithm,

independent of the weight applied (assuming weight is >=1). There are three

reasons why this is so. The first is that the feedback is 100% accurate. In practice

this is not likely. Experimentation has been performed on less than perfect

feedback but no conclusions can be drawn from these due to complex relationships.

A second reason for the extreme accuracy in the predictions is that the profiling

system had to consider one type of experiment only. In real systems, data from

different examples may have been applied so trends may not be as obvious as

documented here. The third reason is that the experiment was run 1,000,000 times

which provided the algorithm with plenty of learning time. Therefore Algorithm 2

was also profiled to see how it performed with a smaller number of learning

opportunities. Figure 7:9 shows data from test case 5, indicating how the algorithm

learns over time, while only considering components which had executed before the

en·or was detected. Figure 7:10 shows the data for the same test case while

considering all components. Test case 6 has been omitted due to the similarity of

results between 6 and 5.

109

100

90

80

70

u 60
~
8
~

"' !!!
50

c
~

~
G 40 ..

30

20

10

ORIGINAL IN COLOUR

The effect of learning time on algorithm two, for test case 5 and selection of a component executed during or
before the detection of an error, averaged over a thousand test runs.

10 100

learning time

Figure 7:9

1000

The effect of learning time on algorithm two, for test case 5 and selection of any component present, averaged
over a thousand test runs.

10 100

learning time

Figure 7:10

1000

Weigh1

This data suggests that Algorithm 2 is applicable for systems where accurate

feedback is possible, and where DSL requirements are likely to be called more than

once. Some difficulty remains as to how similar two DSL requirements have to be

before the data from one of them is relevant to the other. In this example the cases

110

are all identical. In practice, the assumption that there will be sufficient identical

cases may be too strong.

To re-iterate, the mm of this section was to illustrate two methods of fault

prediction, and to contrast them with each other and to a purely random selection

method. This has been done in order to demonstrate their use and show their

strengths and weaknesses. This data cannot be used "as is" to see which algorithm

is the best on average. This would require a detailed study into which cases of use,

as modelled by the test-cases, are more typical.

7.1.4.6 !Further Applications of Fault profiling

As previously described, information on the dynamic behaviour of a system 13

should be stored and can be used when making future fault predictions. This

profile may include, for example, measures of reliability including the number of

times the component has been present in an executable where an error has occurred

and what the composition of the executable was at that point. The profiling data

could also be used to provide feedback to component developers. It was found

experimentally that, upon presentation of test-data demonstrating strange behaviour,

a component developer is often able to correct the fault relatively easily. An

example of such an occurrence is a data-base not storing certain characters

correctly. Therefore such a system could support the efforts of the component

developers as they could be periodically supplied with the profile data.

7 .1.4. 7 Fault-prediction problems

In addition to the difficulties already shown in fault prediction, this method has the

implicit side-effect that sometimes components may be blamed for malfunctioning

when they are not responsible. This statement can also be extended to include

components which behave acceptably for the majority of the time but, in very

specific conditions, malfunction. It therefore seems undesirable to ban components

from a system completely. This leads to the issue of component re-introduction.

As with fault-prediction, there are a number of different cases for re-introducing

components to a system. For example if the system is re-configured and the error

111

reoccurs in the next executable, then that component may be re-introduced because

it was not necessarily at fault 14
• As none of these were implemented there is no

further discussion on component re-introduction.

7 .1.4.8 Non-component faults.

There is an additional possibility, for any system which has a separation between

implementation and specification, that some of the components will be associated

with an inconsistent abstract behaviour description (i.e. a component can be

mapped to the wrong construct, in the wrong way or will not function in the target

environment). A component which never detects it is at fault is acceptable, as stated

in chapter 4, error-detection principle 2, that:

"The system may not, in certain cases, detect an error when it occurs. "

It is also possible, and in fact probable, for a component's White-Box Test (WBT)

operations to be incorrectly implemented and generate errors when none are

present. However since the component and its description are, in this system,

inseparable this is not of particular concern. A component causing a false error is,

in itself a fault and hence does not contravene principle 1 of the error detection.

"The system should only detect errors when faults are present"

The current system encodes the rules which were applied to create the executable

into the executable itself, in order to potentially identify rules which contained

faults. However, no fault-prediction algorithms have been developed which utilise

this data.

This thesis and all the subsequent underlying research, is based on the assumption

that there is a flawless implementation of the underlying architecture and types. In

practice this is unlikely. In order to address this issue, the architecture has been

kept as simple as possible and utilises only well-understood methodologies and

13 Particularly which components have been banned because they are suspected of containing faults and
whether the fault continued afterwards
14 Fault-prediction where only one component can be blamed at a time may use a different mechanism to
achieve this for example the architecture may "forget" that a component is banned after a certain amount of
time.

112

tools. However, it must be acknowledged that a typical architecture and associated

types and operations would contain faults which the system could not correct.

7 .1.5 Evolution

It is important to consider how a new system can change with time. As the

implemented architecture and associated DSL is based on an underlying domain

model, the domain model can be used to help describe the sorts of changes possible.

The changes identified were as follows:

1. A new construct needs to be added.

2. An existing construct needs to be re-described.

3. The domain model needs to be changed significantly.

4. An underlying architectural assumption must be changed.

In the case of adding a new construct, the architecture allows new constructs to be

added. The accountancy prototype will allow this to be performed run-time.

Care should be taken when considering altering an existing construct. If the changes

make usage of the altered construct more restrictive than the original then existing

requirements could be incompatible, creating a legacy problem. The same will

occur if the actual function of the construct changes. If the construct is to change in

either of these ways then either creating an explicitly new version of the language or

using a different construct name should be considered as courses of action.

Significant changes to the domain model are problematic in that they could involve

changes in a number of constructs. A sensible approach is to create a new version

of the language. This category of changes may also be addressed by the approach

of developing the DSLs in hierarchies (as shown in Figure 7:11), an idea originally

proposed for generic DSLs in Jarvis [103]. A lower level DSL could be developed

during the domain analysis process. Then different DSLs, focussing on different

users needs, could be developed in terms of the lower level constructs. This method

should be more resistant to this type of change, assuming the concepts identified at

lower levels do not need to change in a way that would make the hierarchy

inconsistent.

113

L5er category 1 L5er category 2

irr-Perrented in

Sutri8Jlluage
......__+! for OO...S 1,2

irr-Perrented in

Pro exarr-Pe of hierarchically arrarged OO....S.

Figure 7:11

irr-Perrented in

Lk>er category 3

irr-Perrented in

Similar mechanisms often exist in hierarchical programming methods. They often

have the top level as user-oriented and the lower levels as more implementation

specific data. The top levels typically call the lower level functionality.

The final category of change considered for the DSL system is that the target

environment changes so that the architectural assumptions are significantly different

to the previous system. This category can be potentially require a large quantity of

changes. If the components are only documented in terms of the original

architecture, i.e. they work in the original architecture, then each component must

be re-evaluated individually to see if it will work in the new environment. If

components belong to a number of collections, each with its own architectural

assumptions, then some of the components may not need to be re-evaluated. For

example, an architecture underlying a particular DSL system has a certain collection

of architectural support facilities (in this case automated tidy-up and a certain

structure of event handling). If these support facilities conditions are too weak (or

incompatible) then components with more demanding (or conflicting) architectural

requirements will not be applicable. Even worse, it may not be clear which

components will be appropriate.

114

7 .1.6 Feasibility of using this type of system

One of the aims of this research was to evaluate whether it is feasible to use the

proposed architecture and methods in real world systems. Although it is not

possible to claim that real-world systems have been described here, the results from

the case studies are very encouraging. Therefore, although it would not be realistic

to claim the approach outlined in this thesis will definitely address real-world

systems, a less strong claim can be made. There has been no reason found why this

approach would not work, within the limitations described, in real-world systems.

That is to say the overall method of applying a DSL and supporting architecture was

found to be an effective method of communicating information about the domain.

After the prototypes were developed, new requirements could be used to generate

code with no additional human interaction, assuming sufficient components exist.

However, considerable additional investment in effort was required in order to

develop the domain model, write the components and provide data for the program

generator to use. Therefore this approach would only be feasible for systems with a

high degree of reuse. This restricts the approach to domains which are stable. It

may also be utilised if a domain model is created during the software development

process.

The process of self-reconfiguration was found to be successful if the error-detection

guidelines were followed. If the error-detection model is weak then the number of

components suspected was found to generally significantly greater than the number

suspected using a more precisely specified construct. Two main types of fault

prediction models were investigated and their behaviour evaluated in a number of

cases. It was found that both performed well under certain conditions.

7.2 Additional issues

During the course of the research other issues were raised which needed further

consideration. The aim of this section is to describe these issues in detail, explain

their significance and to suggest methods of improvement on the original solutions.

115

ORIGINAL IN COLOUR

7 .2.1 Method of combination

The current prototype uses the following model of software generation, as shown in

Figure 7:12.

Current model of performing a task, from requirements to executable.

Figure 7:12

Although a compiler approach was sufficient, in terms of evaluating the hypothesis,

it is not appropriate for use in an actual DSL system where different user

requirements could be submitted frequently. For this case a requirements

interpreter would be more appropriate. Background execution could periodically

generate partial solutions so that the pattern matching phase could be made more

efficient.

Requirements
Interpreter

Components

Partial solution
generation

A possible structure for a requirements interpretation scheme

Figure 7:13

116

ORIGINAL IN COLOUR

Although the lifecycle of requirements to executable would be required to change

for a new system, an equivalent interpreter system, i.e. Figure 7:13, should be easily

achievable, and many of the findings in this thesis are still applicable to such a

system.

7 .2.2 Introduction of transformations

As previously stated in chapter 5, it is useful for certain domains to be able to

describe a DSL-construct in terms of other DSL-constructs. The current proposed

architecture does not support this. The reason for the absence of this category of

transformation is due to the problem of direct and indirect recursion of these rules

as shown in Figure 7:14.

Construct A

An exam ple of direct recursion in OSL constructs

Construct D Construct A

An example of indirect recursion in DSL constructs

Figure 7:14

The existing system does not require human intervention to fmd a solution because,

due to DSL constructs only mapping to components, the rules can only match a

finite number of times. If DSL-constructs are permitted to refer to other DSL

constructs then infinite recursion becomes possible. This contravenes one of the

117

aims of trying to reduce human interaction, because human interaction would be

necessitated in order to prevent infinite recursion.

A hybrid scheme could permit a DSL-construct (A) to map to other DSL-constructs

(B,C) if there are no routes (direct or indirect) from B or C back to A. In this

compromise, the ability to describe arbitrary DSL-construct to DSL-construct

mappings has been sacrificed in order to remove the need for human intervention at

solution generation phase.

7 .2.3 Granularity

The issue of granularity of components and DSL-constructs was raised, as outlined

in chapter 6, and particularly well illustrated by prototype 1.

To recap, a DSL for a sort domain was investigated and found to be an inefficient

solution for this domain. One of the reasons for this was the granularity of the

constructs. The sort domain could be described in a variety of abstractions but

these constructs were of similar granularity to actual programming constructs in

generic programming languages. As this research is concerned with mapping DSL

constructs to components, not lines of code, it was evident that this was

unsatisfactory. That is to say, the domain's constructs should ideally be

significantly larger than can be implemented by a few lines of code. If the

constructs all map to very small components then a different composition technique

would also be required.

It should be emphasised that the payoff for a DSL system which maps to very fine

grained components would typically be less than for a larger grained system, in

terms of effort saved in composition. Therefore the economic feasibility of this

approach is less strong for a very-fine grained component system than for a coarser

grained one.

7 .2.4 Type of domain

A mistake which was made m the first two domains (sort and mathematical)

approached was that, in order to make the systems as generic as possible, the

domains selected could be viewed as more horizontal (or cross-application)

118

domains 15 than domain-specific. That is to say the sort domain and mathematical

domains do not reflect an application family. They are focussed on forming

solutions for a very-wide range of problems. This mistake was corrected in the

accountancy domain. The payoff for implementing vertical rather than horizontal

domains is threefold:

• The DSL can help document the problem domain.

• There is typically a larger payoff for vertical domain reuse partly because

generic programming languages have not implemented as much of the

necessary functionality as for horizontal domains.

• The underlying architectural constraints can be more restrictive and hence

reduce the need for exhaustive component testing and documentation.

It is therefore suggested that any further research should mainly focus on vertical

domains.

7 .2.5 IDSL systems (DwR or DfR)

There are a number of ways of developing a domain model. However, for a DSL

system which maps constructs to components, there is an important issue of

populating the component repositories. The two extreme approaches are :

(1) Design the domain model entirely around existing components, so there is at

least one instance of each construct implemented at the start (analogous to DwR

-chapter 2),

(2) Design the domain model completely independently of existing components

then populate the component repository (analogous to DfR- chapter 2).

In practice, a compromise between these two extremes would be preferable, but this

presupposes the existence of relevant components. Similar techniques have been

described for frameworks, as described in chapter 2.

15 It is acknowledged that there is sometimes no clear distinction between a horizontal and vertical domain.

119

7.3 Summary

This chapter has evaluated the methods and architecture in terms of the issues

described in chapter 1 and in terms of issues whose importance became evident

during the course ofthis research.

In evaluating the research with respect to the criteria identified in chapter 1, it was

found that the proposed methods required additional short-term investment of

effort. However, the preliminary findings suggest that if a system is used frequently

enough to repay the initial investment then the methods provided an effective

method of rapid application development, allowing the user to define their

requirements in well-defined and familiar terminology. It also allows some of the

programming to be delayed to later stages in development. The preliminary

findings also suggested that there was increased confidence that the components

were behaving as desired hence addressing, in part, the not-invented here syndrome.

The aim of this was to encourage the external development of software which, as

stated in chapter 2, can be viewed as a method of sharing investment risk. Although

substantial research remains before these aims can be claimed to be achieved for

real-scale systems, the methods and architecture proposed in this thesis have been

shown to achieve these aims for simpler domains and no reason was found why this

approach would not be appropriate for real systems.

The process of self-reconfiguration was found to be successful if the error-detection

guidelines were followed. If the error-detection model was too weak then the

number of components suspected was found, on average, to be higher than the

number suspected using a more precisely specified construct. Two main types of

fault prediction models were investigated and their behaviour evaluated in a number

of cases. It was found that both performed well under different circumstances.

The methods and architecture were also evaluated in terms of other issues which

were raised during the course of this research. It was found that the method of

execution, which is currently based on a compile-then-execute cycle, was

needlessly inefficient and an alternative, interpreter based, method of

implementation was proposed. The current system's inability to define DSL

120

construct implementations in terms of other DSL constructs was outlined as a

weakness and a scheme for introducing construct-to-construct mappings was

introduced. This was found to be a non-trivial task as the ability to describe

arbitrary mappings between constructs made infinite recursion a possibility and

hence necessitating human intervention at the solution generation stage. As this

was contrary to one of the aims of this research (to minimise human intervention),

construct-to-construct mappings are only permitted in a limited form, i.e. no direct

or in-direct recursion is permitted. The issue of DSL construct granularity was

identified as being problematic. Specifically, it was found that if the granularity

was too fine then the pay-off for using the DSL-system was too small. Another

important issue was the type of domain to be implemented. It was found that two of

the three domains were actually horizontal domains and as such had a tendency to

duplicate common general purpose programming language functionality. This was

found to be unsatisfactory. The final issue outlined was that of how to actually

instigate a DSL-to-component system (as described in this thesis), whether to

develop the language and then populate the component repositories or to develop

the language in order to reuse existing components. A compromise between the

two approaches seemed most appropriate.

121

8. Conclusion
This thesis has described the process of taking a Domain-Specific Language based

approach to component composition error-detection, and fault prediction. This has

taken the form of an introduction chapter, two chapters of literature review, a

chapter discussing the concepts proposed in this thesis, a chapter describing the

implementation issues, a chapter describing three case studies which illustrate the

ideas proposed here, and an evaluation chapter which discusses relevant issues. The

aim of this chapter is to summarise the thesis, in terms of an overview of each

chapter, and in terms of the research which has been undertaken in this thesis. The

final section of this chapter describes areas that require further research.

8.1 Summary of research

Initially, a number of modem software reuse issues were researched. Originally,

software reuse was considered without preconceptions of organisation or structure,

and therefore the term software artefact was used to refer to the entity to be reused.

The different categories of reuse were found to be:

• Types of code reuse (e.g. Black box, White box)

• The domain of code to be reused (e.g. Horizontal, Vertical domain)

• The origin of the code to be reused (DfR or DwR)

These issues were described in detail in chapter 2. It was found that for inter

company software reuse, only black-box and grey-box reuse are feasible

approaches. Reuse for software in vertical domains was found to have a larger

potential saving for reuse than horizontal domains. Whether the code was designed

for reuse (DfR)) or previously existed before the decision to reuse was made

(design with reuse (DwR)) was discussed and it was found that DfR artefacts are

more generally applicable, but more restricted in what implementation assumptions

they are allowed to make than DwR artefacts.

A number of factors which need to be addressed in order for successful reuse were

found. They were:

• The quality of the software.

122

• The behaviour of the software

• Hidden design assumptions in the software

• The code requiring changes before reuse

• The identification of relevant code

These factors were described in detail in chapter 2.

A number of existing methods of addressing software reuse were identified:

• Software Components

• Software Libraries

• Software Frameworks

• Software Architectures (and DSSAs)

These methods were discussed with respect to the factors outlined previously to see

how they addressed the factors. Domain-Specific Software Architectures (DSSAs)

were found to be a particularly effective method of providing black-box reuse.

Chapter 3 evaluated other methods of software development which addressed

similar issues to software reuse approaches and defined terminology for existing

testing methods. The testing section was introduced to provide common

terminology with which to discuss issues to be discussed later in the thesis. The

alternative approaches to software reuse were:

• Software agents

• Domain-Specific languages (DSLs)

• Automated programming

Each was defined and described in terms of the reuse factors outlined in chapter 2.

The research hypotheses, taking the form of a main hypothesis and sub-hypotheses,

were discussed in Chapter 4. The main hypothesis was:

Given a sufficient number of components described in sufficient detail it is

possible to automatically develop systems in a manner such that human

intervention is minimalised.

123

This hypothesis was extended in a number of ways. Primarily, DSLs were

proposed as the component description mechanism

A DSL can be applied to specify the behaviour of components. The

specification can be used for the purposes of locating components and

verifying their behaviour matches what is expected.

Each DSL construct, i.e. each element in the language, would provide two

important services. Primarily, it would be used as a task description mechanism.

That is to say the DSL construct name would be chosen to define a role which the

implementing component(s) would fulfil. In addition to this, the DSL construct

would also have an abstract concept of how implementing components would

behave. This may be purely in terms of input and output specification, as with a

construct which does not have a concept of abstract state, or may also include extra

checks to see if the abstract state has changed. This is achieved by making any

component which implements a construct containing abstract state also implement a

verification method, referred to here as a White-Box Test (WBT). These tests are

used to detect whether there is a deviation between the expected behaviour, which is

defined in a second DSL (referred to in this thesis as DSL-test), and the observed

behaviour, obtained from the actual values in the interfaces or the WBT. Black-box

reuse with additional capabilities to describe certain aspects of internal state can be

viewed as very similar to grey-box reuse. Hence the following sub-hypothesis was

proposed:

Given a specification of the problem modelled in sufficient detail it is possible

to detect some errors occurring in a system and in some cases find the cause

of those errors (i.e. faults).

The mappmg between requirements described in terms of the DSL and the

implementation would not always be 1:1. That is to say, alternative solutions for

the same result may be possible. Therefore, upon detection of an error, the

architecture will attempt to prescribe blame. A number of fault-prediction strategies

have been proposed. A component which is blamed for a fault may be removed

from future executables. That is to say:

124

Upon detection of an error, the system will attempt to ascertain where the

fault lies. Then a new solution would be created if such an alternative is

feasible within the system.

Chapter 4 then described the concepts of the support architecture (Hydra), DSLs,

software generation techniques, error-detection and fault-prediction methods. Of

particular interest are two principles of error-detection which have been proposed to

aid in the automatic detection of errors and fault-prediction.

(1) The system should only detect errors when faults are present

(2) The system may not, in certain cases, detect an error when it occurs.

The implementation issues pertaining to developing the prototype supporting

architecture, named Hydra, were discussed in chapter 5.

In Chapter 6, a number of simple problem domains were identified, in order to

illustrate the methods and to highlight issues which were discussed later, in chapter

7. They were as follows:

1. Sort domain

2. Mathematical domain

3. Accountancy domain

The first domain suffered from a problem of DSL constructs duplicating

functionality readily available in generic programming languages such as Java and

C++. The second, mathematical, domain had different issues. It is highly likely

that one mathematical function can be implemented in terms of others which exist

in the system. For example, Square(x) and Multiply(x,x). The DSL system did not

allow one DSL construct to be implemented by other DSL constructs. This caused

unnecessary duplication of rules. The third, accountancy, domain was the first to

use DSL constructs which contained abstract state. This prototype worked as

planned, that is to say upon detection of an error it could predict which component

was to blame and exclude its use in the next executable. However, a weakness in

proposed scheme was found. Error-detection principle 1 could be broken by

erroneous user input. This was caused by an error in the domain model.

125

Chapter 7 compared the methods and architecture with the evaluation criteria set out

in chapter 1 and additional criteria whose importance became evident during the

course of the research. A number of fault prediction algorithms were highlighted in

chapter 4 and some of these have been evaluated in chapter 7. Two algorithms16

were selected for profiling, to evaluate under what situations they performed best.

It was found that both algorithms performed well under certain conditions.

Other aspects of using this method were described in chapter 7, including methods

of improving the component combination mechanism, how and when to introduce

DSL-construct-to-DSL-construct mappings, examining the issue of component and

construct granularity, emphasising the importance of using vertical domains and

issues of whether to design components around the DSL-constructs or to design

DSL-constructs around components.

8.2 Further work

One of the primary aims of this thesis was to provide an initial investigation into the

methods and theory required for dynamically re-configurable systems based on

DSL constructs being mapped to components. This research has been very

promising in addressing issues which should improve the confidence of software

reusers, the rate of implementing new functionality and in empowering external

software-developers by providing a common understanding of the problem domain.

However, a number of issues still need to be researched, as described in the

remainder of this section.

8.2.1 ~ntegrating DSL systems with other systems

If these systems are to be of genuine application to real world problems, it is

important to consider how they will be integrated with existing programming

technologies and other DSL systems. It is not economical to duplicate the

functionality of existing systems, especially generic programming languages, which

currently provide equivalent functionality in a perfectly acceptable way. Hence,

how will the proposed architecture be integrated into other programming

126

environments? The existing architecture partially addresses this issue by using a

CORBA architecture as a backbone. Any programming language or environment

which can communicate with a CORBA system can communicate with the

implemented system17
. However, there are still issues of how best to integrate

generic programming languages with the architecture. Of particular importance is

the question of how to deal with different communication mechanisms, for example

exceptions and event-driven mechanisms rather than simple call-returns. In

addition to this, the method of integrating the DSL with existing systems, for

example whether existing generic programming languages should be extended to

support the generic DSL-construct systems, or to rely on CORBA to explicitly

communicate between the two systems.

8.2.2 Optimising solutions

With a system that is able to generate a number of alternative solutions, it would be

advantageous to select the "best" one. As the definition of what is "best" is usually

domain-dependent, it seems conceptually sound to extend the domain model to

reflect preferable characteristics of solutions. It may not be immediately obvious

what factors are required to be present in the model in order to control certain

characteristics. For example, in a time-dependent system it is fairly certain that

operation-completion time would be an issue that would require modelling, but

memory consumption may also be require modelling as this can indirectly cause the

time characteristic to degrade due to the executing environment being forced to use

swap space.

One method for achieving optimising behaviour whilst using the existing system is

by using the existing architecture and defining an error to include events of

undesirable performance characteristics. In this case it is also sensible to model the

effect of generating a new solution in addition to its predicted performance.

However, before the goal of using such a system for optimisation can be achieved,

the methods and types of modelling required should be investigated to see if this

16 There were actually three algorithms, but one was included purely as a basis for comparisons.
17 This makes a number of assumptions about inter-compatibility ofCORBA implementations. However,
ignoring certain implementation differences, distinct COREA implementations are predominantly
compatible.

127

approach is genuinely feasible and to highlight issues which need to be considered

at design time.

8.2.3 Advanced error-detection

. The current techniques and guidelines for the error-detection systems are sub

optimal. In particular, the support for types requires an improved scheme, perhaps

by considering type elements as first class objects in the DSL languages. In

addition to this, more detailed consideration of how to use the data is needed.

Further investigation is required to see if categorisation of error-types will improve

the error-detection process. That is to say, certain categories of errors, for example

network failures, could be identified as being caused by factors external to the

component and hence treated differently to a component which contains the fault.

Different categories of generic and domain-specific errors may improve the

feedback of the system and hence prevent scenarios such as network instabilities

causing a component to be permanently excluded from future executables.

8.2.4 Advanced fault-prediction

A number of fault-prediction strategies have already been proposed. Two

algorithms have been investigated in detail to evaluate their behaviour. However, it

is evident that there is scope for improvement in this field. Also, the concept of

components which have been incorrectly blamed still needs to be addressed In

order to achieve this aim, there needs to be a mechanism for comparing similar

occurrences. Then, if on situation 'x' component 'cl' was forbidden and a new

executable is generated which does not use 'cl '. If this new executable still

exhibits the problematic behaviour, then 'cl' could not be the only component

containing a fault in the executable. If errors always occur with a certain parameter

value, then this information could be utilised in the decision of when to use the

component. There is also scope for fault-prediction based on composition rules.

8.2.5 Different DSL architectures

The current research has only considered a strict call hierarchy. The components

are called by each other, the first calling the later ones. Although this architecture is

128

ORIGINAL IN COLOUR

quite commonly found in existing software systems, it is not the only architecture in

existence. Other call hierarchies include pipe and filter models (Shaw and Garlan

[46]) as shown in Figure 8:1, which can be viewed as a special case of the hierarchy

used here, but all later calls have one argument.

Flow of control

"r, ~'""" , ~ 1 '*·'""~

~~·mY•I•Jfr:.TiH1 :1 ::"

A "pipe" component architecture

Figure ~:1

_,-"::,
£ « '> ~ X :,,'

,,

l'IO-fliul~f•1•1'"Ji1ii<.: ,

More complex architectures are often more appropriate for certain types of

application. For example, user interfaces are often modelled using event-driven

hierarchies to allow for more dynamic behaviour. It is unclear how, or if, DSLs

should be applied to this category of problem and in particular what data should be

encoded into the executables to aid in error-detection and fault-prediction.

8.2.6 Application as a Metric evaluation system.

If a large scale, well-designed architecture is developed in accordance with the

guidelines in this thesis, there are potentially interesting alternative applications, to

simply generating executables. Assuming a DSL, supporting architecture and

components are created, metrics on the reliability of components could be applied.

As previously stated, the architecture is highly dependent upon the data provided by

the error detection model. If a metric is accurate, i.e. if it selects components which

are less error-prone, then the system should 18 be less error-prone too. Therefore

there is a potential application of such an architecture being appropriate for

measuring the success of reliability metrics. If a system can be created which has a

predictable performance model then it may be possible to evaluate performance

metrics as well.

18 Assuming random use-cases are selected and a sufficiently large number oftest-cases.

129

8.3 Summary

This chapter has evaluated the methods and architecture in terms of the issues

described in chapter 1 and in terms of issues whose importance became evident

during the course of this research.

In evaluating the research with respect to the criteria identified in chapter 1, it was

found that the proposed methods required additional short-term investment of

effort. However, the preliminary findings suggest that if a system is used frequently

enough to repay the initial investment then the methods provided an effective

method of rapid application development, allowing the user to define their

requirements in well-defined and familiar terminology. It also allows some of the

programming to be delayed to later stages in development. The preliminary

findings also suggested that there was increased confidence that the components

were behaving as desired hence addressing, in part, the "not-invented here

syndrome". The aim of this was to encourage the external development of software

which, as stated in chapter 2, can be viewed as a method of sharing investment risk.

Although substantial research remains before these aims can be claimed to be

achieved for real-scale systems, the methods and architecture proposed in this thesis

have been shown to achieve these aims for simpler domains and no reason was

found that these methods would not be appropriate for actual systems.

The process of self-reconfiguration was found to be successful if the error-detection

guidelines were followed. If the error-detection model was too weak then the

number of components suspected was found to be on average higher than the

number suspected using a more precisely specified construct. Two main types of

fault prediction models were investigated and their behaviour evaluated in a number

of cases. It was found that both performed well under different circumstances.

The methods and architecture was also evaluated in terms of other issues which

were raised during the course of this research. It was found that the method of

execution, which is currently based on a compile-then-execute cycle, was

needlessly inefficient and an alternative, interpreter-based, method of

implementation was proposed. The current system's inability to define DSL

130

construct implementations in terms of other DSL constructs was outlined as a

weakness and a scheme for introducing construct-to-construct mappings was

introduced. This was found to be a non-trivial task as the ability to describe

arbitrary mappings between constructs made infinite recursion a possibility and

hence introduction of these rules would necessitate human intervention at the

solution generation stage. As this was contrary to one of the aims of this research

(to minimise human intervention), construct-to-construct mappings are only

permitted in a limited form, i.e. no direct or in-direct recursion is permitted. The

issue of DSL construct granularity was identified as being problematic.

Specifically, it was found that if the granularity was too fine then the pay-off for

using the DSL-system was too small. Another important issue was the type of

domain to be implemented. It was found that two of the three domains were

actually horizontal domains and as such had a tendency to duplicate common

general purpose programming language functionality. This was found to be

unsatisfactory. The final issue outlined was that of how to develop a DSL to

component mapped system, whether to develop the language and then populate the

component repositories or to develop the language in order to reuse existing

components. A compromise between the two approaches seemed most appropriate.

131

9. References
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements

of Reusable Object-Oriented Software: Addison-Wesley Professional Computing

Series, 1995.

[2] M. Buichi and W. Week, "A plea for Grey-Box components" Workshop on

Component oriented programming, ECOOP, 1997.

[3] C. Szyperski, Component software: beyond object-oriented programming.

Harlow: Addison-Wesley, 1998.

[4] G. Kiczales, "Why black boxes are so hard to reuse a new approach to

abstraction for the engineering of software" : Stanford, CA : University Video

Communications, c1994, 1994.

[5] J. E. Hollingsworth, "Software Component Design-for-Reuse: A

Language-Independent Discipline Applied to Ada", PhD. thesis, Graduate School of

the Ohio State University: The Ohio State University, 1992.

[6] Honeywell, "What are the Benefits of Using a DSSA?", vol. 1998: Honeywell

Technology Center, http://www.htc.honeywell.com/projects/dssa/ - DSSA page,

1999.

[7] J. S. Poulin, "Software Architectures, Product Lines, and DSSAs : Choosing

the Appropriate Level of Abstraction" Annual Workshops on Institutionalizing

Software Reuse, 1998.

[8] R. N. Taylor, W. Tracz, and L. Coglianese, "Software Development Using

Domain-Specific Software Architectures: CDRL AOllA curriculum Module in the

SEI Style" SIGSOFT Softw. Eng. Notes, vol. 20, pp. 27-37, 1995.

[9] D. Batory, L. Coglianese, S. Shafer, and W. Tracz, "The ADAGE Avionics

Reference Architecture" presented at AIAA Computing in Aerospace, San Antonio,

1995.

[10] D. Batory, D. McAllester, L. Coglianese, and W. Tracz, "Domain Modeling in

Engineering Computer-Based Systems" presented at Intemation Symposium and

Workshop on Systems Engineering of Computer Based Systems, Arizona, 1995.

[11] B. Stroustrup, The C++ programming language: Second edition, Addison

Wesley, 1999.

132

[12] M. Becker and J. L. Diaz-Herrera, "Creating Domain Specific Libraries: a

methodology and design guidelines" presented at Third international conferences on

Software Reuse: Advances in Software Reusability, Rio de Janeiro, Brazil, 1994.

[13] L. Burd and M. Munro, "Object Recovery" RISE, Computer Science,

University ofDurham, Durham, Technical Report 04/99, 1999.

[14] I. Sommerville, Software Engineering, 4th ed: Addison-Wesley, 1992.

[15] W. Tracz, Confessions of a used program salesman : Institutionalising

Software reuse: Addison-Wesley, 1995.

[16] C. Brooke, M. Ramage, and N. Gold, "From legacy system to business asset: a

model to support organisational and technological change" presented at Fifth Annual

International Conference on Advances in Management, Lincoln, 1998.

[17] B. Robben, F. Matthijs, W. Joosen, B. Vanhaute, P. Verbaeten, and K. U.

Leuven, "Components for non-functional requirements" presented at ECOOP 98:.

Workshop on component oriented programming, Brussels, Belgium, 1998.

[18] D. d. Judicibus, "Reuse: A cultural change," presented at International

workshop on systematic reuse, Liverpool, 1995.

[19] N. E. Fenton, Software metrics : a rigorous approach. London: Chapman &

Hall, 1991.

[20] J. S. Poulin, "Software Reuse: Been There, Done That," Communications of

the ACM, vol. 42, pp. 98-100, 1999.

[21] J. S. Poulin, Measuring Software Reuse: Principles, Practices and Economic

Models". Reading: Addison Wesley, 1997.

[22] J. S. Poulin, "Measuring software reusability" presented at Third International

conference on Software Reuse: Advances in Software Reusability, Rio de Janeiro,

Brazil, 1995.

[23] SEI, "Capability Maturity Model (SW-CMM) for Software": SEI, 2000.

[24] D. Lightfoot, Formal specification using Z: Macmillan, 1991.

[25] J. P. Bowen, Formal specification and documentation using Z: a case study

approach: International Thomson Computer press, 1996.

[26] J. A. Bergstra, J. Heering, and P. Klint, Algebraic spec(fications: Addison

Wesley, 1989.

[27] I. V. Horebreek, Algebraic specifications in software engineering: Springer,

1989.

133

[28] J. Samentinger, Software Engineering with Reusable components: Springer

Verlag, 1997.

[29] J. Bosch, "Superimposition: A component Adaptation Technique" WCOP 97,

1997.

[30] J. Neighbors, "An assessment of reuse technology after ten years" presented at

Third International conference on Software Reuse:Advances in Software Reusability,

Rio de Janeiro, Brazil, 1995.

[31] A. Brown and K. Wallnau, "The current state of CBSE," IEEE Software.

September/October, 1998.

[32] W. Tracz, "Domain-Specific Software Architecture (DSSA) Frequently Asked

Questions (FAQ)" Version 1.2 - ADAGE-IBM-93-12B ed: Lockheed Martin,

http://www.owego.com/dssa/faq/faq.html, 1995.

[33] V. Traas, "Software component reuse survey", http://vtraas.cjb.net/, 1999.

[34] V. Baggiolini and J. Harms, "Toward automatic, run-time fault management

for component-based applications", presented at WCOP 97, Finland, 1997.

[35] P. Henderson, "Modelling architectures for dynamic systems",

http://www .ecs.soton.ac.uk/~ph/papers, 1999.

[36] E. J. Ostertag, "A classification system for software reuse", PhD thesis,

Computer Science: University of Maryland, 1992.

[37] R. Prieto-Diaz, "Implementing faceted classification for software reuse",

Communications of the ACM, vol. 34, pp. 88-97, 1991.

[38] H. Mili, E. Ah-Ki, R. Godin, and H. Mcheick, "Another Nail to the Coffin of

Faceted Controlled-Vocabulary Component Classification and Retrieval", presented

at 1997 ACM Symposium on Software Reusability (SSR'97), Boston, MA, 1997.

[39] C. Nelson, "A forum for fitting the task," IEEE computer, vol. 27, 1994.

[40] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-oriented

software engineering, Addison-Wesley, 1996.

[41] W. Pree, Design patterns for object-oriented software development, Addison

Wesley, 1995.

[42] R. Mauth, "A better foundation", Byte, September, 1996.

[43] Taligent, "Building Object oriented frameworks", IBM:Taligent I IBM,

http://www. taligent.com/resources-list.html, 1998.

[44] M. Fayad and D. C. Schmidt, "Object-Oriented frameworks", Communcations

of the ACM, vol. 40, 1997.

134

[45] R. Johnson and B. Foote, "Designing reusable classes", Object-oriented

programming (SIGS), Vol. 1, pp. 22-35, 1988.

[46] M. Shaw and D. Garlan, Software Architecture: Perspectives on an emerging

discipline, Prentice-Hall, 1996.

[47] M. Shaw and D. Garlan, "An Introduction to Software Architecture", Advances

In Software Engineering, Vol. 1, 1993.

[48] C. Hofmann, E. Horn, W. Keller, K. Renzel, and M. Schmidt, "The field of

Software Architecture", Technische Universitat Munchen, Munchen TUM-19641,

November 7. 1997.

[49] P. Clements and L. Northrop, "Software Architecture: An executive overview",

Report on the reuse and product line working group of WISR8, CMU CMU/SEI-96-

TR-003, 1996.

[50] R. Richardson, "Components battling components", Byte, November, 1997.

[51] E. Mettala and M. H. Graham, "The Domain-Specific Software architecture

program", CMU CMU/SEI-92-SR-9, 1992.

[52] L. Coglianese, R. Smith, and W. Tracz, "DSSA Case Study: Navigation,

Guidance, and Flight Director Design and Development", presented at 1992 IEEE

Symposium on Computer Aided Control System Design, Napa CA, 1992.

[53] L. Martin, "Lockheed Martin STARS Reuse papers",

http:/ /www.asset.com/stars/lmOtds/Papers/ReusePapers.html , 1999.

[54] L. Martin, "Lockheed Martin ADAGE Documents",

http://www .owego.corn/dssa/ox -docs/ox -docs.html, 1999.

[55] P. Clements, "Report on the reuse and product line working group ofWISR8",

CMU CMU/SEI-97-SR-010, 1997.

[56] K. Czarnecki, "Leveraging Reuse Through Domain-Specific Software

Architectures", presented at Eighth Annual Workshop on Institutionalizing Software

Reuse, Ohio State University, 1997.

[57] B. Beizer, Software Testing Techniques, 2nd ed. New York: Van Nostrand

Reinhold, 1990.

[58] IEEE, Software engineering (AKA Software engineering standards), New

York, 1993.

[59] M. Grossman, "Component Testing", presented at ECOOP 98: Workshop on

component oriented programming, Brussels, Belgium, 1998.

135

[60] W. H. Deason, D. B. Brown, K.-H. Chang, and J. H. C. II, "A Rule-Based

Software Test Data Generator", IEEE Transactions on knowledge and data

engineering, vol. 3, pp. 108- 117, 1991.

[61] Aonix, "Validator/Req", http://www.aonix.com, 2000.

[62] M. Weiser, "Program slicing", IEEE Transactions on Software Engineering,

vol. (10)7, pp. 352-357, 1984.

[63] R. Rubinfeld, "Robust Functional Equations with Applications to Self

Testing/Correcting", TR 94-1435, July 1994.

[64] M. Blum, M. Luby, and R. Rubinfeld, "Self-testing/correcting with

applications to numerical problems", presented at 21st Annual ACM Symposium on

Theory of Computing, 1990.

[65] M. Wooldridge and N. R. Jennings, "Agent Theories, Architectures and

Languages: A Survey", presented at ECAI-94: Intelligent Agents: Workshop on

Agent Theories, Architectures and Languages, Amsterdam- The Netherlands, 1994.

[66] S. Franklin and A. Graesser, "Is it an Agent, or just a Program?: A Taxonomy

for Autonomous Agents", presented at Proceedings of the Third International

Workshop on Agent Theories, Architectures, and Languages, 1996.

[67] M. Wooldridge and N. R. Jennings, "Intelligent Agents: Theory and Practice",

Knowledge Engineering Review, vol. 10, 1995.

[68] F. Farhoodi and I. Graham, "A Practical Approach To Designing and Building

Intelligent Software Agents", presented at The Practical Application of Intelligent

Agents and Multi-Agent Technology, London, 1996.

[69] AgentsMailingList, "The agent's mailing list", edited by Tim Finin & Yannis

Labrou, http://www. csee. umbc.edu/ agentslist/, 1998.

[70] FIP A, "Federation for intelligent physical agents", http://www.fipa.org/, 2000.

[71] A. Caglayan, M. Snorrason, J. Jacoby, J. Mazzu, R. Jones, and C. R. Analytics,

"Lessons from Open Sesame!, a User Interface Learning Agent", presented at The

Practical Application of Intelligent Agents and Multi-Agent Technology, London,

1996.

[72] A. Chavez and P. Maes, "Kasbah: An Agent Marketplace for Buying and

Selling Goods", presented at The Practical Application of Intelligent Agents and

Multi-Agent Technology, London, 1996.

136

[73] K. Nygren, I.-M. Jonsson, and 0. Carlvik, "An Agent System for Media on

Demand Services", presented at The Practical Application of Intelligent Agents and

Multi-Agent Technology, London, 1996.

[74] C. Krogh, "The Rights of agents", Intelligent agents II, Lecture Notes in AI

Volume 1037, M. Wooldridge, J.P. Mueller, and M. Tambe, Eds.: Springer-Verlag,

1995.

[75] Y. Shoham, "Agent-oriented programming", Artificial Intelligence, vol. 60,

1993.

[76] UMBC, "UMBC Agent Web", http://agents.umbc.edu/, 2000.

[77] J. Ingham, "What is an Agent?", Research Institute for Software Evolution.,

Durham, UK #6/99, published 1999, (written 1997).

[78] Y. Labrou, "Semantics for an agent communication language", PhD thesis,

Computer science and electrical engineering. Baltimore: University of Maryland,

1996.

[79] S. Pearson, "Agent communication languages",

http://www-uk.hpl.hp .com/proj ects/viceroy/language.html, 2000.

[80] V. Singhal and D. Batory, "P++: A Language for Software System

Generators", University of Texas at Austin, Austin, Technical report tr-93-16, 1993.

[81] J. Bentley, "Little Languages", Communications of the ACM, vol. 29, 1986.

[82] M. P. Ward, "Language-Oriented Programming", Software-Concepts and

Tools, vol. 15, pp. 147-161, 1994.

[83] A. v. Deursen and P. Klint, "Little Languages: Little Maintenance?", CWI,

Amsterdam December 16 1996.

[84] D. Spinellis and V. Guruprasad, "Lightweight languages as software

engineering tools", presented at Conference on Domain-Specific languages, 1997.

[85] C. Rich and R. C. Waters, "Approaches to Automatic programming", Advances

in computers, vol. 37, pp. 1-57, 1993.

[86] J. M. Neighbors, "Software construction using components", in Information

and computer science. Irvine: California, 1980, pp. 82.

[87] J. A. Feldman, "Automatic Programming", Stanford University STAN-CS-72-

255, February 1972.

[88] J. M. Neighbors, "Draco user manual", University of California, Irvine TR-

156, 1908.

137

[89] R. M. Balzer, "A Global view of automatic programming", presented at Third

Joint conference on artificial intelligence, 1973.

[90] V. P. Singhal, "A programming language for writing Domain-Specific software

system generators", PhD thesis, Computer Science. Austin: University of Texas,

1996.

[91] P. Bucci, S. Edwards, J. Hollingsworth, J. Krone, T. Long, W. Ogden, M.

Sitaraman, S. Sreeratna, B. Weide, S. Zhupanov, and S. Zweben, "Special Feature :

Component-based software using RESOLVE", Software engineering notes, vol. 19,

1994.

[92] J. Ingham and M. Munro, "Applying a domain-specific language approach to

component oriented programming", presented at Workshop on component oriented

programming: ECOOP, Brussels, 1998.

[93] J. M. Stichnoth and T. Gross, "Code composition as an implementation

language for compilers", presented at Conference on Domain-Specific Languages,

1997.

[94] R. A. Mueller, "Automated· Microprogram Synthesis", in Computer Science,

Boulder: Colorado State University, 1980.

[95] D. Batory and B. J. Geraci, "Validating component compositions in software

system generators", presented at ICSR, Orlando, Florida, 1996.

[96] R. Orfali, D. Harkey, and J. Edwards, Instant COREA: John Wiley and Sons,

1997.

[97] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modelling Langauge

User Guide Addison-Wesley, 1998.

[98] R. Orfali and D. Harkey, Client/server programming with Java and COREA.

New York: Wiley Computer Pub, 1997.

[99] C. Szyperski, "Emerging Component Software Technologies: A Strategic

Comparison", Software Concepts and Tools, vol. 19, pp. 2-10, 1998.

[100] E. Friedman-Hill, "Java Expert Systems Shell (JESS)", vol. 1997: Sandia

National Laboratories, Livermore, 1997.

[101] J. J. Weygandt, D. E. Kieso, and W. G. Kell, Accounting Principles, 2nd ed:

John Wiley and Sons, 1990.

[1 02] R. Korfhage, "References on Visual Languages", vol. 2000: University of

Pittsburgh, 2000.

138

[103] M. H. Jarvis, "Foundation Logics: Reuse of languages," University Of

Durham, Durham (UK), Draft October 8th 1997.

139

ORIGINAL IN COLOUR

10. Appendix A
This section describes the DSL and underlying architectural design assumptions

which were created in order to develop the Accounting Domain DSL. This domain

contains abstract constructs with and without state. The level of detail is aimed at

describing the DSL and issues in sufficient detail to allow further discussion in

chapter 7.

The DSL is structured on a compositional parameterised model. Component

compositions can be a single component call, a sequence of component calls or a

hierarchy of component calls, as illustrated in Figure 10: 1

A hierarchichal component structure

A sequential component call

Figure 10:1

The DSL was designed in order to express the needs of its target user in simple

terminology. However the user would not be usually expected to write their

requirements in the native representation format. This should be used for system-

140

level communication. Typically, the user manipulates the constructs using a GUI.

A rudimentary DSL GUI was developed during this research for this DSL. Some

screen-shots of the GUI are present in chapter 6.

As previously stated, the DSL is developed with the notion of the sort of jobs the

user needs to perform and the perspective the user is likely to view the problem

from. The target user for this DSL is someone whose responsibilities are as

follows:

• To add new records

• To delete records

e To alter records

• To obtain lists of records, manipulate them and provide totals

To re-iterate the problem domain for this DSL 1s kept artificially simple for

experimental and pedagogical purposes.

The location of the data stored is of particular importance for this DSL. That is to

say when something is stored or retrieved, there is a concept of where the data is

stored.

10.1 Types on the system

10.1.1 String

Based on the underlying representation in CORBA. The string is a text field which

can be used to represent a number of different items of data (e.g. name, address).

The string has no maximum length.

10.1.2 Bool

A True/False value, based upon the underlying representation of boolean m

CORBA.

141

10.1.3 lnt

A numerical integer value, based upon the underlying representation of long in

CORBA.

10.1.4 Real

A numerical value, based upon the underlying representation of float in CORBA.

10.1.5 Data

A record of the information stored in the accountancy database.

1 0.1.5.1 CompanyName

Abstract type CompanyNameType (currently represented as String).

A representation of the name of the company about whom the information has been

stored.

1 0.1.5.2 Company Address

Abstract type CompanyAddressType (currently represented as String).

A representation of the address of the company about whom the information has

been stored.

10.1.5.3 OrderNo

Abstract Type OrderNoType (currently represented as lot).

A representation of the Order Number by which this entry account IS to be

considered. OrderNo must be unique.

1 0.1.5.4 AmountOwed

Abstract Type AmountOwedType (currently represented as a Real).

A representation of the amount owed by the company.

1 0.1.5.5 Date

Abstract Type DateType (currently represented as String).

A representation of the data when the order was made.

142

1 0.1.6 List

The list is the representation of a sequence of Data entries.

In addition to the types described, the following operations are defined for this

domain:

10.2 Operations in the system

In the prototype implementation of this DSL only one WBT operation is permitted

per construct.

10.2.1 Add

1 0.2.1.1 Informal description

Adds a new entry to the database.

The Order No of the data must not already be present in the Database.

1 0.2.1.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 Data to be added(Data)- The data which is to be added to the database

1 0.2.1.3 Returns

Initially there was no return type associated with this operation. This was changed

to a Bool return value as there must be a way of expressing not being able to add a

component without the underlying component implementation being blamed.

1 0.2.1.4 WBT

This returns the abstract number of records in the database. That is to say if there

have been 8 successful Add operations then the WBT should return 8. This is

represented as Int.

143

1 0.2.2 UpdateAmountOwedOnOrderNo

1 0.2.2.1 Informal description

Updates the Amount owed field of the database entry with the same OrderNo as

passed as an argument in this construct.

1 0.2.2.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 OrderNo (Int) ~The order number of the account to be updated.

#3 Amount (Real) - The amount by which the value should be changed.

1 0.2.2.3 Returns

Bool return value to express the concept of whether the record has been updated,

i.e. is the data in the database and hence can it be updated.

1 0.2.2.4 WBT

This returns the amount owed in the record which contains the correct order

number.

The WBT can return any value if the record does not exist.

1 0.2.3 UpdateNameOnOrderNo

1 0.2.3.1 Informal description

Updates the Company name field of the database entry with the same OrderNo as

passed as an argument in this construct.

1 0.2.3.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 OrderNo (Int)- The order number of the account to be updated.

#3 CompanyName (String)- The new company name of the account to be updated.

1 0.2.3.3 Returns

Bool return value to express the concept of whether the record has been updated,

i.e. is the data in the database and hence can it be updated.

144

1 0.2.3.4 WBT

This returns the company name in the record which contains the correct order

number.

The WBT can return any value if the record does not exist.

1 0.2.4 UpdateAddressOnOrderNo

1 0.2.4.1 ~nformal description

Updates the Company address field of the database entry with the same OrderNo

as passed as an argument in this construct.

1 0.2.4.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 OrderNo (Int)- The order number of the account to be updated.

#3 CompanyAddress (String) - The new company address of the account to be

updated.

1 0.2.4.3 Returns

Bool return value to express the concept of whether the record has been updated,

i.e. is the data in the database and hence can it be updated.

1 0.2.4.4 WBT

This returns the company address in the record which contains the correct order

number.

The WBT can return any value if the record does not exist.

1 0.2.5 UpdateDateOnOrderNo

1 0.2.5.1 Informal description

Updates the Company address field of the database entry with the same OrderNo

as passed as an argument in this construct.

1 0.2.5.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

145

#2 OrderNo (Int)- The order number of the account to be updated.

#3 Date (String) -The new date of the account to be updated.

1 0.2.5.3 Returns

Bool return value to express the concept of whether the record has been updated,

i.e. is the data in the database and hence can it be updated.

1 0.2.5.4 WBT

This returns the date in the record which contains the correct order number.

The WBT can return any value if the record does not exist.

1 0.2.6 RemoveOnOrderNo

1 0.2.6.1 Informal description

Removes the database entry with the same OrderNo as passed as an argument in

this construct.

1 0.2.6.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 OrderNo (Int)- The order number of the account to be removed.

1 0.2.6.3 Returns

Bool return value to express the concept of whether the record has been updated,

i.e. is the data in the database and hence can it be updated.

1 0.2.6.4 WBT

This returns the abstract number of records in the database. That is to say if there

have been 8 successful Add operations and 3 successful remove operations then the

WBT should return 5. This is represented as Int.

146

1 0.2. 7 GetAIIWith Date

10.2.7.1 Informal description

This returns a list of all the data entries which have the same date as passed as a

parameter

1 0.2. 7.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 Date (String) - The date of the accounts to be obtained.

10.2.7.3 Returns

List return value to express the records which fulfil the criteria.

10.2.7.4 WBT

There is no WBT for this construct.

1 0.2.8 GetAIIWithDateBefore

1 0.2.8.1 Informal description

This returns a list of all the data entries whose date is before the date passed as a

parameter

1 0.2.8.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 Date (String)- The date of the accounts to be obtained.

1 0.2.8.3 Returns

List return value to express the records which fulfil the criteria.

1 0.2.8.4 WBT

There is no WBT for this construct.

147

1 0.2.9 GetAIIWithDateAfter

1 0.2.9.1 Informal description

This returns a list of all the data entries whose date is after the date passed as a

parameter

1 0.2.9.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 Date (String) - The date of the accounts to be obtained.

1 0.2.9.3 Returns

List return value to express the records which fulfil the criteria.

1 0.2.9.4 WBT

There is no WBT for this construct.

1 0.2.1 0 GetAIIWithCompanyName

1 0.2.1 0.1 Informal description

This returns a list of all the data entries who have the same company name as the

name passed as a parameter

1 0.2.1 0.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 CompanyName (String)- the name of the company by which to retrieve data.

1 0.2.1 0.3 Returns

List return value to express the records which fulfil the criteria.

10.2.10.4 WBT

There is no WBT for this construct.

148

10.2.11 GetAIIWithCompanyAddress

1 0.2.11.1 Informal description

This returns a list of all the data entries who have the same company address as the

name passed as a parameter

1 0.2.11.2 Parameters

#1 Storename (String) -The name of the location the component is to be stored.

#2 CompanyAddress(String) - the address of the company by which to retrieve

data.

1 0.2.11.3 Returns

List return value to express the records which fulfil the criteria.

10.2.11.4 WBT

There is no WBT for this construct.

10.2.12 SUimlists

1 0.2.12.1 Informal description

This operation sums the amount owed by each element of data in the list.

1 0.2.12.2 Parameters

#1 theList (oftype List)- The list of data to be summed

1 0.2.12.3 Returns

Real - The sum of the amount owed field of every record in the list.

1 0.2.12.4 WBT

There is no WBT for this construct.

149

10.2.13 Add lists

1 0.2.13.1 Informal description

This operation joins two lists of data.

Duplicate entries or OrderNos are permissible in the resulting list.

sums the amount owed by each element of data in the list.

1 0.2.13.2 Parameters

#1 ListA (of type List)- a list of data

#2 ListB (of type List) - a list of data

10.2.13.3 Returns

List - A list containing all the records in ListA and ListB. If ListA and ListB share

common elements, then they will appear twice.

1 0.2.13.4 WBT

There is no WBT for this construct.

10.2.14 Subtractlist2Fromlist1

10.2.14.1 Informal description

All of the elements which appear in the returned list must appear in List 1.

If an element appears in Listl and List2 then it should not appear in the returned

list.

10.2.14.2 Parameters

#1 ListA (of type List)- a list of data

#2 ListB (of type List) - a list of data

10.2.14.3 Returns

List- A list containing all the records in ListA unless they appear in ListB.

10.2.14.4 WBT

There is no WBT for this construct.

150

