2,039 research outputs found

    A macro- and micro-evolutionary investigation of African Camponotus ants

    Get PDF
    Bibliography: leaves 213-233.Camponotus than the cytochrome oxidase II gene, based on almost all measures of phylogenetic utility. The primary hypothesis proposed to account for this observation is that these two mitochondrial genes are evolving under different evolutionary constraints. Specifically, the cytochrome oxidase II gene displays greater rate heterogeneity than the cytochrome b gene, thereby decreasing its utility for phylogenetic analyses. Combining sequence data from both genes resulted in more robust phylogenetic hypotheses, with the combined topologies displaying greater congruence with the cytochrome b topologies than those based on cytochrome oxidase II sequence data. The morphological data produced a topology that was congruent with that obtained from molecular data, and provided increased support for certain nodes in the context of a combined molecular-morphological framework. The hypothesis that subgeneric classifications within Camponotus do not accurately reflect phylogenetic relationships was supported by the molecular phylogenies. An exception to this hypothesis was the monophyly of the subgenus Myrmosericus, based on cytochrome b data. The morphological and behavioural data provided support for a monophyletic group comprising the four species assigned to the subgenus Myrmopiromis. However, although these four species associated together in a group based on combined cytochrome oxidase II and cytochrome b sequences, this group was paraphyletic in the combined molecular topology, with two species in subgenus Myrmopsamma also falling within this group

    The evolution of social traits and biodiversity in the ants.

    Get PDF
    Cooperation has shaped the evolution of life on Earth. The ants are the most numerically diverse of the eusocial Hymenoptera, and display wide variation in social complexity. This positions the ants as an ideal taxon in which to study social evolution in a comparative framework. Social evolution theory has generated many hypotheses that are testable in ants, however the lack of comprehensive or complete phylogenies, and the decentralised and scattered nature of trait data, has been an obstacle to these types of study. In this thesis I construct a large species-level, and a complete genus-level, phylogeny of the ants, and draw together a large dataset of social traits from the literature in order to test hypotheses concerning the evolution of social traits in the ants. I find evidence that the earliest ant was large bodied, and lived in small highly related colonies. I show that group size is a significant trait in the evolution of sociality in ants, predicting the probability of a species having polymorphic workers, or of being polyandrous. I also show that the change in these traits is correlated between ancestral nodes on the phylogeny. Furthermore, in the Attini, colony size correlates closely with non-reproductive and reproductive division of labour. Together these results cement group size as a driving force of social evolution in the ants, and this has interesting implications for social evolution in general. Finally, I report the first evidence that intermediate colony sizes, the presence of discrete worker castes and polygyny are associated with increased diversification rates in ants. This thesis provides a valuable tool for the study of comparative hypotheses in the ants in the form of a complete genus-level phylogeny, and offers significant evidence to support several key hypotheses in social evolution. Furthermore, these results generate hypotheses regarding the evolution of social traits for future research

    A DNA and morphology based phylogenetic framework of the ant genus Lasius with hypotheses for the evolution of social parasitism and fungiculture

    Get PDF
    Background: Ants of the genus Lasius are ecologically important and an important system for evolutionary research. Progress in evolutionary research has been hindered by the lack of a well-founded phylogeny of the subgenera, with three previous attempts disagreeing. Here we employed two mitochondrial genes (cytochrome c oxidase subunit I, 16S ribosomal RNA), comprising 1,265 bp, together with 64 morphological characters, to recover the phylogeny of Lasius by Bayesian and Maximum Parsimony inference after exploration of potential causes of phylogenetic distortion. We use the resulting framework to infer evolutionary pathways for social parasitism and fungiculture.\ud \ud Results: We recovered two well supported major lineages. One includes Acanthomyops, Austrolasius, Chthonolasius, and Lasius pallitarsis, which we confirm to represent a seventh subgenus, the other clade contains Dendrolasius, and Lasius sensu stricto. The subgenus Cautolasius, displaying neither social parasitism nor fungiculture, probably belongs to the second clade, but its phylogenetic position is not resolved at the cutoff values of node support we apply. Possible causes for previous problems with reconstructing the Lasius phylogeny include use of other reconstruction techniques, possibly more prone to instabilities in some instances, and the inclusion of phylogenetically distorting characters.\ud \ud Conclusion: By establishing an updated phylogenetic framework, our study provides the basis for a later formal taxonomic revision of subgenera and for studying the evolution of various ecologically and sociobiologically relevant traits of Lasius, although there is need for future studies to include nuclear genes and additional samples from the Nearctic. Both social parasitism and fungiculture evolved twice in Lasius, once in each major lineage, which opens up new opportunities for comparative analyses. The repeated evolution of social parasitism has been established for other groups of ants, though not for temporary social parasitism as found in Lasius. For fungiculture, the independent emergence twice in a monophyletic group marks a novel scenario in ants. We present alternative hypotheses for the evolution of both traits, with one of each involving loss of the trait. Though less likely for both traits than later evolution without reversal, we consider reversal as sufficiently plausible to merit independent testing

    On the role of metaheuristic optimization in bioinformatics

    Get PDF
    Metaheuristic algorithms are employed to solve complex and large-scale optimization problems in many different fields, from transportation and smart cities to finance. This paper discusses how metaheuristic algorithms are being applied to solve different optimization problems in the area of bioinformatics. While the text provides references to many optimization problems in the area, it focuses on those that have attracted more interest from the optimization community. Among the problems analyzed, the paper discusses in more detail the molecular docking problem, the protein structure prediction, phylogenetic inference, and different string problems. In addition, references to other relevant optimization problems are also given, including those related to medical imaging or gene selection for classification. From the previous analysis, the paper generates insights on research opportunities for the Operations Research and Computer Science communities in the field of bioinformatics

    Evolution of thorax architecture in ant castes highlights trade-off between flight and ground behaviors

    Get PDF
    The concerted evolution of morphological and behavioral specializations has compelling examples in ant castes. Unique to ants is a marked divergence between winged queens and wingless workers, but morphological specializations for behaviors on the ground have been overlooked. We analyzed thorax morphology of queens and workers in species from 21 of the 25 ant subfamilies. We uncovered unique skeletomuscular modifications in workers that presumably increase power and flexibility of head-thorax articulation, emphasizing that workers are not simply wingless versions of queens. We also identified two distinct types of queens and showed repeated evolutionary associations with strategies of colony foundation. Solitary founding queens that hunt have a more worker-like thorax. Our results reveal that ants invest in the relative size of thorax segments according to their tasks. Versatility of head movements allows for better manipulation of food and objects, which arguably contributed to the ants' ecological and evolutionary success. DOI: http://dx.doi.org/10.7554/eLife.01539.001.FCT fellowship: (SFRH/BPD/65529/2009), Oeiras Municipality Installation Grant

    One nutritional symbiosis begat another : Phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects

    Get PDF
    © 2009 The Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Evolutionary Biology 9 (2009): 292, doi:10.1186/1471-2148-9-292.Bacterial endosymbiosis has a recurring significance in the evolution of insects. An estimated 10-20% of insect species depend on bacterial associates for their nutrition and reproductive viability. Members of the ant tribe Camponotini, the focus of this study, possess a stable, intracellular bacterial mutualist. The bacterium, Blochmannia, was first discovered in Camponotus and has since been documented in a distinct subgenus of Camponotus, Colobopsis, and in the related genus Polyrhachis. However, the distribution of Blochmannia throughout the Camponotini remains in question. Documenting the true host range of this bacterial mutualist is an important first step toward understanding the various ecological contexts in which it has evolved, and toward identifying its closest bacterial relatives. In this study, we performed a molecular screen, based on PCR amplification of 16S rDNA, to identify bacterial associates of diverse Camponotini species. Phylogenetic analyses of 16S rDNA gave four important insights: (i) Blochmannia occurs in a broad range of Camponotini genera including Calomyrmex, Echinopla, and Opisthopsis, and did not occur in outgroups related to this tribe (e.g., Notostigma). This suggests that the mutualism originated in the ancestor of the tribe Camponotini. (ii) The known bacteriocyte-associated symbionts of ants, in Formica, Plagiolepis, and the Camponotini, arose independently. (iii) Blochmannia is nestled within a diverse clade of endosymbionts of sap-feeding hemipteran insects, such as mealybugs, aphids, and psyllids. In our analyses, a group of secondary symbionts of mealybugs are the closest relatives of Blochmannia. (iv) Blochmannia has cospeciated with its known hosts, although deep divergences at the genus level remain uncertain. The Blochmannia mutualism occurs in Calomyrmex, Echinopla, and Opisthopsis, in addition to Camponotus, and probably originated in the ancestral lineage leading to the Camponotini. This significant expansion of its known host range implies that the mutualism is more ancient and ecologically diverse than previously documented. Blochmannia is most closely related to endosymbionts of sap-feeding hemipterans, which ants tend for their carbohydrate-rich honeydew. Based on phylogenetic results, we propose Camponotini might have originally acquired this bacterial mutualist through a nutritional symbiosis with other insects.Funding for this research was provided by grants from the NSF (MCB-0604177) and NIH (R01GM062626) to JJW, and from the NSF-supported Ant AToL project (EF-0431330) to PSW and SGB

    Comparative transcriptomics reveals the conserved building blocks involved in parallel evolution of diverse phenotypic traits in ants

    Get PDF
    Background: Reproductive division of labor in eusocial insects is a striking example of a shared genetic background giving rise to alternative phenotypes, namely queen and worker castes. Queen and worker phenotypes play major roles in the evolution of eusocial insects. Their behavior, morphology and physiology underpin many ecologically relevant colony-level traits, which evolved in parallel in multiple species. Results: Using queen and worker transcriptomic data from 16 ant species we tested the hypothesis that conserved sets of genes are involved in ant reproductive division of labor. We further hypothesized that such sets of genes should also be involved in the parallel evolution of other key traits. We applied weighted gene co-expression network analysis, which clusters co-expressed genes into modules, whose expression levels can be summarized by their 'eigengenes'. Eigengenes of most modules were correlated with phenotypic differentiation between queens and workers. Furthermore, eigengenes of some modules were correlated with repeated evolution of key phenotypes such as complete worker sterility, the number of queens per colony, and even invasiveness. Finally, connectivity and expression levels of genes within the co-expressed network were strongly associated with the strength of selection. Although caste-associated sets of genes evolve faster than non-caste-associated, we found no evidence for queen-or worker-associated co-expressed genes evolving faster than one another. Conclusions: These results identify conserved functionally important genomic units that likely serve as building blocks of phenotypic innovation, and allow the remarkable breadth of parallel evolution seen in ants, and possibly other eusocial insects as well.Peer reviewe

    A Mesozoic Clown Beetle Myrmecophile (Coleoptera: Histeridae)

    Get PDF
    Complex interspecies relationships are widespread among metazoans, but the evolutionary history of these lifestyles is poorly understood. We describe a fossil beetle in 99-million-year-old Burmese amber that we infer to have been a social impostor of the earliest-known ant colonies. Promyrmister kistneri gen. et sp. nov. belongs to the haeteriine clown beetles (Coleoptera: Histeridae), a major clade of ‘myrmecophiles’—specialized nest intruders with dramatic anatomical, chemical and behavioral adaptations for colony infiltration. Promyrmister reveals that myrmecophiles evolved close to the emergence of ant eusociality, in colonies of stem-group ants that predominate Burmese amber, or with cryptic crown-group ants that remain largely unknown at this time. The clown beetle-ant relationship has been maintained ever since by the beetles host-switching to numerous modern ant genera, ultimately diversifying into one of the largest radiations of symbiotic animals. We infer that obligate behavioral symbioses can evolve relatively rapidly, and be sustained over deep time

    Proximate and Ultimate Mechanisms of Nestmate Recognition in Ants

    Get PDF
    abstract: The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.Dissertation/ThesisDoctoral Dissertation Biology 201
    corecore