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Abstract 

 
Stormwater harvesting (SWH) is an important water sensitive urban design (WSUD) 

approach that provides an alternate water source and/or improves runoff quality through 

stormwater best management practice technologies (BMPs).   

Through integrated SWH system design at the development scale practitioners must 

account for trade-offs between cost, harvested volume, and water quality improvement 

performance which are usually dependent on design decisions for the type, size, and 

spatial distribution of BMPs. In catchment management planning, additional objectives 

such as catchment vegetation improvement and public recreation benefit need to be 

maximized for a catchment region within a limited budget. As such, planning and design 

of SWH systems with distributed BMPs is a complex problem that requires optimal 

allocation of limited resources to maximize multiple benefits.  

In this thesis, two innovative formal optimization approaches are presented for 

formulating and identifying optimal solutions to problems requiring distributed BMPs.  

Firstly, a multiobjective optimization framework is presented and applied to a case study 

for the conceptual design of integrated systems of BMPs for stormwater harvesting. The 

aim of this work is to develop a conceptual design modelling framework that handles the 

optimal placement of stormwater harvesting (SWH) infrastructure within an urban 

development. The framework produces preliminary SWH system designs representing 

optimal trade-offs between cost, water harvesting, and water quality improvement 

measures.  

Secondly, a many (>3) -objective optimization framework is presented and applied to a 

case study for catchment planning requiring the selection of a portfolio of distributed 

BMP projects. The framework produces portfolios that are optimal with respect to four 

objectives, and enables exploration of the many-objective trade-off surface using 

interactive visual analytics. In addition, a multi-stakeholder method is presented, which 

enables catchment managers and local government authorities to identify solutions that 

represent a compromise between 16 objectives and eight optimization problem 

representations using interactive visual analytics to encourage a negotiated solution. 
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Glossary 

Best Management Practices (BMPs), or stormwater best management practices, are 

structural or non-structural technologies used to detain, harvest, infiltrate, evaporate, and 

transport urban stormwater runoff, and remove pollutants. BMPs in stormwater 

harvesting systems typically include wetlands, biofiltration devices, storage ponds, tanks, 

and basins located near runoff sources or near an integrated catchment outlet 

Biofiltration systems (biofilters) are stormwater treatment devices that typically 

consist of a vegetated basin overlaying a geomembrane-lined or free-draining filter 

medium with a drainage pipe at the bottom. Water biofiltration is the process of improving 

water (stormwater and wastewater) quality by filtering water through biologically 

influenced media (Payne, Hatt et al., 2015). 

Constraints can be either hard or soft. Hard constraints set firm limits on the values 

of the decision variables that are required to be satisfied or limit the possible solutions to 

the problem. Soft constraints have some decision variable values that are penalized in the 

objective function if certain conditions on the variables are not satisfied. The amount of 

the penalty can be fixed or can depend on the extent to which the condition is violated. 

Decision variable is a quantity that the decision-maker controls. 

Formal optimization refers to finding the best solution from all feasible solutions of 

a problem where the decision variables, objectives and constraints are mathematically 

formulated. 

Many-objective optimization is an optimization problem with four or more 

objectives (Purshouse and Fleming 2007). 

Multi-objective optimization  (also multiobjective optimization) refers to an 

optimization problem with two or more objectives. Typically, the Pareto front consists 

of more than one solution, and as such trade-offs between objective function values often 

exist for Pareto optimal solutions. 

Non-dominated solution is a member of a set of solutions where none of the 

objective functions can be improved in value without degrading one or more of the other 

objective values (Purshouse, Deb et al. 2014). 
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Objective function (formal objective) is a function of the decision variables that is to 

be maximised or minimised. It is usually expressed in mathematical terms. 

Pareto optimal solution is a member of the Pareto front. 

Pareto front (sometimes called non-dominated solution set, or Pareto optimal 

solution set), is the set of non-dominated solutions to a multi-objective optimization 

problem. A solution is sometimes called non-dominated, Pareto optimal, Pareto efficient 

or noninferior if it is a member of the Pareto front. 

Sediment basins are deep open-water ponds designed to facilitate settlement of 

suspended particles from stormwater runoff. 

Swales are linear, depressed channels that collect and transfer stormwater. They can 

be lined with grass or more densely vegetated and landscaped. Swales can provide 

physical screening of sedimentation (coarse and fine) and/or infiltrate stormwater into 

soils. 

Visual Analytics is “an iterative process that involves information gathering, data 

preprocessing, knowledge representation, interaction and decision making. The ultimate 

goal is to gain insight in the problem at hand which is described by vast amounts of  data 

from heterogeneous sources (Keim, Andrienko et al. 2008).” 

Water Sensitive Urban Design (WSUD), in Australia, is “commonly used to reflect 

the paradigm in the planning and design of urban environments that is ‘sensitive’ to the 

issues of water sustainability and environmental protection.” In particular, it pertains to 

the “interactions between the urban built form (including urban landscapes) and the urban 

water cycle (as defined by the conventional urban water streams of potable water, 

wastewater, and stormwater) (Wong 2006).” Similar concepts include Sustainable 

Drainage Systems (SuDS), used in the United Kingdom, and Low Impact Development 

(LID), used in the United States. 

Wetlands (constructed wetlands) are shallow, extensively vegetated basins that use 

enhanced sedimentation, fine filtration and pollutant uptake processes to remove runoff 

pollutants. 
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CHAPTER 1  

 

Introduction 

 
The future economic, environmental and social prosperity of urban environments 

hinges upon effective management of urban water sources (Walsh, Fletcher et al. 2005). 

Demand for clean water supply in urban areas increases with urban population growth, 

resulting in water shortages and other supply security risks (Cook and Bakker 2012). In 

addition, urban stream health is degraded by untreated stormwater runoff from developed 

areas. This is due to increased generation of pollutants through urban land use and 

pollutant mobilisation and transport of runoff volumes along impervious drainage 

channels (Wong 2006). Urban stream health is further impacted by increases in the 

volume of runoff and alteration to the pre-development flow regime that comes with the 

introduction of paved surfaces. The impact of urban development is influential at multiple 

spatial scales. These may range from degraded stream health within developments, to the 

introduction of nutrients into marine bodies receiving flows from a large regional 

catchment, and local to city-wide water supply security. Consequently, urban water 

management strategies need to mitigate multiple economic, environmental and social 

impacts targeted at multiple spatial scales where possible. 

1.1 Background on Water Sensitive Urban Design (WSUD) systems 

Modern urban stormwater management approaches, such as Water Sensitive Urban 

Design (WSUD), including similar concepts such as Sustainable Drainage Systems 

(SuDS) and Low Impact Development (LID), aim to mitigate impacts of development on 

urban water sources (Askarizadeh, Rippy et al. 2015). To achieve this, WSUD uses 

integrated systems of structural and non-structural stormwater best management practice 

technologies (BMPs) for detention, harvesting, infiltration, evaporation, and transport of 

urban runoff (Lerer, Arnbjerg-Nielsen et al. 2015). An increasingly popular WSUD 

technique is urban stormwater harvesting (SWH), which is used to capture, store, treat 

and distribute surface stormwater runoff for later reuse (Mitchell, Deletic et al. 2007). 

SWH can provide a cost-effective and reliable alternative water supply source for 

irrigation that reduces stormwater runoff volumes and complements existing (often 
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stressed) water supplies (Clark, Gonzalez et al. 2015, Marchi, Dandy et al. 2016). SWH 

systems comprise BMPs that detain, harvest, infiltrate, evaporate, and transport urban 

runoff, and remove pollutants. BMPs in SWH systems typically include wetlands, 

biofiltration devices, storage ponds, tanks, and basins located near runoff sources or near 

an integrated catchment outlet (Askarizadeh, Rippy et al. 2015).  

BMPs integrated into the urban environment though WSUD approaches can provide 

multiple human and ecosystem co-benefits (Mitchell, Deletic et al. 2007). Given the 

possibility to maximize multiple benefits, objectives for WSUD planning and design 

approaches include i) minimizing economic costs (Taylor and Wong 2002); ii) 

maximizing the volume of harvested water, which can improve urban water supply (Clark 

et al. 2015); iii) maximizing improvements in urban flow regimes by restoring stormwater 

a) runoff quality and b) the streamflow regime (base flow, peak flow, annual runoff 

volume, and flow variability) to be closer to pre-development conditions, thereby 

promoting urban stream health (Askarizadeh, Rippy et al. 2015); and iv) maximizing 

social benefits (Mitchell, Deletic et al. 2007), such as public amenity, community 

acceptance, recreation, and reduced construction risks (Inamdar 2014, Sharma, Pezzaniti 

et al. 2016). Which of the above objectives should be considered is case study specific 

and generally determined through stakeholder consultation (for example, between 

regulators, land developers, designers and the local community). In many instances, the 

above objectives are in conflict with one another, necessitating decision-makers to 

consider trade-offs between objectives when assessing the performance of WSUD 

systems. 

1.2 Multiobjective optimization for planning and design of WSUD 

systems 

Despite the potential to achieve multiple benefits using WSUD approaches, there are 

always limited resources to achieve them. Compounding this difficulty are the multiple 

possible spatial scales at which BMPs can be distributed throughout a catchment, the large 

number of different types of system components and interaction between components, 

and the large number of decision options (e.g. size, type and location of BMPs) and 

therefore large number of possible solutions. Therefore, many WSUD planning and 

design tasks can be formulated as multiobjective optimization problems (Purshouse and 
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Fleming 2007, Purshouse, Deb et al. 2014), where a set of decisions needs to be selected 

to achieve multiple objectives (including minimizing cost) that meet a set of practical 

constraints. There are a multitude of problems, at varying spatial scales, that need to be 

considered in the planning and design of WSUD systems, and it is difficult to select an 

optimal management solution that maximizes benefits. The particular problems addressed 

in this thesis, and their features, are as follows: 

1. Optimizing stormwater harvesting systems design. Designing systems of 

BMPs for stormwater management, including harvesting, is complex because 

practitioners need to consider: 

a. multiple, often competing, objectives  

b. different types of system components  

c. the spatial distribution of components 

d. a large number of design options.  

2. Integrated catchment plan optimization. The issues with complex BMP 

systems are compounded where multiple BMP systems distributed over a large 

region need to be selected for a management strategy, for example in an 

integrated catchment management plan to achieve multiple regional catchment 

objectives. Decision support approaches for catchment management should be 

able to: 

a. handle several objectives  

b. consider the full trade-off space of possible solutions 

c. develop “trusted” solutions based on current modelling practice. 

3. Optimization involving multiple stakeholders. Where multiple stakeholder 

groups are responsible for the funding and operation of BMP systems over a 

large region, it is difficult to identify catchment plans that compromise the 

costs and benefits between all parties equitably, which encourages ‘buy-in’ 

into the adopted solution. Adapting decision-making approaches, in particular 

optimization approaches, to account for different stakeholder groups is 

difficult because: 

a. stakeholders have different value sets and interests, making it difficult 

to arrive at a consensus on one mathematical formulation that all 

stakeholders will accept, which may affect how likely it is that 
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stakeholders will trust the optimization process and buy-into suggested 

solutions 

b. exploration and analysis of optimization solutions should enable 

stakeholder engagement and expert input 

c. the non-intuitive nature of multi-dimensional value analysis and 

unanticipated and emergent trends can further prevent decision-makers 

from understanding and trusting optimization results 

d. the optimization framework used should facilitate a final negotiated 

outcome and/or exploration of resource management alternatives to be 

considered further. 

The challenges identified in the previous optimization and decision support literature 

addressing these three problems, and opportunities for solving them in new ways, are 

discussed in more detail below. 

1.2.1 Optimizing stormwater harvesting systems design  

Considering the design of stormwater harvesting systems, given the large number of 

types of system components, the many different ways in which they can be distributed 

spatially and the large number of available design choices, it is difficult to identify 

distributed BMP planning and design outcomes that are optimal with respect to the desired 

competing objectives. Consequently, there is a need for an integrated framework that 

considers all of the above factors in a holistic fashion. Given the potentially large number 

of options, incorporation of a formal optimization approach (for example, using an 

optimization algorithm) in such a framework is also likely to be of significant value. 

However, previous studies in this field are limited, have not presented an integrated 

approach, and have only considered a subset of the above factors. For example, Sample 

and Heaney (2006) considered the impact on net present value of the size and spatial 

distribution of integrated infiltration basins and irrigation systems, but did not consider 

multiple objectives, nor a formal optimization approach. While Browne, Breen et al. 

(2012) and Inamdar (2014) considered multiple objectives in conjunction with a range of 

BMP alternatives for various SWH projects within a region, they also did not utilize 

formal optimization approaches, making it unlikely that the solutions that provide the best 

trade-offs among objectives were identified. In contrast, Marchi, Dandy et al. (2016) used 

a formal multiobjective optimization technique to design surface runoff SWH system 
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components (the dimensions of a wetland, detention basins, and aquifer storage transfer 

infrastructure). However, they did not consider how trade-offs were influenced by a mix 

of different BMP alternatives for the capture, treatment, and storage of surface runoff, 

optimal locations for BMPs within a catchment, or water quality improvement as a formal 

objective. Formal optimization methods have also been used to identify the optimal mix, 

size, and location of distributed BMPs (Perez-Pedini, Limbrunner et al. 2005, Maringanti, 

Chaubey et al. 2009, Lee, Selvakumar et al. 2012), but these studies have not considered 

SWH. 

1.2.2 Integrated catchment plan optimization  

For integrated catchment management planning, decision support approaches need to 

handle several objectives, consider the full trade-off space, and develop trusted solutions 

based on current modelling practice. However, current approaches have failed to meet all 

of these needs. While existing multi-criteria decision analysis (MCDA) (Goicoechea, 

Hansen et al. 1982, Hyde and Maier 2006) methods allow many performance criteria to 

be considered when selecting a portfolio of BMPs (Ellis, Deutsch et al. 2006, Moglia, 

Kinsman et al. 2012, Jia, Yao et al. 2013, Aceves and Fuamba 2016a, Aceves and Fuamba 

2016b), and have been accepted in practice (Moglia, Kinsman et al. 2012), they require 

decision-makers to define their preferences without knowledge of the full-trade-off 

patterns between portfolios. Many-objective optimization approaches (Purshouse and 

Fleming 2007) overcome this limitation since they produce an approximation of the 

Pareto front (i.e. solutions to the problem where none of the objective functions can be 

improved in value without degrading one or more of the other objective values 

(Purshouse, Deb et al. 2014)), which allows an exploration and analysis of a large number 

of portfolios to identify solutions that represent a desirable compromise between 

performance criteria. However, many-objective optimization approaches can be 

computationally expensive and produce a large number of solutions to select from 

(Purshouse and Fleming 2007, Purshouse, Deb et al. 2014), which is why existing 

catchment management simulation-optimization approaches have considered only a 

limited number of objectives including cost and water quality improvement (Lee, 

Selvakumar et al. 2012, Chichakly, Bowden et al. 2013, Chen, Qiu et al. 2015, Zou, 

Riverson et al. 2015). In addition, simulation-optimization based approaches may not be 

feasible within a catchment management authority’s planning capacities (Moglia, 
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Kinsman et al. 2012), complementary to existing practices, nor desirable if decision-

makers do not trust the solutions developed by the optimization algorithm.  

Furthermore, while it is important to consider many objectives, as well as trade-offs 

between them (rather than having pre-defined weights, as in MCDA), this makes the 

analysis of many-objective optimization results difficult. This is because: (1) visualizing 

the trade-offs between objectives in more than three dimensions can be cumbersome, (2) 

many-objective Pareto fronts can have large numbers of non-dominated (i.e. none of the 

objective functions can be improved in value without degrading one or more of the other 

objective values) solutions, as the number of Pareto optimal solutions grows 

exponentially with the number of formal objectives (Hughes 2005, Keim, Andrienko et 

al. 2008), (3) human decision makers have a limited cognitive load and can select between 

only a small number of solutions at a time (Miller 1956); this requires techniques to reduce 

the Pareto frontier to a sub-set of diverse and promising solutions to present to decision-

makers, and (4) visualizing solution performance separately from decision options may 

cause decision maker biases (Kasprzyk, Reed et al. 2012, Giuliani, Herman et al. 2014, 

Matrosov, Huskova et al. 2015). Recently, advanced interactive visual analytics (Keim, 

Andrienko et al. 2008) approaches have been applied to help humans make sense of large 

and complex data sets such as those generated by many-objective optimization (Kasprzyk, 

Reed et al. 2009). However, these approaches have not been applied in the catchment 

management optimization literature. 

1.2.3 Optimization involving multiple stakeholders  

In previous research, there has been little focus on adapting optimization frameworks 

to make them useful for stakeholder groups in real-life problem solving (Maier, Kapelan 

et al. 2014). However, there has been some progress in relation to this in recent years, 

including: 

• The use of iterative approaches, which has allowed for multiple formulations 

of the decision variables, objectives and constraints to be developed to 

progressively better define optimization problems and provide an opportunity 

for stakeholders to learn about the problem (Kollat and Reed 2007, Woodruff, 

Reed et al. 2013, Piscopo, Kasprzyk et al. 2015, Wu, Maier et al. 2016). 
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• The development of an optimization framework that provides opportunities 

for stakeholders to provide input into the various stages of optimization 

studies, including problem definition, the optimization process, and final 

decision-making (Wu, Maier et al. 2016). 

• The development of many-objective optimization approaches, as a result of 

advances in optimization algorithm performance, which identify solutions to 

complex problems that represent the optimal trade-off between numerous (>3) 

objectives to better capture stakeholder values (Kollat, Reed et al. 2011, 

Kasprzyk, Reed et al. 2012, Woodruff, Reed et al. 2013, Cruz, Fernandez et 

al. 2014, Chand and Wagner 2015, Hadka, Herman et al. 2015, Matrosov, 

Huskova et al. 2015, Borgomeo, Mortazavi-Naeini et al. 2016, Woodruff 

2016). 

• The use of visual analytics approaches to better communicate the outputs of 

optimization studies to stakeholders to help with exploration and analysis of 

the trade-offs between objectives, to identify the impact of decisions on 

performance, and ultimately select trusted solutions for further consideration 

(Kollat and Reed 2007, Kollat, Reed et al. 2011, Woodruff, Reed et al. 2013, 

Hadka, Herman et al. 2015, Matrosov, Huskova et al. 2015, Borgomeo, 

Mortazavi-Naeini et al. 2016, Woodruff 2016). Visual analytics approaches 

can include the use of interactive software package that allows multiple 

visualisations of the same data set in high-dimensional plots. This enables the 

data set to be explored and analysed rapidly. Techniques to explore and 

analyse data include dynamic filtering to eliminate undesirable solutions, 

interactive brushing, and multiple linked plots,  

These advances have made optimization approaches more applicable to complex, real-

world problems with multiple stakeholders and many objectives. However, in previous 

studies, the optimization problem to be solved has generally been represented by a single 

formulation, including all decision variable options, objectives and constraints deemed to 

be important. This can result in the inclusion of a large number of objectives and decision 

variable options, making it difficult to identify solutions that represent the best trade-offs 

between objectives (i.e. the solutions on the Pareto front), as mentioned in the previous 

section. This is because the number of solutions required to characterise the Pareto front 

increases exponentially as the number of objectives increases, thus making this process 
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very computationally expensive and beyond the capability of current optimization 

algorithms (Cruz, Fernandez et al. 2014, Purshouse, Deb et al. 2014). In addition, despite 

the recent advances in visual analytics approaches mentioned above, the inclusion of a 

large (e.g. >10) number of objectives makes the identification of solutions that provide 

acceptable trade-offs for different stakeholders extremely difficult, as this can be 

cognitively challenging for decision-makers faced with large solution sets (Purshouse and 

Fleming 2007). 

In order to address the above difficulties, an innovative approach for identifying 

stakeholder-driven, optimal compromise solutions is proposed for problems with distinct 

stakeholder groups with potentially competing sets of objectives. An example of this 

would be the integrated management of a river system and its catchment, where the 

objectives of stakeholders managing separate sub-areas of the catchment would most 

likely be different from each other, and different from those of stakeholders concerned 

with managing the catchment as a whole. For example, stakeholders may weigh the 

importance of water quality, runoff volume and volume harvested differently. As part of 

the proposed approach, the overall optimization problem is represented as a series of 

smaller, interconnected optimization problems, reflecting individual stakeholder sets and 

interests. The Pareto optimal solutions resulting from this analysis provide the input into 

a collaborative, multi-stakeholder negotiation process, as part of which visual analytics 

are used to identify trusted and accepted compromise solutions. A key feature of the 

proposed approach is the use of ‘best alternative to negotiated agreement (BATNA)’ 

solutions as a benchmark during the collaborative negotiation process. These are the 

solutions that individual stakeholder groups would implement if they were to act in 

isolation. This has been shown to increase the efficiency with which negotiated 

compromise solutions can be achieved (Fitzgerald and Ross 2013, Fitzgerald and Ross 

2015, Fitzgerald and Ross 2016). 

1.3 Research objectives 

In order to address the problems outlined above, this thesis develops general 

optimization frameworks for the selection of stormwater best management practices 

(BMPs), firstly for the optimal preliminary design of stormwater harvesting systems and 

secondly for selecting a portfolio of BMPs for an integrated catchment management plan. 
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As part of the frameworks, mathematical optimization formulations are presented and are 

solved using multiobjective metaheuristic algorithms. Visual analytics approaches are 

used to identify trade-offs in objective and decision spaces. Furthermore, a multi-

stakeholder optimization framework is presented, which uses visual analytics to assist 

with determining a negotiated solution to a complex integrated catchment management 

problem. Overall, this study has the following three main objectives: 

Objective 1: To develop a generic multiobjective optimization framework for conceptual 

design of stormwater harvesting systems with components distributed throughout a 

development-scale catchment (Paper 1). 

Objective 2: To develop a generic optimization framework for selecting a portfolio of 

stormwater best management practices (BMPs) to assist in regional integrated catchment 

management decision-making (Papers 2 and 3). 

Objective 2.1: To present a formal optimization approach that identifies the best 

combinations of BMPs for many (> 3) objective integrated catchment planning (Paper 2). 

Objective 2.2: To implement the optimization framework in Objective 2.1 in a multi-

stakeholder optimization-visualisation framework that is geared towards the identification 

of negotiated compromise solutions for problems with multiple stakeholders with distinct 

sets of objectives (Paper 3). 

Objective 3: To evaluate the utility of the frameworks in Objectives 1 and 2 by applying 

them to relevant case studies (Papers 1, 2 and 3). 

Objective 3.1: To apply the framework in Objective 1 to a case study for stormwater 

harvesting system design for a new housing development in Northern Adelaide, South 

Australia (Paper 1). 

Objective 3.2: To apply the framework in Objective 2.1 to a real-world case study 

based on a single-stakeholder integrated catchment management plan for a major city in 

Australia (Paper 2). 

Objective 3.3: To apply the framework in Objective 2.2 to a real-world case study 

based on a multi-stakeholder integrated catchment management plan for a major city in 

Australia (Paper 3). 
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1.4 Thesis overview  

This thesis is organized into five chapters, with the main contributions being presented 

in Chapters 2 to 4. Each of these chapters is presented in the form of a technical paper. 

The first of these (Chapter 2) has been published in Journal of Water Resources Planning 

and Management. 

Chapter 2 introduces a generic framework for the conceptual design of SWH systems 

that considers multiple objectives, a range of BMP types and their design options, the 

spatial distribution of BMPs, and a formal optimization approach for identifying designs 

that represent near-globally optimal trade-offs among competing objectives in an 

integrated fashion (Objective 1). The utility of the framework is then illustrated (Objective 

3) by applying it to a case study SWH system for a residential development in Adelaide, 

South Australia (Objective 3.1). 

Chapter 3 introduces an optimization framework for many-objective (i.e. >3 

objective) integrated catchment management (Objective 2) for a single catchment 

management authority. This features the use of an interactive visual analytics approach to 

identify promising solutions. The utility of the approach is demonstrated on a case study 

for an integrated catchment management plan for a region of a major Australian city 

(Objective 3.1 and 3.2). The case study is used to demonstrate the benefits of the approach 

by investigating the possible many-objective trade-offs between lifecycle cost, water 

quality improvement, stormwater harvesting capacity and urban vegetation and amenity 

improvement, and the importance of a many-objective approach compared to a bi-

objective water quality-cost optimization, as has been undertaken in previous studies 

(Objective 3.2). 

Chapter 4 introduces an optimization-visual analytics framework for complex 

environmental management problems (Objective 2) involving multiple stakeholders 

(Objective 2.2), incorporating the optimization approach developed in Chapter 3. In the 

approach, the problem is represented as a series of smaller, interconnected optimization 

problems, reflecting individual stakeholder sets and interests. The approach features 

interactive visual analytics used to explore and analyse optimization results, and an 

approach to reframe visualizations to encourage stakeholder negotiation. To demonstrate 

the utility of the framework, it is applied to a realistic case study which involves multiple 
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stakeholder groups funding different parts of BMP projects for an integrated catchment 

plan for a region of a large city in Australia (Objective 3.3).  

The linking of each of the papers to the objectives is shown in Table 1-1. The scale of 

WSUD implementation, optimization problem addressed, method for visualization of 

optimization results used, case studies considered, algorithms used, simulation models 

used, and case study formal optimization objectives considered, and number of objectives 

considered in each of the papers are summarised in Table 1-2. Although the manuscripts 

have been reformatted in accordance with University guidelines, and sections renumbered 

for inclusion within this thesis, the material within these papers is otherwise presented 

herein as published (or submitted for publication). A copy of the first paper “as published” 

is provided in Appendix A. 

Conclusions of the research within this thesis are provided in Chapter 5, which 

summarises: 1) the research contributions, 2) limitations and 3) future directions for 

further research. 
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Table 1-1 Linking of each of the papers to the objectives 

 Objectives Paper 1 Paper 2 Paper  
3 

1 To develop a generic multiobjective optimization framework for conceptual design of stormwater harvesting 
systems with components distributed throughout a development-scale catchment. 

X   

2 To develop a generic optimization framework for selecting a portfolio of stormwater best management 
practices (BMPs) to assist regional integrated catchment management decision-making. 

 X X 

2.1 To present a formal optimization approach that identifies the best combinations of BMPs for many (> 3) 
objective catchment planning. 

 X  

2.2 To implement the optimization framework in Objective 2.1 in a multi-stakeholder optimization-
visualisation framework that is geared towards the identification of negotiated compromise solutions for 
problems with multiple stakeholders with distinct sets of objectives. 

  X 

3 To evaluate the utility of the frameworks in Objectives 1 and 2. X X X 

3.1 To apply the framework in Objective 1 to a case study for stormwater harvesting system design for a new 
housing development in Northern Adelaide, South Australia 

X   

3.2 To apply the framework in Objective 2.1 to a real-world case study based on a single-stakeholder 
integrated catchment management plan for a major city in Australia. 

 X  

3.3 To apply the framework in Objective 2.2 to a real-world case study based on a multi-stakeholder integrated 
catchment management plan for a major city in Australia. 

  X 
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Table 1-2 Classification of the papers by the different topics addressed 

Category Sub-category Paper 
1 

Paper 
2 

Paper 
3 

Spatial Scale Development X   

Regional  X X 

Optimization  
Problem 

Stormwater harvesting systems design X   

Integrated catchment management 
(single stakeholder) 

 X  

Integrated catchment management 
(multiple stakeholders) 

  X 

Visualisation 
of Results 

Multi-dimensional plots X X X 

Interactive visual analytics  X X 

Case Study Northern Adelaide, South Australia X   

Major Australian city (undisclosed)  X X 

Multiobjective  
Optimization  

Algorithm 

Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) 

X   

Pareto Ant Colony Optimization 
Algorithm (P-ACO) 

 X X 

Simulation 
 Model 

eWater MUSIC (integrated stormwater 
model) 

X X X 

WSUD LifeCycle Cost Model X X X 

Case Study  
Optimization 
Objectives 

Cost X X X 

Stormwater harvesting capacity X X X 

Water quality improvement X X X 

Urban vegetation and amenity 
improvement 

 X X 

Number of  
Formal 

Optimization 

Objectives 

Three objectives X   

Four objectives  X  

Sixteen objectives   X 
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Abstract 

Stormwater harvesting (SWH) is an important water sensitive urban design (WSUD) 

approach that provides an alternate water supply source and improves runoff quality 

through integrated systems of stormwater best management practice (BMP) technologies. 

In SWH system design, practitioners must account for trade-offs between cost, supply 

volume, and water quality improvement performance, which are dependent on design 

decisions for the type, size, and spatial distribution of BMPs. As such, design of SWH 

systems with distributed BMPs is a complex, multiobjective optimization problem with a 

large decision space. This paper presents a multiobjective optimization framework to 

assess trade-offs in spatially distributed SWH system designs. The framework was 

applied to a case study for a housing development in Adelaide, South Australia. Results 

illustrated the potential benefits of distributing BMPs in an integrated SWH system where 

space at the catchment outlet is limited. Trade-offs between volumetric reliability and 

total suspended solids (TSS) reduction indicate large gains in TSS reduction can be 

achieved with limited reduction in volumetric reliability. Concept designs in low-

cost/moderately reliable and low-cost/high TSS reduction trade-off regions contained 

biofilters in locations receiving large inflows. 

Author Keywords:  stormwater harvesting, optimization, BMP, biofilter, wetland, 

water-sensitive urban design (WSUD), sustainable drainage systems (SuDs), low impact 

development (LID), green infrastructure, genetic algorithm, MUSIC 

2.1 Introduction 

Recently, the application of Water Sensitive Urban Design (WSUD) has demonstrated 

an ability to mitigate the impacts of development on urban water supply security and 

natural ecosystem health (Askarizadeh, Rippy et al. 2015). An increasingly popular 

WSUD technique is urban stormwater harvesting (SWH), which is used to capture, treat, 

store and distribute surface stormwater runoff for later reuse (Mitchell, Deletic et al. 

2007). SWH can provide a cost-effective and reliable alternative water supply source for 

irrigation that reduces stormwater runoff volumes and complements existing (often 

stressed) water supplies (Clark, Gonzalez et al. 2015, Marchi, Dandy et al. 2016).  SWH 
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systems are comprised of best management practice (BMP) technologies that detain, 

harvest, infiltrate, evaporate, and transport urban runoff, and remove pollutants. BMPs in 

SWH systems typically include gutters, pipes, drainage channels, wetlands, biofiltration 

devices, storage ponds, tanks, and basins located near runoff sources or near an integrated 

catchment outlet (Askarizadeh, Rippy et al. 2015). Although SWH systems can 

incorporate flood control measures (Mitchell, Deletic et al. 2007), peak flood flows 

typically bypass SWH system components that are designed separately for water quality 

control.  Planning and designing urban SWH systems is complex because practitioners 

need to consider: i) multiple, often competing, objectives; ii) different types of system 

components; iii) the spatial distribution of these components; and iv) a large number of 

design options, as detailed below. 

Potential SWH system design objectives include: i) minimizing costs (Taylor and 

Wong 2002); ii) maximizing the volume of harvested water, which can improve urban 

water supply (Clark, Gonzalez et al. 2015); iii) maximizing the amount of pollutant 

removed, which is achieved by treating stormwater prior to harvesting, and by removing 

pollutants in the harvested water supply; iv) maximizing improvements in urban 

hydrology by restoring stormwater runoff quality and the streamflow regime (e.g., base 

flow, peak flow, annual runoff volume, and flow variability) closer to pre-development 

conditions, thereby promoting urban stream health (Askarizadeh, Rippy et al. 2015); and 

v) maximizing social benefits (Mitchell, Deletic et al. 2007), such as public amenities, 

community acceptance, recreation, and reducing construction risks (Inamdar 2014). 

Which of the above objectives are considered and which are prioritized is site specific and 

generally determined through stakeholder consultation (for example, between regulators, 

land developers, designers and the local community). In many instances, the above 

objectives are in conflict with one another, necessitating decision-makers to consider 

trade-offs between objectives when assessing the performance of SWH systems. 

As far as the design components of SWH systems are concerned, these include: BMPs 

to capture, treat, and store raw harvested runoff; and infrastructure to further treat and 

distribute harvested stormwater to end users. The BMP type and size can influence: the 

volume of runoff captured for harvesting; evapotranspiration and infiltration losses, which 

affect supply capacity; and pollutant control performance and harvested water quality, 

which depends on BMPs operating within a preferable hydraulic loading range per unit 

area that varies for different pollutants. The infrastructure required to transport treated 
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runoff will depend largely on site constraints and locations for balancing storage, 

advanced treatment and distribution. The end use of harvested water, and its associated 

risks (e.g. health, environmental), often drive decisions on the final harvested water 

quality and thus the level of treatment required. 

In relation to the spatial distribution of components, the optimal placement of 

distributed BMPs is complex (Perez-Pedini, Limbrunner et al. 2005). BMP performance 

is a function of catchment connectivity, land use type, catchment size, distance to 

channels, connected impervious area, and level of pre-treatment in contributing 

catchments (Perez-Pedini, Limbrunner et al. 2005, Sample and Liu 2014). BMPs at 

locations closer to catchment outlets must be able to treat larger volumes of runoff 

efficiently (Lee, Selvakumar et al. 2012). However, the treatment effectiveness of BMPs 

can decrease with increasing inflow rates and pollutant concentrations. In addition, at sites 

where limited area is available to capture, treat and store harvested water, supply capacity 

can be limited (Marchi, Dandy et al. 2016). Consequently, distributing BMPs throughout 

a catchment can increase treatment and storage capacity of SWH systems.  

With respect to design options, for the various types of treatment BMPs, surface area 

is typically the most important design parameter influencing cost and performance. The 

selection of optimal BMP basin side slope, depth, and transfer infrastructure design 

parameters can also be important (Marchi, Dandy et al. 2016), however, ranges for these 

parameters are typically constrained based on best practice guidelines. 

Given the large number of types of system components, the many different ways in 

which they can be distributed spatially and the large number of available design choices, 

it is difficult to identify distributed SWH designs that are optimal with respect to the 

desired competing objectives. Consequently, there is a need for an integrated framework 

for the conceptual design of SWH systems that considers all of the above factors in a 

holistic fashion.  Given the potentially large number of options, incorporation of a formal 

optimization approach in such a framework is also likely to be of significant value. 

However, existing studies in this field have not presented such an approach and have only 

considered a subset of the above factors.  For example, Sample and Heaney (2006) 

considered the impact on net present value of the size and spatial distribution of integrated 

infiltration basins and irrigation systems, but did not consider multiple objectives, nor a 

formal optimization approach. While Browne, Breen et al. (2012) and Inamdar (2014) 
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considered multiple objectives in conjunction with a range of BMP alternatives for 

various SWH projects within a region, they also did not utilize formal optimization 

approaches, making it unlikely that the solutions that provide the best trade-offs among 

objectives were identified. In contrast, Marchi, Dandy et al. (2016) did use a formal 

multiobjective optimization method to design surface runoff SWH system components 

(the dimensions of a wetland, detention basins, and aquifer storage transfer 

infrastructure). However, they did not consider how trade-offs were influenced by a mix 

of different BMP alternatives for the capture, treatment, and storage of surface runoff, 

optimal locations for BMPs within a catchment, nor water quality improvement as a 

formal objective. Formal optimization methods have also been used to identify the 

optimal mix, size, and location of distributed BMPs (Perez-Pedini, Limbrunner et al. 

2005, Maringanti, Chaubey et al. 2009, Lee, Selvakumar et al. 2012), but these studies 

have not considered SWH. 

To address the shortcomings in existing literature outlined above, the objectives of this 

paper are:  

1. to introduce a generic framework for the conceptual design of SWH systems that 

considers multiple objectives, a range of BMP types and their design options, the 

spatial distribution of BMPs, and a formal optimization approach for identifying 

designs that represent near-globally optimal trade-offs among competing 

objectives in an integrated fashion;  

2. to demonstrate the application of the generic framework to a case study SWH 

system for a residential development in Adelaide, South Australia; and  

3. to use the case study to investigate 

a. potential benefits achievable by distributing SWH components throughout 

the catchment compared to systems with components only at the catchment 

outlet  

b. trade-offs between lifecycle cost, supply volume, and water quality 

improvement, which is achieved by linking an integrated stormwater model 

with a multiobjective evolutionary optimization approach, and  

c. impacts of design decisions including the type, size and location of BMPs 

on SWH performance.  
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2.2 Proposed distributed stormwater harvesting system design 

optimization framework 

This section contains a description of distributed SWH systems, a mathematical 

formulation of the multiobjective optimization design problem (decision variables, 

objective functions and constraints) and the proposed formal optimization framework for 

solving it. 

2.2.1 Description of SWH systems 

A spatially distributed SWH system for an urban catchment, detailed for one of 

multiple sub-catchments, is illustrated in Figure 2-1. In the figure, BMPs are shown by 

closed green (shaded) boxes, runoff sinks (or demands) by parallelograms, drainage paths 

by solid arrows, pipe flow for treated runoff by purple (large dash) arrows, and SWH 

system losses by black (small dash) arrows. After rainfall on an urban catchment, some 

allotment (land parcel) roof runoff is diverted to rainwater tanks to supply water for toilet 

flushing and household irrigation. Some impervious (roads, car parks) and pervious 

(grassed areas, open space) surface runoff, and roof runoff overflowing or bypassing the 

tank, is captured and treated in BMPs located along streetscapes or in open (green) spaces. 

BMPs can include, for example, smaller biofiltration systems servicing a cluster of 

allotments integrated into the streetscape or urban open space, or larger sedimentation 

basins, biofiltration systems, or constructed wetlands servicing a catchment comprised of 

multiple clusters. Biofiltration systems (biofilters) for SWH typically consist of a basin 

overlaying a geotextile-lined filter medium with a drainage pipe at the bottom. 

Sedimentation basins consist of a pond to promote settling of sediments through the 

reduction of flow velocities and temporary detention. Constructed wetlands are shallow, 

extensively vegetated basins that use enhanced sedimentation, fine filtration and pollutant 

uptake processes to remove runoff pollutants. 

After passing through a BMP, treated stormwater is typically stored at the multiple-

cluster or catchment scale in open water ponds, storage tanks, or an aquifer. Harvested 

water is often transferred from sub-catchments to a central balancing tank for advanced 

treatment and distribution to an irrigation network. Surface runoff that overflows or 

bypasses BMPs, or is not harvested, is lost through evapotranspiration, infiltration to deep 
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groundwater storages (possibly after exfiltrating from BMPs), or reaches urban streams 

via shallow ground water flow, overland flow, or impervious drainage channels. 

Intercepting and harvesting runoff in upstream sub-catchments affects runoff into BMPs 

in lower sub-catchments. Downstream impacts should be considered with the aid of an 

integrated stormwater model (Bach, Rauch et al. 2014).  

 

Figure 2-1 Schematic diagram of generic distributed stormwater harvesting system with 
central balancing tank 

2.2.2 Problem formulation 

2.2.2.1 Decision Variables 

In the conceptual design of distributed SWH systems, decision-makers consider the 

type, location, and design parameters of BMPs and transfer infrastructure. Appropriate 

types and locations of BMPs largely depend on site characteristics, including soil type, 

topography, infiltration rate, contributing connected impervious area, and sufficient space 

for maintenance and transfer infrastructure. Site characteristics are typically assessed 

through site and geospatial studies (Inamdar 2014). After site assessment, a short-list of 

appropriate options is agreed upon amongst stakeholders, taking into account the desired 

SWH objectives and other socio-political preferences (Chichakly, Bowden et al. 2013). 
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After short-listing, often multiple BMP types and size options are available at each 

location. These decision variables are denoted BMP [integer], each with associated 

surface area options, denoted as SA [fraction]. SA is formulated as a fraction of the 

maximum available area for a BMP at a location, denoted SAmax [area]. Where one BMP 

type is available at a location, BMP is a fixed parameter, and SA is a decision variable. 

Where multiple BMP types are available at a location, both BMP and SA are decision 

variables. In the latter case, the surface area options depend on the type of BMP selected, 

since SAmax, based on guidelines and site constraints, varies among BMP types. BMP 

design parameters, such as the dimensions of basins, can be included as decision 

variables. Other parameters required to model BMPs are either fixed a priori based on 

design guidelines or site constraints, or dependent on the BMP surface area and calculated 

once this is known. Pipes and pump configuration and parameters are selected to transfer 

treated water from storage sites to central balancing storage. 

2.2.2.2 Objectives 

Although objectives depend on stakeholder interests, three formal objectives are 

typically considered and therefore included in the proposed framework: cost, supply 

volume, and water quality improvement. Cost is a key concern for decision-makers 

responsible for maximising the return on investment, including capital and ongoing costs. 

Maximising supply volume is a primary motivation for implementing SWH systems in 

order to reliably meet irrigation demand (and contribute to runoff volume reduction). 

Water quality improvement is a key environmental objective considered by regulatory 

bodies (Chichakly, Bowden et al. 2013, Yang and Best 2015). As explained by Chichakly, 

Bowden et al. (2013), due to their qualitative and political nature, social considerations 

are taken into account through stakeholder consultation utilized when selecting available 

BMP types, sizes and locations, and determining constraints, as well as when assessing 

alternative candidate conceptual designs. 

2.2.2.2.1 Cost 

In the proposed framework, the cost of SWH concept designs is represented as a life 

cycle cost LCC [$] (Equation (2-1)), which is a discounted sum of expected future costs 

for stormwater management assets, including BMPs and transfer infrastructure (Taylor 

and Wong 2002). The life cycle cost objective function for each candidate SWH system 

is given by: 
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where a sum of the cost of BMPs to harvest stormwater runoff, LCCharvest [$] (Equation 

(2-2)), and to transfer harvested water to balancing storage for further treatment and 

distribution, LCCtransfer [$] (Equation (2-3)) is applied with BMPi representing the BMP 

type in the i th location in the candidate SWH system, N [integer] is the number of BMPs, 

and TAC [$] is the total acquisition cost as a function of SA. 

The times during and immediately after BMP construction are critical to promote plant 

growth and prevent erosion. Consequently, intensive maintenance is required in an initial 

establishment period to ensure BMPs can meet functional performance criteria. After this 

period, less intensive, lower cost, annual maintenance is required to maintain functional 

performance. Consequently, PWFestab [fraction], for the establishment period, and 

PWFmaint [fraction], for the remaining design life of system components, are the present 

worth factor for a series of annual costs computed using a discount rate. ECF [fraction] is 

the establishment cost factor (i.e., multiplier) for the annual maintenance cost M [$] 

during the establishment period for each BMP. Ren is the annualised renewal cost and 

Decomm the decommissioning cost [represented as fractions of TAC]. CCapPump [$] and 

CCapTransPipe [$] are the capital costs for required pump stations and pipes, and CmPump [$] 

and CmPipe [$] are the annual pumping and maintenance costs. Balancing storage, UV 

disinfection, and distribution costs apply to solutions equally, and are thus excluded. 
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2.2.2.2.2 Supply volume 

In the proposed framework, volumetric reliability (Equation (2-4)) is adopted as an 

indicator of urban supply volume performance. This is a measure of the average annual 

proportion of demand volume supplied by a SWH system over a simulation period 

(Mitchell, McCarthy et al. 2008). This metric was selected because it facilitates 

comparison of the ability of SWH concept designs to supply potential customers under 

several demand scenarios as required in the framework, can easily be converted to a total 

volume to estimate annual runoff reduction and imported supply substitution due to 

harvesting, and is used in practice (Browne, Breen et al. 2012). Typically, a volumetric 

reliability of 75% to 80% is acceptable for SWH systems, since imported supply is usually 

available to ‘top-up’ the balancing tank to meet demand when SWH is unable to. The 

supply volume objective function is: 

��;���&�	/< = 	1 −	∑ �∑ %?@,AB?C@,A.@∈EF 6GAHI∑ �∑ ?@,A@∈J 6GAHI 		   

Equation ( 2-4 ) 

where RV [fraction] is the system volumetric reliability, k [integer] is the storage BMP 

number, P [integer] is the number of distributed storages in the SWH system, fn [integer] 

is the number of failure intervals (i.e., where demand fails to be met), D't [volume] is the 

actual supply during the tth [integer] failure interval, Dt [volume] is the target demand 

during the tth interval, and N [integer] is the number of intervals in the simulation period.	
2.2.2.2.3 Water quality improvement 

The water quality improvement indicator adopted in the proposed framework is the 

total average annual pollutant load reduction of one target pollutant (Equation (2-5)). This 

indicator is widely adopted to assess the performance of WSUD approaches, including 

SWH systems (Browne, Breen et al. 2012). The target pollutant will depend on 

stakeholder interests. The objective function is: 

��;�����	
4KL/0L1 = 1 −	 M��+N	OP9�Q�  

Equation ( 2-5 ) 

where, LoadRedn [fraction] is the mean annual pollutant load reduction proportion of 

each candidate SWH system, Resid [mass year-1] is the mean annual mass of pollutant 
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leaving the development area, and Source [mass year-1] is the mean annual mass of 

pollutant that reaches the catchment outlet in a post-development catchment baseline 

scenario without WSUD. Resid and Source should be determined using an integrated 

stormwater model (Bach, Rauch et al. 2014).	
2.2.2.3 Constraints 

In the proposed optimization framework, constraints apply to conditions on types of 

BMPs combined in solutions; and pollutant load reduction performance for a range of 

pollutants. Each solution is assessed against conditions on the presence and size of BMPs 

to avoid candidate SWH system solutions that would not be adopted in practice.  

Impractical solutions can arise due to randomness in the selection of decision variables in 

the optimization process (see Section 2.2.3). For example, a candidate solution might 

consist of a storage device without a BMP providing inflows or a BMP may treat runoff 

but not have adjacent storage where needed. Particular practical constraints need to be 

agreed upon by practitioners on a case-by-case basis. In addition, many regulatory bodies 

require a proportion of pollutant load generated by the development to be retained by the 

SWH system to promote the health of environments receiving runoff. The proportion of 

load reduction retained by the candidate SWH system is given as: 


4KL/0L1Q ≥ 
4KL/0L1�KST0UQ , ∀	3 = 1, . . . , ��  

Equation ( 2-6 ) 

where, LoadRedn [fraction] is determined using Equation (2-5), LoadRednTarget 

[fraction] is the mean annual proportion of pollutant load reduction target set by 

regulators, c [integer] represents a target pollutant, and CN [integer] is the number of 

target pollutants. As discussed by Marchi, Dandy et al. (2016), additional SWH 

constraints may arise due to decision variable value ranges, land available for BMPs, 

physical processes (e.g. water and energy balance), and local regulations. 

2.2.3 Optimization framework 

In the proposed framework, a multiobjective optimization evolutionary algorithm 

(MOEA; Figure 2-2) is suggested to solve the SHW system optimization problem. 

MOEAs have several advantages over traditional optimization approaches (e.g., linear 

programming). They can deal with multiple objectives simultaneously (Maier, Kapelan 
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et al. 2014) and have been used successfully in recent planning and design optimization 

studies considering SWH (Beh, Dandy et al. 2014, Paton, Dandy et al. 2014a, Marchi, 

Dandy et al. 2016) and distributed BMP systems (Chichakly, Bowden et al. 2013). 

Furthermore, they can be linked with multiple simulation models required to calculate 

multiple objective functions and check constraints of candidate solutions (Maier, Kapelan 

et al. 2014), can provide confidence in the results of the optimization process, as 

simulation models that are already used in local SWH decision-making can be used 

(Maier, Kapelan et al. 2014), and can enable problems with complex mathematical 

properties to be considered without simplifying the optimization problem, which is not 

the case when more traditional optimization approaches are used. 

As part of the optimization process (Figure 2-2), a number (population) of solutions is 

generated with the aid of an MOEA. Each solution represents decisions, on the type, size 

and location of BMPs in a particular SWH concept design, formulated as a vector of 

decision variable options. Then, solutions are ‘pre-emptively’ checked against conditions 

on the configuration of BMPs. If a solution violates these conditions (i.e., is impractical), 

it is not evaluated with the aid of the simulation model(s), which saves computational 

time (Asadzadeh, Razavi et al. 2014). Next, the performance of practical solutions is 

evaluated by calculating objective functions and checking constraints. This evaluation 

requires two simulation models, including a life cycle cost model, and an integrated 

stormwater model. The cost model can be a lookup table of costs associated with SWH 

system components. The integrated stormwater model is needed to evaluate the 

volumetric reliability and water quality improvement achieved with the distributed SWH 

conceptual designs under consideration. The integrated model should be able to model: 

hydrologic behaviour; pollutant generation; hydraulic and treatment behaviour of BMPs; 

downstream impacts of BMPs; and water recycling through SWH. According to Bach, 

Rauch et al. (2014), eWater MUSIC (eWater 2009) is the only readily available model 

that includes all of these. 

After evaluation, penalties are applied to objective function values of solutions that fail 

to meet pollutant reduction targets. The MOEA uses objective function values to assess 

the fitness of solutions and iteratively modify the population using evolutionary 

processes, such as reproduction, mutation, crossover and selection. Over generations, the 

population of solutions converges towards the set of Pareto optimal SWH concept 

designs, which are the non-dominated designs (i.e. none of the objective functions can be 
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improved in value without degrading one or more of the other objective values) in the set 

of all possible designs. The MOEA evolves the population until specific termination 

criteria are met. The algorithm is run from a new initial population for a number of 

demand scenarios in order to estimate the potential supply volume from the catchment, 

which is not typically known a priori. The non-dominated solutions identified by the 

MOEA are Pareto optimal or near Pareto optimal SWH concept designs for each scenario. 

 

Figure 2-2 Optimization framework for distributed stormwater harvesting system design. 
Typical steps in an optimization process are shaded 
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2.3 Case study 

The proposed optimization framework was applied to a SWH system design case study 

for a proposed housing development consisting of 3342 allotments on 245 ha of 

underutilized farmland north of Adelaide, South Australia. Figure 2-3 shows the proposed 

catchment layout, including four sub-catchments. Catchment characteristics are listed in 

Table 2-1. A natural creek flows to the catchment outlet at the southwest of sub-catchment 

4. The footprint of flood retarding basins (proposed for the future development) were 

available for multiple-cluster-scale wetlands and biofilters. South Australian regulations 

require a minimum 1 kL rainwater tank per allotment. 

In this study, there was no opportunity to consult stakeholders directly. Rather, 

consultants who developed a SWH system for the case study site, provided planning and 

design data but were not available to comment on results. Decision variable values 

corresponding to BMP types and surface areas were generated using a MOEA, which 

were combined with fixed and decision variable dependent parameters to form a candidate 

SWH system. The objective function values were evaluated with a lookup-table cost 

model and an integrated stormwater simulation model developed using the eWater 

MUSIC version 6.1 software (eWater 2009). Details of the case study decision variables, 

parameters, objectives, constraints, MOEA and simulation model are presented below. 
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Figure 2-3 Location of potential BMPs for proposed housing development in Adelaide, 
South Australia. An irrigation balancing tank is located in sub-catchment 2 

Table 2-1 Case study catchment characteristics 

Sub-catchment Area (ha) Fraction Impervious (%) 

1 120.2 50 

2 70.4 50 

3 54.7 60 

4 30.2 55 

Roof to RWT 33.4 100 

Note: For all sub-catchments field capacity = 30 mm; impervious area rainfall threshold 
= 30 mm/day; pervious area soil storage capacity = 40 mm; groundwater daily recharge 
rate = 25%; groundwater daily base flow rate = 5%. RWT = rainwater tank. 

2.3.1 Decision variables and model inputs 

The decision variables corresponding to each location were the surface area and, if 

multiple BMPs were available at a location, the type of BMP. The decision variable 
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options corresponding to locations within sub-catchments are summarised in Table 2-2. 

BMP type (BMP [integer]) options in sub-catchments 2 and 4, where more than one BMP 

type was available, included wetlands, geotextile-lined biofilters, and sediment basins 

suitable for SWH in South Australia. Two locations for wetlands were available, both at 

the base of retarding basins in the creek. These locations had adequate space for a wetland 

inlet pond and a macrophyte zone and received sufficient inflows from multiple-clusters. 

Biofilters were also available at the retarding basin footprints (as an alternative to 

wetlands), and distributed at the cluster-scale. Cluster biofilters were suitable for locations 

where space was limited near residential open spaces in catchments 1, 2, 3 and 4. 

Table 2-2 Case study decision variables 

Decision variable  
# 

Sub- 
catchment  

# 

BMP  
Type 

DV  
Type 

Max. available  
area (ha) 

1 1 CB area 0.92 
2 1 P area 0.50 
3 2 CB area 0.55 
4 2 SB,W, or MCB type NA 
5 2 SB,W, or MCB area a 

6 2 P area 1.00 
7 3 CB area 0.50 
8 3 P area 0.35 
9 4 SB,W, or MCB type NA 
10 4 SB,W, or MCB area b 

11 4 P area 1.00 
Note:  CB = cluster-scale biofilter, P = pond; SB = sediment basin; W = wetland; and 
MCB = multiple-cluster scale biofilter. NA = not applicable. 
a SB = 0.869 ha; W = 1.00 ha; MCB = 0.730 ha. 
b SB = 0.836 ha; W = 2.20 ha; MCB = 0.730 ha. 

Open-water ponds were available to store treated stormwater at four locations within 

the development site (one in each sub-catchment). The surface area (SA [fraction]) options 

for BMPs were 0% (no BMP), 33.3%, 66.6%, or 100% of the available area for a location. 

If a BMP size of 0% was selected by the MOEA, a sediment basin was set at multiple-

cluster-scale locations (even if a wetland or biofiltration basin was selected as the BMP 

type) and a junction was set at cluster scale locations. The wetland macrophyte zone area 

was limited by the space available in the retarding basin footprints. The maximum total 

sizes of biofilters were limited to 1.5% of contributing impervious catchment area or 

limited by site constraints, as per the relevant design guidelines (Payne, Hatt et al. 2015). 
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The sediment basin at each location had fixed sizes designed to accommodate peak 1 in 

1-year annual recurrence interval inflows from upstream sub-catchments. Discretization 

of the decision variables was selected to limit search space size due to the long run times 

(approx. 12.5 seconds) required to evaluate each candidate solution with the stormwater 

model. 

Stormwater model inputs included fixed- and decision variable dependent- design 

parameters, as follows. Wetlands had an inlet pond with surface area fixed at 15% of the 

macrophyte zone area and 2 m depth. Inflows higher than those with peak 1 in 1-year 

annual recurrence interval peak flows were diverted to an overflow bypass. A 48-hour 

nominal detention time (residence time) was used. This is typical for SWH wetlands in 

South Australia, which is a function of the wetland volume and is achieved by calculating 

the corresponding nominal outlet orifice size. A 300 mm extended detention depth limited 

the duration and frequency of inundation of wetland flora, but also the available detention 

capacity. A 300 mm average permanent pool depth was adopted for the macrophyte zone 

and was assumed to be initially full. Biofilters included biofiltration cells with a maximum 

area of 800 m2 (Water by Design Australia 2015) and were modelled as a lumped single 

cell for each catchment. Multiple-cluster-scale devices received inflows, diverted from 

the natural creek channel, that were lower than the 1 in 1-year annual recurrence interval 

peak flow rate for upstream catchments to prevent scour of the filter media.  Multiple-

cluster-scale biofilters had less restrictive site constraints than cluster-scale biofilters. This 

is reflected in their fixed dimensions. These are: (1) at the multiple cluster scale, 400 mm 

for biofilter detention depth, 800 mm for filter depth and 400 mm for the submerged zone; 

and (2) at the cluster-scale, 200 mm for biofilter detention depth, 500 mm for filter depth, 

and 200 mm for the submerged zone. Both devices had 200 mm/hr hydraulic conductivity, 

an underdrain with geotextile liner to maximize harvesting potential by preventing 

exfiltration, and a submerged zone to promote plant health in extended dry periods and to 

maximize volume retention. The interested reader is referred to Payne, Hatt et al. (2015) 

and Water by Design Australia (2015) for comprehensive diagrams illustrating these 

dimensions for lined biofilters. Storage ponds had 2 m total depth and 0.1 mm/hr 

exfiltration rate. Extended detention depth was set to 100 mm (minimum allowable in 

MUSIC) to minimize treatment modelled in the storage pond. All RWT parameters were 

fixed for a 1 kL tank size. RWTs in a sub-catchment were modelled as a lumped tank 

node. RWTs were connected to 100 m2 of roof area (40% of total roof area) per allotment 
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and supplied 50 L/day for toilet flushing. Gross pollutant traps were not modelled, as per 

relevant modelling guidelines (Water By Design Australia 2010).  

Cost model inputs included lifecycle cost parameters associated with BMPs in a 

solution and with pipe and pump infrastructure selected to transfer water from storage 

ponds to an underground balancing storage in sub-catchment 2. All transfer pipes were 

assumed to be 150 mm PVC to minimise pipe velocities and head losses for the highest 

demand scenario. Where a BMP was selected in sub-catchment 3 or 4, an 8 kW 

submersible pump supplied 9 L/s at 60 m head to the balancing storage, as per the detailed 

design adopted for the real-life SWH system (J. Cantone, personal communication, 2014). 

2.3.2 Objectives 

The objective function for lifecycle cost, LCC [$], was calculated using Equation (2-1) 

to (2-3). The parameters for LCCharvest [$] (Equation (2-2) were estimated from cost 

schedules developed by Melbourne Water Australia (2013) and the eWater MUSIC 

(eWater 2009) lifecycle costing tool (Table 2-3). A typical lifecycle period of 50 years 

was adopted. A discount rate of 5.5% per year was used to calculate the present worth 

factors. Although RWTs were a major cost of the SWH system ($10.7 M), this cost was 

incurred in all solutions and, therefore, omitted from the life cycle cost objective function. 

The parameters for LCCtransfer [$] (Equation (2-3)) were estimated as follows. Capital 

costs for pipe and pump infrastructure, CCapTransPipe [$] and CCapPump [$], were derived 

from costing data for the SWH system developed for the site (J. Cantone, personal 

communication, 2014; Table 2-4). The capital cost of a transfer component was included 

if at least one pond requiring the component was selected by the MOEA. The net present 

value (NPV) of operating costs of pipe maintenance and pumping, CmPipe [$] and CmPump 

[$], were assumed to be negligible compared to the BMP establishment and maintenance 

costs, based on analysis of detailed costings for several SWH conceptual designs in 

Inamdar (2014). The costs of gross pollutant traps were not included in the objective 

function value since the costs applied to all solutions. Volumetric reliability (RV [fraction]) 

was calculated (Equation (2-4)) using SWH model results. RV was the total demand 

supplied divided by total demand requested for the N ponds in each SWH concept design. 

Total Suspended Solids (TSS) reduction was the specific pollutant constituent adopted 

for the water quality objective. Maximising TSS load reduction was particularly important 

since TSS limit the ability of a water body to support diversity of aquatic life, introduce 
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contaminants, such as heavy metals and nutrients, limit navigability and fish passage due 

to sedimentation, and have undesirable aesthetic affects (Bilotta and Brazier 2008). Load 

reduction (LoadRednTSS [fraction]; Equation (2-5)) was calculated based on catchment 

outlet total TSS load divided by a baseline scenario TSS load without SWH or RWTs, 

determined using the stormwater model. 

Table 2-3 Breakdown of life cycle costs 

Lifecycle cost components Wetland Sediment 
Basin 

Pond Cluster 
biofilter 

Multiple-
cluster 

biofilter 
Total Acquisition Cost 
(TAC)($/m2) a  

100 150 150 500 250 

Annual Maintenance Cost 
($/m2)  a 

2 5 5 10 5 

Establishment Cost Factor a 2 2 2 2 2 
Establishment Period 
(years) a  

2 2 2 2 2 

Annualized Renewal cost 
($/m2) b 

0.00641 × 
TAC 

0.0172 × 
TAC 

0.0172 × 
TAC 

0.0243 × 
TAC 

0.0243 × 
TAC 

Renewal Period (years) b  25 15 25 20 25 
Decommissioning cost 
($/m2) b  

0.52 × 
TAC 

0.47 × 
TAC 

0.47 × 
TAC 

0.49 × 
TAC 

0.49 × 
TAC 

Note: Annual establishment period maintenance cost = Annual maintenance cost × 
establishment cost factor. Costs are in Australian Dollars (2015$). 
a Based on Melbourne Water Australia (2013). 
b Based on eWater (2009). 

Table 2-4 Breakdown of transfer component costs 

Transfer  
component 

Transfer component required? CCapTransPipe + 

CCapPump ($ M) Pond 1 Pond 2 Pond 3 Pond 4 
Pipe 1 Yes No No No 0.168 
Pipe 2 Yes Yes No No 0.044 
Pipe 3 No No Yes Yes 0.205 
Pipe 4 No No Yes Yes 0.205 
Pipe 5 No No Yes Yes 0.184 
Pump station Yes Yes Yes Yes 0.692 

2.3.3 Constraints 

Solutions generated by the MOEA that violated practical constraints were allocated 

extreme objective function values ($1.0 × 109 life cycle cost and 0.0% reliability), and 

were not simulated. The practical constraints on BMP configuration specific to the case 
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study were: in sub-catchments 1 and 3, if a BMP was selected, an adjacent pond had to 

be selected, and conversely, if no BMP was selected, no adjacent pond could be selected; 

and in sub-catchments 2 and 4, ponds could not be selected unless adjacent to at least one 

BMP. Three pollutants and load reduction targets (LoadRednTargeti [fraction]; Equation 

(2-6)) were recommended for Adelaide (Myers, Cook et al. 2011): TSS; 80%; total 

nitrogen (TN, 45%); and total phosphorous (TP; 45%). 

2.3.4 Multiobjective optimization algorithm 

The non-dominated sorting genetic algorithm (NSGA-II; Deb, Pratap et al. (2002)) was 

used as the multiobjective optimization engine, as its variants have been successfully 

applied to optimization of BMP systems (Marchi, Dandy et al. 2016) and it has been found 

to perform well when compared with more recent algorithms applied to a number of water 

distribution system optimization problems (Wang, Guidolin et al. 2015, Bi, Dandy et al. 

2016, Zheng, Zecchin et al. 2016). In this study, an NSGA-II variant, the Water System 

Multiobjective Genetic Algorithm, developed by Wu, Simpson et al. (2010), was used. 

The algorithm has been applied to a range of water resources studies (Paton, Maier et al. 

2014b, Beh, Maier et al. 2015); see https://github.com/jeffrey-newman/WSMGA-with-

Wrapper-and-Analytics). The left-hand side of Figure 2-4 shows the major steps in the 

NSGA-II for one scenario. The algorithm randomly selects decision variable values for 

an initial population of candidate solutions. Each solution is evaluated to determine its 

objective function values, which influence optimization operators (selection, crossover, 

and mutation) to generate new populations until convergence criteria are met.  
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Figure 2-4 Details of case study optimization process (adapted from (Marchi, Dandy et al. 
2016)) 

2.3.5 Integrated stormwater simulation model 

The Model for Urban Stormwater Improvement Conceptualizion (MUSIC version 6.1; 

eWater (2009)) was used to evaluate harvested water supply and water quality 

improvement objectives, and pollutant reduction performance. MUSIC is an integrated 

stormwater model that evaluates rainfall/runoff and pollutant generation and transport, 

hydraulic and pollutant removal performance of BMPs, and SWH water balance (Bach, 

Rauch et al. 2014). MUSIC is used as a SWH design tool in Australia and the UK and has 

been used in watershed-scale SWH system reliability analysis (Browne, Breen et al. 2012) 

and WSUD optimization (Montaseri, Hesami Afshar et al. 2015). MUSIC algorithms 

simulate runoff based on models developed by Chiew and McMahon (1999) and urban 
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pollutant load relationships based on analysis by Duncan (1999). The model SWH 

drainage networks consisted of nodes representing: BMPs (and junctions at locations 

where no BMP was selected by the MOEA); catchment runoff sources including roof, 

ground impervious and pervious fractions of each sub-catchment; and a catchment outlet. 

Nodes were connected via drainage links. The right-hand side of Figure 2-4 shows how 

MUSIC models were linked with NSGA-II. Input parameters for MUSIC included: BMP 

type and surface areas generated by the MOEA; catchment model parameters determined 

a priori; and fixed design parameters determined a priori or calculated after the surface 

areas were known. MUSIC modelled the spatial distribution of BMPs through routing 

flow and pollutant transport between nodes at each time step. 

2.3.6 Analyses conducted 

The optimization framework was run for three demand scenarios. These were Scenario 

1) low irrigation demand (61.0 ML/year), Scenario 2) high irrigation demand (for high 

amenity open space; 122.0 ML/year), and Scenario 3) high demand plus 40.0 ML/year 

export to a neighbouring school for non-potable use (162.0 ML/year). Annual demand 

was disaggregated in proportion to potential evapotranspiration minus rainfall in each 

hour for each year, using the ‘PET-rainfall’ demand function in MUSIC, as suggested in 

the MUSIC guidelines. After a solution was selected by the MOEA, each storage pond 

demand was allocated as follows: firstly, ponds were allocated their local sub-catchment 

irrigation demand; then demand for sub-catchments without ponds was allocated to the 

closest downstream pond, or the closest upstream storage pond if no downstream ponds 

existed. At each time-step, demand was extracted until a water depth of 500 mm was 

reached. Regional pervious surface storage parameters in the MUSIC manual (eWater 

2009) calibrated for Adelaide were adopted, which is considered an appropriate approach 

for MUSIC (Inamdar 2014), especially since the proposed development had a high 

impervious fraction dominating runoff volumes (Dotto, Deletic et al. 2011). A one-hour 

time step was adopted, since larger steps can result in harvested volume underestimation 

(Coombes and Barry 2007). As recommended by Mitchell, McCarthy et al. (2008) for 

SWH simulation, a series of mostly complete rainfall data over a 10-year period that 

include representative long-term rainfall characteristics was selected for simulation 

purposes. Consequently, data from 1990-1999 were used, as they have a mean annual 

rainfall of 409 mm/year, which is close to the long-term annual average (430 mm/year).  
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It should be noted that this is not the case for more recent data, as South Australia 

experienced a severe drought between 2001-2010. As the selected data were stationary 

(unlike the more recent data), they are also suitable for perturbation for use in climate 

impact studies, if desired (see Paton, Maier et al. (2013)). Flood retention, peak flow 

attenuation performance, and routing were not included as these analyses are typically 

carried out separately to water quality and water balance assessment using separate 

simulation packages with a smaller time step, and do not form part of SWH objectives 

(Water By Design Australia 2010). Flows exceeding the 1 in 1-year design volume were 

diverted away from BMPs in the MUSIC model. A baseline scenario for a catchment 

without SWH or rainwater tanks (i.e. only catchment runoff source nodes connected to a 

catchment outlet node) was simulated in MUSIC, in order to obtain the Source (Equation 

(2-5)) pollutant load values. The baseline catchment generated an annual average runoff 

of 479 ML with 57,900 kg TSS, 139 kg TP, and 871 kg TN. 

The NSGA-II runs had a population size of 200 with crossover and mutation 

parameters of 0.9 and 0.1, respectively, and were each terminated after 100 generations. 

These parameters were selected after trial-and-error runs with various parameter 

combinations. NSGA-II was run eight times using different random starting seeds in 

decision variable space in order to minimize the influence of the stochastic generation of 

the initial population and the probabilistic effects of some of the parameters controlling 

the search. Each run took approximately 45 hours on a 3.10GHz computer with 8 GB of 

RAM. For each demand scenario, non-dominated solutions from the eight seed runs were 

merged and the non-dominated solutions identified.  

The optimization results were compared with a catchment-outlet SWH approach to 

provide a benchmark comparison. The catchment-outlet approach describes a design 

approach where treatment and storage BMPs are located in areas of the catchment that 

receive large inflows, near the catchment outlet, which is a typical approach for designing 

SWH systems in practice (Browne et al. 2012; Inamdar 2014). The catchment-outlet 

conceptual designs were feasible (not necessarily optimal) solutions of the SWH problem 

formulation in this paper. The catchment-outlet designs considered had a pond and 

wetland or biofilter located near the catchment-outlet (sub-catchment 4), and a 

sedimentation basin (sub-catchment 2). A design for each combination of BMP size 

options was manually evaluated for each demand scenario using the cost model and 

MUSIC. The results were sorted to identify the non-dominated catchment-outlet solutions, 
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which were compared with Pareto optimal solutions identified in the NSGA-II 

optimization runs. All model source code, input data, and results are available (Michael, 

Dandy et al. 2016a). 

2.4 Results and discussion 

2.4.1 Distributed versus catchment-outlet approaches  

The results indicate that there is significant benefit in using the optimization 

framework, since the distributed SWH system optimization results dominate the 

catchment-outlet designs, except for two low-cost catchment outlet approaches that lie on 

the Pareto front under scenario 3 (Figure 2-5). Distributed approaches were able to supply 

more of the demand requested than the largest capacity catchment-outlet design, which 

indicated space at the catchment outlet limited the harvest capacity of catchment outlet 

approaches (Figure 2-5). Additionally, the catchment outlet approaches had limited 

capacity to reduce TSS loads. Therefore, distributed systems achieved higher supply and 

TSS reduction levels by utilizing several locations for SWH components. Optimization 

results comparing distributed and catchment-outlet system performance could be used in 

negotiation with stakeholders to support a distributed approach, especially where 

catchment outlet space is limited. 
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Figure 2-5 Pareto optimal and catchment outlet solutions 

2.4.2 Trade-offs in cost and volumetric reliability objectives 

The cost and volumetric reliability trade-off projections in Figure 2-6. show that there 

is a ‘knee’ region for each demand scenario. Moving along each front in a direction away 

from the knee region, there is a diminishing return in cost or reliability, suggesting that 

solutions in this region may represent a desirable trade-off between reliability and cost. 

Noticeably, the knee regions occur at different levels of reliability in each demand 

scenario. For example, to achieve an acceptable volumetric reliability of 80%, an 

investment of $4.19 M is required for demand scenario 1 and a $9.42 M investment is 

required for scenario 2; no scenario 3 solution was able to achieve a volumetric reliability 

of 80% (the maximum value achieved was 76.1% at $20.6 M). For demand scenario 1, 

limited returns in volumetric reliability were available away from the knee region in the 

direction of increasing costs. For example, a supply reliability of 93.2% was available for 

$7.52 M, whereas the maximum system reliability of 93.8% required an additional 38.7% 
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investment (i.e. $10.43 M). Compared to scenarios 2 and 3, the demand scenario 1 front 

had noticeable discontinuities and the knee region had a smaller cost range. These were a 

result of the limited number of BMPs utilized in scenario 1’s non-dominated cost-

reliability solutions, as discussed below. 

2.4.3 Trends in design decisions in cost-volumetric reliability Pareto optimal 

solutions 

Performance and design decision values of selected solutions are given in Table 2-5 

and Table 2-6. The solutions represent an extreme objective function value (solutions 1, 

16, 17, 42, 43, and 77) or occur at a trade-off ‘break point’ in the objective space or design 

decision space. The solutions were identified by visual inspection of the Pareto optimal 

solution objective and design decision spaces. These solutions utilized multiple-cluster-

scale BMPs, as shown in the sub-catchment 2 and 4 BMP size columns in Table 2-6. 

Furthermore, multiple-cluster-scale biofilters and ponds at a central location (sub-

catchment 2) and near the catchment-outlet (sub-catchment 4) were the only BMPs in all 

demand scenario 1 solutions, and in low cost scenario 2 and 3 solutions, for example 

solutions 17, 19, and 43. For demand scenario 1, BMPs at these locations captured 

sufficient inflows and had sufficient pollutant load reduction performance to meet water 

quality targets, without having to rely on cluster-scale BMPs. For demand scenarios 2 and 

3, moving from low to high cost solutions, the maximum available area for BMPs at 

multiple-cluster locations was utilized before additional cluster-scale BMPs. Distributed 

cluster biofilters and ponds were selected more frequently in solutions with higher levels 

of reliability and to meet higher demand supply volumes. These results are consistent with 

sensitivity analysis of distributed BMP systems (Lee, Selvakumar et al. 2012) designed 

for flow reduction and water quality improvement, which demonstrated BMPs at 

locations receiving large inflows consistently appeared in Pareto optimal solutions. 

Biofilters provided best return on investment for supply volume and TSS reduction, since 

all Pareto optimal solutions had a biofilter in at least one location (Table 2-6). Only two, 

high cost, Pareto optimal solutions had wetlands and none had a sedimentation basin. 
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Table 2-5 Objective function and performance indicator values of selected solutions 

Demand 
Scenario 

Soluti
on # 

LCC  
($ M) 

RV  

(%) 
TSS 

reduction 
(%) 

LCC harvest  
($ M) 

LCC transfer 
($ M) 

Avg. 
Supply 
(ML/yr) 

TN 
reduction 

(%) 

TP  
reduction 

(%) 
1 1 3.462 72.31 81.9 2.726 0.736 44.10 53.8 59.3 

3 4.186 82.68 80.4 3.451 0.736 50.43 51.9 58.6 
4 4.762 84.68 80.2 3.637 1.125 51.65 53.0 62.7 
7 5.672 89.57 80.8 4.547 1.125 54.63 54.3 63.9 
8 6.455 89.71 83.8 5.330 1.125 54.72 57.5 65.5 
16 10.427 93.84 87.2 9.302 1.125 57.23 63.9 72.5 

2 17 4.374 58.84 80.6 3.293 1.081 71.77 52.6 62.1 
19 5.284 70.08 80.4 4.204 1.081 85.49 53.7 64.5 
20 5.672 75.70 81.8 4.547 1.125 92.34 58.3 66.9 
27 9.428 80.88 86.0 8.303 1.125 98.66 64.8 73.5 
28 10.761 81.01 85.8 9.636 1.125 98.82 63.8 73.1 
29 12.152 81.12 80.9 10.860 1.293 98.95 57.5 68.9 
40 17.592 83.59 89.4 16.299 1.293 101.97 69.9 77.7 
41 18.241 83.66 88.1 16.948 1.293 102.05 67.6 76.6 
42 19.760 83.67 88.8 18.467 1.293 102.06 68.8 77.5 

3 43 4.374 50.88 80.8 3.293 1.081 82.42 53.5 62.9 
44 4.762 61.75 81.5 3.637 1.125 100.02 58.0 66.5 
45 5.486 66.82 80.0 4.361 1.125 108.24 56.5 66.0 
47 6.424 68.37 80.4 5.299 1.125 110.75 57.7 67.0 
58 10.682 72.86 85.8 9.352 1.330 118.02 64.9 74.3 
63 12.978 73.56 89.6 11.648 1.330 119.15 71.4 78.4 
64 13.136 73.68 85.7 11.843 1.293 119.35 65.8 74.3 
77 20.555 76.13 90.2 19.057 1.498 123.32 72.1 79.9 

Note: TSS = total suspended solids, TN = total nitrogen, TP = total phosphorous. 

2.4.4 Trade-offs between cost, reliability, and water quality objectives 

Figure 2-6 shows all Pareto optimal solutions identified by NSGA-II projected in 2-D 

objective space. For all demand scenarios, solutions providing the best trade-off 

between volumetric reliability and cost did not provide high TSS reduction, indicating a 

trade-off exists between TSS reduction and volumetric reliability. Lower-cost solutions 

tended to have lower TSS reduction, whereas high reliability was achievable at 

relatively low-cost. For a given cost, higher TSS reduction was achievable for a 

compromise in reliability. A similar maximum TSS reduction (of approximately 95%) 

was achieved in all scenarios coinciding with the maximum cost solutions. This is 
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contrasted with volumetric reliability, which diminished with increasing demand 

volumes as systems reached supply capacity more frequently. From Table 2-6, in lower-

cost and lower-reliability solutions, higher TSS load reduction was achieved by 

investing in larger biofilters and smaller ponds. For example, the highest reliability 

solution in demand scenario 1 (solution 16) had a TSS reduction performance of 87.2%; 

however, solutions with a slightly lower reliability and similar cost (with smaller pond 

sizes shown in Table 2-6) provided far higher TSS reduction. When assessing solutions 

that are non-dominated in cost-reliability space, stakeholders should consider slightly 

inferior solutions with respect to these objectives that provide considerably higher TSS 

reduction. In order to explain conflicting trade-offs in the SWH system objectives, 

design decisions are discussed further below. 
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Figure 2-6 Pareto optimal solutions for three demand scenarios 
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Table 2-6 Decision variable values of selected solutions 

Demand 

scenario 

Solution # Biofilter  

Cluster 1 

Pond 

Cluster 1 

Biofilter  

Cluster 2 

BMP 2 

(central) 

SA 2 

(central) 

Pond 2 

(central) 

Biofilter 

Cluster 3 

Pond 

Cluster 3 

BMP 4 

(outlet) 

SA 4 

(outlet) 

Pond 4 

(outlet) 

1 

 

1 1 - - - B 100 33.3 - - B 33.3 
3 3 - - - B 66.6 66.6 - - B 33.3 
4 4 - - - B 100 33.3 - - B 33.3 
7 7 - - - B 100 66.6 - - B 33.3 
8 8 - - - B 66.6 66.6 - - B 66.6 
16 16 - - - B 100 100 - - B 100 

2 17 17 - - - B 33.3 - - - B 66.6 
 19 19 - - - B 33.3 - - - B 66.6 
 20 20 - - - B 100 66.6 - - B 33.3 
 27 27 - - - B 100 100 - - B 66.6 
 28 28 - - 33.3 B 66.6 100 - - B 66.6 
 29 29 33.3 100 - B 33.3 100 - - B 33.3 
 40 40 66.6 100 33.3 B 100 100 - - B 66.6 
 41 41 66.6 100 33.3 W 100 100 - - B 66.6 
 42 42 66.6 100 66.6 W 100 100 - - B 66.6 
3 43 43 - - - B 33.3 - - - B 66.6 
 44 44 - - - B 100 33.3 - - B 33.3 
 45 45 - - - B 66.6 66.6 - - B 33.3 
 47 47 - - - B 66.6 100 - - B 33.3 
 58 58 - - - B 100 100 33.3 66.6 B 33.3 
 63 63 - - - B 100 100 33.3 100 B 100 
 64 64 33.3 100 33.3 B 100 100 - - B 33.3 
 77 77 66.6 100 33.3 B 100 100 66.6 100 B 33.3 

Note: BMP type (BMP): B = biofilter; W = wetland. Surface area (SA); percentage of maximum available): � = 0.0% (junction).
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2.4.5 Impact of design decisions on cost, reliability, and water quality 

Figure 2-7 shows that biofilters at the central (sub-catchment 2) and outlet (sub-

catchment 4) locations (labelled as ‘BMP 2’ and ‘BMP 4’ in Table 2-6) were preferred in 

most Pareto optimal solutions for scenario 1. This indicates, in addition to volumetric 

reliability benefits as discussed previously, multiple-cluster-scale biofilters provided cost-

effective TSS reduction. In addition, in solutions with high TSS reduction, the central 

sub-catchment 2 storage pond, and not the outlet sub-catchment 4 pond, was preferred. 

The sub-catchment 2 pond contributed to the supply volume objective only and was 

mandatory where the sub-catchment 2 multiple-cluster-scale biofilter was selected, 

whereas pond 4 was not mandatory. Cluster-scale biofilters were selected more frequently 

than other cluster BMPs in solutions with TSS reduction levels above 90%. In particular, 

cluster biofilter 3 was selected frequently and provided desirable cost-TSS reduction 

performance. This may be because cluster biofilter 3 treated runoff from the sub-

catchment with the highest impervious fraction (60%), which had inflows with higher 

pollutant concentration and volumes than other cluster biofilters, resulting in higher 

treatment efficiency, and intercepted runoff which otherwise reached the catchment-outlet 

BMPs, which overflowed quickly due to the large contributing catchment and limited 

capacity at the outlet.  
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Figure 2-7 Heat maps of Pareto optimal solution decision variable values for scenario 1 

2.5 Summary and conclusions 

A general multiobjective optimization framework was developed for the conceptual 

design of spatially distributed stormwater harvesting (SWH) systems to address 

knowledge gaps in the SWH optimization literature. The approach was applied to a case 

study SWH system for a housing development north of Adelaide, South Australia. The 

results demonstrate the benefits of adopting Pareto optimal spatially distributed SWH 

systems identified using the framework, compared with traditional catchment-outlet 

approaches. Results indicate that where storage space is limited at the catchment outlet, 

in addition to better water quality improvement, better harvested stormwater supply 

reliability can be achieved by distributing capture, treatment, and storage BMPs in an 

integrated SWH system. In the case study, biofilters in locations with high runoff inflows 

were preferred in solutions that were non-dominated with respect to all three objectives: 

lifecycle cost, volumetric reliability and TSS reduction. Maximum TSS reduction was 

limited primarily by available treatment BMP sizes. In addition, solutions with the highest 

reliability did not coincide with those with the highest TSS reduction. This is because 

although pollutant load reduction through abstraction of harvested water contributed to 
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improved runoff quality, major drivers for TSS reduction performance were the size and 

location of BMPs. Of the cluster-scale biofilters, those strategically placed in a sub-

catchment with the highest impervious fraction that otherwise directly contributed to the 

catchment outlet BMP provided the best return on investment for improvement in 

reliability and TSS reduction. If decision-makers with a particular budget accepted a 

slightly lower harvested water supply reliability, solutions with significantly higher TSS 

reduction were available as an alternative to solutions non-dominated in cost-reliability 

space.  

There were several limitations to the work carried out in this study and further research 

opportunities were identified. Firstly, future studies could include operating rules as 

decision variables to optimize transfer and release between storage ponds, to maximize 

supply volume and optimize detention storage size. Secondly, in the case study 

application, MUSIC simulations were a major contributor to computer run-times. 

Consequently, decision variable options were limited in order to limit the search space 

and hence the number of model evaluations. This allowed convergence towards Pareto 

optimal solutions in a practical time frame. Parallelization of model simulations, surrogate 

modelling techniques, or additional optimization operators to prevent simulation of 

inferior solutions could reduce run-time further, as discussed in Maier, Kapelan et al. 

(2014). This would permit additional decision options, scenarios including the impact of 

climate change on optimal BMP placement, as well as consideration of solution 

robustness and uncertainty analyses. 

Despite these limitations, the results presented in this study clearly show the potential 

benefits provided by optimization of distributed SWH systems. As recommended by 

Askarizadeh, Rippy et al. (2015), optimization frameworks, such as the one proposed in 

this study, will be important decision support tools for the selection and siting of BMPs 

for urban SWH into the future. 
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Abstract 

Catchment management often involves the selection of a portfolio of stormwater best 

management practices (BMPs) to achieve desired social, environmental and economic 

benefits. However, selection of BMPs requires the optimum use of limited resources to 

obtain the maximum possible benefit. In previous studies, BMP selection has either been 

formulated as a multi-criteria decision analysis problem without optimization, or a formal 

optimization problem with water quality and cost as objectives. However, modern BMP 

technologies are designed to provide multiple catchment benefits, and decision-makers 

are required to select from large numbers of combinations of BMPs whilst considering 

many objectives. This study presents a formal many-objective optimization approach to 

identify and select from efficient portfolios of BMPs. The optimization approach was 

applied to a 4-objective case study to identify portfolios of biofilters, wetlands and swales 

for a regional-scale urban catchment in a major Australian city. Visual analytics was used 

to identify the trade-offs and impacts of decision options on Pareto optimal portfolio 

performance. Case study results show that significant trade-offs exist between total 

nitrogen reduction and cost, and between stormwater harvesting capacity and cost. This 

indicates that large increases in these benefits are possible for small increments in cost by 

adopting selected combinations of BMPs. Low-cost portfolios required a small number 

of cost-effective ‘flagship’ projects, but had low urban greening and amenity benefits. 

Portfolios that provide a desirable compromise between the four objectives were 

identified by considering information from the problem objective and decision spaces. 

3.1 Introduction 

Sustainable integrated catchment management often involves the selection of a 

portfolio of stormwater best management practices (BMPs) with precinct-sized 

contributing catchments (i.e. < 1 km2) to achieve desired social, environmental and 

economic benefits within a larger catchment or    region (Marlow, Moglia et al. 2013). 

BMPs may include structural and non-structural measures for detention, harvesting, 

infiltration, evaporation, and transport of non-point urban stormwater runoff (Lerer, 

Arnbjerg-Nielsen et al. 2015). Catchment managers must consider a range of performance 

criteria due to several socio-political drivers including: water supply security, public 

health protection, social amenity, urban flow regime improvement, environmental 
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protection and flood mitigation (Marlow, Moglia et al. 2013, Askarizadeh, Rippy et al. 

2015). In response to these drivers, BMPs have been developed to provide multiple 

functions in addition to water quality improvement, for example stormwater harvesting 

(Mitchell, Deletic et al. 2007, Clark, Gonzalez et al. 2015, Di Matteo, Dandy et al. 2017) 

and urban vegetation and amenity improvement (Sharma, Pezzaniti et al. 2016).  

To maximize total catchment benefits for a given budget, decision-makers must select 

a combination, or portfolio, of BMPs that provides the best trade-off between many 

objectives. This is difficult for the following reasons (Moglia, Kinsman et al. 2012): (a) 

many planning objectives need to be considered (Mitchell, Deletic et al. 2007); (b) there 

are often many viable BMPs and therefore a large number of combinations of BMPs to 

choose from (Maringanti, Chaubey et al. 2009); (c) identifying and representing the trade-

offs between many (more than 3) objectives can be computationally expensive and 

cognitively challenging for decision-makers (Purshouse and Fleming 2007); (d)  the non-

intuitive nature of multi-dimensional value analysis and unanticipated and emergent 

trends can prevent decision-makers from understanding and trusting portfolio analysis 

results (Fitzgerald and Ross 2015); and (e) the ability to identify the best portfolio of 

BMPs is made even more difficult in practice, as often limited resources are available for 

performing this task (Moglia, Kinsman et al. 2012). Therefore, to assist with selection of 

suitable portfolios of BMPs to implement in a catchment management strategy, catchment 

managers would benefit from a decision support approach that 1) considers numerous, 

possibly conflicting, performance criteria; 2) handles a large number of decision options 

and potential strategies; 3) facilitates the identification and representation of trade-offs 

between performance criteria; 4) develops trusted strategies; and 5) operates within the 

limits of existing planning capacities. 

To enable consideration of many performance criteria, a number of multi-criteria 

decision analysis (MCDA) techniques (Goicoechea, Hansen et al. 1982) have been 

developed for ranking and selecting individual BMPs (Ellis, Deutsch et al. 2006, Moglia, 

Kinsman et al. 2012, Jia, Yao et al. 2013), and portfolios of BMPs (Aceves and Fuamba 

2016a, Aceves and Fuamba 2016b), and have been adopted in practice (Moglia, Kinsman 

et al. 2012). The multi-criteria decision analysis (MCDA) approaches consider many (>3) 

performance criteria but require an a priori definition of stakeholder weightings for each 

criterion, or exploration within a limited region of interest, to determine ‘the most 

preferred’ portfolio of BMPs or a small set of preferred portfolios for further 



 

 56  
 

consideration. However, in practice decision makers often “…don't know what they want 

until they know what they can get…” (Loucks 2012, Maier, Kapelan et al. 2014). This 

means a change in preferences and a better understanding of the problem may occur once 

a full representation of the trade-offs between the various performance criteria is 

visualized and explored (Woodruff, Reed et al. 2013, Matrosov, Huskova et al. 2015). 

Therefore, although MCDA approaches allow for many performance criteria to be 

considered when selecting BMPs, they do not allow decision makers to understand the 

full range of trade-offs for the given problem before determining their preferences, which 

limits the ability to identify a suitable compromise solution. In addition, a limited number 

of alternative portfolios are generated in MCDA, which limits exploration and analysis of 

the influence of BMPs on the performance of portfolios that provide the best trade-offs. 

Formal multiobjective optimization approaches have been developed for catchment 

management problems to assist in identifying the set of BMPs that represent the best 

possible trade-offs among the competing performance criteria from among the large 

number of combinations possible. Recent approaches have typically included an 

integrated stormwater simulation model (Bach, Rauch et al. 2014) linked with an 

evolutionary algorithm  for the optimal sizing and placement of BMPs (Di Matteo, Dandy 

et al. 2017) within a watershed to achieve environmental benefits from treating 

stormwater runoff. However, formal objectives have been limited to ecosystem health 

benefits and cost for regional-scale catchment management problems (Lee, Selvakumar 

et al. 2012, Chichakly, Bowden et al. 2013, Chen, Qiu et al. 2015, Zou, Riverson et al. 

2015). A potential reason for this is that the number of solutions required to characterise 

the Pareto front increases exponentially as objectives are added, making this process 

exceptionally computationally expensive for more than two or three objectives for many 

complex water resources problems (Purshouse, Deb et al. 2014). As discussed in recent 

optimization studies (Kasprzyk, Reed et al. 2012, Kasprzyk, Reed et al. 2015, Matrosov, 

Huskova et al. 2015, Woodruff 2016) optimizing management solutions for a sub-

problem of a many-objective problem can lead to ‘cognitive myopia’, which is a negative 

decision-making bias that arises due to drawing incorrect inferences and conclusions from 

limited problem information. In this light, the limited number of formal objectives in 

existing studies may have encouraged solutions with sub-optimal performance with 

respect to criteria that are not included as formal objectives in the optimization problem 

but that are important to contemporary catchment managers (Woodruff, Reed et al. 2013). 
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It is therefore preferable to optimize with respect to many (relevant) formal objectives 

where possible. 

While it is important to consider many objectives, as well as trade-offs between them 

(rather than having pre-defined weightings, as in MCDA), this makes the analysis of 

many-objective optimization results difficult. This is because: (1) visualizing the trade-

offs between objectives in more than two or three dimensions can be cumbersome, (2) 

many-objective Pareto fronts can have large numbers of non-dominated solutions, as the 

number of Pareto optimal solutions grows exponentially with the number of formal 

objectives (Hughes 2005, Chand and Wagner 2015), (3) human decision makers have a 

limited cognitive load and can select between only a small number of solutions at a time 

(Miller 1956), which requires techniques to reduce the Pareto frontier to a sub-set of 

diverse and promising solutions to present to decision-makers (Purshouse, Deb et al. 

2014), and (4) visualizing solution performance separately from decision options may 

cause decision maker biases (Kasprzyk, Reed et al. 2012, Giuliani, Herman et al. 2014, 

Matrosov, Huskova et al. 2015). Recently, advanced interactive visual analytics (Keim, 

Andrienko et al. 2008) approaches have been applied to help humans make sense of large 

and complex data sets such as many-objective optimization results (Kasprzyk, Reed et al. 

2009). However, these approaches have not been applied in the catchment management 

optimization literature. 

In order to enable trusted catchment management strategies that are likely to be 

adopted in practice to be developed within existing planning capacities, stakeholder 

engagement should be encouraged in all aspects of optimization studies applied to water 

resources problems (Voinov and Bousquet 2010, Maier, Kapelan et al. 2014). The 

problem formulation and system models should incorporate existing practitioner 

modelling practice. In addition, practitioners should aim to use optimization as a 

complementary tool to existing approaches where possible. In the existing BMP 

optimization literature, there is a lack of end-user input or use of problem domain 

knowledge that influences optimization algorithm behaviour (Bi, Dandy et al. 2016). 

Consequently, catchment management strategies developed by algorithms may not be 

trusted and adopted by decision-makers who are unfamiliar with the optimization process 

and who may perceive the process of selecting the Pareto set of BMP portfolios to be a 

‘black box’ (Maier, Kapelan et al. 2014). In addition, integrated catchment simulation-

optimization approaches (Srivastava, Hamlett et al. 2002, Maringanti, Chaubey et al. 
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2009) may not complement current practice for management of large regional urban 

catchments, which typically involves ad hoc selection and implementation of BMPs as 

funding becomes available. In addition, since existing data are often insufficient to 

develop useful integrated catchment models at the regional scale (Bach, Rauch et al. 

2014), model development may not be feasible within a limited planning time-frame and 

resources. Therefore, a formal decision approach that involves stakeholders in the 

selection, evaluation and analysis of portfolios of individual BMPs, but without requiring 

a catchment simulation model, might encourage uptake of formal decision support 

approaches by decision-makers, which would improve upon current practices. 

As identified in the above discussion, catchment management decision support 

approaches need to handle several objectives, consider the full trade-off space, and 

develop trusted solutions based on current modelling practice. However, current 

approaches have failed to meet all of these needs. While MCDA methods allow many 

performance criteria to be considered when selecting a portfolio of BMPs, they require 

decision-makers to define their preferences without knowledge of the full-trade-off 

patterns between portfolios. Many-objective optimization approaches overcome this 

limitation since they produce an approximation of the Pareto front, which allows an 

exploration and analysis of a large number of portfolios to identify solutions that represent 

a desirable compromise between performance criteria. However, many-objective 

optimization approaches can be computationally expensive and produce a large number 

of solutions to select from. In addition, simulation-optimization based approaches may 

not be feasible within a catchment management authority’s planning capacities, 

complementary to existing practices, nor desirable if decision-makers do not trust the 

solutions developed by the optimization algorithm. 

In order to address the shortcomings of existing approaches discussed above, the 

objectives of this paper are: (i) to present a formal optimization approach that identifies 

the best combinations of BMPs for many (> 3) objective catchment planning; (ii) to 

demonstrate the utility of the approach by applying it to a case study based on an 

integrated catchment management plan for a major city in Australia; and iii) to use the 

case study to a) investigate the possible many-objective trade-offs between lifecycle cost, 

water quality improvement, stormwater harvesting capacity and urban vegetation and 

amenity improvement, b) investigate the importance of a many-objective approach 

compared to a bi-objective water quality-cost optimization, as has been done in most 
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previous studies, c) demonstrate trends in the impact of particular BMP projects on Pareto 

optimal portfolio performance, and how this may influence decision-making, and d) 

identifying opportunities in the application of the framework for improving stakeholder 

buy-in to optimization results. 

3.2 Proposed Many-Objective Optimization Approach 

This section contains a description and mathematical formulation of the multiobjective 

BMP portfolio optimization problem (decision variables, objective functions and 

constraints) and the proposed formal optimization framework for solving it. 

3.2.1 Conceptual Outline of the Proposed BMP Selection Approach 

A conceptual outline of the proposed approach to address limitations in existing 

approaches to many-objective best management practice (BMP) selection for integrated 

catchment management is shown in Figure 3-1. To ensure only viable and trusted BMPs 

are considered, initially, a list of potential catchment management BMPs, p, is determined 

by stakeholders. These BMPs are then evaluated individually by stakeholders and the 

interdependencies between them determined. All possible combinations of these 

individual projects make up the full portfolio solution space, which is expected to be too 

large to adequately evaluate by trial-and-error or enumeration. Therefore, in order to 

allow consideration of many performance criteria, F, and a wide exploration of the 

potential portfolios, P, a formal optimization approach is adopted. The best combinations 

of BMPs are represented as Pareto optimal solutions, P*, to a many-objective portfolio 

optimization problem formulation (Cruz, Fernandez et al. 2014). In order to analyse the 

large number of Pareto optimal solutions produced by the optimization process, 

interactive visual analytics are used to explore trade-offs and impacts of BMPs on 

portfolio performance. To ensure results are trusted and determined within limited 

planning capacity, the domain knowledge of practitioners is required to evaluate the 

performance of individual projects. This is also useful to identify interdependencies 

between projects and to ensure appropriate constraints and interactions are incorporated 

into the evaluation of portfolio objective functions. This is a pragmatic and parsimonious 

alternative approach to integrated urban water simulation models that model interactions 

in urban drainage, water supply and broader integrated urban water systems (Bach, Rauch 

et al. 2014), but may be costly to develop for catchment management planners. The 
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approach is appropriate where a large number of potential BMPs are worthy of 

consideration within a large catchment area, especially where integrated models may not 

be available or necessary. The approach can be used in a preliminary planning-phase to 

screen and select BMPs for further consideration. To further ensure decision-makers trust 

the optimization results, the visual analytics enable end-users to help make the selection 

of a final portfolio by illustrating the complicated logic and benefits of performance 

criteria trade-offs and impact of individual BMPs on total portfolio performance. 

 

Figure 3-1 Conceptual outline of the proposed many-objective optimization approach for 
catchment management best management practice (BMP) selection. 

3.2.2 Proposed Formal Optimization Framework 

The proposed formal optimization framework for selection of BMPs for a catchment 

management strategy is shown in Figure 3-2, and explained in the following sections. 
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Figure 3-2 Formal optimization framework for selecting portfolios of BMPs. 

3.2.2.1 Problem Formulation 

The first part of the optimization framework consists of steps required to formulate a 

portfolio optimization problem that represents the catchment management problem. To 

achieve multiple catchment benefits, numerous stormwater best management practices 

(BMPs) are typically considered to intercept and deal with runoff, at locations distributed 

throughout a catchment. Examples of BMPs may include: biofiltration systems 

(biofilters), which typically consist of a basin overlaying a filter medium; constructed 

wetlands, which are shallow, extensively vegetated basins that use enhanced 

sedimentation, fine filtration and pollutant uptake processes to remove runoff pollutants; 

and swales, which are vegetated channels. Appropriate types and locations of BMPs 

largely depend on site characteristics including soil type, topography, infiltration rate, 

contributing connected impervious area, and sufficient space to access for maintenance. 
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Site characteristics are typically assessed through on-site and geospatial studies (Inamdar 

2014). After site assessment, a short-list of feasible BMPs is agreed upon amongst 

stakeholders taking into account the potential to achieve desired performance criteria and 

other socio-political factors (Chichakly, Bowden et al. 2013, Sharma, Pezzaniti et al. 

2016).  

The performance of each BMP is then evaluated independently against multiple 

criteria, using accepted models based on the contributing sub-watershed for each BMP, 

and in consultation with experienced local experts (Inamdar 2014). In the absence of an 

adequate regional-scale integrated model to evaluate the downstream impact of BMPs, 

interactions (for examples of formulating interactions in portfolio optimization see (Cruz, 

Fernandez et al. 2014)) between BMPs that influence individual BMP performance are 

evaluated based on expert judgment and modelling of BMPs and multiple contributing 

sub-watersheds, to determine decision-making rules or performance models for 

interdependent projects. The individual projects, their performance, interdependencies 

and practical limitations on portfolio size are then formulated as the decision variables, 

objectives and constraints of a mathematical optimization problem (see Section 3.2.3). 

3.2.2.2 Optimization Process 

The second part of the optimization framework describes the algorithmic processes 

used to solve the optimization problem. Only portfolios that are non-dominated (i.e. none 

of the objective functions can be improved in value without degrading one or more of the 

other objective function values) can be considered as portfolios that represent the best 

trade-off between objectives. To identify the non-dominated, or ‘Pareto optimal’ solutions 

to the mathematical optimization formulation a many-objective metaheuristic algorithm 

is suggested as part of the optimization framework. Metaheuristic algorithms have several 

advantages over traditional optimization approaches (such as linear programming). They 

can deal with multiple objectives simultaneously (Maier, Kapelan et al. 2014) and have 

been successful in recent planning and design optimization studies considering urban 

water planning (Szemis, Maier et al. 2012, Beh, Dandy et al. 2014, Paton, Dandy et al. 

2014a, Marchi, Dandy et al. 2016) and distributed BMP systems (Chichakly, Bowden et 

al. 2013, Di Matteo, Dandy et al. 2017). Furthermore, they can be linked with the 

evaluation models required to calculate multiple objective functions and check constraints 

of candidate solutions (Maier, Kapelan et al. 2014), and can provide confidence in the 
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results of the optimization process, as simulation models that are already used in local 

catchment planning decision-making can be used (Maier, Kapelan et al. 2014). 

As part of the optimization process, a number of solutions are generated with the aid 

of a many-objective metaheuristic algorithm. Each solution represents a set of binary 

decisions on whether or not to adopt each available project in a portfolio. In the 

construction of a solution, projects are added to a portfolio until a maximum number of 

projects is reached, or all projects have been considered i.e. a portfolio can consist of 

fewer than the maximum number of projects. Then, portfolios are evaluated against 

logical and strategic conditions. If a portfolio violates these conditions, the objective 

function values are set to a penalty value. Next, the performance of valid portfolios is 

evaluated by calculating objective functions, including interactions. This evaluation 

requires a model of the objective values of individual projects, and a model for each 

interaction, to determine the total portfolio objective function values. After evaluation, 

final penalties are applied to objective function values of solutions that fail to meet defined 

constraints. The metaheuristic algorithm uses objective function values to assess the 

fitness of solutions and to iteratively modify solutions. Over a number of iterations, 

solutions converge towards the set of Pareto optimal portfolios, which are non-dominated 

in the set of all feasible portfolios. The metaheuristic iterative approach continues until 

specific termination criteria are met (for example, a maximum number of iterations). The 

non-dominated solutions identified by the optimization process are Pareto optimal or near 

Pareto optimal catchment management portfolios. 

3.2.2.3 Visual Analysis of Pareto optimal 

Portfolios 

An interactive visual analytics package (Kollat and Reed 2007, Hadka, Herman et al. 

2015) is suggested to assist decision makers to explore, analyse and ultimately select 

appropriate portfolios that represent a desired compromise between performance criteria 

and practical catchment management strategies (Maier, Kapelan et al. 2014). Firstly, the 

Pareto optimal portfolio performance and decision data, as well as alternative data that 

may be useful for decision-making (e.g. average contributing catchment size, BMP type, 

number of projects) are uploaded into the visual analytics package. Then, high-

dimensional coordinate plots or parallel coordinate plots (Inselberg 2009) are used to 

visualize the performance of the large number of Pareto optimal portfolios in many-
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objective space. Then, in order to reduce the number of portfolios considered for further 

analysis, dynamic filtering to eliminate undesirable solutions can be carried out by 

analysts based on the decision-maker’s budget constraints and minimum preferences for 

each benefit, and eliminate apparently undesirable combinations of BMPs not anticipated 

a priori (Piscopo, Kasprzyk et al. 2015). Within the reduced set, decision-makers and 

analysts can use brushing to highlight sub-sets of interesting solutions. Multiple linked 

plots of the same data set can assist with identifying and rationalizing trade-offs, such as 

conflicts and areas of diminishing returns between objectives and emergent behaviour 

caused by the inclusion of particular BMPs within portfolios. Interactive visualization of 

optimization objective and decision spaces simultaneously enables stakeholders, with the 

assistance of analysts, to rapidly identify subsets of portfolios that contain preferred 

projects and compare their performance to other portfolios. In this way, browsing through 

solutions to investigate and learn about the impact of individual project preferences on 

total catchment benefits can allow decision-makers to overcome institutional decision-

making biases (Kollat and Reed 2007, Matrosov, Huskova et al. 2015). Ultimately, 

several desirable portfolios are selected for further consideration. 

3.2.3 Optimization Problem Formulation 

To identify portfolios that represent the best trade-off between many objectives, the 

project portfolio selection problem is defined as the optimization of vector F(P), 

composed of n objective functions:  

F(P) = [f1,f2,…,fn ]    

Equation ( 3-1 ) 

where P is a portfolio of projects, and F is a vector of the associated costs and benefits 

of a portfolio. The decision variables, objectives, and constraints particular to the 

catchment management portfolio selection problem are as follows. 

3.2.3.1 Decision Variables 

In the framework, it is assumed that each BMP project has a pre-determined size, type 

and location. As such, each decision variable is a binary variable, di, that represents the 

decision whether or not to adopt project, pi. There are Np possible projects, and thus Np 
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decision variables, given by: d = d1, d2,…,dN,  where di ∈0,1, for all i ∈ (positive integers). 

A portfolio, P, is defined as the set of projects pi for all i where di = 1. 

3.2.3.2 Objectives 

Although objectives depend on stakeholder interests, four formal objectives addressing 

one or more economic, social, or environmental catchment management goals are 

included in the proposed framework: economic cost, water quality improvement, 

stormwater harvesting capacity, and combined urban vegetation and amenity 

improvement. Economic cost is a primary concern for decision-makers responsible for 

maximizing return on investment, including capital maintenance and operating costs. 

Water quality improvement is a key environmental objective considered by catchment 

management authorities (Chichakly, Bowden et al. 2013, Yang and Best 2015). 

Maximizing stormwater harvesting volume is a primary motivation for implementing 

projects with SWH capacity in order to reliably meet irrigation demand, which can 

contribute to runoff volume reduction and groundwater recharge known to produce 

ecosystem health benefits (Askarizadeh, Rippy et al. 2015). An amenity improvement 

score was selected as the social criterion, as BMPs are typically located in public open 

spaces and are maintained using public resources and urban vegetation and amenity 

improvement are often important criteria for evaluating BMPs. 

3.2.3.2.1 Cost 

In the proposed framework, the economic cost of a portfolio of projects is represented 

as a life cycle cost LCC [$] (Equation (3-2)) (Di Matteo, Dandy et al. 2017), which is a 

discounted sum of expected future costs for stormwater management assets, including 

BMPs and transfer infrastructure required to harvest stormwater (Taylor and Wong 2002). 

The life cycle cost objective function for each candidate portfolio of BMPs is given by: 

MINIMIZE:		 Q̂P��	 =			 
����� +	
��O_`	     

Equation ( 3-2 ) 

where 


����� = ∑ �	(�������) +  !"���
#,����%&����� × ��"���� ×*+,-
�����.	+		 !"(
+��,����%&����� ×�����.6   
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Equation ( 3-3 ) 
��O_`	 = �7
8:
�a +	�7
8�+8� +	�7
87P���Pb + �7
8�9(8 +  !"(
+��%�(:
�a +
	�(�+8� +	�(7P���Pb + �(�9(8.  

Equation ( 3-4 ) 

where a sum of the cost of BMPs to capture and treat stormwater runoff, LCCBMP [$] 

(Equation (3-3)), and to transfer harvested water to a balancing storage for further 

treatment and distribution, LCCSWH [$] (Equation (3-4)) is applied with BMPi 

representing the i th BMP in the candidate portfolio, N [integer] is the number of projects 

in the portfolio, and TAC [$] is the total acquisition cost as a function of SA, the surface 

area of BMPi. 

PWFestab [fraction], for the establishment period, and PWFmaint [fraction], for the 

remaining design life of system components, are the present worth factor for a series of 

annual costs computed using a discount rate. ECF [fraction] is the establishment cost 

factor (i.e., multiplier) for the annual maintenance cost M [$] during the establishment 

period (typically 1-2 years) for each BMP. For BMPs with a stormwater harvesting 

function, CCapTank [$], CCapPipe [$],CCapControl [$], and CCapPump [$] are the capital costs for 

required storage tanks, control systems, pipes, and pump stations, and CmTank [$], CmPipe 

[$], CmControl [$], and CmPump [$] are the annual maintenance costs for the tank, pipes, 

control systems, and pumps, and operating costs, respectively.  

3.2.3.2.2 Water Quality Improvement 

The water quality improvement indicator adopted in the proposed framework is the 

total average annual pollutant load reduction of one target pollutant (Equation (3-5)). Only 

one target pollutant is adopted to limit the number of objectives and therefore limiting the 

difficulty in identifying optimal solutions, however if the trade-offs between multiple 

water quality constituents needs to be known then these can be added as objectives. This 

indicator is widely adopted to assess performance of WSUD approaches, including SWH 

systems (Browne, Breen et al. 2012). The target pollutant(s) will depend on stakeholder 

interests. The water quality improvement objective function is: 
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MAXIMIZE:	 ê9
b+�f	 = ∑ &4gS30+−	/0hiL+jk,-    

Equation ( 3-5 ) 

where, ̂e9
b+�f	 [mass year-1] is the mean annual pollutant mass retained by BMPs in 

each candidate portfolio, N is the number of BMPs in a portfolio, Residi [mass year-1] is 

the mean annual mass of pollutant leaving the i th BMP’s contributing catchment area, and 

Source [mass year-1] is the mean annual mass of pollutant that reaches the i th BMP’s 

catchment outlet in a post-development catchment baseline scenario without intervention. 

Resid and Source should be determined using a stormwater quality assessment model 

accepted by the catchment management authority (Coombes, Kuczera et al. 2002, Bach, 

Rauch et al. 2014). 

3.2.3.2.3 Stormwater Harvesting 

Average annual supply capacity (Equation (3-6)) is adopted as an indicator of 

stormwater harvesting performance (Mitchell, McCarthy et al. 2008). This metric was 

selected because it can be determined from generic storage-yield-reliability curves for a 

catchment at the project screening phase of catchment management planning (Browne, 

Breen et al. 2012, Hanson and Vogel 2014), or other techniques (Inamdar 2014). In 

addition, the average annual capacity approximates the runoff volume reduction due to 

harvesting, which has ecosystem health benefits (Askarizadeh, Rippy et al. 2015). The 

supply stormwater harvesting objective function is: 

MAXIMIZE:	 �̂988bf = ∑ &gllmn+ok,-      

Equation ( 3-6 ) 

where Supplyi [volume] is the average annual stormwater harvesting supply capacity 

for the i th BMP in a portfolio, and N [integer] is the number of projects in a portfolio.	
3.2.3.2.4 Urban Vegetation and Amenity Improvement 

The urban vegetation and amenity improvement indicator depends on stakeholder 

interests, which may include maximizing vegetation and tree coverage and quality of 

recreation spaces. Each project should be appraised and evaluated (scored) by vegetation 

experts. The cumulative urban vegetation improvement objective function is: 

MAXIMIZE:	 p̂���� = ∑ qS001+ok,-      
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Equation ( 3-7 ) 

where Greeni  [integer] is a score, determined by expert assessment, attributed to the i th 

project in a portfolio. 

3.2.4 Constraints 

Strategic and logical constraints on the selection of projects and performance of 

portfolios could be considered, and are case specific (Cruz, Fernandez et al. 2014). For 

example, where multiple sub-region catchment institutions fund an integrated catchment 

strategy, constraints on the selection of projects could (1) ensure equitable distribution of 

projects amongst constituent catchment management sub-regions, (2) limit the maximum 

number of projects in a portfolio, Nmax, and projects within each sub-region, (3) prevent 

the presence of mutually-exclusive projects, as some BMPs may be redundant in the same 

portfolio, and (4) limit budget allocated to projects within each sub-region. Additional 

considerations for portfolio-based constraints are discussed in Cruz, Fernandez et al. 

(2014). 

3.3 Case Study 

In this study, we demonstrate the many-objective BMP selection approach on a 

regional catchment management strategy for a major coastal city in Australia. A 

catchment management authority (CMA) commissioned engineering consultants to 

identify sites for stormwater BMPs within an integrated catchment with an outlet flowing 

into a prominent marine body. The integrated catchment covers an area of approximately 

700 km2, with average annual rainfall of 400-700mm, and comprised of highly urbanized 

and peri-urban regions managed by three local government authorities (LGA). A primary 

objective for the CMA was to reduce the nutrient load from urban stormwater runoff 

flowing into the marine body. In addition, since the potential sites for BMPs were within 

public open spaces managed by LGAs, stormwater harvesting for irrigation of open 

spaces, increasing vegetation and public amenity value were considered important 

additional benefits. The consultants identified 70 (Np=70) potential biofiltration, wetlands 

and swale projects at locations distributed in open spaces throughout the three LGA 

regions. Thirteen of these have a capacity for stormwater harvesting. In addition, the 

consultants agreed that a portfolio of 20 projects or fewer (Nmax=20) was practical. The 

BMPs were considered mutually independent, as the contributing catchment areas to each 
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BMP did not coincide i.e. downstream impact of BMPs would not affect the performance 

of other BMPs within the large regional catchment.  

The application of the proposed optimization approach was part of a real-world study 

involving a multi-criteria analysis conducted to identify a portfolio of BMP projects for a 

regional catchment. This allowed the authors to demonstrate how the proposed approach 

can consider existing BMP selection practices, which is a study objective. As the case 

study application was only intended to demonstrate the optimization approach, the results 

of the study were reviewed by consultants but were not used to inform decision-making. 

The names of stakeholders and catchment regions involved are not disclosed in this study 

for reasons of confidentiality.  

Engagement between stakeholders, engineering consultants, and the optimization 

analysts (who are the authors of this study), was carried out as follows. Firstly, 

engineering consultants ran one workshop where the broad catchment management 

objectives were established, which was attended by a stakeholder working group, from 

LGAs and the CMA, of approximately 16 people. Consultants then identified sites, 

assessed them for quantitative metrics (e.g. required size of BMPs to meet water quality 

constraints, cost, and stormwater harvesting capacity) and made a preliminary effort to 

score each of the qualitative metrics (e.g. vegetation improvement and amenity value) 

using objective thresholds. Consultants then sent these preliminary scores to LGAs and 

asked to provide a response. These were generally reviewed by landscape, bushland, 

horticultural and parks and open space staff. The staff involved and level of response 

varied between the LGAs. Consultants then had a workshop with each of the individual 

LGAs to review the sites, establish a common understanding of the whole catchment 

management opportunity and confirm the proposed individual project scoring. Then, 

important objectives were refined into formal optimization objectives by the consultants 

and optimization analysts. The analysts used the multi-criteria evaluation data to inform 

the optimization problem formulation including decision variables (projects), developing 

objective functions and project objective function values, and constraints. The data used 

for this study are listed in the references, tables, supplements and repository at Di Matteo, 

Maier et al. (2016b). 
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3.3.1 Problem Formulation 

3.3.1.1 Decision Variables 

The 70 potential BMPs (Table 3-1) were formulated as 70 decision points with two 

corresponding decision options; to adopt or not adopt a BMP in a portfolio. Following a 

preliminary desktop analysis, BMPs were determined by stakeholders to have 

contributing catchments ranging in size from 3 ha to 421.2 ha, with an assumed 50% 

pervious and 50% impervious area. The functional areas of BMPs were pre-determined 

by consultants and sized to meet functional requirements for total nitrogen, total 

phosphorous and total suspended solids runoff pollutant reduction targets (Dale Browne, 

personal communication, 2016). 

Table 3-1 Details of available catchment management projects 

Local government 
area (LGA) 

Project 
ID 

BMP 
Type 

Contributing 
catchment area (ha) 

Lifecycle cost 
($NPV) 

TN Reduction 
(kg/yr) 

Total Supply 
(ML/yr) 

Green 
score 

1 3 Biofilter 22.5 305,157 72.75 0 4 

4 Biofilter 11.6 271,251 37.4 0 4 

5 Biofilter 7.7 175,626 24.86 0 5 

6 Biofilter 9.3 131,719 30.16 0 5 

7 Biofilter 8.2 43,906 26.63 0 5 

8 Biofilter 9.4 87,813 30.25 0 5 

12 Biofilter 50.3 1,220,630 162.82 0 5 

13 Wetland 4.8 169,532 15.49 0 5 

23 Wetland 3.0 98,438 9.58 0 5 

24 Wetland 13.5 459,379 43.63 0 5 

25 Wetland 13.2 459,379 42.79 0 5 

35 Wetland 21.5 918,757 69.5 0 5 

36 Biofilter 45.2 949,379 146.3 0 5 

45 Biofilter 24.8 271,251 80.17 0 7 

46 Swale 64.5 123,814 208.58 0 7 

50 Biofilter 9.6 187,282 31.08 11.95 6 

55 Biofilter 8.7 305,157 28.27 0 8 

56 Biofilter 84.9 237,345 274.58 0 5 

57 Wetland 29.4 1,206,996 95.12 12.83 5 

2 1 Biofilter 20.4 508,596 55.79 0 4 
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 2 Biofilter 25.4 542,502 69.5 0 4 

9 Wetland 91.9 1,220,630 251.32 0 4 

16 Biofilter 28.5 474,689 78.09 0 6 

19 Wetland 22.5 787,506 61.66 0 4 

20 Wetland 14.8 525,004 40.55 0 4 

21 Wetland 59.0 718,815 161.29 0 4 

22 Wetland 21.3 406,877 58.23 0 4 

27 Biofilter 15.3 305,157 41.89 0 6 

29 Wetland 6.2 196,877 16.89 0 6 

37 Wetland 13.6 590,630 37.31 0 5 

42 Wetland 37.5 951,570 102.47 0 6 

47 Biofilter 57.9 712,034 158.47 0 7 

49 Biofilter 36.0 610,315 98.48 0 7 

51 Wetland 17.4 590,630 47.56 0 6 

52 Wetland 21.3 721,881 58.23 0 6 

58 Biofilter 25.5 592,986 69.9 3 6 

59 Biofilter 7.8 224,031 21.21 10 6 

60 Biofilter 50.4 189,135 137.78 2.42 6 

61 Biofilter 57.7 381,297 157.92 40 6 

63 Biofilter 10.4 178,041 28.59 1.5 6 

66 Biofilter 88.6 2,027,127 242.49 5 6 

68 Wetland 98.4 976,171 269.13 2 7 

70 Wetland 22.0 768,630 60.29 2.5 7 

3 

 

10 Biofilter 53.1 1,017,191 145.28 0 5 

11 Biofilter 32.8 305,157 89.68 0 5 

14 Wetland 11.5 295,315 31.52 0 6 

15 Biofilter 16.0 203,438 43.78 0 6 

17 Biofilter 43.7 474,689 119.47 0 7 

18 Biofilter 417.2 474,689 1141.49 0 7 

26 Wetland 4.5 164,064 12.44 0 6 

28 Biofilter 10.6 87,813 29.13 0 6 

30 Biofilter 40.8 542,502 111.75 0 6 

31 Biofilter 7.2 131,719 19.65 0 6 

32 Swale 10.1 114,970 27.73 0 7 

33 Swale 13.5 88,438 37.02 0 7 

34 Wetland 51.4 732,378 140.6 0 5 
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3.3.1.2 Objectives 

3.3.1.2.1 Cost 

The objective function for lifecycle cost of each portfolio, LCC [$], was calculated 

using Equation (3-2) to (3-4). The parameters for LCCBMP [$] (Equation (3-3)) were 

estimated from cost schedules developed by Melbourne Water Australia (2013) (Table 

3-2). A typical lifecycle period of 25 years, a discount rate of 6.5% per year, an 

establishment cost factor of 3, and an establishment period of 2 years, were adopted. The 

parameters for LCCSWH [$] (Equation (3-4)) were estimated as follows. A linear cost 

model for the total net present value (NPV) of stormwater harvesting components was 

determined using regression (r2 = 0.814) between levelized lifecycle cost [$/ML] and 

estimated annual volume supplied [ML/yr], using detailed costing data for six stormwater 

harvesting projects derived by Inamdar (2014) (Appendix B, Table B-1). Thus, the 

lifecycle cost of stormwater harvesting components from Equation (3-4) was calculated 

using the following equation: 


��O_`	 =	r∑ (−104.49 ⋅ &gllmnk + 	6622.6)[ $�{] ⋅ Supply+[�
]*+,- 0				4Uℎ0S�ih0 	 , if	&gllmnk > 0
  

38 Biofilter 97.7 213,213 267.23 1.73 6 

39 Biofilter 15.9 175,626 43.59 0 6 

40 Biofilter 27.2 610,315 74.48 0 6 

41 Biofilter 97.7 97,587 267.23 1.73 6 

43 Biofilter 18.7 440,783 51.25 0 7 

44 Biofilter 43.7 576,409 119.47 0 7 

48 Biofilter 421.2 915,472 1152.38 0 7 

53 Wetland 15.1 525,004 41.28 0 6 

54 Wetland 63.1 962,941 172.58 0 7 

62 Wetland 14.0 576,409 38.19 0 7 

64 Wetland 18.8 656,255 51.43 0 7 

65 Biofilter 47.4 847,660 129.69 0 7 

67 Biofilter 8.4 95,157 23.11 1.29 6 

69 Biofilter 47.4 169,532 129.69 0 7 
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Equation ( 3-8 ) 

 where Supplyi is the average annual supply capacity of the i th BMP in a candidate 

portfolio of N BMPs. 

Table 3-2 Cost variables for BMPs. 

BMP Surface Area  
(SA) (m2) 

Construction  
Cost 

($/m2;  
year 0) 

Establishment 
Cost  

($/m2/yr;  
year 1-2) 

Maintenance 
Cost 

($/m2/yr; 
year 3-25) 

Wetland 
 

  

0 < SA ≤ 500 150 30 10 

500 < SA ≤ 10,000 100 6 2 

SA > 10,000 75 1.5 0.5 

Biofiltration basin 
 

  

0 < SA ≤ 100 1,000 15 5 

100 < SA ≤ 500 350 15 5 

SA > 500 250 15 5 

Swale 
 

  

All sizes 35 9 3 

Note: Establishment cost = Annual maintenance cost × establishment cost factor. Costs 

are in Australian Dollars (2013$). Values were scaled using an inflation adjustment factor 

of 1.03053 from 2013$ to 2016$. 

3.3.1.2.2 Water Quality Improvement 

Total Nitrogen (TN) was the specific pollutant constituent adopted for the water quality 

objective. TN load reduction was particularly important since in the urban catchment it 

was found by consultants that maximizing TN reduction through treatment of stormwater 

also tended to reduce phosphorous, total suspended solids and other pollutants to within 

target levels (Dale Browne, personal communication, 2016). The introduction of excess 

anthropogenically-generated nutrients into coastal systems can cause eutrophication, 

which has negative impacts. These impacts often include excessive, and sometimes toxic, 

production of algal biomass, loss of important nearshore habitat, changes in marine 

biodiversity and species distribution, increased sedimentation of organic particles, and 

depletion of dissolved oxygen. The mean annual pollutant mass of TN retained by each 
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candidate portfolio (̂e9
b+�f	 [fraction]; Equation (3-5)) was calculated based on the sum 

of average annual TN mass retained by individual BMPs in a portfolio. The water quality 

improvement of individual BMPs (i.e. not an integrated system of a portfolio of BMPs) 

(Sourcei, - Residi ; Equation (3-5) was assessed using the integrated catchment model, 

MUSIC version 6.1 (Model for Urban Stormwater Improvement Conceptualizion, eWater 

(2009)), as suggested by the CMA regulations. MUSIC is an integrated stormwater model 

that evaluates rainfall/runoff and pollutant generation and transport, hydraulic and 

pollutant removal performance of BMPs (Bach, Rauch et al. 2014). MUSIC algorithms 

simulate runoff based on models developed by Chiew and McMahon (1999) and urban 

pollutant load relationships based on analysis by Duncan (1999). An assessment of 

interactions between BMPs was not deemed necessary because the contributing 

catchments of individual BMPs were spatially mutually exclusive. 

3.3.1.2.3 Stormwater Harvesting 

To determine stormwater harvesting capacity of projects, experts on stormwater 

harvesting from each LGA were asked to evaluate the stormwater harvesting potential of 

BMPs within their jurisdiction. They estimated the expected irrigation demand required 

by open spaces near each BMP, and the average annual potential capacity to supply the 

demand. The estimates were based on procedures specific to each LGA, and reflect the 

stormwater harvesting objective performance values accepted by decision-makers.  

3.3.1.2.4 Urban Vegetation and Amenity Improvement 

The ‘green’ score’ of individual projects (which is a weighted score of several 

indicators, and was developed by the authors and agreed to be used as an optimization 

objective by consultants), use scores assigned by experts (see section 3.3) from each LGA 

interviewed in a workshop session by consultants. The experts were asked to answer the 

following questions about the BMP projects within their jurisdiction: Answer ‘Yes’ ‘No’ 

or ‘Maybe’ to the following questions: 1) “will native vegetation increase at the site?”, 2) 

“will tree cover increase at the site?”, and, 3) “will the quality of recreation spaces in the 

area increase?”. The total catchment ‘green’ score objective function was: 

qS001+ =	� &34S0��
�,-  
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Equation ( 3-9 ) 

&34S0� =		�3								i^	K1h�0S	ih	′�0h′2	i^	K1h�0S	ih	′�Kn�0′1							i^	K1h�0S	ih �� 4′  
Equation ( 3-10 ) 

 

where Greeni is the sum of scores for each project, and Scorej is the number of points 

assigned to the answer to the j th question. Since there were three questions, each project 

could achieve a maximum of 9 green points, and each portfolio a theoretical maximum of 

(20 × 9 = ) 180 total green points. 

3.3.1.2.5 Evaluation of Individual BMPs 

Before the optimization process was run, the costs and performance values of each 

BMP were determined (Table 3-1). Firstly, the stormwater harvesting capacity of 

individual projects was determined from LGA expert interviews. Secondly, the individual 

project lifecycle costs were determined using cost parameters from Equation (3-2) to (3-4) 

and (3-8) for each project. Thirdly, the water quality performance of each BMP was 

determined with the aid of MUSIC. To do this, a catchment model for a 1 ha catchment 

area for each LGA was developed. The model consisted of a 0.5 ha pervious catchment 

node, a 0.5 ha impervious catchment node, and an outlet node to estimate the average 

annual TN load per unit area of catchment with an average 50% impervious surface area 

(Browne, Breen et al. 2012). One year of continuous climate data and pervious surface 

parameters provided by the CMA were adopted for the catchment nodes. To estimate 

Source [kg] for each BMP, the TN load from a 1 ha unit catchment area for the respective 

LGA was multiplied by the contributing catchment area to each BMP in hectares. Each 

BMP size was selected to remove 45% of the TN load from its contributing catchment 

(i.e. Residi = (1 - 0.45) × Sourcei), which was suggested as an acceptable performance 

based on advice from the consultants (D. Browne, personal communication, 2016). 

Finally, Equation (3-7), (3-9) and (3-10) were applied to determine the individual project 

green scores.  
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3.3.1.3 Constraints 

A single constraint was applied to limit portfolios to 20 or fewer projects, since more 

than 20 projects was determined to be impractical to design and construct by the CMA, 

as mentioned previously. The projects were assumed be independent in that the inclusion 

of one project did not influence the expected benefit, cost, or feasibility of another. This 

assumption was considered acceptable since the catchments contributing to each BMP 

were mutually exclusive, and customers for stormwater harvesting projects could receive 

supply from only one project. 

3.3.2 Pareto-Ant Colony Optimization (P-ACO) Algorithm 

To solve the optimization problem, a variant of the Pareto-Ant Colony Optimization 

algorithm (P-ACO; (Doerner, Gutjahr et al. 2004)) metaheuristic search algorithm was 

used. P-ACO was selected because it was originally developed to solve portfolio 

optimization problems (Doerner, Gutjahr et al. 2004, Doerner, Gutjahr et al. 2006), has 

been used successfully and adopted as a benchmark algorithm in recent three-objective 

portfolio optimization applications (Cruz, Fernandez et al. 2014), and has been applied to 

complex multiobjective water resources problems (Szemis, Dandy et al. 2013, Szemis, 

Maier et al. 2014, Nguyen, Dandy et al. 2016). The variant adopted here, PACOA, was 

demonstrated to outperform other multiobjective ant colony optimization algorithms in a 

recent water resources allocation study (Szemis, Dandy et al. 2013). The algorithm 

mimics the cooperative foraging behaviour of an ant species that leaves a chemical 

pheromone on a ground surface. In real-life, since ants traverse short paths to food more 

frequently, more pheromone is laid on short (efficient) paths. Thus, paths with higher 

pheromone levels are more likely to be selected by an ant. In the algorithm, artificial ants 

select between paths, which represent decisions whether or not to adopt a BMP in a 

portfolio in this instance. An input template and executable for the algorithm are available 

as Data Set 3 in the Supporting Information. 

A summary of the steps in the PACO algorithm is shown in Figure 3-3. In the 

initialization phase, the PACO search control parameters are set. The iterative process 

commences where b ants are generated, each ant starting with an empty portfolio x = (0), 

and the objective weights (i.e., the ant’s individual preferences) are determined randomly 

for each ant. In the construction phase of the algorithm, first the order of BMPs is 
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randomly shuffled, to ensure BMPs are provided an equal chance of being considered first 

by each ant. Then, the ant decides whether to add each BMP to a portfolio, x, by applying 

a pseudo-random-proportional rule using pheromone information τi. The pheromone 

information is stored in one 2xN matrix for each j th objective, representing the binary 

options for the N possible BMPs. If the ant adds the maximum number of BMPs, Nmax, 

before all BMPs have been considered, then none of the remaining BMPs are selected. 

After a portfolio has been constructed, its performance is evaluated using the objective 

functions (Equation (3-2) and (3-5) to (3-7)). In this case, as individual projects were 

determined to be independent, the portfolio objective functions were a summation of the 

constituent individual project objective function values in Table 3-1. 

 

Figure 3-3 Portfolio optimization process for Pareto Ant Colony Optimization Algorithm 
(PACOA) 

After each iteration, of the b portfolios generated by the b ants, the non-dominated 

portfolios are stored offline in an array. Then, as part of a global update of every element 

of the j pheromone matrices, the first and second best performing solutions ranked for 

each j th objective are used to apply the following equation. 

��� = (1 − �) ∙ 	��� + � ∙ ���� 
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���� = �15, U	i1	�4Uℎ	�0hU	K1L	21L	�0hU	l4SU^4mi410, U	i1	�0hU	l4SU^4mi45, U	i1	h0341L	�0hU	l4SU^4mi40, 4Uℎ0S�ih0  

Equation ( 3-11 ) 

where, for each BMP, the current pheromone value for each tth binary option and j th 

objective is reduced by pheromone evaporation, ρ, and increased by a pheromone value 

(����). Pheromone is evaporated from decisions that are not in the best solutions for each 

objective, which makes it less likely these decisions will be selected again in future 

iterations. In this way, the ant’s decision-making landscape is modified to guide ants into 

regions of the search space that contain non-dominated portfolios. Since the single 

constraint was handled in the construction phase, no penalty function is required for this 

case study as all constructed portfolios are feasible. The interested reader is referred to 

Szemis, Maier et al. (2014) for examples of objective penalty functions. The process of 

developing, assessing and updating the pheromone trails to guide the PACOA to near-

optimal trade-offs continues until a specified maximum number of iterations, w, is 

reached. 

Before the PACOA was applied, a sensitivity analysis was conducted to identify 

suitable values of parameters that control the searching behaviour of the algorithm to 

maximize the likelihood the best possible approximation of the Pareto front was 

generated. The ranges of parameter values tested and the final parameters selected are 

given in Table 3-3. 

Table 3-3 PACOA parameters tested and adopted in sensitivity analysis 

PACOA Parameter Range of Values 
Tested 

Adopted Value 

Number of ants (b) 20, 200, 300,500 500 

Initial pheromone (τo) 0.5, 1.0, 10.0 0.5 

Evaporation rate (ρ) 0.1, 0.15, 0.2, 0.4, 0.5 0.4 

Evaluations (b ×w) Up to 2,000,000 600,000 

 

In this study, the PACO was run for 1200 iterations of 500 ants, which equates to 

600,000 objective function evaluations. This number of evaluations was selected because 
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the progress of the Pareto front ceased to have meaningful progress (assessed by visually 

inspecting the Pareto optimal solution set at 5,000 evaluation intervals) after this number 

of evaluations in a trial run of 2,000,000 evaluations. The optimization results were 

replicated 50 times using different random starting seeds for the pseudo-random number 

generator used in the algorithm to minimize the influence of probabilistic effects of some 

of the operators that influence the search. Each run took approximately 26 minutes on a 

3.10GHz computer with 8 GB of RAM, although multiple instances were run on one 

machine simultaneously. The Pareto optimal solutions shown in this paper are the result 

of a non-dominated sort of the solutions from the 50 replicate runs. 

3.3.3 Interactive Visual Analytics to Explore Pareto Optimal Solutions 

To visualize and analyse the objective and decision space trade-offs of the Pareto 

optimal set of portfolios, an interactive visual analytics package was selected. The 

combined objective space and decision space visualizations were carried out using the 

approach of  Kollat and Reed (2007) using the DiscoveryDV software package 

(DiscoveryDV Version 0.72; available at https://www.decisionvis.com/discoverydv/). 

The package features an interactive data plot that allows brushing, linked views of 

solutions, marking and tracing of solutions of interest, as well as rapid browsing through 

solution objective, decision and non-objective performance data. The package has been 

used successfully in several recent many-objective optimization studies (Woodruff, Reed 

et al. 2013, Piscopo, Kasprzyk et al. 2015). The Pareto optimal solution objective and 

decision data were uploaded into the interactive visual analytics package. This allowed 

the analyst to 1) visualize and analyse trade-offs between the four objectives, 2) isolate 

portfolios from several regions of the trade-off front using interactive brushing and 

visualization in multiple linked plots, and 3) visualize the decision and objective space to 

analyse the impact and prevalence of particular projects on the performance of Pareto 

optimal solutions. The Pareto optimal solution data file uploaded into the package is 

available as Data Set 3, and a .ddv file for the DiscoveryDv program containing the 

visualizations is included as Data Set S4 in the Supporting Information (Di Matteo, Maier 

et al. 2016b). 
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3.4 Results and Discussion 

This section presents the results of the many-objective optimization process for the 

catchment management portfolio selection case study outlined in Section 3.3. The results 

of the PACOA runs, from 50 random starting positions, show the algorithm identified 

3654 Pareto optimal (or near-Pareto optimal) portfolios as solutions to the optimization 

problem. 

3.4.1 Identifying Many-Objective Trade-Offs Between Pareto Optimal Catchment 

Management Portfolios 

Figure 3-4 shows the trade-offs between four objectives of the Pareto optimal 

portfolios in a 4-dimensional coordinate plot. A sharp trade-off exists between TN 

reduction and cost, and between reuse capacity and cost, indicating small increments in 

cost can return large increases in both of these objectives. In contrast, green score tends 

to increase with cost, which is expected as higher cost portfolios have more BMPs 

distributed in the catchment to enable larger total catchment urban greening and amenity 

improvement. 



 

 81  
 

 

Figure 3-4 A many-dimensional interactive coordinate plot showing the objectives 
performance of Pareto optimal solutions. Each sphere represents a portfolio of catchment 
management BMPs. The lifecycle cost, average annual total nitrogen (TN) reduction, and 
average annual stormwater reuse capacity performance are represented on the cardinal 

axes. The green score performance is represented in colour. 

The above inferences are supported and supplemented by the alternate representation 

of the trade-off surface in parallel coordinates (Inselberg 1997). In Figure 3-5, small 

slopes on some line segments between the adjacent axes of lifecycle cost and stormwater 

reuse indicate high reuse portfolios exist for low costs. However, these low cost-high 

reuse capacity solutions appear to have lower TN reduction and green score compared to 

other solutions. As mentioned above, green score appears to be correlated with lifecycle 

cost, however, some solutions exist that have a high green score and relatively low cost. 
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Figure 3-5 Parallel coordinate plot, where each portfolio is represented as a line interval 
over four vertical axes indicating objective performance values. Lifecycle cost is also 

represented by color to identify the cost trade-offs against each objective. 

In the low-cost region, from Figure 3-4, clusters of solutions form in TN reduction-

reuse capacity space. This indicates that individual projects dominate the contribution to 

total portfolio reuse capacity or total nitrogen reduction in this region. Analysis of the 

BMPs comprising solutions in these clusters shows that these portfolios contain a small 

number of ‘flagship’ projects with exceptionally large reuse capacity (e.g. project 61, 40 

ML/year; project 67, 12.8 ML/year; project 18, 12.0 ML/year) or TN reduction (e.g. 

project 48, 1152 kg/year; project 18, 1141 kg/year) appear. Portfolios containing only a 

few of these flagship projects can achieve relatively high total reuse capacity or TN 

capacity at relatively low cost, but also a low green score. This causes the noticeable 

discontinuity in the objective space in the low-cost region, characterized by clusters of 

solutions emanating from a small number of portfolios in the low-cost region in Figure 

3-4 and overlapping dark blue (low-cost) line segments joining parallel axes in Figure 

3-5. Moving in the preferred objective direction, adding a flagship project to create a new 

portfolio on the front can cause a large increase in TN reduction or reuse capacity. 

Therefore, decision-makers desiring low-cost trade-off solutions could consider 

portfolios of a small number of ‘flagship’ projects, but this would considerably 
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compromise the urban greening and amenity performance of the catchment management 

strategy. 

3.4.2 Importance of a Many-Objective Problem Formulation for Catchment 

Planning 

The cost and total nitrogen reduction trade-off projections in Figure 3-6 show trade-

offs between water quality and cost objectives, which have been a typical formulation in 

catchment management optimization studies to date. On the front, a slight ‘knee’ region 

appears such that when moving along the front away from the knee region, there is a 

diminishing return in these objectives. This suggests that solutions in this region may 

represent a desirable trade-off between total nitrogen and cost. The trade-off pattern is 

consistent with those in other catchment planning studies (Maringanti, Chaubey et al. 

2009, Lee, Selvakumar et al. 2012, Chichakly, Bowden et al. 2013). However, only 

considering trade-offs between water quality and cost objectives neglects the influence of 

other objectives that may be important to catchment management decision makers 

(Moglia, Kinsman et al. 2012). This could bias decision makers towards selection of 

solutions that would lie at extremities in objective space should other formal objectives 

be considered (Kollat, Reed et al. 2011).  
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Figure 3-6 Pareto optimal solutions identified by the optimization process projected in 
water quality-cost objective space, which have been typical objectives in previous 

stormwater management optimization studies. Non-dominated solutions with respect to 
the two objectives are shown as solid, and approximate the best trade-off between total 

nitrogen (TN) reduction and cost. Other Pareto optimal solutions in 4-objective space, but 
dominated in water quality-cost space, appear transparent. 

The importance of the many-objective representation of the catchment planning 

problem adopted in this study is demonstrated by tracing a solution from the two-objective 

knee region in Figure 3-6 through higher dimensional objective space represented in 

Figure 3-7. For this purpose, Portfolio 1 (Table 3-4) is selected and marked for further 

analysis because it lies at an inflection point (observed by visual inspection) in the knee 

region of the two-objective trade-off front (Figure 3-7). Using the visual analytics 

package, an additional harvesting capacity axis and a green score color axis are added to 

create a 4-dimensional plot of the objective space (Figure 3-7). To compare Portfolio 1 

with other solutions similar in cost, the analytics package’s data brushing tool is used to 

highlight solutions with lifecycle costs in the range [$1.90 M, $2.70 M]. In Figure 3-7, 

these solutions of interest appear opaque, and the remaining solutions that have been 
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‘brushed out’ appear transparent. Portfolio 2 (Table 3-4) is selected for comparison 

because although it has a 22% greater lifecycle cost and similar TN reduction compared 

to Portfolio 1, it has a vastly higher reuse capacity and green score. Therefore, although 

Portfolio 1 appeared in the region of best trade-off (knee region) in the lower-dimensional 

TN reduction-cost representation of the objective space (Figure 3-6), it performed poorly 

in reuse capacity and green score objectives. Portfolio 2 lies near but not on the non-

dominated water quality-cost front in Figure 3-7. Thus, it would not have been available 

to decision makers in a bi-objective Pareto optimization approach, which has been typical 

in catchment planning optimization studies to date. 

When considering the project options selected in the two portfolios (Table 3-4), it is 

apparent Portfolio 2 is almost identical to Portfolio 1 except for one small project (Project 

38 instead of Project 33) and, importantly, two additional projects located in municipality 

1 (Projects 60 and 61). Consequently, decision-makers may consider that Portfolio 2 

provides a better compromise between objectives compared with Portfolio 1, due to the 

reuse capacity and green score benefit the two additional projects provide.  

The above results are consistent with findings in several other studies including (1) a 

finding by Kollat, Reed et al. (2011) and Woodruff, Reed et al. (2013) that, generally in 

optimization studies, lower dimensional problem formulations may bias selection of 

solutions that would otherwise exist at low-performing extremes if additional 

performance criteria were considered as formal optimization objectives, (2) a finding by 

Chichakly, Bowden et al. (2013) that, for catchment planning optimization, desirable 

solutions lie near but away from the two-objective non-dominated Pareto front for water 

quality improvement and cost objectives, and (3) trade-offs for a stormwater harvesting 

system design determined by Di Matteo, Dandy et al. (2017), which showed slight 

increases in system costs could provide large increases in both water quality improvement 

and harvesting capacity. 
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Figure 3-7 4-dimesional coordinate plot showing the trade-off space with solutions in a 
defined low-cost range as solid, with all other solutions brushed out and appearing 

transparent. Portfolio 2 may provide a more desirable alternative to Portfolio 1 in 4-
objective space. 

Table 3-4 Objective values and decision options of selected solutions 

Solution TN- cost compromise 
(2D) 

Low cost compromise 
(4D) 

 Portfolio 1 Portfolio 2 

Objectives   

Lifecycle Cost ($M) 2.06 2.51 

Total Nitrogen Reduction 
(kg/yr.) 

3312 3377 

Stormwater reuse capacity 
(ML/yr.) 

3.46 44.15 

Green Score (no units) 38 51 

Portfolio project decisions   
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Projects in Municipality 1 - 60, 61 

Projects in Municipality 2 46, 56 46, 56 

Projects in Municipality 3 18, 38, 41, 48 18, 33, 41, 48 

Total No. projects 6 8 

3.4.3 Identifying Impacts of Project Options on Pareto Optimal Portfolio 

Performance 

Figure 3-8 shows combined objective performance and decision characteristics of the 

Pareto optimal portfolios, which helps the analyst to overcome biases arising from 

artificial distinctions between objective performance and other characteristics of the 

problem (Matrosov, Huskova et al. 2015). For example, the visual interactive plot allows 

the analyst to inspect which area of the trade-off front each project features in Pareto 

approximate portfolios. In this way, an analyst can infer the impact of particular projects 

on portfolio performance.  

In Figure 3-8 (a) the opaque spheres represent portfolios containing Project 61 

(lifecycle cost $381,297; TN reduction 157.92 kg/year; reuse capacity 40 ML/year; green 

score 6), which was the project with the highest reuse capacity. Importantly, all portfolios 

with 40 ML/year or greater reuse capacity include Project 61, and these portfolios occur 

in nearly the full range of cost, TN reduction and green score of Pareto solutions. 

Therefore, this indicates decision makers should probably consider Project 61 in their 

final portfolio. In Figure 3-8 (b), the opaque spheres represent portfolios containing 

Project 48 (lifecycle cost $915,472; TN reduction 1152 kg/year; reuse capacity 0 

ML/year; green score 7), which was the project with the highest TN reduction. 

Importantly, in the lower cost region, Pareto optimal portfolios with a number of smaller 

solutions dominated inferior portfolios containing Project 48. This was because although 

the green score of Project 48 was high (7 out of 9), the cumulative green score and/or 

reuse capacity of low-cost portfolios with more projects dominated portfolios containing 

a small number of projects including Project 48. This indicates multiple additional 

benefits can be achieved for a similar cost by using a portfolio of projects rather than one 

‘flagship’ project. In addition, decision-makers can view and assess additional (non-

objective) characteristics that may influence decision-making, for example the percentage 
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of the catchment treated, spatial distribution of projects throughout the catchment, or 

socio-political preferences for particular projects. 

 

Figure 3-8 Coordinate plot showing the combined Pareto optimal objectives, decisions, and 
alternate data spaces. Portfolios that include, in part a) Project 61, and in part b) Project 

48, are shown as opaque spheres, other portfolios are brushed out and appear transparent. 
The size of spheres is proportional to the number of projects in a portfolio. 

3.4.4 Improving Stakeholder Buy-In to Optimization Results 

Adopting the portfolio optimization approach and involving stakeholders in the 

formulation, exploration and analysis makes the decision support framework open to 

stakeholder influence and complementary to existing decision analysis practices, which 

can improve trust in the optimization results and increase the likelihood they will 

influence final decision-making. For example, the portfolio optimization approach allows 

individual BMPs to be provided by practitioners familiar with which BMPs are likely to 

be technically feasible and socio-politically acceptable, which is not ensured in 

simulation-optimization based BMP placement approaches (Chichakly, Bowden et al. 

2013). In addition, the portfolio approach complements existing practices where MCDA 

approaches are used to handle many-objective preferences to rank BMPs based on 

individual or portfolio performance (Moglia, Kinsman et al. 2012), but has the advantage 

that it allows trade-offs and a large number of Pareto optimal portfolios to be explored 

and analysed. When formulating objective functions, stakeholders are encouraged to 

consider the interdependencies between BMPs, which may result in the discovery and 

deeper understanding of aspects of the problem that had not been considered previously 

(Wu, Maier et al. 2016). Interactively exploring the full Pareto optimal data set enables 

analysts to discover the full trade-offs between objectives, which can help decision-

makers to rationalize preferences for different benefits and may change during the 
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exploration process. In addition, stakeholders with a preference for particular BMPs can 

explore the impact of removing portfolios containing the BMP from the Pareto set to 

rapidly analyse the importance of the BMP and possible alternatives, which may help 

overcome institutional biases favouring particular BMP types. In this way, exploration 

may help to rationalize the benefits of a distributed stormwater harvesting and treatment 

approach with a large number of BMPs over a centralized approach with high capacity 

BMPs, or a mix of both (Di Matteo, Dandy et al. 2017). 

3.5 Summary and Conclusion 

A general multiobjective optimization framework was developed for the selection of a 

portfolio of BMPs for catchment management. The framework addresses the need for a 

decision support approach for the selection of BMPs that 1) considers numerous, possibly 

conflicting, performance criteria, 2) handles a large number of decision options and 

potential strategies, 3) facilitates the identification and representation of trade-offs 

between performance criteria, which 4) develops trusted strategies, 5) within the limits of 

existing planning capacities. The approach was applied to a case study catchment plan for 

a catchment authority in a major coastal city in Australia. The results demonstrate the 

benefits of exploring full portfolio solution trade-offs in a many-dimensional Pareto 

optimal front. A comparison between the trade-off spaces of the lower dimensional water 

quality-cost problem formulation, and the many-objective formulation, demonstrated that 

low-objective formulations can result in Pareto optimal portfolios with low performance 

in non-objective performance criteria. In this study, when stormwater harvesting and 

vegetation and amenity improvement scores were included as objective functions, 

solutions that were in a region of best trade-off in water quality-cost space performed 

poorly in these additional objectives. The many-objective optimization results show that 

sharp trade-offs exist between TN reduction and cost, and between reuse capacity and 

cost, indicating small increments in cost can return large increases in both objectives. 

Portfolios in the low-cost regions typically featured a small number of projects including 

cost-efficient ‘flagship’ projects that provide high TN reduction or reuse capacity. 

However, in order to maximize the vegetation improvement and amenity benefits, 

portfolios with a larger number of lower cost BMPs distributed throughout the catchment 

were preferred. Notably, the optimization formulation in the case study does not consider 

interaction between having a higher harvest capacity might allow for more irrigation of 
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green spaces. Using the visual analytics approach to explore combined optimization and 

decision spaces, the impact of individual projects that may be preferred by decision-

makers was rapidly visualized. This approach could assist in overcoming institutionally 

influenced biases to include particular projects or BMP technologies to demonstrate 

alternative similar cost options to decision-makers. 

Future studies applying the framework could account for differences in preferences 

between multiple stakeholders that may be responsible for funding over different periods 

of the project lifecycle. For example, in some funding schemes, CMAs fund the capital 

expenses, whereas LGAs fund the maintenance and ongoing expenses. The many-

objective problem formulation could be adapted to include specific objectives important 

to LGAs, which might include individual LGA expected operating expenses, in addition 

to total catchment benefits. In addition, the Pareto optimal solutions could be explored 

taking into account individual objective and non-objective preferences of multiple 

stakeholders. In this way, decision-makers can visualize their preferences on a trade-off 

curve and compare and, through an iterative approach, visualize and negotiate acceptable 

outcomes and solutions. This may be preferable to other approaches where weightings are 

set a priori, which do not account for decision maker preferences in the decision space, 

nor allow a visual comparison of the regions of interest preferred by several decision-

makers. Finally, the constraint for number of projects could consider the difficulty of 

constructing individual BMP types (e.g., 20 swales might be easier to construct than 20 

wetlands). 
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Abstract 

In this paper, an optimization-visual analytics framework for complex environmental 

management problems involving multiple stakeholders is developed and illustrated. In the 

framework, problems are represented as a series of smaller, interconnected optimization 

problems, reflecting individual stakeholders’ interests. The framework uses interactive 

visual analytics to explore and analyze optimization results, and Best Alternatives to a 

Negotiated Alternative (BATNAs) and an approach to reframe visualizations to 

encourage stakeholder negotiation. To demonstrate the utility of the framework, it is 

applied to a realistic case study involving multiple stakeholder groups funding different 

aspects of an integrated catchment management plan for a region of a large city in 

Australia. The problem features sixteen objectives from four stakeholders. The results 

indicate that the proposed framework enables the identification of solutions that provide 

the best trade-offs between many objectives and provides an effective and efficient means 

of assisting stakeholders with identifying acceptable compromise solutions. (147 words)  

4.1 Introduction 

Evolutionary algorithms (EAs) have been used successfully and extensively for 

solving water resources optimization problems in a number of areas, such as engineering 

design, the development of management strategies, and model calibration (Nicklow, Reed 

et al. 2010, Zecchin, Simpson et al. 2012). Ultimately, EAs are intended to be used to 

support decision-making through application to complex real-world problems. However, 

for real-world problems, the identification of a good decision may be difficult, highly 

subjective, and dependent on stakeholder values and perceptions (Maier, Kapelan et al. 

2014). These issues are compounded in problems that involve multiple stakeholders, each 

with their own understanding of the problem stemming from their values and priorities 

placed on outcomes, costs to be borne, and responsibilities once solutions are 

implemented. Therefore, in order to improve the uptake of EAs for use as decision support 

tools for complex problems, there is a need to develop optimization approaches that can 

handle multiple stakeholder groups, with multiple objectives for each.  

As pointed out by Maier, Kapelan et al. (2014), adapting optimization approaches to 

account for different stakeholder groups is difficult because: i) stakeholders have different 
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value sets and interests, making it difficult to arrive at a consensus on one mathematical 

formulation that all stakeholders will accept, which may affect the likelihood that 

stakeholders will trust the optimization process and buy-into suggested solutions, ii) the 

exploration and analysis of optimization solutions requires stakeholder engagement and 

expert input, iii) the non-intuitive nature of multi-dimensional value analysis and 

unanticipated and emergent trends can further prevent decision-makers from 

understanding and trusting optimization results, and iv) the optimization framework is 

required to facilitate the identification of a final negotiated outcome and/or exploration of 

resource management alternatives to be considered further. 

In the past, there has been little focus on these aspects of optimization (Maier, Kapelan 

et al. 2014), which largely featured studies on algorithm development, rather than 

optimization approaches for decision-making support in practice. However, there has 

been some progress in relation to this in recent years, including: 

• The use of iterative approaches, which has allowed for multiple formulations 

of the decision variables, objectives and constraints to be developed to 

progressively better define optimization problems and provide an opportunity 

for stakeholders to learn about the problem  (Kollat and Reed 2007, Woodruff, 

Reed et al. 2013, Piscopo, Kasprzyk et al. 2015, Wu, Maier et al. 2016). 

• The development of an optimization framework that provides opportunities for 

stakeholders to provide input into the various stages of optimization studies, 

including problem definition, the optimization process, and final decision-

making (Wu, Maier et al. 2016). 

• The development of many-objective optimization approaches that identify 

solutions to complex problems that represent the optimal trade-off between 

numerous (>3) objectives to better capture stakeholder values (Kollat, Reed et 

al. 2011, Kasprzyk, Reed et al. 2012, Woodruff, Reed et al. 2013, Cruz, 

Fernandez et al. 2014, Chand and Wagner 2015, Hadka, Herman et al. 2015, 

Matrosov, Huskova et al. 2015, Borgomeo, Mortazavi-Naeini et al. 2016, 

Woodruff 2016). 

• The use of visual analytics approaches to better communicate the outputs of 

optimization studies to stakeholders to help with exploration and analysis of 

the trade-offs between objectives, to identify the impact of decisions on 
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performance, and ultimately select trusted solutions for further consideration 

(Kollat and Reed 2007, Kollat, Reed et al. 2011, Woodruff, Reed et al. 2013, 

Hadka, Herman et al. 2015, Matrosov, Huskova et al. 2015, Borgomeo, 

Mortazavi-Naeini et al. 2016, Woodruff 2016). 

These advances have made EAs more applicable to complex, real-world problems with 

multiple stakeholders and many objectives. However, in previous studies, the 

optimization problem to be solved has generally been represented by a single formulation, 

including all decision variable options, objectives and constraints that were considered to 

be relevant. This can result in the inclusion of a large number of objectives and decision 

variable options, making it difficult to identify solutions that represent the best trade-offs 

between objectives (i.e. the non-dominated solutions on the Pareto front, where none of 

the objective functions can be improved in value without degrading one or more of the 

other objective values). This is because the number of solutions required to characterise 

the Pareto front increases exponentially as the number of objectives increases, thus 

making this process exceptionally computationally expensive and beyond the capability 

of the majority of current EAs (Cruz, Fernandez et al. 2014, Purshouse, Deb et al. 2014). 

In addition, despite the recent advances in visual analytics approaches mentioned above, 

the inclusion of a large (e.g. >10) number of objectives makes the identification of 

solutions that provide acceptable trade-offs for different stakeholders extremely difficult, 

as this can be cognitively challenging for decision-makers, particularly when dealing with 

large solution sets (Purshouse and Fleming 2007). 

In order to address the above difficulties, an innovative framework to identifying 

stakeholder-driven, optimal compromise solutions is proposed in this paper for problems 

with distinct stakeholder groups with potentially competing sets of objectives. An 

example of this is the integrated management of a river system and its catchment, where 

the objectives of stakeholders managing separate sub-areas of the catchment are most 

likely different from each other, and different from those of stakeholders concerned with 

managing the catchment as a whole. As part of the proposed framework, the overall 

optimization problem is represented as a series of smaller, interconnected optimization 

problems, reflecting individual stakeholders and their interests. The Pareto optimal 

solutions resulting from this analysis provide the input into a collaborative, multi-

stakeholder negotiation process, as part of which visual analytics are used to identify 

trusted and accepted compromise solutions. A key feature of the proposed framework is 
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the use of ‘best alternatives to negotiated alternative’ (BATNAs)’ as a reference point 

during the collaborative negotiation process, which correspond to the solutions individual 

stakeholders would implement if they were to act in isolation. This has been shown to 

increase the efficiency with which negotiated compromise solutions can be achieved 

(Fitzgerald and Ross 2013, Fitzgerald and Ross 2015, Fitzgerald and Ross 2016). 

The objectives of this paper are: (i) to present an optimization-visualisation framework 

that is geared towards the identification of negotiated compromise solutions for problems 

with multiple stakeholders with distinct sets of objectives; (ii) to demonstrate the utility 

of the framework by applying it to a case study based on the integrated management of a 

catchment in a major city in Australia; and iii) to use the case study to a) illustrate how 

the use of BATNAs can encourage the efficient identification of compromise solutions, 

and b) investigate how to identify solutions that distribute benefits and costs equitably 

across stakeholders. 

The remainder of this paper is organized as follows. In the next section, the proposed 

framework is presented. This is followed by a description of the catchment management 

case study, analyses, discussion of results, and conclusions, including limitations and 

future research. 

4.2 Proposed multi-stakeholder optimization-visual analytics 

framework 

A conceptual outline of the proposed framework to addressing the limitations of 

existing optimization approaches outlined in the Introduction is shown in Figure 4-1. As 

can be seen, the first step involves the solution of independent, multiobjective 

optimization problems for each stakeholder group in order to identify ‘best alternatives to 

negotiated alternative’ (BATNAs)’ for each of these groups, which represent the solutions 

each stakeholder would implement if they were to act in isolation. Knowledge of these 

solutions provides a reference point for each stakeholder group during the collaborative 

negotiation stage (steps 3 and 4), which is likely to increase final solution quality and the 

speed with which acceptable compromise solutions between stakeholders are identified. 

Identification of the solutions that are considered during the collaborative negotiation 

stage occurs in steps 2 and 3. In step 2, a number of interconnected optimization problems, 
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one for each stakeholder, are formulated and solved, leading to the identification of joint 

Pareto optimal solutions.  These, and the BATNAs, are then analysed in step 3 with the 

aid of visual analytics in order to identify solutions that represent suitable compromise 

trade-offs between the objectives of different stakeholder groups, which are then 

considered in the collaborative negotiation process (step 4) in order to arrive at an optimal 

compromise solution that is acceptable to all stakeholders. Details of each of these steps 

are given in the subsequent sections.   

 

 

Figure 4-1 Conceptual outline of the proposed multi-stakeholder optimization-visual 
analytics framework incorporating multiple problem formulations to encourage a 

negotiated outcome. Steps are adapted from recommendations by Fitzgerald and Ross 
(2016). 

4.2.1 Selection of best alternative to negotiated agreement (BATNA) 

The concept of using a BATNA for multi-stakeholder negotiation applied to 

engineering systems design was developed and tested by Fitzgerald and Ross (2015) 

based on principles from negotiation theory (Keeney and Raiffa 1993, Fisher, Ury et al. 

2011). Fitzgerald and Ross (2015) ‘re-framed’ the visualisation of the performance of 

engineering systems options about an origin defined by the performance of the BATNAs 
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of individual stakeholders, which improved the quality of solutions selected by 

collaborating stakeholder groups, as well as the speed this was done. When used as a 

reference point for alternative solutions to the problem, BATNAs defines what the 

theoretical benefits and losses to stakeholders are of arriving at a compromise solution. 

This improves decision-making, since humans have been shown to be more strongly 

averse to decisions that result in outcomes below a reference value (losses) than they are 

positive about results above the reference value (gains) (Fitzgerald and Ross 2014). There 

is often some synergistic benefit to collaboration, for example through cost efficiencies 

and access to more funding or a wider range of possible options and outcomes. Therefore, 

setting theoretical ‘go it alone’ BATNAs as reference points highlights what is ‘lost’ by 

not reaching a negotiated outcome, encouraging stakeholders to avoid the costs of not 

collaborating during the exploration and analysis of alternative solutions.  

As part of the proposed approach, it is suggested to identify the BATNA for each 

stakeholder group with the aid of multiobjective optimization, as shown in Figure 4-1.  In 

this case, the formulation of the optimization problem represents a theoretical scenario 

where each stakeholder develops solutions in isolation, instead of developing joint 

solutions with other stakeholders in a collaborative manner. These multiobjective 

optimization problems are solved using a suitable algorithm and the resulting Pareto 

optimal solutions are explored and analysed using visual analytics by individual 

stakeholders, with each selecting their ‘best alternative to a negotiated agreement’ 

(BATNA). Details of each of these steps are given in the following sub-sections. 

4.2.1.1 BATNA optimization problem 

formulations 

To identify solutions that represent the best trade-off between many objectives for each 

individual stakeholder’s ‘go it alone’ solution, a separate optimization problem is 

formulated for each stakeholder as follows:  

�i1i5i�0	"��:*�,�( �) = "��:*�,� = [ �̂��j�-, �̂��j��, … , �̂��j��] 
hg��03U	U4 

T+( ) ≤	0, i = 1, …,m 
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ℎ+( ) =	0, i = 1, …,p 

Equation ( 4-1 ) 

where Ps is a set of decisions taken in isolation i.e. without collaboration by an 

individual stakeholder, s, FBATNA is a set of the associated costs and benefits of the 

decisions, fBATNA i is an objective function used to measure a cost or benefit of P under the 

BATNA scenario, n is the number of objective functions representing the stakeholder’s 

values, g is a set of inequality constraints, and h a set of equality constraints bounding the 

feasible solution space. It should be noted, that each objective function used in the 

BATNA problem formulation should be comparable with one of the objective functions 

used in the collaborative scenario outlined in Section 4.2.2. Although the indicators of 

performance of objectives might be different, the type of objectives should be consistent 

for each stakeholder to allow for comparison of the optimization results between the two 

scenarios. 

4.2.1.2 Solving the BATNA optimization problems 

Only solutions to Equation (4-1) that are Pareto optimal for an individual stakeholder 

can be considered as solutions that represent the best trade-off between objectives within 

each stakeholder’s problem space. It is suggested to use many-objective metaheuristic 

optimization algorithms to identify these Pareto optimal points, as these algorithms have 

several advantages over more traditional optimization approaches (such as linear 

programming), including their ability to deal with multiple objectives simultaneously 

(Maier, Kapelan et al. 2014), their successful application in recent planning and design 

optimization studies (Szemis, Maier et al. 2012, Beh, Dandy et al. 2014, Paton, Dandy et 

al. 2014a, Marchi, Dandy et al. 2016) and their successful linkage with many-objective 

visual analytics packages (Matrosov, Huskova et al. 2015). Furthermore, they can be 

linked with the models required to calculate multiple objective functions and check 

constraints of candidate solutions (Maier, Kapelan et al. 2014), and can provide 

confidence in the results of the optimization process, as simulation models that are already 

used in stakeholder decision-making can be used (Maier, Kapelan et al. 2014).   

4.2.1.3 Selecting a BATNA solution 

In order to enable each stakeholder to select a BATNA solution from their Pareto 

optimal solutions, use of the approach introduced by Di Matteo, Dandy et al. (2017) is 
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suggested. The approach uses a metaheuristic to generate optimization results, and visual 

analytics to assist decision makers to explore and analyse their Pareto optimal solutions, 

enabling solutions that represent an acceptable compromise to be identified. Further 

details of the approach are given in Section 3.3. 

4.2.2 Formulation and optimization of multiple stakeholder problem spaces 

While the solutions obtained in this step still correspond to optimal alternatives from 

the perspective of individual stakeholders, as was the case for the BATNAs, these 

solutions are to problems that are formulated collaboratively between different 

stakeholder groups, taking into account interactions and dependencies between the 

problems faced by these groups, as well as any efficiencies gained. Consequently, this 

step also provides an opportunity for relationship-building for stakeholders and to record 

informal attributes of the problem that may assist in exploring and analysing solutions. It 

is possible after collaboration commences that stakeholders find that their values align to 

a degree that they form a ‘coalition’ and negotiate as one stakeholder group from a shared 

position. Consequently, there may be fewer stakeholder groups undertaking the 

negotiation than there were individual stakeholders assessing their BATNA.  

This step consists of a number of sub-steps, including the formulation of individual 

optimization problems for each stakeholder, the solution of this problem with an 

appropriate multiobjective optimization algorithm and determination of the joint Pareto 

front. Details of each of these steps are given in the following sub-sections. 

4.2.2.1 Collaborative optimization problem 

formulations 

To identify solutions that represent the best trade-off between many objectives for each 

stakeholder group, s´, a separate optimization problem is formulated for each stakeholder 

group as follows:  

�i1i5i�0	"��( ��) = "�� = [ �̂ ¡¡��,-, �̂ ¡¡��,�, … , �̂ ¡¡��,�] 
hg��03U	U4 

T��,+( ) ≤	0, i = 1, …,m 
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ℎ��,+( ) =	0, i = 1, …,p 

Equation ( 4-2 ) 

where P is a set of decisions taken by a stakeholder group, Fs’ is a set of the associated 

costs and benefits of the decisions, fi,s’ is an objective function used to measure a cost or 

benefit of P under the collaborative scenario (which should be comparable to one 

objective function in the BATNA problem formulation of each individual stakeholder in 

the group, see Section 4.2.2.1), n is the number of objective functions, g is a set of 

inequality constraints, and h a set of equality constraints bounding the feasible solution 

space.  

During the formulation of each of the s’ optimization problems, stakeholders should 

collaborate to ensure interdependencies between the benefits and costs of decisions, 

available decision options and constraints are reflected in the mathematical formulations. 

For each formulation, performance indicators corresponding to different objective 

functions can represent the individual values of a stakeholder. However, the selected cost 

indicators should enable a comparison between formulations in order to make it possible 

to analyse how equitably a solution distributes costs and benefits amongst stakeholders. 

For example, while the cost performance indicator could be represented as a lifecycle cost 

or as separate objectives for capital and operating expenses, the corresponding indicator 

should allow for consistent comparison amongst the optimization problems for the 

different stakeholders. In addition, if an option selected by one stakeholder affects another 

stakeholder’s available decision options or objective function value(s), then this should 

be included in the decision variables of affected stakeholders. 

As part of the above process, apart from the formal problem aspects, analysts should 

also record the key elements of the problem structure that may be useful during later 

negotiations (Fitzgerald and Ross 2016). These may include interests of stakeholders that 

are divisible (for example, the possibility of sharing capital expenditure for certain 

projects), or relationships between stakeholders, which can be important in informing how 

the exploration and analysis should be conducted. For example, if there are known pre-

existing negative relationships between stakeholders, directly comparing desired 

alternatives may limit the effectiveness of exploration and should be avoided. 
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4.2.2.2  Solving the collaborative optimization 

problems 

As discussed in Section 4.2.1, it is proposed to use metaheuristic optimization 

algorithms for the identification of the solutions that represent the best trade-offs within 

each stakeholder's problem space. In the context of solving the collaborative optimization 

problem, the fact that these algorithms can be linked with existing simulation models has 

the additional advantage that selection of an appropriate system model can assist with 

relationship-building and increase the likelihood of a negotiated outcome. This is because 

models can potentially be developed amongst stakeholders through a ‘joint fact finding’ 

exercise to establish credible and objective data to support models; this being one of the 

foundations of principled negotiation (Fitzgerald and Ross 2015). Alternatively, where 

models cannot be determined through joint fact finding, stakeholders may offer existing 

system models in order to promote a ‘Full, Open, and Truthful Exchange’, which is 

important in successfully achieving negotiated outcomes (Fitzgerald and Ross 2015).  

4.2.2.3 Determining the joint-Pareto front 

Solutions that lie in all Pareto sets for the solutions to the s’ individual stakeholder 

problems, that is the joint-Pareto solutions, are an obvious choice for potential 

compromise solutions. This is because these solutions do not require stakeholders to 

consider solutions that are not optimal for their particular problem, although changes in 

their relative preferences for different objectives might be required in order to identify a 

solution that satisfies all stakeholders. To determine the joint-Pareto front, firstly the 

Pareto optimal solution data sets from the s’ optimization problems are aggregated. Next, 

the joint Pareto front solutions, that is, solutions that lie on the Pareto front for every 

stakeholder, are identified and selected. As suggested by Fitzgerald and Ross (2013), if 

no joint solutions can be identified, then the Fuzzy Pareto Number (FPN) of solutions 

close in objective space to the Pareto fronts for each stakeholder can be considered 

(Smaling 2005, Fitzgerald and Ross 2012).  

4.2.3 Visualization of the multi-stakeholder trade-off space 

In the third step of the proposed framework, an analyst generates a visualisation of the 

solution set on the joint-Pareto front for interactive exploration and analysis by 

stakeholders so that they can ultimately select solutions that represent a desirable 
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compromise between performance criteria amongst the multiple representations of the 

problem space (Maier, Kapelan et al. 2014).  This may occur in a workshop setting or 

virtually in real-time and can be done with the aid of an interactive visual analytics 

package (Kollat and Reed 2007, Hadka, Herman et al. 2015), as part of which high-

dimensional coordinate plots or parallel coordinate plots (Inselberg 2009) can be used to 

visualize the performance of the large number of Pareto optimal solutions in many-

objective space.  

As part of the proposed framework, a separate plot is generated for each stakeholder. 

These plots should be linked such that isolating or marking a solution in one plot updates 

automatically on other plots. In this way, the performance of a solution can be compared 

simultaneously in each stakeholder’s problem space. The individual BATNA solution of 

each stakeholder should be plotted using a distinctive style (e.g. bold or coloured line) to 

act as a reference point. Axes representing objective values should be oriented such that 

positive outcomes point in the same direction. It should be noted that in parallel coordinate 

plots, if the positive direction is at the top of the axis, the solutions with all objective 

values above (or equal to) the BATNA represent an improvement on the reference point. 

In visualisation of trade-offs between many-objectives using multiple axes, it is 

possible that solutions improve upon the BATNA in one benefit but not others. For 

solutions with these characteristics, whether the BATNA is superior depends on 

stakeholder preferences. Therefore, an indicator of the performance of solutions relative 

to the BATNA should also be visualised within each stakeholder’s problem space. This 

allows stakeholders to rapidly detect how a solution performs relative to their own 

BATNA and the BATNAs of other stakeholders by inspecting the multiple problem space 

visualisations. An example of possible categories for a problem formulation with four 

objectives – one cost, three benefits – is shown in Table 4-1. In the example, Category 1 

solutions are obviously superior to those in Category 8. However, when choosing amongst 

Category 2-7 solutions, stakeholder input is necessary, as improvements or losses in one 

benefit might be valued more highly than those in others. In addition to visualising the 

category of solutions, automated preference selection techniques might further assist with 

selecting between solutions and reducing the size of a large solution set (Fitzgerald and 

Ross 2016). 
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Table 4-1 Categories of solutions indicating performance relative to BATNA 

Category Lower cost than 
BATNA? 

Number of benefits 
exceeding BATNA 

1 Yes 3 

2 Yes 2 

3 Yes 1 

4 No 3 

5 Yes 0 

6 No 2 

7 No 1 

8 No 0 

4.2.4 Exploration of the multi-stakeholder trade-off spaces 

In the fourth step of the proposed framework, an analyst guides stakeholders through 

an exploration and analysis of the solution set. A method to do this is adapted from steps 

for a multi-stakeholder trade-off space analysis suggested by Ross, McManus et al. 

(2010), as outlined below.  

4.2.4.1 Each stakeholder selects several ‘good’ 

solutions 

Firstly, several good solutions are selected by individual stakeholders, only 

considering the performance of joint-Pareto solutions in their own problem space (i.e. the 

problem spaces of other stakeholders are hidden). To do this, the stakeholder can use a 

visual analytics method to isolate promising solutions. For example, in order to reduce 

the number of solutions considered for further analysis, dynamic filtering to eliminate 

undesirable solutions can be carried out by an analysts based on the decision-maker’s 

budget constraints and minimum preferences for each benefit. This process will eliminate 

apparently undesirable combinations of decision options not anticipated when 

formulating the problem (Piscopo, Kasprzyk et al. 2015). Within the reduced set, 

decision-makers and analysts can use brushing to highlight sub-sets of interesting 

solutions. Multiple linked plots of the same data set can assist with identifying and 
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rationalizing trade-offs, such as conflicts and areas of diminishing returns between 

objectives and emergent behaviour influenced by the selection of various decision 

options. Interactive visualization of optimization objective and decision spaces 

simultaneously enables stakeholders, with the assistance of analysts, to rapidly identify 

subsets of solutions that contain preferred decisions and compare their performance to 

that of other solutions. In this way, browsing through solutions to investigate and learn 

about the impact of individual decision preferences can allow decision-makers to 

overcome institutional decision-making biases (Kollat and Reed 2007, Matrosov, 

Huskova et al. 2015). Ultimately, several desirable solutions are selected for further 

consideration. 

4.2.4.2 Stakeholders share their preferred 

solutions 

Stakeholders then share their selected solutions and visualise the selected solutions of 

others in their problem space. Stakeholders can record which solutions they will consider 

further. Negotiations and compromises in preferences commence. As an indicator of 

solution performance that can be compared among stakeholders, the solution category 

relative to the BATNA can drive negotiation for compromise in preferences of 

stakeholders whose solutions are more favourable. Stakeholders may express which 

objectives they are willing to compromise in, and can set minimum limits on particular 

benefits using brushing tools, that hide solutions that do not meet their minimum 

performance criteria on other stakeholders’ problem spaces. The many-objective plots 

show explicit trade-offs in each objective, and stakeholders can make judgements on the 

benefits lost or gained when opting for one solution over another. Compromises can be 

expressed through negotiation, which makes explicit what is being compromised and 

traded.  

4.2.4.3 Negotiate and identify compromise 

solutions 

Advanced techniques for eliminating solutions through relaxation of value constraints 

and cost bargaining can be undertaken to isolate one or two solutions for further analysis 

(Fitzgerald and Ross 2013). If stakeholders determined they are indifferent to the values 

a particular objective takes, they may remove that objective from the visualisation of the 
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problem space. Omitting one objective may reduce the number of solutions in the joint-

Pareto set. If the visualisation dataset is linked to the full set of optimization results, a new 

Pareto sort on the remaining objectives will eliminate solutions dominated in the lower-

objective space. As a compromise for removing an objective, stakeholders might increase 

their minimum acceptable benefit on other objectives. For minimum performance 

constraints on objectives that eliminate a large number of solutions, a stakeholder might 

consider accepting a lower benefit in exchange for lowering the maximum cost to 

contribute to a solution. In addition, cost bargaining might be undertaken amongst 

stakeholders, especially where slight increases in cost for one stakeholder make available 

solutions that create much higher benefits for others. Ultimately, one or two acceptable 

compromise solutions should be determined for further consideration. 

4.2.4.4 Explore better compromise solutions 

Once acceptable compromise solutions have been identified, stakeholders search the 

full set of joint-Pareto solutions for comparable solutions that are ‘fairer’. These are 

identified by negotiation. The compromise solutions are plotted with an identifying 

marker. To compare the solution set to the compromise solutions, an additional indicator 

that measures the distance in objective space from the solution for each stakeholder 

problem can be determined. An additional plot with axes of equity indicators and/or a 

breakdown of the distribution of costs can be used to identify solutions that improve on 

the compromise. 

4.2.4.5 Further consider selected solutions 

Finally, solution(s) that are acceptable to all stakeholders may be explored and tested in 

more depth e.g. for robustness or other metrics (Herman, Reed et al. 2015, Giuliani and 

Castelletti 2016, Maier, Guillaume et al. 2016), and a final solution selected. 

4.3 Case study 

The proposed framework was demonstrated on a case study for an urban catchment 

management problem in Australia, which expands upon the case study originally 

formulated in Section 3.3. The problem involved four stakeholders. A catchment 

management authority (CMA) was responsible for funding the capital expenses of 
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stormwater control systems distributed throughout a catchment. Three local government 

authorities (LGAs) managed regions within the catchment and were responsible for 

maintenance to ensure systems remain functional over their design life. It should be noted 

that there was no stakeholder involvement in the application of the proposed framework 

to the case study, which was undertaken solely by the analyst for the sake of illustrating 

the approach. However, although stakeholders were not involved directly in this exercise, 

the generic preferences and motivations of stakeholders were discussed between the 

analyst and engineering consultants who had interviewed stakeholder groups in 

workshops related to the problem under consideration.  

The application of the proposed optimization approach was part of a real-world study 

involving a multi-criteria analysis conducted to identify a portfolio of BMP projects for a 

regional catchment. This allowed the authors to demonstrate how the proposed approach 

can consider existing BMP selection practices, which is a study objective. As the case 

study application was only intended to demonstrate the optimization approach, the results 

of the study were reviewed by consultants but were not used to inform decision-making. 

The names of stakeholders and catchment regions involved are not disclosed in this study  

Engagement between stakeholders, engineering consultants, and the optimization 

analysts (who are the authors of this study), was carried out as follows. Firstly, 

engineering consultants ran one workshop where the broad catchment management 

objectives were established, which was attended by a stakeholder working group, from 

LGAs and the CMA, of approximately 16 people. Consultants then identified sites, 

assessed them for quantitative metrics (e.g. required size of BMPs to meet water quality 

constraints, cost, and stormwater harvesting capacity) and made a preliminary effort to 

score each of the qualitative metrics (e.g. vegetation improvement and amenity value) 

using objective thresholds. Consultants then sent these preliminary scores to LGAs and 

asked to provide a response. These were generally reviewed by landscape, bushland, 

horticultural and parks and open space staff. The staff involved and level of response 

varied between the LGAs. Consultants then had a workshop with each of the individual 

LGAs to review the sites, establish a common understanding of the whole catchment 

management opportunity and confirm the proposed individual project scoring. Then, 

important objectives were refined into formal optimization objectives by the consultants 

and optimization analysts. The analysts used the multi-criteria evaluation data to inform 

the optimization problem formulation including decision variables (projects), developing 
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objective functions and project objective function values, and constraints.. The data used 

for this study are listed in the references, tables, supplements and repository at Di Matteo, 

Maier et al. (2016b). 

 

4.3.1 Background  

4.3.1.1 Catchment management problem 

considered 

Sustainable integrated catchment management often involves the selection of a 

portfolio of stormwater best management practices (BMPs) with precinct-sized 

contributing catchments (i.e. < 1 km2) to achieve desired social, environmental and 

economic benefits within a larger catchment or region (Marlow, Moglia et al. 2013). 

BMPs may include structural and non-structural measures for treatment, detention, 

harvesting, infiltration, evaporation, and transport of non-point urban stormwater runoff 

(Lerer, Arnbjerg-Nielsen et al. 2015). Catchment managers must consider a range of 

performance criteria due to several socio-political drivers, including: water supply 

security, public health protection, social amenity, urban flow regime improvement, 

environmental protection and flood mitigation (Marlow, Moglia et al. 2013, Askarizadeh, 

Rippy et al. 2015). In response to these drivers, BMPs have been developed to provide 

multiple functions in addition to water quality improvement, such as stormwater 

harvesting (Mitchell, Deletic et al. 2007, Clark, Gonzalez et al. 2015, Di Matteo, Dandy 

et al. 2017) and urban vegetation and amenity improvement (Sharma, Pezzaniti et al. 

2016). To maximize total catchment benefits for a given budget, decision-makers must 

select a combination, or portfolio, of BMPs that provides the best trade-off between many 

objectives. Selection of a portfolio of BMPs is made more difficult in practice, as often 

limited resources are available for performing this task (Moglia, Kinsman et al. 2012). 

4.3.1.2 Multi-stakeholder aspects of the problem 

In recent years, millions of dollars have been invested into stormwater treatment best 

management practices (BMPs) in Australia to improve urban ecosystem health. The 

investment strategy may involve an integrated catchment approach, where a catchment 

authority subsidises construction and establishment of distributed BMPs to be operated 
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and maintained by LGAs (Eadie 2013). Without incentives, maintenance of BMPs – 

which is essential for functional performance of BMPs and therefore catchment 

ecosystem benefits – may cease to be a priority for LGAs over the lifetime of BMP assets. 

Fortunately, LGAs may be willing to bear maintenance costs if BMPs produce local 

benefits, in addition to benefits to the total catchment. For example, BMPs functioning as 

part of a stormwater harvesting system for open space irrigation, or providing high urban 

amenity and recreation benefits, are more likely to be maintained. The ongoing 

maintenance promotes optimal runoff quality improvement, thereby improving urban 

ecosystem health. The benefits of BMPs are valued differently by LGAs depending on 

their local area planning strategies. Therefore, to maximize return on investment, 

integrated catchment planners need to target funding to a portfolio of BMP projects that 

provides multiple ongoing benefits to individual LGAs and catchment management 

stakeholders, in addition to overall catchment benefits. 

4.3.1.3 Potential solutions 

In the case study considered, the CMA commissioned engineering consultants to 

identify sites for potential stormwater best management practices (BMPs) within a 

regional catchment with an outlet flowing into a prominent marine body. The catchment 

covers an area comprised of highly urbanized and peri-urban regions managed by three 

local government authorities (LGA). A primary objective for the CMA was to reduce the 

nutrient load from urban stormwater runoff flowing into the marine body. In addition, 

since the potential sites for BMPs were within public open spaces managed by LGAs, 

stormwater harvesting for irrigation of open spaces, increasing vegetation and public 

amenity value were considered to be important additional benefits. The consultants 

identified 70 (Np=70) potential biofiltration, wetlands and swale projects at locations 

distributed in open spaces throughout the three LGA areas (see Table C-1 in Appendix 

C). Thirteen of these projects have a capacity for stormwater harvesting. In addition, the 

consultants agreed that a portfolio of 20 projects or fewer (Nmax=20) was desirable from 

a practical perspective. The BMPs were considered mutually independent, as the 

contributing catchment areas to each BMP did not coincide i.e. downstream impact of 

BMPs would not affect the performance of other BMPs within the large regional 

catchment.  
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4.3.2 Selection of best alternative to negotiated agreement (BATNA) 

For the sake of demonstrating the proposed approach, BATNAs were selected by 

analysts based on a ‘build alone’ scenario, where each stakeholder is responsible for the 

capital and operating costs (total lifecycle costs) of the projects they select. The optimal 

solutions were identified with the aid of the general multiobjective optimization 

framework introduced in Section 3.2, as this was developed for the selection of a portfolio 

of BMPs for catchment management, as is the case here. The formulation of the 

optimization problem is detailed in Section 4.3.2.1, details of the objective functions and 

how they were evaluated are given in Section 4.3.2.2 and the specifics of the optimization 

engine used are provided in Section 4.3.2.3. 

4.3.2.1 BATNA optimization problem 

formulations 

Details of the optimization problem formulations for obtaining the BATNAs for each 

of the four stakeholders are given in Table 4-2. As can be seen, LGA stakeholder 

portfolios consisted of up to 7 projects located within their jurisdictions. The catchment 

management authority was assumed to have permission to build and operate up to a total 

of 20 projects should no agreement to share capital and operating costs be negotiated.  

Table 4-2 Optimization problem formulations for stakeholder best alternative to 
negotiated agreement (BATNA) 

Formulation Stakeholder 
problem space 

Decision 
variables 

Objectives 
(FBATNA) 

Constraints 

1 Catchment 
management 

authority (CMA)1 

All projects LCC,CMA 
fquality,CMA 
fSWH, CMA 
fGreen, CMA 

≤ 20 projects 

2  LGA 1 LGA 1 
projects 

LCC,1  
fquality,1  
fSWH,1  
fGreen,1 

≤ 7 projects 

3 LGA 2 LGA 2 
projects 

LCC,2 
fquality,2 
fSWH,2 
 fGreen,2 

≤ 7 projects 



 

 112  
 

4 LGA 3 LGA 3 
projects 

LCC,3  
fquality,3  
fSWH,3   
fGreen,3 

≤ 7 projects 

1. Optimization of problem formulation 1 (only) was undertaken in Section 3.3, and the 
results from that study are used here. 

4.3.2.2 Objective function formulation and 

evaluation 

The objectives considered for each of the four stakeholders include cost minimisation, 

total nitrogen reduction, maximisation of stormwater harvesting, and urban vegetation 

and amenity improvement. The mathematical formulations of these objectives were 

adapted from those in Di Matteo, Dandy et al. (2017), and are detailed in Appendix D. 

Based on these mathematical formulations, values for all four objectives were obtained 

for each of the BMPs, shown in Table C-1 in Appendix C as detailed below. 

Firstly, the stormwater harvesting capacity of individual projects was determined from 

LGA expert interviews. Secondly, the individual project lifecycle costs, LCC, were 

determined using cost parameters from Equations (D-1) to (D-4) for each project. Thirdly, 

the water quality performance of each BMP was determined with the aid of the integrated 

catchment simulation model eWater MUSIC version 6.1 (Model for Urban Stormwater 

Improvement Conceptualization, eWater (2009)), which is further explained in Appendix 

E. To do this, a catchment model for a 1 ha catchment area for each LGA was developed. 

The model consisted of a 0.5 ha pervious catchment node, a 0.5 ha impervious catchment 

node, and an outlet node to estimate the average annual total nitrogen load per unit area 

of the catchment with an average 50% impervious surface area (Browne, Breen et al. 

2012). One year of continuous climate data and pervious surface parameters provided by 

the CMA were adopted for the catchment nodes. To estimate the catchment TN load in 

Equation (D-5), Source [kg], for each BMP, the TN load from a 1 ha unit catchment area 

for the respective LGA was multiplied by the contributing catchment area to each BMP 

in hectares. Each BMP was assumed to remove 45% of the TN load from its contributing 

catchment. To calculate the pollutant removal performance of BMPs, the residual TN load 

at the catchment outlet Residi was calculated as a proportion of Sourcei (i.e. in Equation 

(D-5), Residi = (1 - 0.45) × Sourcei), which was suggested as an acceptable performance 

based on advice from the consultants. Finally, Equations (D-7) to (D-9) were applied to 

determine the individual project green scores. 
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4.3.2.3 Optimization algorithm and analyses 

As mentioned previously, the above multiobjective optimization problem formulations 

for each of the four stakeholders were solved using the many-objective portfolio 

optimization approach in Section 3.2. The approach uses a metaheuristic algorithm, the 

Pareto Ant Colony Optimization Algorithm (PACO), which was previously demonstrated 

successfully for the single stakeholder case study version of the catchment management 

problem, also in Section 3.3. The algorithm mimics the cooperative foraging behaviour 

of an ant species that leaves a chemical pheromone on a ground surface. In real life, since 

ants traverse short paths to food more frequently, more pheromone is laid on short 

(efficient) paths. Thus, paths with higher pheromone levels are more likely to be selected 

by an ant. In the algorithm, artificial ants select between paths, which represent decisions 

whether or not to adopt a BMP in a portfolio in this instance, with paths that result in 

better objective function values receiving more pheromone. 

The steps in the PACO algorithm are shown in Figure 4-2. In the initialization phase, 

the PACO search control parameters are set. The iterative process commences where b 

ants are generated, each ant starting with an empty portfolio x = (0), and the objective 

weights (i.e., the ant’s individual preferences) are determined randomly for each ant. In 

the construction phase of the algorithm, first the order of BMPs is randomly shuffled, to 

ensure that all BMPs are provided an equal chance of being considered early on by each 

ant. Then, the ant decides whether to add each BMP to a portfolio, x, by applying a 

pseudo-random-proportional rule using pheromone information, τi. The pheromone 

information is stored in one 2xN matrix for each j th objective, representing the binary 

options for the N possible BMPs. If the ant adds the maximum number of BMPs, Nmax, 

before all BMPs have been considered, then none of the remaining BMPs are selected. 

After a portfolio has been constructed, its performance is evaluated using the objective 

functions (Equation (D-2) and (D-5) to (D-7)). In this case, as individual projects were 

determined to be independent, the portfolio objective functions were a summation of the 

constituent individual project objective function values in Table D-1. 
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Figure 4-2 Portfolio optimization process for Pareto Ant Colony Optimization Algorithm 
(PACOA) 

After each iteration, of the b portfolios generated by the b ants, the non-dominated 

portfolios are stored offline in an array. Then, as part of a global update of every element 

of the j pheromone matrices, the first and second best performing solutions ranked for 

each j th objective are used to apply the following equation. 

��� = (1 − �) ∙ 	��� + � ∙ ���� 
���� = �15, U	i1	�4Uℎ	�0hU	K1L	21L	�0hU	l4SU^4mi410, U	i1	�0hU	l4SU^4mi45, U	i1	h0341L	�0hU	l4SU^4mi40, 4Uℎ0S�ih0  

Equation ( 4-3 ) 

where, for each BMP, the current pheromone value for each tth binary option and j th 

objective is reduced by pheromone evaporation, ρ, and increased by a pheromone value, ����. Pheromone is evaporated from decisions that are not in the best solutions for each 

objective, which makes it less likely these decisions will be selected again in future 

iterations. In this way, the ant’s decision-making landscape is modified to guide ants into 

regions of the search space that contain non-dominated portfolios. Since the single 

constraint was handled in the construction phase, no penalty function is required for this 
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case study as all constructed portfolios are feasible. The process of developing, assessing 

and updating the pheromone trails to guide the PACOA to near-optimal trade-offs 

continues until a specified maximum number of iterations, w, is reached. 

Before the PACOA was applied, a sensitivity analysis was conducted to identify 

suitable values of parameters that control the searching behaviour of the algorithm to 

maximize the likelihood the best possible approximation of the Pareto front was 

generated. The sensitivity analysis was applied to one stakeholder problem formulation, 

formulation 1, which is the CMA’s BATNA scenario formulation. The results of 

formulation 1 were explored in depth in Section 3.3. The ranges of parameter values tested 

and the final parameters selected for all formulations (i.e. formulations 1-8 in this study) 

are given in Table 4-3. 

Table 4-3 PACOA parameters tested and adopted in sensitivity analysis 

PACOA Parameter Range of Values 
Tested 

Adopted Value 

Number of ants (b) 20, 200, 300,500 500 

Initial pheromone (τo) 0.5, 1.0, 10.0 0.5 

Evaporation rate (ρ) 0.1, 0.15, 0.2, 0.4, 0.5 0.4 

Evaluations (b ×w) Up to 2,000,000 600,000 

 

In this study, as in Section 3.3.2, the PACO was run for 1200 iterations of 500 ants, 

which equates to 600,000 objective function evaluations. This number of evaluations was 

selected because there were no further meaningful changes in the Pareto front (assessed 

by visually inspecting the Pareto optimal solution set at 5,000 evaluation intervals) after 

this number of evaluations in a trial run of 2,000,000 evaluations. The optimization results 

were re-run 50 times using different random starting seeds for the pseudo-random number 

generator used in the algorithm to minimize the impact of probabilistic effects of some of 

the operators that influence the search. Each run took approximately 26 minutes on a 

3.10GHz computer with 8 GB of RAM, although multiple instances were run on one 

machine simultaneously. The Pareto optimal solutions for each stakeholder shown in this 

paper are the result of a non-dominated sort of the solutions from the 50 replicate runs. 

Once the Pareto set of portfolios was determined, a suitable BATNA portfolio was 

selected for each stakeholder, as detailed in Section 4.4.1. 
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4.3.3 Formulation and optimization of multiple stakeholder problem spaces 

The overall process used to identify the solutions that provide the input into the 

collaborative, multi-stakeholder negotiation process is identical to that used to identify 

the BATNAs in that individual optimization problem formulations are developed for each 

of the four stakeholders, which are solved using the many-objective portfolio optimization 

approach in Section 3.2. However, the formulations of the optimization problems were 

altered to reflect the proposed shared funding scheme in the collaborative scenario, as 

shown in Table 4-4. These formulations reflect the proposed strategy where the CMA 

funds capital costs and the LGAs fund ongoing costs of projects.  

Table 4-4 Optimization problem formulations for stakeholder negotiations 

Formulation Stakeholder 
problem space 

Decision 
variables 

Objectives 
(fCOLLAB´) 

 

Constraints 

5 Catchment 
management 
authority 
(CMA) 

All projects CAPEXCMA, 
fquality,CMA, 
fSWH, CMA, 
fGreen, CMA 

≤ 20 projects 

6 LGA 1 LGA 1 
projects 

OPEX1, 
fquality,1,  
fSWH,1,  
fGreen,1 

≤ 7 projects 

7 LGA 2 LGA 2 
projects 

OPEX2 
fquality,2,  
fSWH,2,  
fGreen,2 

≤ 7 projects 

8 LGA 3 LGA 3 
projects 

OPEX3, 
fquality,3, 
 fSWH,3,  
fGreen,3 

≤ 7 projects 

 

The objective functions for total nitrogen reduction, stormwater harvesting, and urban 

vegetation and amenity improvement used were identical to those used for the BATNA 

formulations (see. Equation (D-4) to (D-8)). This means that the values of fquality, fSWH, 

fGreen are simply the sum of the values for the LGAs. However, the cost objective functions 

were revised for the stakeholder collaboration problem as the CMA funded capital costs 
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(CAPEX) and LGAs funded operating costs (OPEX). The OPEX cost objective function 

used for formulations 5-7, representing the maintenance of BMPs, was: 

MINIMIZE:		¢ �;	{£�	 =			 
�����,¤�¥¦ +	
��O_`,¤�¥¦	 
Equation (4-4) 

where 


�����,¤�¥¦ =��			 !"(
+��,����%&����� ×�����.6*
+,-  


��O_`,¤�¥¦	 =  !"(
+��%�(:
�a +	�(�+8� +	�(7P���Pb + �(�9(8. 
Equation (4-5) 

The CAPEX cost objective function used for formulation 8, representing the 

construction and establishment cost of BMPs, was: 

MINIMIZE:		�� �;	7��	 =			 
�����,7��¥¦ +	
��O_`,7��¥¦	 
Equation (4-6) 

where 


�����,7��¥¦ = ∑ �	(�������) +  !"���
#,����%&����� × ��"���� ×�����.6*+,-   


��O_`,7��¥¦	 = �7
8:
�a +	�7
8�+8� +	�7
87P���Pb + �7
8�9(8 

Equation (4-7) 

 

Where OPEXLGA are the ongoing maintenance costs of BMPs and of SWH 

infrastructure situated within an LGA’s jurisdiction, and CAPEXCMA is a sum of the 

construction and establishment costs of BMPs to capture and treat stormwater runoff, 

LCCBMP,CAPEX [$] (Equation 4-7), and to transfer harvested water to a balancing storage 

for further treatment and distribution, LCCSWH,CAPEX [$] (Equation (4-6)). The terms in 

Equations (4-4) and (4-5) are identical to those in the lifecycle cost equation used for the 

BATNA formulations, i.e. Equation (D-2) and (D-3), which are detailed in Appendix D.  
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Similarly to the BATNA formulation, LGA stakeholder portfolios consisted of up to 7 

projects located within their jurisdictions and the catchment management authority was 

assumed to have permission to build and operate up to a total of 20 projects within each 

LGA, should no agreement to share capital and operating costs be negotiated. 

The optimization results from formulations 5-8 were aggregated into one data set. The 

joint-Pareto front was determined as the subset of full CMA portfolios that were 

exclusively combinations of Pareto optimal portfolios from each LGA. It should be noted 

that by definition, every portfolio on the joint-Pareto front consists of a Pareto optimal 

portfolio from each stakeholder. 

4.3.4 Visualization of the multi-stakeholder trade-off space 

To visualize and analyse the objective and decision space trade-offs of the Pareto 

optimal set of portfolios, an interactive visual analytics package was used. The combined 

objective space and decision space visualizations for four plots representing stakeholder 

problem spaces were carried out using the approach of Kollat and Reed (2007) and the 

approach in Section 3.2 using the DiscoveryDV software package (DiscoveryDV Version 

0.80; available at https://www.decisionvis.com/discoverydv/). The package features an 

interactive data plot that allows brushing, linked views of solutions, marking and tracing 

of solutions of interest, as well as rapid browsing through solution objective, decision and 

non-objective performance data. The package has been used successfully in several recent 

many-objective optimization studies (Woodruff, Reed et al. 2013, Piscopo, Kasprzyk et 

al. 2015), as well as in the single stakeholder version of this catchment management case 

study in Section 3.3. 

The joint-Pareto optimal solution objective and decision data were uploaded into the 

interactive visual analytics package. Then, a parallel coordinate plot was generated for 

each stakeholder, with the objectives of each stakeholder oriented such that positive 

values were at the top of the axes. The BATNA solution for each stakeholder was 

visualised using a thick bolded line on each stakeholder’s plot. The plots were visualised 

simultaneously on a large screen, and the analyst performed the role of exploring and 

analysing solutions.  

In each of the plots, the relative objective function values were shown in the first four 

vertical axes, with the last two axes showing the solution category relative to BATNA 
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and solution type (on the BATNA axis: BATNA = 1, Pareto optimal = 2). The colour of 

the line segment indicated whether the solution has lower or higher cost and benefits 

compared with the BATNA. A blue line segment indicated the most desirable (Category 

1) solutions, which has all three benefits higher, and a lower cost than the BATNA of the 

stakeholder. A red line segment indicated the least desirable (Category 8) solutions, which 

have all three benefits lower, and a higher cost than the BATNA. Other colours represent 

categories that have a combination of benefits improved and not improved, and higher or 

lower costs, compared to the BATNA, as described in Table 4-1. It should be noted that 

the category indicator should not be used as an absolute indicator of preference, as it does 

not take into account which of the benefits is compromised. It may be desirable to 

compromise on some objectives and not others, which is dependent on stakeholder 

preferences. 

Visualising the solution categories with colour for all stakeholders simultaneously 

allows analysts and stakeholders to inspect the performance of negotiated solutions 

compared to what they would otherwise achieve (i.e. relative to the BATNA). As the 

benefits/consequences of a negotiated outcome for all stakeholders are visualised, framing 

the solution space in this way can encourage stakeholders to continue to engage in 

negotiations until a compromise is found and to ‘buy into’ the negotiated outcome.  

4.3.5 Exploration of the multi-stakeholder trade-off spaces 

To demonstrate the proposed framework, an analyst performed the task of stakeholders 

selecting solutions from the collaborative problem formulation optimization results and 

analysing them with respect to the individual stakeholder spaces. Stakeholders were not 

available, and also a workshop setting with multiple participants was outside the scope of 

this study. Instead, this study aimed to include tested technologies (i.e. interactive visual 

analytics, and approaches in multi-stakeholder tradespace analysis) into a novel 

framework to solve many-objective optimization problems. First, ‘good’ solutions were 

selected for each stakeholder from the joint Pareto set. Using interactive visualisation, a 

small number of solutions preferred by each stakeholder was selected individually, and 

shown in the trade-off space of other stakeholders to visualise their performance. To do 

this, using the visual analytics package, the analyst identified one or two solutions that 

each stakeholder would be comfortable with as the negotiated outcome. The process for 

selecting these solutions was like the selection of the BATNA, except the trade-off space 
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consists of the joint-Pareto front solutions. The solutions were then visualised in the multi-

stakeholder trade-off space to determine how solutions selected for individual 

stakeholders perform for all other stakeholders. Finally, for each stakeholder, each 

solution was analysed against the performance of the preferred solution and BATNA of 

that stakeholder, and suggested reasoning for whether the stakeholder would accept, 

maybe accept or not accept the solution were recorded in a table. 

4.4 Results and discussion 

4.4.1 Identifying Best Alternatives to Negotiated Agreement (BATNAs) 

The outcome of the multiobjective optimization process of the ‘stand-alone’ 

formulations developed for each of the four stakeholders (Section 4.3.2) is a parallel 

coordinate plot for each stakeholder, where each line corresponds to a Pareto optimal 

solution, as illustrated in Figure 4-3 for one of the LGAs. The plots are linked via a data 

set, in that manipulations (e.g. brushing out solutions) in one plot are updated immediately 

on all others. In order to determine the BATNA from these solutions, the following 

process was used. 

For each LGA, firstly the lifecycle cost budget was limited by constraining the 

assumed capital expenditure (CAPEX) available for portfolios using a brushing tool on 

the interactive plot in order to reduce the number of solutions from which to select the 

BATNA. Although not a formal objective, CAPEX was selected as a limiting constraint, 

as it was assumed LGAs had limited funds available to spend on projects in the short-

term. Next, solutions that provided a desirable trade-off between stormwater harvesting 

and green score (with TN reduction as a less influential objective for LGAs) were 

selected. This was done by gradually increasing the minimum allowable green score or 

SWH until two solutions with equal performance in these objectives remained. The 

solution with the highest TN reduction was then selected as the BATNA, as shown by the 

dark blue solution in Figure 4-3. For the catchment management authority (CMA), the 

portfolio that maximized TN reduction after the solution space was constrained to a 

lifecycle cost budget of $5 million was assumed. The BATNAs for each stakeholder 

resulting from the above process are shown in Table 4-5.  
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Figure 4-3 Interactive parallel coordinate plot of Pareto optimal catchment management 
portfolios for one stakeholder. Axes include four objectives (Lifecycle cost, total nitrogen 

reduction, stormwater harvesting capacity, and green score) and an additional axis 
(capital expenditure) to assit with isolating a best alternative to negotiated agreement 

(BATNA). 

 

Table 4-5 Objective values for Best Alternative to Negotiated Agreement (BATNA) for 
stakeholders 

Stakeholder Lifecycle Cost  
($NPV) 

TN 
Reduction 

(kg/yr) 

SWH 
(ML/yr)  

Green 
score 

CMA 4,900,000 3282.9 66.1 93 

LGA 1  467,000 127.71 11.95 26 

LGA 2  968,000 387.39 53.92 30 

LGA 3  703,000 759.96 4.75 37 

4.4.2 Visualizing the multi-stakeholder trade-off space  

Figure 4-4 shows the linked parallel-coordinate plots, described in Section 4.3.4, of the 

Pareto optimal solutions for the collaborative optimization problem formulations, 

presented in Section 4.3.3, for each of the four stakeholders. The BATNAs, identified in 

Section 4.4.1, are shown as bolded lines as a reference point for assessing the performance 
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of solutions. As can be seen, the LGA stakeholders have a large number of solutions in 

Category 1 (blue), which indicates negotiated solutions will provide them additional 

benefit for all objectives at lower cost compared with the BATNA. This is because the 

BATNA requires individual LGAs to fund both OPEX and CAPEX of their projects, 

whereas the CMA funds CAPEX in a negotiated solution. Therefore, disregarding 

external factors impacting decision-making, all LGAs have an incentive to arrive at a 

negotiated solution. Although individual solutions may lie in Category 1 for some, but 

not other, LGAs, visualising the trade-off space in his way can remind stakeholders that 

improvements on the BATNA are possible, which may facilitate negotiation. 

The CMA, however, does not have any solutions in Category 1, which means it must 

compromise on at least one benefit achieved by the BATNA and/or opt for a higher cost 

solution. Although Category 1 solutions were featured in the CMA’s full trade-off space 

of 2535 solutions, the joint-Pareto front solutions were not among these. Since the CMA 

must compromise in at least one benefit to improve on its BATNA for an equal or lower 

cost, it could suggest ways to arrive at a compromise with other stakeholders. For 

example, the CMA could indicate to stakeholders it will only accept a solution that 

provides much higher benefit in one of its primary objectives (e.g. reducing TN load to 

the bay). Alternatively, it may request additional contributions from the LGAs towards 

the CAPEX.
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Figure 4-4 Interactive many-objective, multi-stakeholder trade-off space plot. Parallel coordinate plots showing joint Pareto front of full 
portfolios and individual stakeholder BATNAs visualised with respect to each stakeholder’s objectives. The colour axis represents the 8 

solution categories grouped by performance relative to the BATNA. A category (1) dark blue solution costs less and outperforms the BATNA 
in all benefits, whereas a category (8) red line solution costs more and underperforms the BATNA in all benefits. Categories 2-7 have a 

combination of higher or lower cost and improvement in various numbers of benefits, therefore stakeholder input is required to determine 
which of these categories are preferred 
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4.4.3 Exploring the multi-stakeholder trade-off spaces 

The results of an analyst exploring the individual stakeholder problem spaces to select 

‘good’ individual options, presenting those options in a visualization intended to illustrate 

their distribution of costs and benefits amongst stakeholders, and analysis of the solutions 

in the individual trade-off space of stakeholders, as described in Section 4.3.5, are 

presented in this section. 

4.4.3.1 Selecting ‘good’ solutions 

For the case study considered, individual LGA and CMA solutions were selected by 

an analyst using parallel coordinate plots of stakeholder objectives, as stakeholders were 

not available, as mentioned previously. To select LGA solutions, only Category 1 

solutions were considered. Two solutions were selected for each LGA, one from high-

cost and one from low-cost Category 1 solutions. Stormwater harvesting capacity and 

green score were prioritised over total nitrogen removal for solutions proximate in the 

cost regions. To select CMA solutions, Category 2, 3 and solutions that exceeded the 

BATNA’s TN removal with cost less than $6M, were considered. Two CMA solutions 

were selected, one high cost and one low cost. The selected solutions are shown in Table 

4-6. 
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Table 4-6 Individual stakeholder selected solutions 

 Selected Solution 

Solution characteristic CMA 
Low 
Costs  

CMA 
High 

Benefits 

LGA 1  
Low Costs 

LGA 1  
High Benefits 

LGA 2  
Low  Costs 

LGA 3  
High Benefits 

LGA 3 
Low Costs  

LGA 2 
High 

Benefits 

CMA data 
       

 CAPEXCMA  3,650,000 5,710,000 4,130,000 7,450,000 5,880,000 6,510,000 2,970,000 10,200,000 

  TNCMA  3,802 3,581 1,357 3,967 1,753 4,150 1,345 4,295 

  SWHCMA  51.17 83.22 69.1 76.93 84.45 32.12 29.12 78.16 

  GRNCMA  86 118 109 114 111 115 90 113 

  BATNA Category 3 4 6 4 6 6 5 4 

LGA 1 data 
       

  OPEX1 118,000 405,000 193,000 517,000 357,000 406,000 177,000 565,000 

  TN1 509.79 190.68 187.81 500.1 162.41 765.57 166.15 550.44 

  SWH1 - 24.78 11.95 24.78 24.78 11.95 11.95 24.78 

  GRN1 17 29 33 43 21 35 26 28 

  CAPEX1 639,000 1,530,000 799,000 2,120,000 1,270,000 1,900,000 641,000 2,350,000 

  BATNA Category 3 1 1 1 2 1 1 4 

LGA 2 data 
       

  OPEX2  358,000 589,000 626,000 735,000 703,000 529,000 248,000 1,160,000 

  TN2  384.58 605.27 685.65 706.57 681.71 376.57 270.37 793.51 
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  SWH2  46.42 55.42 55.42 50.42 54.92 15.42 12.42 49.92 

  GRN2  25 43 44 31 45 34 22 39 

  CAPEX2  1,210,000 2,230,000 2,430,000 3,100,000 2,850,000 2,430,000 1,030,000 5,360,000 

  BATNA Category 5 1 1 2 1 3 5 2 

LGA 3 data 
       

  OPEX3  351,000 372,000 166,000 428,000 351,000 432,000 261,000 482,000 

  TN3  2,907.40 2,784.80 483.88 2,760.50 908.93 3,007.90 908.33 2,951.10 

  SWH3  4.75 3.02 1.73 1.73 4.75 4.75 4.75 3.46 

  GRN3  44 46 32 40 45 46 42 46 

  CAPEX3  1,800,000 1,960,000 901,000 2,230,000 1,760,000 2,180,000 1,300,000 2,520,000 

  BATNA Category 1 2 5 2 1 1 1 2 

Miscellaneous 
       

 Directly Connected 
Impervious Area (ha)   

680 649 243 711 316 737 241 769 

  No. Projects 14 19 18 18 18 19 15 18 

  LifeCycle Cost ($NPV)  4,480,000 7,080,000 5,120,000 9,130,000 7,290,000 7,880,000 3,660,000 12,400,000 
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4.4.3.2 Sharing preferred solutions 

Figure 4-5 shows the parallel coordinate plot used to identify solutions that are a 

compromise between stakeholder preferences. Axes show the CMA capital expenditure 

breakdown by LGA, and solution equity indicators relevant to the problem. In this case, 

solutions that are likely to be preferred by stakeholders should distribute CAPEX funding 

amongst stakeholders fairly whilst ensuring return on investment through total catchment 

benefits are achieved. Visualising how a solution distributes costs and benefits amongst 

stakeholders can assist in the negotiation process. This can be done by visualising 

objective performance (CAPEX), non-objective data (CAPEX of LGAs), as well as equity 

indicators (maximum BATNA category) in parallel coordinate plots. The interactive plots 

allow analysts to rapidly brush out unfavourable solutions. This reduces the number of 

solutions to consider and thus the cognitive load on stakeholders.  

In addition, Figure 4-5 shows how CAPEX from the CMA is distributed amongst 

LGAs for the selected solutions. Although the CAPEX here is more than the CMA’s 

BATNA cost, the CMA may investigate higher cost solutions, as it had no Category 1 

solutions in the joint Pareto front. This could result in the avoidance of solutions that have 

extremely low or high individual LGA CAPEX expenditures. Since the CMA is 

compromising its preferences by increasing its CAPEX over its BATNA cost, it would 

most likely want to maximize its primary objective, which is to reduce total nitrogen 

reduction to the bay.  The ‘maximum category’ axis is an equity indicator that assumes 

that a smaller number of categories is preferable. However, which of the benefits are 

compromised is important to decision makers. For example, the CMA may be willing to 

accept a higher category solution (e.g. higher cost and compromise in one or more 

benefits) that has a much higher total catchment TN reduction than other solutions. An 

additional axis isolates solutions that appear in Category 1 for all LGAs, as there were 

numerous Category 1 solutions available in the LGA trade-off spaces. The indicator 

shows none of the selected solutions lie in Category 1 for all LGAs. Determination of 

how each solution performs with respect to all stakeholder objectives would be required 

in order to better understand the compromises and return on investment for the CMA.  
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Figure 4-5 Breakdown by recipient LGA of the catchment management authority capital 
expenditure for joint Pareto solutions. Colour axis shows the selected solutions. A lower 

maximum category number indicates a solution that is likely to be preferable or equitable 
to all stakeholders (in this case, since all LGA solutions were Category 1, maximum 

category reflects the CMA category). BATNAs are not shown. 

4.4.3.3 Identifying compromise solutions  

Figure 4-6 shows the selected solutions, visualised on a screenshot of interactive many-

objective, multi-stakeholder trade-off space plots (BATNAs are not shown). The analyst 

evaluated the performance of the selected solutions with respect to each stakeholder’s 

values, by visualizing the solutions’ performance in each stakeholder objective space and 

comparing each solution to the stakeholder’s preferred options. The stakeholder evaluated 

the relative performance of other stakeholder solutions with their own BATNA and own 

selected solutions. An analyst recorded the likelihood that each stakeholder will accept 

each solution, and the rationale for the evaluation, shown in Table 4-7. A “yes” was 

recorded where there was a large increase in benefits at similar cost or lower costs with 

similar benefit, compared to solutions suggested by the stakeholder; a “maybe” was 

recorded if there was an increase in some benefits and not others at additional cost; a “no” 

was recorded where costs were higher with small or no increases in benefits. Recording 

the rationale may be useful for further bargaining.  

In the “CMA low $” solution, all stakeholders are likely to be satisfied with the solution 

except LGA 2, who is concerned about a lower benefit in both stormwater harvesting 

capacity and green score compared to their BATNA. To assist with identifying a 

compromise solution that agrees with LGA2’s values, stakeholders can consider the 
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projects making up the portfolio using the visual analytics package, as was done in Section 

3.3. Looking at the projects making up the portfolio, the LGA2 projects include Project 

60 and 61, two small biofilters, and Project, 70 a large wetland. This provides information 

for bargaining, e.g. to identify the impact of replacing or adding projects to the portfolio 

with those that LGA2 would like to implement and that other stakeholders might be 

willing to fund. Alternatively, returning to a visualisation of the full trade-off space, 

isolating selected solutions and using the brushing tool, would enable the selection of 

solutions proximate to the “CMA low $” solution in each stakeholder’s objective space, 

which represents a good compromise solution.  

The results here show one iteration of the negotiation process. If none of the selected 

solutions can be agreed upon, stakeholders should be allowed to revise their BATNA or 

selected solutions as new information about the problem arises (Fitzgerald and Ross 

2016).  
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Figure 4-6 Interactive multi-stakeholder trade-off space showing selected solutions. 
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Table 4-7 Indicative stakeholder preferences for selected solutions 

Stakeholder CMA 
Low $ 

CMA 
High 
Ben. 

LGA 1 
Low $ 

LGA 1 
High 
Ben. 

LGA 
2 Low 
$ 

LGA 2 
High 
Ben. 

LGA 3 
Low $ 

LGA 3 
High 
Ben. 

CMA Yes Yes Yes No 
Maybe 

No Yes Yes 

Reason       low TN low TN     

LGA 1 Yes Yes 

Yes Yes 

Maybe  Maybe Yes No 

Reason 
Category 
1 

Category 
1 

high 
cost 

low 
Green 

Categor
y 1 

low 
SWH 

LGA 2 Maybe Maybe Yes Yes Yes Yes No  No  

Reason 
low 
benefit 

low 
benefit 

        
low 
SWH 

low 
SWH 

LGA 3 Yes Maybe No  No  Yes Maybe  Yes Yes 

Reason   
 low 
SWH 

low 
benefit 

low 
SWH 

  
low 
SWH 

    

Viable? Maybe Maybe No No Maybe No No  No 

4.5 Summary and conclusions 

In this study, a general optimization-visualisation framework that deals with multiple 

stakeholders with multiple objectives, and encourages a negotiated outcome for a 

portfolio optimization problem, was presented. The framework addresses the need for a 

decision support approach for identifying solutions to complex environmental problems 

that i) handles multiple stakeholder formulations of the problem reflecting their interests 

and values, ii) enables interactive exploration and analysis of possible solutions by 

stakeholders, iii) encourages stakeholder trust in the final selected solution, and iv) 

facilitates a final negotiated outcome. Improvements on existing multi-stakeholder 

exploration approaches were developed. These include visualisation of the full trade-offs 

between extremely large numbers of objectives using multiple linked parallel coordinate 

plots in a visual analytics package. Solutions were framed within the plots to compare 

proposed solutions to a best alternative across multiple objectives. This was done to 

facilitate negotiation by emphasising the benefits gained and losses prevented through 

accepting a negotiated outcome. This also highlights inequities between stakeholders and 

facilitates bargaining where equitable outcomes are available 
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An innovative indicator for determining the relative improvement upon a Best 

Alternative to a Negotiated Alternative (BATNA) solution allows stakeholders to rapidly 

assess how well a solution performs across multiple objectives and multiple objective 

spaces. In addition, as the joint-Pareto solutions are Pareto optimal with respect to each 

stakeholder’s individual problem formulation, this assists with arriving at a consensus on 

a final compromise solution. This is because stakeholders do not have to compromise by 

accepting a solution that is dominated in the objective space of their preferred formulation, 

nor do they have to explore and analyse results of a single problem formulation with 

aggregated or agreed upon objectives that do not necessarily reflect their values.  

The approach was demonstrated on a multi-stakeholder catchment management 

problem, requiring 16 different objectives from stakeholders to assess solutions. Eight 

optimization formulations were solved to generate solutions to a best alternative scenario 

and a collaborative scenario. From a set of solutions that were joint-Pareto optimal within 

the collaborative scenario, a set of selected solutions were identified for further 

consideration by stakeholders. 
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CHAPTER 5  

 

Conclusion 

Recently, the application of Water Sensitive Urban Design (WSUD) has demonstrated 

an ability to mitigate the impacts of development on urban water supply security and 

natural ecosystem health (Askarizadeh, Rippy et al. 2015). An increasingly popular 

WSUD technique is urban stormwater harvesting (SWH), which incorporates stormwater 

best management practices (BMPs) in systems used to intercept and capture, treat, store 

and distribute surface stormwater runoff for later reuse. WSUD approaches, especially 

SWH, can provide multiple benefits such as a reliable water supply for irrigation, 

improvement in urban vegetation and amenity, and restoration of urban runoff quality and 

quantity closer to pre-development levels (Fletcher, Mitchell et al. 2007). However, 

optimizing WSUD systems to achieve these multiple objectives, which are often 

conflicting, can make planning and design tasks more complex than traditional 

stormwater management systems. Compounding this difficulty are the multiple possible 

spatial scales at which BMPs can be distributed throughout a catchment, the large number 

of different types of system components and interaction between components, and the 

large number of decision options (e.g. size, type and location of BMPs) and therefore 

large number of possible solutions. Consequently, many WSUD system planning and 

design problems are suited to be formulated mathematically as multiobjective 

optimization problems with large and complex solution spaces; which consist of a set of 

planning or design decisions that need to be selected to maximize a set of objectives given 

practical constraints.  

While formal multiobjective optimization approaches, including the use of 

metaheuristics linked with models to evaluate the objective function performance, may 

be well suited to solving WSUD planning and design problems, their application also 

presents a number of challenges. An optimization framework that considers all aspects of 

the SWH system preliminary design problem is necessary to take into account multiple 

objectives, different system components, the distribution of components throughout a 

catchment and a formal optimization approach. In addition, to ensure the results of the 

application of optimization approaches are trusted and used in practice, it is necessary to 

adapt approaches to incorporate stakeholder input and facilitate negotiation between 
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multiple stakeholder groups with different preferences to encourage the adoption of a final 

WSUD solution. In order to address these issues, three optimization frameworks using 

multiobjective metaheuristic algorithms were introduced in this thesis, which are able to: 

1) handle SWH systems preliminary design incorporating multiple objectives, different 

types of system components, distribution of BMPs, and a large number of decision options 

in a holistic fashion, 2) encourage the adoption of the results of optimization by 

incorporating input from stakeholders in the problem formulation and evaluation using 

portfolio optimization approach, and exploration of analysis of optimization results using 

visual analytics, and 3) facilitate negotiation between a number of stakeholder groups, 

each with different value sets and interests, through a innovative multi-stakeholder visual 

analytics approach to identify, explore, analyse and select from jointly optimal solutions. 

5.1 Research Contribution 

The overall contribution of this research is the development of three optimization 

frameworks for optimal WSUD systems planning and design using multiobjective 

optimization algorithms. In the first framework, optimal SWH systems with components 

distributed at the development scale are identified to maximize water quality 

improvement and SWH capacity, at minimal cost, subject to practical limits on the 

combination of BMPs within systems and pollution reduction requirements set by 

regulators. The benefits of this framework are demonstrated using a real-world case study 

based on a new housing development located north of Adelaide, South Australia. The 

second framework produces optimal integrated catchment management plans consisting 

of BMP projects for maximizing water quality improvement, SWH capacity, and urban 

vegetation and amenity improvement at the regional scale and is applied to a real case 

study for a major Australian city. The third framework incorporates the optimization 

approach in the second framework into a multi-stakeholder optimization-visual analytics 

framework to facilitate the selection of a solution to complex environmental planning 

problems through negotiation between parties. This uses visual analytics considering 

extremely large numbers (>10) of objectives and is applied to a sixteen objective multi-

stakeholder catchment management plan problem for a real case study for a major 

Australian city. 



 

135 

The specific research contributions to address the objectives stated in the Introduction 

are as follows: 

1. A generic multiobjective optimization framework to assess trade-offs in spatially 

distributed SWH system designs, featuring the Non-Dominated Sorting Genetic 

Algorithm (NSGA-II) linked with an integrated stormwater model (eWater 

MUSIC) and a lifecycle cost model, was developed in Paper 1. This framework 

is able to identify SWH system designs that maximize trade-offs between water 

quality, stormwater harvesting capacity and minimize lifecycle cost of BMPs and 

water transfer infrastructure. A SWH systems design problem for a real case 

study for a new housing development north of Adelaide, South Australia was 

used to demonstrate the utility of the framework. The results demonstrate the 

benefits of adopting Pareto optimal spatially distributed SWH systems identified 

using the framework, compared with traditional designs with BMPs located at 

the catchment-outlet. Results indicate that, where storage space is limited at the 

catchment outlet, better harvested stormwater supply reliability as well as better 

water quality improvement can be achieved by distributing capture, treatment, 

and storage BMPs in an integrated SWH system.  

2. A general multiobjective optimization framework for the selection of a portfolio 

of BMPs for catchment management was developed in Paper 2. The framework 

addresses the need for a decision support approach for the selection of BMPs that 

considers numerous, possibly conflicting, performance criteria, handles a large 

number of decision options and potential strategies, facilitates the identification 

and representation of trade-offs between performance criteria, which develops 

trusted strategies, within the limits of existing planning capacities. The approach 

was applied to a case study catchment plan for a catchment authority in a major 

coastal city in Australia. The results demonstrate the benefits of exploring full 

portfolio solution trade-offs in a many-dimensional Pareto optimal front. A 

comparison between the trade-off spaces of a lower dimensional water quality-

cost problem formulation (typical in previous catchment management plan 

optimization studies) and the many-objective formulation, demonstrated that 

low-objective formulations can result in Pareto optimal portfolios with low 

performance in non-objective performance criteria. The study demonstrated that 

the use of the visual analytics approach to explore combined optimization and 
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decision spaces could assist in overcoming institutionally influenced biases to 

include particular projects or BMP technologies to demonstrate alternative 

similar cost options to decision-makers. 

3. A general optimization-visualisation framework that deals with multiple 

stakeholders with multiple objectives, and encourages a negotiated outcome for 

a portfolio optimization problem, was presented in Paper 3. The framework 

addresses the need for a decision support approach for identifying solutions to 

complex environmental problems that i) handles multiple stakeholder 

formulations of the problem reflecting their interests and values, ii) enables 

interactive exploration and analysis of possible solutions by stakeholders, iii) 

encourages stakeholder trust in the final selected solution, and iv) facilitates a 

final negotiated outcome. Improvements on existing multi-stakeholder 

exploration approaches were developed. These include visualization of the full 

trade-offs between extremely large numbers of objectives using multiple linked 

parallel coordinate plots in a visual analytics package. Solutions were framed 

within the plots to compare proposed solutions to a best alternative across 

multiple objectives. This was done to facilitate negotiation by emphasising the 

benefits gained and losses prevented through accepting a negotiated outcome. 

This also highlights inequities between stakeholders and facilitates bargaining 

when equitable outcomes are available. An innovative indicator for determining 

the relative improvement upon a Best Alternative to a Negotiated Alternative 

(BATNA) solution allows stakeholders to rapidly assess how well a solution 

performs across multiple objectives and multiple objective spaces. In addition, as 

the joint-Pareto solutions are Pareto optimal with respect to each stakeholder’s 

individual problem formulation, this assists with arriving at a consensus on a final 

compromise solution. The approach was demonstrated on a multi-stakeholder 

catchment management problem, requiring sixteen different objectives from four 

stakeholders to assess solutions. Eight optimization formulations were solved to 

generate solutions to a best alternative scenario and a collaborative scenario. 

5.2 Limitations 

The limitations of this research are discussed below. 
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1. The framework for a SWH preliminary design in Paper 1 considers harvesting and 

water quality control functions, but not flood control functions as is the case in 

many WSUD systems. The case study was selected to allow the water quality 

control volumes in BMPs to be sized separately from any flood control 

infrastructure dealing with greater than 1 in 1 year flood events.  

2. The objective functions selected in Papers 1, 2, and 3 reflect commonly used 

WSUD indicators of performance but additional objectives may also be important. 

Where additional objectives are added to optimization problem formulations in 

application of the framework this may require the use of multiobjective 

metaheuristic algorithms that have been demonstrated to work on problems with 

more than four objectives.  

3. The utility of the proposed framework in Paper 1 has been demonstrated via the 

development-scale case study, as its application enabled optimal solutions to be 

identified within a given computational budget. However, application of the 

framework will not necessarily support real-world decision making, particularly 

in places where a large number of nodes in a system are possible, requiring orders 

of magnitude more simulations and much longer model run-times.  

4. Although economic factors (e.g., capital and maintenance costs of WSUD 

components) have been included in the proposed frameworks, there is no 

consideration of the sensitivity of the optimal WSUD systems obtained to different 

cost assumptions. In particular, the long-term cost of maintenance to maintain 

functional performance of WSUD assets, as well as uncertainty about these costs, 

is a subject of ongoing research. For example, the cost model assumes a 

proportional relationship between the size of BMPs and cost, however does not 

take into account the amount of sediment captured in BMPs, which means smaller 

BMPs may have underestimated costs compared with those estimated by a model 

including associated costs to remove sediment to maintain functional 

performance. 

5.  The water quality, stormwater harvesting and urban vegetation and amenity 

values were not subjected to a sensitivity analysis to model inputs, therefore 

optimization results should be tested further. In particular, to determine the 
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pollutant load reduction of a WSUD system in MUSIC it is typical practice to 

simulate the system several times with a stochastic function for the pollutant wash-

off model in MUSIC switched on, and to then to calculate an average performance 

value. This was not possible in the framework in Paper 1 due to limitations on run-

time. The stormwater harvesting performance of optimization solution should be 

further tested using several climate scenarios as suggested in (Marchi, Dandy et 

al. 2016). 

6. The visualization method presented in Paper 3 has not yet been demonstrated in a 

stakeholder workshop setting, and impacts of the real-world application are yet to 

be tested and understood. 

In the proposed frameworks, the WSUD systems are developed using one rainfall 

pattern, whereas the harvesting performance is may be impacted by future climate 

changes (although, Clark et al. 2015 have found climate change is not likely to be 

critical to urban runoff when compared to increasingly dense urban development, 

in South Australia). Demand for alternate water supplies (i.e. non-potable quality) 

is also a critical variable that should be considered. 

7. Notably, the optimization formulations in the case studies in Paper 2 and 3 do not 

consider interaction between having a higher harvest capacity, which might allow 

for more irrigation of green spaces. 

5.3 Future Work 

From the above limitations, some future studies are recommended below. 

1. Future application of the framework in Paper 1, might consider an additional flood 

control objective and linking a flooding model to the framework. This would be 

possible through the use of metaheuristic algorithms that allow for multiple linked 

models to evaluate multiple objectives. 

2. As long model run-time and computational budget limited the size of case study 

available to apply the framework in Paper 1, in addition to the model pre-emption 

method employed, future studies could consider parallelization of model 

simulations, surrogate modelling techniques, or additional optimization operators 
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to prevent simulation of inferior solutions that could reduce run-time further, as 

discussed in Maier, Kapelan et al. (2014). This would permit larger WSUD 

systems, additional decision options, scenarios including the impact of climate 

change on optimal BMP placement, as well as consideration of solution robustness 

and uncertainty analyses. 

3. Future studies on the impact of climate changes on distributed systems of BMPs 

used for stormwater harvesting should be investigated, as has been done for BMP 

systems not including harvesting (Chichakly, Bowden et al. 2013). 

4. As economic sensitivities, as well as other model parameter and objective function 

sensitivities are important for real-world WSUD systems planning and design, 

there is a need to take into account this factor in further studies. Furthermore, risk 

management should be also addressed to evaluate the impact of maintenance cost 

sensitives. 

5. Adding more objectives to the optimization formulations could provide decision-

makers with even more insight into the performance trade-offs of optimal WSUD 

systems. However, the number of solutions that represent Pareto front increases 

exponentially with the number of objectives, making solutions representing 

optimal trade-offs more difficult to identify, explore and analyse. Therefore, 

metaheuristics that have been demonstrated to work on problems with high 

numbers of objectives should be used to identify optimal solutions (e.g. BORG; 

Hadka and Reed (2012)). Nonetheless, visual analytics approaches are particularly 

useful for exploring and analysing optimization results of problems with large 

number of objectives as demonstrated in Paper 3, in particular. 

6. The optimization-visual analytics presented in Paper 3 should be tested in an 

experimental workshop setting, to demonstrate its ability to facilitate the rapid 

selection of compromise solutions. 

7. The problem formulation in Paper 2 and 3 should consider synergistic (or 

cannibalistic) interaction between objectives such as projects with higher 

harvesting capacity, which may increase the irrigation capacity, thus increasing 

green score of projects nearby. 
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APPENDIX A   

 

Paper 1 Published Version 

Published version of Paper 1 from Chapter 2: 

Di Matteo, M., Dandy, G.C. & Maier, H.R., 2017. Multiobjective optimization of 

distributed stormwater harvesting systems. Journal of Water Resources Planning and 

Management, 10.1061/(ASCE)WR.1943-5452.0000756. 

 

 



 

 

A-2 
 

  



 

 

B-3 
 

APPENDIX B   

 

Paper 2 Supplemental Data 

 

This appendix contains a table of cost data used to determine the model for stormwater 

harvesting lifecycle cost for the case study in Paper 2 (Equation (3-8)).
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Table B- 1 Detailed costings of stormwater harvesting components used to develop the model for LCCSWH [$] (Eqn. 8) in the case 
study application of the optimization framework. Based on values in Inamdar (2014). SWH component cost values were adjusted 

from 2012$ to 2016$, at 1% p.a (D. Browne, personal communication, 2016) 

    Underground Conc. Storage Stormwater pipes Control System Pump system Electricity         

  Volume 
Supplied 
ML/yr 

Capital Cost 
($)  

Annual 
Cost 

($/year) 

Capital Annual 
Cost 

($/year) 

Capital 
Cost 

(2016$) 

Annual 
Cost 

($/year) 

Capital 
Cost 

(2016$) 

Annual 
Cost 

($/year) 

Annual 
Cost 

($/year) 

NPV 
Capital 
Cost 

(2016$) 

NPV 
Annual 
Cost 

(2016$) 

Total 
NPV 

(2016$) 

Levelized 
cost 

(2016$/ML) Cost 
($) 

Pleasance Garden 5.6 191750 3020 49500 650 30000 1400 19180 5000 156 302221 128544 430765 6306 

Ievers Reserve 5.6 153400 3020 65250 650 30000 1400 19428 5000 173 278962 128757 407719 5969 

Batman Park 5.7 191750 3020 20925 650 30000 1400 19428 5000 173 272744 128757 401502 5775 

Birrarung Marr Park 15.1 536900 3020 82620 650 30000 1400 39300 5000 864 716786 137443 854230 4638 

Holland Park 18.5 920400 3020 47790 650 30000 1400 48190 5000 605 1088863 134188 1223051 5420 

Clayton Reserve 26 767000 3020 151200 650 30000 1400 29102 5000 735 1016980 135822 1152802 3635 
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Figure B-1 Capacity vs cost per volume supplied for Melbourne stormwater harvesting projects. Based on values in Inamdar (2014). 

SWH component cost values were adjusted from 2012$ to 2016$, at 1% p.a (D. Browne, personal communication, 2016). 
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APPENDIX C   

 

Paper 3 BMP project data 

 

The data associated with the 70 stormwater best management practice (BMP) projects 

evaluated in the case study application of the proposed optimization approach are 

presented in Table C.1 below.
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Local 
government 
authority 
(LGA) 

Project 
ID 

BMP 
Type 

Contributing 
catchment 
area (ha) 

Lifecycle 
cost 

($NPV) 

CAPEX 
($NPV) 

OPEX 
($NPV) 

TN 
Reduction 

(kg/yr) 

Total 
Supply 
(ML/yr) 

Green 
score 

1 

3 Biofilter 22.5 305,157 257,198 48,123 72.75 0 4 

4 Biofilter 11.6 271,251 228,621 42,776 37.4 0 4 

5 Biofilter 7.7 175,626 155,531 21,388 24.86 0 5 

6 Biofilter 9.3 131,719 116,649 16,041 30.16 0 5 

7 Biofilter 8.2 43,906 38,883 5,347 26.63 0 5 

8 Biofilter 9.4 87,813 77,766 10,694 30.25 0 5 

12 Biofilter 50.3 1,220,630 1,028,792 192,493 162.82 0 5 

13 Wetland 4.8 169,532 142,888 26,735 15.49 0 5 

23 Wetland 3 98,438 116,649 16,041 9.58 0 5 

24 Wetland 13.5 459,379 400,086 74,858 43.63 0 5 

25 Wetland 13.2 459,379 400,086 74,858 42.79 0 5 

35 Wetland 21.5 918,757 800,172 149,717 69.5 0 5 

36 Biofilter 45.2 949,379 800,172 149,717 146.3 0 5 

Table C-1 Details of available catchment management projects 
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45 Biofilter 24.8 271,251 228,621 42,776 80.17 0 7 

46 Swale 64.5 123,814 400,086 74,858 208.58 0 7 

50 Biofilter 9.6 187,282 116,649 21,415 31.08 11.95 6 

55 Biofilter 8.7 305,157 257,198 48,123 28.27 0 8 

56 Biofilter 84.9 237,345 200,043 37,429 274.58 0 5 

57 Wetland 29.4 1,206,996 1,000,215 192,428 95.12 12.83 5 

2 

1 Biofilter 20.4 508,596 428,663 80,206 55.79 0 4 

2 Biofilter 25.4 542,502 457,241 85,553 69.5 0 4 

9 Wetland 91.9 1,220,630 2,571,981 481,233 251.32 0 4 

16 Biofilter 28.5 474,689 400,086 74,858 78.09 0 6 

19 Wetland 22.5 787,506 685,862 128,329 61.66 0 4 

20 Wetland 14.8 525,004 457,241 85,553 40.55 0 4 

21 Wetland 59 718,815 1,514,611 283,393 161.29 0 4 

22 Wetland 21.3 406,877 857,327 160,411 58.23 0 4 

27 Biofilter 15.3 305,157 257,198 48,123 41.89 0 6 

29 Wetland 6.2 196,877 171,465 32,082 16.89 0 6 

37 Wetland 13.6 590,630 514,396 96,247 37.31 0 5 



 

 

C-4 
 

42 Wetland 37.5 951,570 828,749 155,064 102.47 0 6 

47 Biofilter 57.9 712,034 600,129 112,288 158.47 0 7 

49 Biofilter 36 610,315 514,396 96,247 98.48 0 7 

51 Wetland 17.4 590,630 514,396 96,247 47.56 0 6 

52 Wetland 21.3 721,881 628,706 117,635 58.23 0 6 

58 Biofilter 25.5 592,986 485,819 97,209 69.9 3 6 

59 Biofilter 7.8 224,031 155,531 26,966 21.21 10 6 

60 Biofilter 50.4 189,135 155,531 27,758 137.78 2.42 6 

61 Biofilter 57.7 381,297 257,198 50,566 157.92 40 6 

63 Biofilter 10.4 178,041 142,888 33,201 28.59 1.5 6 

66 Biofilter 88.6 2,027,127 1,686,076 321,575 242.49 5 6 

68 Wetland 98.4 976,171 3,286,420 621,322 269.13 2 7 

70 Wetland 22 768,630 657,284 129,343 60.29 2.5 7 

3 

10 Biofilter 53.1 1,017,191 857,327 160,411 145.28 0 5 

11 Biofilter 32.8 305,157 257,198 48,123 89.68 0 5 

14 Wetland 11.5 295,315 257,198 48,123 31.52 0 6 

15 Biofilter 16 203,438 171,465 32,082 43.78 0 6 
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17 Biofilter 43.7 474,689 400,086 74,858 119.47 0 7 

18 Biofilter 417.2 474,689 400,086 74,858 1141.49 0 7 

26 Wetland 4.5 164,064 142,888 26,735 12.44 0 6 

28 Biofilter 10.6 87,813 77,766 10,694 29.13 0 6 

30 Biofilter 40.8 542,502 457,241 85,553 111.75 0 6 

31 Biofilter 7.2 131,719 116,649 16,041 19.65 0 6 

32 Swale 10.1 114,970 371,508 69,511 27.73 0 7 

33 Swale 13.5 88,438 285,776 53,470 37.02 0 7 

34 Wetland 51.4 732,378 1,543,189 288,740 140.6 0 5 

38 Biofilter 97.7 213,213 171,465 38,524 267.23 1.73 6 

39 Biofilter 15.9 175,626 155,531 21,388 43.59 0 6 

40 Biofilter 27.2 610,315 514,396 96,247 74.48 0 6 

41 Biofilter 97.7 97,587 77,766 17,136 267.23 1.73 6 

43 Biofilter 18.7 440,783 371,508 69,511 51.25 0 7 

44 Biofilter 43.7 576,409 485,819 90,900 119.47 0 7 

48 Biofilter 421.2 915,472 771,594 144,370 1152.38 0 7 

53 Wetland 15.1 525,004 457,241 85,553 41.28 0 6 
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54 Wetland 63.1 962,941 2,029,007 379,639 172.58 0 7 

62 Wetland 14 576,409 485,819 90,900 38.19 0 7 

64 Wetland 18.8 656,255 571,551 106,941 51.43 0 7 

65 Biofilter 47.4 847,660 714,439 133,676 129.69 0 7 

67 Biofilter 8.4 95,157 77,766 17,182 23.11 1.29 6 

69 Biofilter 47.4 169,532 142,888 26,735 129.69 0 7 
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APPENDIX D   

 

Paper 3 Objective function 

formulations 

 

The objective function formulations for the case study application of the proposed 

approach are presented below. The objective functions are adapted from a single 

stakeholder catchment management optimization problem presented in Chapter 3. The 

objective functions include a mathematical formulation of cost, a water quality 

improvement indication (total nitrogen (TN) reduction), a stormwater harvesting 

indicator, and an urban vegetation and amenity indicator, as outlined below. 

Cost  

The economic cost of a portfolio of projects is represented as a life cycle cost LCC,S 

[$] (Equation (D-1)), which is a discounted sum of expected future costs for stormwater 

management assets, including BMPs and transfer infrastructure required to harvest 

stormwater (Taylor and Wong 2002). The life cycle cost objective function for each 

candidate portfolio of BMPs is given by: 

MINIMIZE:		LCC	 =			 LCC�¨© +	LCCª«¬	 
Equation ( D-1 ) 

where 

LCC�¨© = ∑ �	(TAC�¨©®) + PWF²³´µ¶,�¨©®%SA�¨©® × ECF�¨©® ×jk,-
M�¨©®.	+		PWF·µko´,�¨©®%SA�¨©® ×M�¨©®.6   

Equation ( D-2 ) LCCª«¬	 = C�µ¸�µo¹ +	C�µ¸©k¸² +	C�µ¸�ºo´»º¼ + C�µ¸©½·¸
+ PWF·µko´%C·�µo¹ +	C·©k¸² +	C·�ºo´»º¼ + C·©½·¸. 
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Equation ( D-3 ) 

where a sum of the cost of BMPs to capture and treat stormwater runoff, LCCBMP [$] 

(Equation (D-2)), and to transfer harvested water to a balancing storage for further 

treatment and distribution, LCCSWH [$] (Equation (D-3)) is applied with BMPi 

representing the i th BMP in the candidate portfolio, N [integer] is the number of projects 

in the portfolio, and TAC [$] is the total acquisition cost as a function of SA, the surface 

area of BMPi. M [$) is this the annual maintenance cost per unit surface area 

PWFestab [fraction], for the establishment period, and PWFmaint [fraction], for the 

remaining design life of system components, are the present worth factor for a series of 

annual costs computed using an appropriate discount rate. ECF [fraction] is the 

establishment cost factor (i.e., multiplier) for the annual maintenance cost M [$] during 

the establishment period (typically 1-2 years) for each BMP. For BMPs with a stormwater 

harvesting function, CCapTank [$], CCapPipe [$], CCapControl [$], and CCapPump [$] are the capital 

costs for required underground storage tank, control systems, pipes, and pump stations, 

and CmTank [$], CmPipe [$], CmControl [$], and CmPump [$] are the annual maintenance costs for 

the tank, pipes, control systems, and pumps, and operating costs, respectively.  

For the case study, the objective function for lifecycle cost of each portfolio, LCC,S [$], 

was calculated using (Equation (D-1) to (D-3)). The parameters for LCCBMP [$] (Equation 

(D-2) were estimated from cost schedules developed by Melbourne Water Australia 

(2013) (Table D-1). A typical lifecycle period of 25 years, a discount rate of 6.5% per 

year, an establishment cost factor of 3, and an establishment period of 2 years, were 

adopted. The parameters for LCCSWH [$] (Equation (D-3)) were estimated as follows. A 

cost model for the total net present value (NPV) of stormwater harvesting components 

was determined using regression (r2 = 0.814) between levelized lifecycle cost [$/ML] and 

estimated annual volume supplied [ML/yr], using detailed costing data for six stormwater 

harvesting projects derived by Inamdar (2014) (see Section 3.2.3.1). Thus, the lifecycle 

cost of stormwater harvesting components from Equation (D-4) was calculated using the 

following equation: 
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LCCª«¬	 =	 ¾� (−104.49 ⋅ Supplyk + 	6622.6)[ $ML] ⋅ Supplyk[ML]j
k,- 0				otherwise 	, if	Supplyk > 0 

Equation ( D-4 ) 

 where Supplyi is the average annual supply capacity of the i th BMP in a candidate 

portfolio of N BMPs. 

Table D-1 Cost variables for BMPs 

BMP Surface  
Area(SA)  
(m2) 

Construction  
Cost 

($/m2; 
 year 0) 

Establishment  
Cost  

($/m2/yr; 
 year 1-2) 

Maintenance  
Cost 

($/m2/yr;  
year 3-25) 

Wetland 
 

  

0 < SA <499.99 150 30 10 

500 < SA ≤ 9,999 100 6 2 

SA > 10,000 75 1.5 0.5 

Biofiltration basin 
 

  

0 < SA ≤ 99.99 1,000 15 5 

100 < SA ≤ 499.99 350 15 5 

SA > 500 250 15 5 

Swale 
 

  

All sizes 35 9 3 

Note: Establishment cost = Annual maintenance cost × establishment cost factor. Costs 
are in Australian Dollars (2013$). Values were scaled using an inflation adjustment factor 
of 1.03053 from 2013$ to 2016$. 

Water Quality Improvement 

The water quality improvement indicator, fquality,S , is the total average annual pollutant 

load reduction of one target pollutant (Equation (D-5)). The water quality improvement 

objective function is: 

MAXIMIZE:	fÆ½µ¼k´Ç	 =� (Sourcek−	Residk)j
k,-  
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Equation ( D-5 ) 

where, fÆ½µ¼k´Ç	 [mass year-1] is the mean annual pollutant mass retained by BMPs in 

each candidate portfolio, N is the number of BMPs in a portfolio, Residi [mass year-1] is 

the mean annual mass of pollutant leaving the i th BMP’s contributing catchment area, and 

Sourcei [mass year-1] is the mean annual mass of pollutant that reaches the i th BMP’s 

catchment outlet in a post-development catchment baseline scenario without intervention. 

Resid and Source should be determined using a stormwater quality assessment model 

accepted by the catchment management authority (Coombes, Kuczera et al. 2002, Bach, 

Rauch et al. 2014). 

Total Nitrogen (TN) was the specific pollutant constituent adopted for the water quality 

objective. The mean annual pollutant mass of TN retained by each candidate portfolio 

was calculated based on the sum of average annual TN mass retained by individual BMPs 

in a portfolio. The water quality improvement of each BMP (Sourcei, - Residi ; Equation 

(D-5)) was assessed using the integrated catchment model, MUSIC version 6.1 (Model 

for Urban Stormwater Improvement Conceptualization, (eWater 2009)), as suggested by 

the CMA regulations. MUSIC is an integrated stormwater model that evaluates 

rainfall/runoff and pollutant generation and transport, hydraulic and pollutant removal 

performance of BMPs (Bach, Rauch et al. 2014). MUSIC algorithms simulate runoff 

based on models developed by Chiew and McMahon (1999) and urban pollutant load 

relationships based on analysis by Duncan (1999). An assessment of interactions between 

BMPs was not deemed necessary because the contributing catchments of individual 

BMPs were spatially mutually exclusive. 

A.3 Stormwater Harvesting 

Average annual supply capacity (Equation (D-6)) is adopted as an indicator of 

stormwater harvesting performance. The supply stormwater harvesting objective function 

is: 

MAXIMIZE:	f³½¸¸¼Ç =� Supplyko
k,-  
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Equation ( D-6 ) 

where Supplyi [volume] is the average annual stormwater harvested volume for the i th 

BMP in a portfolio, and N [integer] is the number of projects in a portfolio. 

Experts on stormwater harvesting from each LGA were asked to evaluate the 

stormwater harvesting potential of BMPs within their jurisdiction. They estimated the 

expected irrigation demand required by open spaces near each BMP, and the average 

annual potential capacity to supply the demand. The estimates were based on procedures 

specific to each LGA, and reflect the stormwater harvesting objective performance values 

accepted by decision-makers.  

Urban Vegetation and Amenity Improvement 

The urban vegetation and amenity improvement indicator depends on stakeholder 

interests, which may include maximizing vegetation and tree coverage and quality of 

recreation spaces. Each project should be appraised and evaluated (scored) by vegetation 

experts. The cumulative urban vegetation improvement objective function is: 

MAXIMIZE:	fË»²²o =� Greenko
k,-  

Equation ( D-7 ) 

where Greeni  [integer] is a score, determined by expert assessment, attributed to the i th 

project in a portfolio. 

The ‘green’ score’ of individual projects (which is a weighted score of several 

indicators, and was developed by the authors and agreed to be used as an optimisation 

objective by consultants), use scores assigned by experts (see section 3.3) from each 

LGA interviewed in a workshop session by consultants. The experts were asked to 

answer the following questions about the BMP projects within their jurisdiction: 

Answer ‘Yes’ ‘No’ or ‘Maybe’ to the following questions: 1) “will native vegetation 

increase at the site?”, 2) “will tree cover increase at the site?”, and, 3) “will the quality 

of recreation spaces in the area increase?”. The total catchment ‘green’ score objective 

function was:Greenk =	∑ ScoreÎ�Î,-  
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ScoreÎ =		�3							if	answer	is	′Yes′2	if	answer	is	′Maybe′1							if	answer	is N� o′ 
Equation ( D-8 ) 

where Greeni is the sum of scores for each project, and Scorej is the number of points 

assigned to the answer to the j th question. Since there were three questions, each project 

could achieve a maximum of 9 green points, and each portfolio a theoretical maximum of 

180 (20 × 9) total green points. 
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APPENDIX E   

 

Paper 3 MUSIC model background 

 

The Model for Urban Stormwater Improvement Conceptualizion (MUSIC version 6.1; 

eWater (2009)) was used to evaluate pollutant reduction performance. MUSIC is an 

integrated stormwater model that evaluates rainfall/runoff and pollutant generation and 

transport, hydraulic and pollutant removal performance of BMPs, and water balance 

(Bach, Rauch et al. 2014). MUSIC is used as a stormwater management design tool in 

Australia and the UK and has been used in watershed-scale stormwater management 

system reliability analysis (Browne, Breen et al. 2012) and WSUD optimization 

(Montaseri, Hesami Afshar et al. 2015). MUSIC algorithms simulate runoff based on 

models developed by Chiew and McMahon (1999) and urban pollutant load relationships 

based on analysis by Duncan (1999).  




