301 research outputs found

    Methods to Support the Project Selection Problem With Non-Linear Portfolio Objectives, Time Sensitive Objectives, Time Sensitive Resource Constraints, and Modeling Inadequacies

    Get PDF
    The United States Air Force relies upon information production activities to gain insight regarding uncertainties affecting important system configuration and in-mission task execution decisions. Constrained resources that prevent the fulfillment of every information production request, multiple information requestors holding different temporal-sensitive objectives, non-constant marginal value preferences, and information-product aging factors that affect the value-of-information complicate the management of these activities. This dissertation reviews project selection research related to these issues and presents novel methods to address these complications. Quantitative experimentation results demonstrate these methods’ significance

    Multiobjective Planning and Design of Distributed Stormwater Harvesting and Treatment Systems through Optimization and Visual Analytics

    Get PDF
    Stormwater harvesting (SWH) is an important water sensitive urban design (WSUD) approach that provides an alternate water source and/or improves runoff quality through stormwater best management practice technologies (BMPs). Through integrated SWH system design at the development scale practitioners must account for trade-offs between cost, harvested volume, and water quality improvement performance which are usually dependent on design decisions for the type, size, and spatial distribution of BMPs. In catchment management planning, additional objectives such as catchment vegetation improvement and public recreation benefit need to be maximized for a catchment region within a limited budget. As such, planning and design of SWH systems with distributed BMPs is a complex problem that requires optimal allocation of limited resources to maximize multiple benefits. In this thesis, two innovative formal optimization approaches are presented for formulating and identifying optimal solutions to problems requiring distributed BMPs. Firstly, a multiobjective optimization framework is presented and applied to a case study for the conceptual design of integrated systems of BMPs for stormwater harvesting. The aim of this work is to develop a conceptual design modelling framework that handles the optimal placement of stormwater harvesting (SWH) infrastructure within an urban development. The framework produces preliminary SWH system designs representing optimal trade-offs between cost, water harvesting, and water quality improvement measures. Secondly, a many (>3) -objective optimization framework is presented and applied to a case study for catchment planning requiring the selection of a portfolio of distributed BMP projects. The framework produces portfolios that are optimal with respect to four objectives, and enables exploration of the many-objective trade-off surface using interactive visual analytics. In addition, a multi-stakeholder method is presented, which enables catchment managers and local government authorities to identify solutions that represent a compromise between 16 objectives and eight optimization problem representations using interactive visual analytics to encourage a negotiated solution. This thesis contains one paper accepted in the Journal of Water Resources Planning and Management (Paper 1), and one paper submitted (Paper 2), and one paper to be submitted (Paper 3) to peer-reviewed journals in the field of water resources management.Thesis (Ph.D.) -- University of Adelaide, School of Civil, Environmental & Mining Engineering, 201

    Matheuristic algorithms for solving multi-objective/stochastic scheduling and routing problems

    Get PDF
    In der Praxis beinhalten Optimierungsprobleme oft unterschiedliche Ziele, welche optimiert werden sollen. Oft ist es nicht möglich die Ziele zu einem einzelnen Ziel zusammenzufassen. Mehrzieloptimierung beschäftigt sich damit, solche Probleme zu lösen. Wie in der Einzieloptimierung muss eine Lösung alle Nebenbedingungen des Problems erfüllen. Im Allgemeinen sind die Ziele konfligierend, sodass es nicht möglich ist eine einzelne Lösung zu finden welche optimal im Sinne aller Ziele ist. Algorithmen zum Lösen von Mehrziel-Optimierungsproblemen, präsentieren dem Entscheider eine Menge von effizienten Alternativen. Effizienz in der Mehrzieloptimierung ist als Pareto-Optimalität ausgedrückt. Eine Lösung eines Optimierungsproblems ist genau dann Pareto-optimal wenn es keine andere zulässige Lösung gibt, welche in allen Zielen mindestens gleich gut wie die betrachtete Lösung ist und besser in mindestens einem Ziel. In dieser Arbeit werden Mehrziel-Optimierungsprobleme aus zwei unterschiedlichen Anwendungsgebieten betrachtet. Das erste Problem, das Multi-objective Project Selection, Scheduling and Staffing with Learning Problem (MPSSSL), entstammt dem Management in forschungsorientierten Organisationen. Die Entscheider in solchen Organisationen stehen vor der Frage welche Projekte sie aus einer Menge von Projektanträgen auswählen sollen, und wie diese Teilmenge von Projekten (ein Projektportfolio) mit den benötigten Ressourcen ausgestattet werden kann (dies beinhaltet die zeitliche und personelle Planung). Aus unterschiedlichen Gründen ist dieses Problem schwer zu lösen, z.B. (i) die Auswahl von Projekten unter Beachtung der beschränkten Ressourcen ist ein Rucksackproblem (und ist damit NP-schwer) (ii) ob ein Projektportfolio zulässig ist oder nicht hängt davon ab ob, man dafür einen Zeitplan erstellen kann und genügend Mitarbeiter zur Verfügung stehen. Da in diesem Problem die Mitarbeiterzuordnung zu den einzelnen Projekten einbezogen wird, muss der Entscheider Ziele unterschiedlicher Art berücksichtigen. Manche Ziele sind ökonomischer Natur, z.B. die Rendite, andere wiederum beziehen sich auf die Kompetenzentwicklung der einzelnen Mitarbeiter. Ziele, die sich auf die Kompetenzentwicklung beziehen, sollen sicherstellen, dass das Unternehmen auch in Zukunft am Markt bestehen kann. Im Allgemeinen können diese unterschiedlichen Ziele nicht zu einem einzigen Ziel zusammengefasst werden. Daher werden Methoden zur Lösung von Mehrziel-Optimierungsproblemen benötigt. Um MPSSSL Probleme zu lösen werden in dieser Arbeit zwei unterschiedliche hybride Algorithmen betrachtet. Beide kombinieren nämlich Metaheuristiken (i) den Nondominated Sorting Genetic (NSGA-II) Algorithmus, und den (ii)~Pareto Ant Colony (P-ACO) Algorithmus, mit einem exakten Algorithmus zum Lösen von Linearen Programmen kombinieren. Unsicherheit ist ein weiterer wichtiger Aspekt der in der Praxis auftaucht. Unterschiedliche Parameter des Problems können unsicher sein (z.B. der aus einem Projekt erzielte Gewinn oder die Zeit bzw. der Aufwand, der benötigt wird, um die einzelnen Vorgänge eines Projekts abzuschließen). Um in diesem Fall das ``beste'' Projektportfolio zu finden, werden Methoden benötigt, welche stochastische Mehrziel-Optimierungsprobleme lösen können. Zur Lösung der stochastischen Erweiterung (SMPSSSL) des MPSSSL Problems zu lösen, präsentieren wir eine Methode, die den zuvor genannten hybriden NSGA-II Algorithmus mit dem Adaptive Pareto Sampling (APS) Algorithmus kombiniert. APS wird verwendet, um das Zusammenspiel von Simulation und Optimierung zu koordinieren. Zur Steigerung der Performance des Simulationsprozesses, verwenden wir Importance Sampling (IS). Das zweite Problem dieser Arbeit, das Bi-Objective Capacitated Vehicle Routing Problem with Route Balancing (CVRPB), kommt aus dem Bereich Logistik. Wenn man eine Menge von Kunden zu beliefern hat, steht man als Entscheider vor der Frage, wie man die Routen für eine fixe Anzahl von Fahrzeugen (mit beschränkter Kapazität) bestimmt, sodass alle Kunden beliefert werden können. Die Routen aller Fahrzeuge starten und enden dabei immer bei einem Depot. Die Einziel-Variante dieses Problems ist als Capacitated Vehicle Routing Problem (CVRP) bekannt, dessen Ziel es ist die Lösung zu finden, die die Gesamtkosten aller Routen minimiert. Dabei tritt jedoch das Problem auf, dass die Routen der optimalen Lösung sehr unterschiedliche Fahrtzeiten haben können. Unter bestimmten Umständen ist dies jedoch nicht erwünscht. Um dieses Problem zu umgehen, betrachten wir in dieser Arbeit eine Variante des (bezeichnet als CVRPB) CVRP, welche als zweite Zielfunktion die Balanziertheit der einzelnen Routen einbezieht. Zur Lösung von CVRPB Problemen verwenden wir die Adaptive Epsilon-Constraint Method in Kombination mit einem Branch-and-Cut Algorithmus und zwei unterschiedlichen Genetischen Algorithmen (GA), (i) einem Einziel-GA und (ii) dem NSGA-II. In dieser Arbeit werden Optimierungsalgorithmen präsentiert, welche es erlauben, Mehrziel- und stochastische Mehrziel-Optimierungsprobleme zu lösen. Unterschiedliche Algorithmen wurden implementiert und basierend auf aktuellen Performance-Maßen verglichen. Experimente haben gezeigt, dass die entwickelten Methoden gut geeignet sind, die betrachteten Optimierungsprobleme zu lösen. Die hybriden Algorithmen, welche Metaheuristiken mit exakten Methoden kombinieren, waren entweder ausschlaggebend um das Problem zu lösen (im Fall des Project Portfolio Selection Problems) oder konnten die Performance des Lösungsprozesses signifikant verbessern (im Fall des Vehicle Routing Problems).In practice decision problems often include different goals which can hardly be aggregated to a single objective for different reasons. In the field of multi-objective optimization several objective functions are considered. As in single objective optimization a solution has to satisfy all constraints of the problem. In general the goals are conflicting and there will be no solution, that is optimal for all objectives. Algorithms for multi-objective optimization problems provide the decision maker a set of efficient solutions, among which she or he can choose the most suitable alternative. In multi-objective optimization efficiency of a solution is expressed as Pareto-optimality. Pareto-optimality of a solution is defined as the property that no other solution exists that is better than the proposed one in at least one objective and at least equally good in all criteria. The first application that is considered in this thesis, the Multi-objective Project Selection, Scheduling and Staffing with Learning problem (MPSSSL) arises from the field of management in research-centered organizations. Given a set of project proposals the decision makers have to select the ``best'' subset of projects (a project portfolio) and set these up properly (schedule them and provide the necessary resources). This problem is hard to solve for different reasons: (i) selecting a subset of projects considering limited resources is a knapsack-type problem that is known to be NP-hard, and (ii) to determine the feasibility of a given portfolio, the projects have to be scheduled and staff must be assigned to them. As in this problem the assignment of workers is influenced by the decision which portfolio should be selected, the decision maker has to consider goals of different nature. Some objectives are related to economic goals (e.g. return of investment), others are related to the competence development of the workers. Competence oriented goals are motivated by the fact that competencies determine the attainment and sustainability of strategic positions in market competition. In general the objectives cannot be combined to a single objective, therefore methods for solving multi-objective optimization problems are used. To solve the problem we use two different hybrid algorithms that combine metaheuristic algorithms, (i) the Nondominated Sorting Genetic Algorithm (NSGA-II), and (ii) Pareto Ant Colony (P-ACO) algorithm with a linear programming solver as a subordinate. In practice, uncertainty is another typically encountered aspect. Different parameters of the problem can be uncertain (e.g. benefits of a project, or the time and effort required to perform the single activities required by a project). To determine the ``best'' portfolio, methods are needed that are able to handle uncertainty in optimization. To solve the stochastic extension (SMPSSSL) of the MPSSSL problem we present an algorithm that combines the aforementioned NSGA-II algorithm with the Adaptive Pareto Sampling (APS) algorithm. APS is used to handle the interplay between multi-objective optimization and simulation. The performance of the simulation process is increased by using importance sampling (IS). The second problem, the Bi-objective Capacitated Vehicle Routing Problem with Route Balancing (CVRPB) arises from the field of vehicle routing. Given a set of customers, the decision makers have to construct routes for a fixed number of vehicles, each starting and ending at the same depot, such that the demands of all customers can be fulfilled, and the capacity constraints of each vehicle are not violated. The traditional objective of this problem (known as the Capacitated Vehicle Routing Problem (CVRP)) is minimizing the total costs of all routes. A problem that may arise by this approach is that the resulting routes can be very unbalanced (in the sense of drivers workload). To overcome this problem a second objective function that measures the balance of the routes of a solution is introduced. In this work, we use the Adaptive Epsilon-Constraint Method in combination with a branch-and-cut algorithm and two genetic algorithms (i) a single-objective GA and (ii) the multi-objective NSGA-II, to solve the considered problem. Prototypes of different algorithms to solve the problems are developed and their performance is assessed by using state of the art performance measures. The computational experiments show that the developed solution procedures will be well suited to solve the considered optimization problems. The hybrid algorithms combining metaheuristic and exact optimization methods, turned out to be crucial to solve the problem (application to project portfolio selection) or to improve the performance of the solution procedure (application to vehicle routing)

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    Numerical and Evolutionary Optimization 2020

    Get PDF
    This book was established after the 8th International Workshop on Numerical and Evolutionary Optimization (NEO), representing a collection of papers on the intersection of the two research areas covered at this workshop: numerical optimization and evolutionary search techniques. While focusing on the design of fast and reliable methods lying across these two paradigms, the resulting techniques are strongly applicable to a broad class of real-world problems, such as pattern recognition, routing, energy, lines of production, prediction, and modeling, among others. This volume is intended to serve as a useful reference for mathematicians, engineers, and computer scientists to explore current issues and solutions emerging from these mathematical and computational methods and their applications

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    A FRAMEWORK FOR STRATEGIC PROJECT ANALYSIS AND PRIORITIZATION

    Get PDF
    Projects that support the long-term strategic intent and alignment are considered strategic projects. Therefore, these projects must consider their alignment with the organization’s current strategy and focus on the risk, organizational capability, resources availability, political influence, and socio-cultural factors. Quantitative and qualitative methods prioritize the projects; however, they are usually suitable for specific industries. Although prioritization models are used in the private sector, the same in the public sector is not widely seen in the literature. The lack of models in the public sector has happened because of the projects’ social implications, the value perception of different projects in the public sector, and potentially differing value perceptions attached to the types of projects in different decision-making environments in the public sector. The thesis proposes a generic framework to develop a priority list of the available basket of projects and decide on projects for the next undertaking. The focus of the thesis is on public projects. The analysis in the framework considers the critical factors for prioritization obtained from the literature clustered through the agglomerative text clustering technique. In the proposed framework, 13 critical clusters are identified and weighted using the Criteria Importance Through Intercriteria Correlation (CRITIC) method to develop their ranking using the Technique for Order of Preference Similarity Ideal Solution (TOPSIS) method. In addition, the proposed framework uses vector weighting to prioritize projects across industries. The applicability of the framework is demonstrated through Qatar’s real estate and transportation projects. The outcome obtained from the framework is compared with those obtained through the experts using the System Usability Scale (SUS). The comparison shows that the framework provides good predictability of the projects for implementation

    Operations Management

    Get PDF
    Global competition has caused fundamental changes in the competitive environment of the manufacturing and service industries. Firms should develop strategic objectives that, upon achievement, result in a competitive advantage in the market place. The forces of globalization on one hand and rapidly growing marketing opportunities overseas, especially in emerging economies on the other, have led to the expansion of operations on a global scale. The book aims to cover the main topics characterizing operations management including both strategic issues and practical applications. A global environmental business including both manufacturing and services is analyzed. The book contains original research and application chapters from different perspectives. It is enriched through the analyses of case studies
    corecore