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Abstract

Stormwater harvesting (SWH) is an important watarsgive urban design (WSUD)
approach that provides an alternate water sourd®amproves runoff quality through

stormwater best management practice technologid$ &3.

Through integrated SWH system design at the dewsop scale practitioners must
account for trade-offs between cost, harvestedme|uand water quality improvement
performance which are usually dependent on desagisidns for the type, size, and
spatial distribution of BMPs. In catchment managethpmanning, additional objectives

such as catchment vegetation improvement and puéliceation benefit need to be
maximized for a catchment region within a limitagdget. As such, planning and design
of SWH systems with distributed BMPs is a compleabfem that requires optimal

allocation of limited resources to maximize mukienefits.

In this thesis, two innovative formal optimizaticepproaches are presented for
formulating and identifying optimal solutions tcoptems requiring distributed BMPs.

Firstly, a multiobjective optimization frameworkpsesented and applied to a case study
for the conceptual design of integrated systemBMIPs for stormwater harvesting. The
aim of this work is to develop a conceptual desigdelling framework that handles the
optimal placement of stormwater harvesting (SWHyastructure within an urban
development. The framework produces preliminary Sgystem designs representing
optimal trade-offs between cost, water harvestiagd water quality improvement

measures.

Secondly, a many (>3) -objective optimization fravoek is presented and applied to a
case study for catchment planning requiring thectigin of a portfolio of distributed
BMP projects. The framework produces portfolios th@ optimal with respect to four
objectives, and enables exploration of the manwaibje trade-off surface using
interactive visual analytics. In addition, a mtakeholder method is presented, which
enables catchment managers and local governmdmirdigs to identify solutions that
represent a compromise between 16 objectives agtt edptimization problem

representations using interactive visual analybasncourage a negotiated solution.
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This thesis contains one paper accepted in thendbaf Water Resources Planning and
Management (Paper 1), and one paper submitted{Rg@ed one paper to be submitted
(Paper 3) to peer-reviewed journals in the fieldvater resources management.
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Glossary

Best Management Practices (BMPspr stormwater best management practices, are
structural or non-structural technologies usedeiaith, harvest, infiltrate, evaporate, and
transport urban stormwater runoff, and remove pafits. BMPs in stormwater
harvesting systems typically include wetlands, itiration devices, storage ponds, tanks,

and basins located near runoff sources or neartagrated catchment outlet

Biofiltration systems (biofilters) are stormwater treatment devices ttygically
consist of a vegetated basin overlaying a geomamHdraed or free-draining filter
medium with a drainage pipe at the bottom. Watetilliation is the process of improving
water (stormwater and wastewater) quality by fiftgr water through biologically

influenced mediaRayne, Hatt et al., 2015)

Constraints can be either hard or soft. Hard constraintsisstlfmits on the values
of the decision variables that are required toatisfged or limit the possible solutions to
the problem. Soft constraints have some decisioabia values that are penalized in the
objective function if certain conditions on the variables are noisfiad. The amount of

the penalty can be fixed or can depend on the etdemhich the condition is violated.
Decision variableis a quantity that the decision-maker controls.

Formal optimization refers to finding the best solution from all fedsibolutions of
a problem where the decision variables, objectased constraints are mathematically

formulated.

Many-objective optimization is an optimization problem with four or more

objectives Purshouse and Fleming 2007

Multi-objective optimization (also multiobjective optimization) refers to an
optimization problem with two or more objectivegpically, thePareto front consists
of more than one solution, and as such trade-effizden objective function values often

exist forPareto optimal solutions

Non-dominated solutionis a member of a set of solutions where none ef th
objective functions can be improved in value withdegrading one or more of the other
objective valuesHurshouse, Deb et al. 2014

XV



Objective function (formal objective) is a function of the decisicariables that is to

be maximised or minimised. It is usually expresseshathematical terms.
Pareto optimal solutionis a member of thBareto front.

Pareto front (sometimes calleshon-dominated solution set, orPareto optimal
solution set), is the set afon-dominated solutionsto amulti-objective optimization
problem. A solution is sometimes called non-dongdaPareto optimal, Pareto efficient

or noninferior if it is a member of the Pareto fron

Sediment basinsare deep open-water ponds designed to facilitetéesient of

suspended particles from stormwater runoff.

Swalesare linear, depressed channels that collect amdfer stormwater. They can
be lined with grass or more densely vegetated andsctaped. Swales can provide
physical screening of sedimentation (coarse ang) famd/or infiltrate stormwater into

soils.

Visual Analytics is “an iterative process that involves informatigathering, data
preprocessing, knowledge representation, intenaeta decision making. The ultimate
goal is to gain insight in the problem at hand whgdescribed by vast amounts of data

from heterogeneous sourcé&se{m, Andrienko et al. 2008

Water Sensitive Urban Design (WSUD)in Australia, is “commonly used to reflect
the paradigm in the planning and design of urbammremments that is ‘sensitive’ to the
issues of water sustainability and environmentatqution.” In particular, it pertains to
the “interactions between the urban built form lfagdéng urban landscapes) and the urban
water cycle (as defined by the conventional urbatew streams of potable water,
wastewater, and stormwaterYVong 2006.” Similar concepts include Sustainable
Drainage Systems (SuDS), used in the United Kingdomd Low Impact Development
(LID), used in the United States.

Wetlands (constructed wetlands) are shallow, extensivelyet&ted basins that use
enhanced sedimentation, fine filtration and pohtitaptake processes to remove runoff
pollutants.
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CHAPTER 1

Introduction

The future economic, environmental and social peasp of urban environments

hinges upon effective management of urban wateicesu/Valsh, Fletcher et al. 20R5

Demand for clean water supply in urban areas ise®avith urban population growth,

resulting in water shortages and other supply $cusks (Cook and Bakker 20)2In

addition, urban stream health is degraded by uttlestormwater runoff from developed
areas. This is due to increased generation of faolls through urban land use and
pollutant mobilisation and transport of runoff vias along impervious drainage
channels \Vong 2006§. Urban stream health is further impacted by iases in the

volume of runoff and alteration to the pre-develeptriflow regime that comes with the
introduction of paved surfaces. The impact of urtbevelopment is influential at multiple
spatial scales. These may range from degradedrstrealth within developments, to the
introduction of nutrients into marine bodies reaaiy flows from a large regional

catchment, and local to city-wide water supply s#guConsequently, urban water
management strategies need to mitigate multiplex@occ, environmental and social

impacts targeted at multiple spatial scales whessiple.

1.1 Background on Water Sensitive Urban Design (WSUD)ystems

Modern urban stormwater management approaches,asuthater Sensitive Urban
Design (WSUD), including similar concepts such asst&inable Drainage Systems
(SubDS) and Low Impact Development (LID), aim toigate impacts of development on

urban water sourcedgkarizadeh, Rippy et al. 2015To achieve this, WSUD uses

integrated systems of structural and non-strucstmwater best management practice
technologies (BMPs) for detention, harvesting ltrdtion, evaporation, and transport of
urban runoff Lerer, Arnbjerg-Nielsen et al. 201L5An increasingly popular WSUD

technique is urban stormwater harvesting (SWH)ctvlis used to capture, store, treat

and distribute surface stormwater runoff for latmuse KMitchell, Deletic et al. 2007

SWH can provide a cost-effective and reliable abdéve water supply source for

irrigation that reduces stormwater runoff volumesl a&omplements existing (often
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stressed) water supplieSléark, Gonzalez et al. 201®archi, Dandy et al. 206 SWH

systems comprise BMPs that detain, harvest, iafédirevaporate, and transport urban
runoff, and remove pollutants. BMPs in SWH systetysically include wetlands,
biofiltration devices, storage ponds, tanks, arglisalocated near runoff sources or near

an integrated catchment outléskarizadeh, Rippy et al. 2015

BMPs integrated into the urban environment thougblUM approaches can provide

multiple human and ecosystem co-benefiist¢hell, Deletic et al. 200)7 Given the

possibility to maximize multiple benefits, obje@s/ for WSUD planning and design

approaches include i) minimizing economic cost&ylor and Wong 2002 ii)

maximizing the volume of harvested water, which icaprove urban water suppl€fark

et al. 201%; iii) maximizing improvements in urban flow regas by restoring stormwater
a) runoff quality and b) the streamflow regime @dow, peak flow, annual runoff
volume, and flow variability) to be closer to preve&lopment conditions, thereby

promoting urban stream healtAgkarizadeh, Rippy et al. 20t5and iv) maximizing

social benefits Mitchell, Deletic et al. 2007 such as public amenity, community

acceptance, recreation, and reduced construcgks fhamdar 2014Sharma, Pezzaniti

et al. 201%. Which of the above objectives should be consides case study specific
and generally determined through stakeholder ctatsuh (for example, between
regulators, land developers, designers and thé émpamunity). In many instances, the
above objectives are in conflict with one anothegcessitating decision-makers to
consider trade-offs between objectives when assgs$ie performance of WSUD

systems.

1.2 Multiobjective optimization for planning and design of WSUD

systems

Despite the potential to achieve multiple benefggig WSUD approaches, there are
always limited resources to achieve them. Compaunthis difficulty are the multiple
possible spatial scales at which BMPs can be digtd throughout a catchment, the large
number of different types of system components iatetaction between components,
and the large number of decision options (e.g., dig@e and location of BMPs) and
therefore large number of possible solutions. Tioeee many WSUD planning and

design tasks can be formulated as multiobjectivteropation problemsHFurshouse and
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Fleming 2007Purshouse, Deb et al. 2014vhere a set of decisions needs to be selected

to achieve multiple objectives (including minimigircost) that meet a set of practical
constraints. There are a multitude of problemsaaying spatial scales, that need to be
considered in the planning and design of WSUD systeand it is difficult to select an

optimal management solution that maximizes bendftie particular problems addressed

in this thesis, and their features, are as follows:

1. Optimizing stormwater harvesting systems designsiddeng systems of
BMPs for stormwater management, including harvgsismcomplex because
practitioners need to consider:

a. multiple, often competing, objectives
b. different types of system components
c. the spatial distribution of components
d. alarge number of design options.

2. Integrated catchment plan optimization. The issuéh complex BMP
systems are compounded where multiple BMP systéstriodited over a large
region need to be selected for a management sgrategexample in an
integrated catchment management plan to achievigaheulegional catchment
objectives. Decision support approaches for catclhmanagement should be
able to:

a. handle several objectives
b. consider the full trade-off space of possible sohg
c. develop “trusted” solutions based on current maaigibractice.

3. Optimization involving multiple stakeholders. Wharaultiple stakeholder
groups are responsible for the funding and operaifdBMP systems over a
large region, it is difficult to identify catchmeptans that compromise the
costs and benefits between all parties equitabhichvencourages ‘buy-in’
into the adopted solution. Adapting decision-malkapgroaches, in particular
optimization approaches, to account for differetakeholder groups is
difficult because:

a. stakeholders have different value sets and in®resking it difficult
to arrive at a consensus on one mathematical fatoul that all

stakeholders will accept, which may affect how lykét is that



stakeholders will trust the optimization procesd hay-into suggested
solutions

b. exploration and analysis of optimization solutiosisould enable
stakeholder engagement and expert input

c. the non-intuitive nature of multi-dimensional valamalysis and
unanticipated and emergent trends can further ptelexision-makers
from understanding and trusting optimization result

d. the optimization framework used should facilitatéiral negotiated
outcome and/or exploration of resource managent@mhatives to be

considered further.

The challenges identified in the previous optimatnd decision support literature
addressing these three problems, and opporturidgresolving them in new ways, are

discussed in more detail below.

1.2.1 Optimizing stormwater harvesting systems design

Considering the design of stormwater harvestingesys, given the large number of
types of system components, the many different vimyshich they can be distributed
spatially and the large number of available desibnices, it is difficult to identify
distributed BMP planning and design outcomes trebptimal with respect to the desired
competing objectives. Consequently, there is a riee@dn integrated framework that
considers all of the above factors in a holistghfan. Given the potentially large number
of options, incorporation of a formal optimizati@pproach (for example, using an
optimization algorithm) in such a framework is aldely to be of significant value.
However, previous studies in this field are limjtddhve not presented an integrated
approach, and have only considered a subset @lttee factors. For examplBample
and Heaney (20063onsidered the impact on net present value ofsibe and spatial

distribution of integrated infiltration basins aimdgation systems, but did not consider

multiple objectives, nor a formal optimization apach. WhileBrowne, Breen et al.

(2012)andlnamdar (2014tronsidered multiple objectives in conjunction wathange of

BMP alternatives for various SWH projects withirreggion, they also did not utilize
formal optimization approaches, making it unliketgt the solutions that provide the best

trade-offs among objectives were identified. Intcast,Marchi, Dandy et al. (201@jsed

a formal multiobjective optimization technique tesign surface runoff SWH system
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components (the dimensions of a wetland, deterta®ins, and aquifer storage transfer
infrastructure). However, they did not consider hoade-offs were influenced by a mix
of different BMP alternatives for the capture, treant, and storage of surface runoft,
optimal locations for BMPs within a catchment, @ter quality improvement as a formal
objective. Formal optimization methods have alsenbesed to identify the optimal mix,

size, and location of distributed BMHA3arez-Pedini, Limbrunner et al. 2Q005aringanti,

Chaubey et al. 2000ee, Selvakumar et al. 201 but these studies have not considered
SWH.

1.2.2 Integrated catchment plan optimization

For integrated catchment management planning, idacsipport approaches need to
handle several objectives, consider the full traffespace, and develop trusted solutions
based on current modelling practice. However, curapproaches have failed to meet all
of these needs. While existing multi-criteria demisanalysis (MCDA) Goicoechea,

Hansen et al. 198Hyde and Maier 2006methods allow many performance criteria to

be considered when selecting a portfolio of BMBBIg, Deutsch et al. 200®/0glia,

Kinsman et al. 2013Jia, Yao et al. 2013\ ceves and Fuamba 201 @&xeves and Fuamba

20168, and have been accepted in practMedlia, Kinsman et al. 20)2they require

decision-makers to define their preferences withknbwledge of the full-trade-off
patterns between portfolios. Many-objective optiatian approachesPUrshouse and
Fleming 200J overcome this limitation since they produce aprapimation of the
Pareto front (i.e. solutions to the problem wheveenof the objective functions can be
improved in value without degrading one or more tbé other objective values

(Purshouse, Deb et al. 2Q)Avhich allows an exploration and analysis cdi@é number

of portfolios to identify solutions that represeat desirable compromise between
performance criteria. However, many-objective ojation approaches can be
computationally expensive and produce a large nurnobbesolutions to select from

(Purshouse and Fleming 2Q0Furshouse, Deb et al. 2Q14vhich is why existing

catchment management simulation-optimization appres have considered only a
limited number of objectives including cost and evatjuality improvement Lee,
Selvakumar et al. 201Zhichakly, Bowden et al. 201&hen, Qiu et al. 201%Z0u,

Riverson et al. 2005In addition, simulation-optimization based apgmioes may not be

feasible within a catchment management authoripfanning capacities Moglia,



Kinsman et al. 2012 complementary to existing practices, nor desgrabdecision-

makers do not trust the solutions developed by{ienization algorithm.

Furthermore, while it is important to consider marmyectives, as well as trade-offs
between them (rather than having pre-defined wsjghd in MCDA), this makes the
analysis of many-objective optimization resultdidifit. This is because: (1) visualizing
the trade-offs between objectives in more thanetidienensions can be cumbersome, (2)
many-objective Pareto fronts can have large numiiienen-dominated (i.e. none of the
objective functions can be improved in value withdegrading one or more of the other
objective values) solutions, as the number of Bareptimal solutions grows

exponentially with the number of formal objectiétughes 2005Keim, Andrienko et

al. 2009, (3) human decision makers have a limited cogamitbad and can select between
only a small number of solutions at a tilvl{er 1956); this requires techniques to reduce
the Pareto frontier to a sub-set of diverse andhsimg solutions to present to decision-
makers, and (4) visualizing solution performangeasately from decision options may

cause decision maker bias&aéprzyk, Reed et al. 201&iuliani, Herman et al. 2014

Matrosov, Huskova et al. 20lRecently, advanced interactive visual analytitsim,

Andrienko et al. 2008approaches have been applied to help humans seake of large

and complex data sets such as those generatediyyohpective optimizationKasprzyk,

Reed et al. 2009 However, these approaches have not been appligte catchment

management optimization literature.

1.2.3 Optimization involving multiple stakeholders

In previous research, there has been little focuadapting optimization frameworks

to make them useful for stakeholder groups in li&aproblem solving flaier, Kapelan

et al. 201). However, there has been some progress in rel&tiahis in recent years,

including:

* The use of iterative approaches, which has allolwedultiple formulations
of the decision variables, objectives and congtsaio be developed to
progressively better define optimization problemd provide an opportunity
for stakeholders to learn about the probl&mliat and Reed 200 ¥Woodruff,
Reed et al. 201 Piscopo, Kasprzyk et al. 201Wu, Maier et al. 2016




The development of an optimization framework thetvdes opportunities
for stakeholders to provide input into the variatages of optimization

studies, including problem definition, the optintina process, and final

decision-making\u, Maier et al. 2016

The development of many-objective optimization agghes, as a result of
advances in optimization algorithm performance,clvhidentify solutions to
complex problems that represent the optimal trdtibedween numerous (>3)
objectives to better capture stakeholder valueslldt, Reed et al. 2011
Kasprzyk, Reed et al. 201@/oodruff, Reed et al. 20]1&ruz, Fernandez et
al. 2014 Chand and Wagner 201bladka, Herman et al. 201Matrosov,
Huskova et al. 2015Borgomeo, Mortazavi-Naeini et al. 2Q1%/oodruff
2019.

The use of visual analytics approaches to bettemmonicate the outputs of

optimization studies to stakeholders to help wipleration and analysis of
the trade-offs between objectives, to identify thgact of decisions on
performance, and ultimately select trusted solstifmm further consideration
(Kollat and Reed 20QKollat, Reed et al. 201 Woodruff, Reed et al. 2013

Hadka, Herman et al. 201®latrosov, Huskova et al. 201Borgomeo,

Mortazavi-Naeini et al. 2016Voodruff 201§. Visual analytics approaches

can include the use of interactive software packége allows multiple

visualisations of the same data set in high-dinwaraiplots. This enables the
data set to be explored and analysed rapidly. Tiqaba to explore and
analyse data include dynamic filtering to eliminatedesirable solutions,

interactive brushing, and multiple linked plots,

These advances have made optimization approachesapplicable to complex, real-
world problems with multiple stakeholders and mabjectives. However, in previous
studies, the optimization problem to be solveddeserally been represented by a single
formulation, including all decision variable optgrobjectives and constraints deemed to
be important. This can result in the inclusion tdrge number of objectives and decision
variable options, making it difficult to identifyphutions that represent the best trade-offs
between objectives (i.e. the solutions on the Bdrent), as mentioned in the previous
section. This is because the number of solutiogsired to characterise the Pareto front

increases exponentially as the number of objeciive®ases, thus making this process
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very computationally expensive and beyond the déipalof current optimization

algorithms Cruz, Fernandez et al. 2QFurshouse, Deb et al. 2Q14h addition, despite

the recent advances in visual analytics approacteegioned above, the inclusion of a
large (e.g. >10) number of objectives makes thatifieation of solutions that provide
acceptable trade-offs for different stakeholdersresmely difficult, as this can be

cognitively challenging for decision-makers facathvarge solution set$(rshouse and
Fleming 2007.

In order to address the above difficulties, an watwe approach for identifying
stakeholder-driven, optimal compromise solutiongragosed for problems with distinct
stakeholder groups with potentially competing s#t®bjectives. An example of this
would be the integrated management of a river sysdad its catchment, where the
objectives of stakeholders managing separate sdsasf the catchment would most
likely be different from each other, and differérdm those of stakeholders concerned
with managing the catchment as a whole. For exangtékeholders may weigh the
importance of water quality, runoff volume and vaki harvested differently. As part of
the proposed approach, the overall optimizatiorblera is represented as a series of
smaller, interconnected optimization problems e@fhg individual stakeholder sets and
interests. The Pareto optimal solutions resultiegifthis analysis provide the input into
a collaborative, multi-stakeholder negotiation @ss; as part of which visual analytics
are used to identify trusted and accepted compesadutions. A key feature of the
proposed approach is the use of ‘best alternativeegotiated agreement (BATNA)’
solutions as a benchmark during the collaboratiegotiation process. These are the
solutions that individual stakeholder groups wourttplement if they were to act in
isolation. This has been shown to increase thecieffcy with which negotiated
compromise solutions can be achievedzgerald and Ross 201Bitzgerald and Ross
2015 Fitzgerald and Ross 20116

1.3 Research objectives

In order to address the problems outlined aboves thesis develops general
optimization frameworks for the selection of storater best management practices
(BMPs), firstly for the optimal preliminary desigr stormwater harvesting systems and

secondly for selecting a portfolio of BMPs for ateigrated catchment management plan.



As part of the frameworks, mathematical optimizafiormulations are presented and are
solved using multiobjective metaheuristic algorithnvisual analytics approaches are
used to identify trade-offs in objective and demsispaces. Furthermore, a multi-
stakeholder optimization framework is presentedictvluses visual analytics to assist
with determining a negotiated solution to a compleegrated catchment management

problem. Overall, this study has the following threain objectives:

Objective 1: To develop a generic multiobjective optimizaticarhework for conceptual
design of stormwater harvesting systems with corapts distributed throughout a

development-scale catchment (Paper 1).

Objective 2: To develop a generic optimization framework folesgng a portfolio of
stormwater best management practices (BMPs) tetasgiegional integrated catchment
management decision-making (Papers 2 and 3).

Objective 2.1:To present a formal optimization approach thaniifies the best

combinations of BMPs for many (> 3) objective irag@d catchment planning (Paper 2).

Objective 2.2.To implement the optimization framework in Objget2.1 in a multi-
stakeholder optimization-visualisation frameworéttis geared towards the identification
of negotiated compromise solutions for problem$wiultiple stakeholders with distinct

sets of objectives (Paper 3).

Objective 3: To evaluate the utility of the frameworks in Oltjees 1 and 2 by applying
them to relevant case studies (Papers 1, 2 and 3).

Objective 3.1.To apply the framework in Objective 1 to a casglgtfor stormwater
harvesting system design for a new housing devedoprim Northern Adelaide, South

Australia (Paper 1).

Objective 3.2:To apply the framework in Objective 2.1 to a realHdd case study
based on a single-stakeholder integrated catchmanagement plan for a major city in

Australia (Paper 2).

Objective 3.3:To apply the framework in Objective 2.2 to a realHdd case study
based on a multi-stakeholder integrated catchmamiagement plan for a major city in
Australia (Paper 3).



1.4 Thesis overview

This thesis is organized into five chapters, wit tain contributions being presented
in Chapters 2 to 4. Each of these chapters is pteden the form of a technical paper.
The first of theseGhapter 2) has been published in Journal of Water ResoulRrlz@ming

and Management.

Chapter 2 introduces a generic framework for the concepdealgn of SWH systems
that considers multiple objectives, a range of Bifies and their design options, the
spatial distribution of BMPs, and a formal optintina approach for identifying designs
that represent near-globally optimal trade-offs agha@ompeting objectives in an
integrated fashion (Objective 1). The utility oétlramework is then illustrated (Objective
3) by applying it to a case study SWH system fogsadential development in Adelaide,
South Australia (Objective 3.1).

Chapter 3 introduces an optimization framework for many-ahje (i.e. >3
objective) integrated catchment management (ObgcH) for a single catchment
management authority. This features the use aftanactive visual analytics approach to
identify promising solutions. The utility of the gq@ach is demonstrated on a case study
for an integrated catchment management plan fageéom of a major Australian city
(Objective 3.1 and 3.2). The case study is usee@maonstrate the benefits of the approach
by investigating the possible many-objective traffs- between lifecycle cost, water
quality improvement, stormwater harvesting capaaitgl urban vegetation and amenity
improvement, and the importance of a many-objecipproach compared to a bi-
objective water quality-cost optimization, as ha&et undertaken in previous studies
(Objective 3.2).

Chapter 4 introduces an optimization-visual analytics framewdor complex
environmental management problems (Objective 2plinng multiple stakeholders
(Objective 2.2), incorporating the optimization epgch developed i@hapter 3. In the
approach, the problem is represented as a ser@salfer, interconnected optimization
problems, reflecting individual stakeholder setsl amterests. The approach features
interactive visual analytics used to explore andlys®e optimization results, and an
approach to reframe visualizations to encouragesbtader negotiation. To demonstrate

the utility of the framework, it is applied to afistic case study which involves multiple
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stakeholder groups funding different parts of BMBjgcts for an integrated catchment

plan for a region of a large city in Australia (@tjive 3.3).

The linking of each of the papers to the objectigeshown in Table 1-1. The scale of
WSUD implementation, optimization problem addresseéthod for visualization of
optimization results used, case studies considetlgdyithms used, simulation models
used, and case study formal optimization objecthegssidered, and number of objectives
considered in each of the papers are summarisédile 1-2. Although the manuscripts
have been reformatted in accordance with Univeggitglelines, and sections renumbered
for inclusion within this thesis, the material witlthese papers is otherwise presented
herein as published (or submitted for publicatiéngopy of the first paper “as published”
is provided in Appendix A.

Conclusions of the research within this thesis @n@vided inChapter 5, which
summarises: 1) the research contributions, 2) ditimihs and 3) future directions for

further research.
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Table 1-1 Linking of each of the papers to the objives

Objectives Paper 1 Paper2  Paper
3
1 Todevelop a generic multiobjective optimizaticmmework for conceptual design of stormwater hsting X
systems with components distributed throughoutv@ld@pment-scale catchment.
2 To develop a generic optimization framework felesting a portfolio of stormwater best management X X
practices (BMPs) to assist regional integratedntant management decision-making.
2.1 To present a formal optimization approach ithentifies the best combinations of BMPs for mans] X
objective catchment planning.
2.2 To implement the optimization framework in Qitjee 2.1 in a multi-stakeholder optimization- X
visualisation framework that is geared towardsideatification of negotiated compromise solutioos f
problems with multiple stakeholders with distinetssof objectives.
3 To evaluate the utility of the frameworks in Gitjees 1 and 2. X X X
3.1 To apply the framework in Objective 1 to a csterly for stormwater harvesting system desigmafoew X
housing development in Northern Adelaide, Southtralia
3.2 To apply the framework in Objective 2.1 to aliworld case study based on a single-stakeholder X
integrated catchment management plan for a majpircAustralia.
3.3 To apply the framework in Objective 2.2 to@+eorld case study based on a multi-stakeholdegnated X

catchment management plan for a major city in Aslistr
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Table 1-2 Classification of the papers by the diffent topics addressed

Category  Sub-category Paper Paper Paper
1 2 3
Spatial Scale Development X
Regional X X

Optimization Stormwater harvesting systems design X

Problem e grated catchment management X

(single stakeholder)

Integrated catchment management X
(multiple stakeholders)

Visualisation Multi-dimensional plots X X X
of Results Interactive visual analytics X X
Case Study  Northern Adelaide, South Australia X

Major Australian city (undisclosed) X X
Multiobjective Non-dominated Sorting Genetic X
Optimization Algorithm Il (NSGA-I1)
Algorithm Pareto Ant Colony Optimization X X
Algorithm (P-ACO)
Simulation eWaterMUSIC (integrated stormwater X X X
Model model)
WSUD LifeCycle Cost Model X X X
Case Study Cost X X X
Optl_mlzgtlon Stormwater harvesting capacity X X X
Objectives
Water quality improvement X X X
Urban vegetation and amenity X X
improvement
Number of  Three objectives X
Formal o X

Optimization Four objectives

Objectives  Sixteen objectives X

13






CHAPTER 2

Paper 1 - Multiobjective Optimization of
Distributed Stormwater Harvesting Systems

(Accepted paper)
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Abstract

Stormwater harvesting (SWH) is an important waggrsgtive urban design (WSUD)
approach that provides an alternate water supplyceoand improves runoff quality
through integrated systems of stormwater best neamagt practice (BMP) technologies.
In SWH system design, practitioners must accountréxle-offs between cost, supply
volume, and water quality improvement performamnekich are dependent on design
decisions for the type, size, and spatial distrdsubf BMPs. As such, design of SWH
systems with distributed BMPs is a complex, mujgchve optimization problem with a
large decision space. This paper presents a mdtite optimization framework to
assess trade-offs in spatially distributed SWH esystdesigns. The framework was
applied to a case study for a housing developnreAdelaide, South Australia. Results
illustrated the potential benefits of distributiBYyIPs in an integrated SWH system where
space at the catchment outlet is limited. Trads-b#tween volumetric reliability and
total suspended solids (TSS) reduction indicatgelagains in TSS reduction can be
achieved with limited reduction in volumetric rddisty. Concept designs in low-
cost/moderately reliable and low-cost/high TSS otida trade-off regions contained

biofilters in locations receiving large inflows.

Author Keywords: stormwater harvesting, optimization, BMP, biofijtevetland,
water-sensitive urban design (WSUD), sustainaldéndge systems (SuDs), low impact

development (LID), green infrastructure, genetgoathm,MUSIC

2.1 Introduction

Recently, the application of Water Sensitive UrBasign (WSUD) has demonstrated

an ability to mitigate the impacts of developmentwban water supply security and

natural ecosystem healti\gkarizadeh, Rippy et al. 20L5An increasingly popular
WSUD technique is urban stormwater harvesting (SWH)ch is used to capture, treat,
store and distribute surface stormwater runoffl&ter reuse Nlitchell, Deletic et al.

2007. SWH can provide a cost-effective and reliabteralative water supply source for
irrigation that reduces stormwater runoff volumesl a&omplements existing (often
stressed) water supplieSlark, Gonzalez et al. 201Marchi, Dandy et al. 2036 SWH
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systems are comprised of best management pra@) technologies that detain,
harvest, infiltrate, evaporate, and transport urguoff, and remove pollutants. BMPs in
SWH systems typically include gutters, pipes, drgenchannels, wetlands, biofiltration
devices, storage ponds, tanks, and basins locatedumoff sources or near an integrated
catchment outlet Askarizadeh, Rippy et al. 20L5Although SWH systems can

incorporate flood control measuresli{chell, Deletic et al. 2007 peak flood flows
typically bypass SWH system components that argyded separately for water quality
control. Planning and designing urban SWH systsnt®mplex because practitioners
need to consider: i) multiple, often competing,ealiyves; ii) different types of system
components; iii) the spatial distribution of thesemponents; and iv) a large number of

design options, as detailed below.

Potential SWH system design objectives includemihimizing costs Taylor and
Wong 2002; ii) maximizing the volume of harvested water,igéhcan improve urban

water supply Clark, Gonzalez et al. 20}5iii)) maximizing the amount of pollutant

removed, which is achieved by treating stormwatrpo harvesting, and by removing
pollutants in the harvested water supply; iv) maxing improvements in urban
hydrology by restoring stormwater runoff qualitydaie streamflow regime (e.g., base
flow, peak flow, annual runoff volume, and flow iafility) closer to pre-development

conditions, thereby promoting urban stream he&dkérizadeh, Rippy et al. 20%%nd

V) maximizing social benefitdMitchell, Deletic et al. 200)7 such as public amenities,

community acceptance, recreation, and reducingteai®n risks [hamdar 201x1

Which of the above objectives are considered aridhadre prioritized is site specific and
generally determined through stakeholder consahidfior example, between regulators,
land developers, designers and the local community)many instances, the above
objectives are in conflict with one another, neitaag decision-makers to consider

trade-offs between objectives when assessing ttierpence of SWH systems.

As far as the design components of SWH systemsomeerned, these include: BMPs
to capture, treat, and store raw harvested rumwid; infrastructure to further treat and
distribute harvested stormwater to end users. TM® Bype and size can influence: the
volume of runoff captured for harvesting; evapas@ration and infiltration losses, which
affect supply capacity; and pollutant control periance and harvested water quality,
which depends on BMPs operating within a preferélyldgraulic loading range per unit
area that varies for different pollutants. The asfructure required to transport treated

19



runoff will depend largely on site constraints alodations for balancing storage,
advanced treatment and distribution. The end usenfested water, and its associated
risks (e.g. health, environmental), often driveisiens on the final harvested water

guality and thus the level of treatment required.

In relation to the spatial distribution of compotgnthe optimal placement of

distributed BMPs is complePérez-Pedini, Limbrunner et al. 200BMP performance

is a function of catchment connectivity, land ugpet catchment size, distance to
channels, connected impervious area, and level reftrpatment in contributing
catchments Rerez-Pedini, Limbrunner et al. 200Gample and Liu 2034 BMPs at

locations closer to catchment outlets must be #bléreat larger volumes of runoff

efficiently (Lee, Selvakumar et al. 201 However, the treatment effectiveness of BMPs

can decrease with increasing inflow rates and gaoilconcentrations. In addition, at sites
where limited area is available to capture, treatstore harvested water, supply capacity

can be limitedMarchi, Dandy et al. 20)6Consequently, distributing BMPs throughout

a catchment can increase treatment and storageigapbSWH systems.

With respect to design options, for the variousetypf treatment BMPs, surface area
is typically the most important design parametéuencing cost and performance. The
selection of optimal BMP basin side slope, deptid &ansfer infrastructure design

parameters can also be importdvii(chi, Dandy et al. 203d6however, ranges for these

parameters are typically constrained based ongoastice guidelines.

Given the large number of types of system compaeheé many different ways in
which they can be distributed spatially and thgeéamumber of available design choices,
it is difficult to identify distributed SWH desigrthat are optimal with respect to the
desired competing objectives. Consequently, treeeeneed for an integrated framework
for the conceptual design of SWH systems that demsiall of the above factors in a
holistic fashion. Given the potentially large nuenbf options, incorporation of a formal
optimization approach in such a framework is algely to be of significant value.
However, existing studies in this field have naganted such an approach and have only

considered a subset of the above factors. For glearfSample and Heaney (2006)

considered the impact on net present value ofitesesid spatial distribution of integrated

infiltration basins and irrigation systems, but diok consider multiple objectives, nor a

formal optimization approach. WhiBrowne, Breen et al. (2012ndInamdar (2014)
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considered multiple objectives in conjunction wahrange of BMP alternatives for
various SWH projects within a region, they also dit utilize formal optimization
approaches, making it unlikely that the solutidmet forovide the best trade-offs among
objectives were identified. In contradflarchi, Dandy et al. (2016Jid use a formal

multiobjective optimization method to design sueaanoff SWH system components
(the dimensions of a wetland, detention basins, auglifer storage transfer
infrastructure). However, they did not consider hoade-offs were influenced by a mix
of different BMP alternatives for the capture, treant, and storage of surface runoft,
optimal locations for BMPs within a catchment, weater quality improvement as a
formal objective. Formal optimization methods haleo been used to identify the
optimal mix, size, and location of distributed BMAerez-Pedini, Limbrunner et al.

2005 Maringanti, Chaubey et al. 200Ree, Selvakumar et al. 201 Dut these studies

have not considered SWH.

To address the shortcomings in existing literatwiined above, the objectives of this

paper are:

1. to introduce a generic framework for the conceptigsign of SWH systems that
considers multiple objectives, a range of BMP typed their design options, the
spatial distribution of BMPs, and a formal optintipa approach for identifying
designs that represent near-globally optimal tmweffle- among competing
objectives in an integrated fashion;

2. to demonstrate the application of the generic fraaork to a case study SWH
system for a residential development in Adelaid®ytB Australia; and

3. to use the case study to investigate

a. potential benefits achievable by distributing SWéinponents throughout
the catchment compared to systems with componeahtsabthe catchment
outlet

b. trade-offs between lifecycle cost, supply volumad awater quality
improvement, which is achieved by linking an ineggd stormwater model
with a multiobjective evolutionary optimization appch, and

c. impacts of design decisions including the typee simd location of BMPs

on SWH performance.
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2.2 Proposed distributed stormwater harvesting system esign

optimization framework

This section contains a description of distribu®@d@/H systems, a mathematical
formulation of the multiobjective optimization dgsi problem (decision variables,
objective functions and constraints) and the preddsermal optimization framework for

solving it.

2.2.1 Description of SWH systems

A spatially distributed SWH system for an urbanchatent, detailed for one of
multiple sub-catchments, is illustrated in Figuré.an the figure, BMPs are shown by
closed green (shaded) boxes, runoff sinks (or dds)ay parallelograms, drainage paths
by solid arrows, pipe flow for treated runoff byrple (large dash) arrows, and SWH
system losses by black (small dash) arrows. A#arfall on an urban catchment, some
allotment (land parcel) roof runoff is divertedrgonwater tanks to supply water for toilet
flushing and household irrigation. Some impervidusads, car parks) and pervious
(grassed areas, open space) surface runoff, ahdumaff overflowing or bypassing the
tank, is captured and treated in BMPs located astregtscapes or in open (green) spaces.
BMPs can include, for example, smaller biofiltratigystems servicing a cluster of
allotments integrated into the streetscape or udpen space, or larger sedimentation
basins, biofiltration systems, or constructed wettaservicing a catchment comprised of
multiple clusters. Biofiltration systems (biofilgrfor SWH typically consist of a basin
overlaying a geotextile-lined filter medium with @dainage pipe at the bottom.
Sedimentation basins consist of a pond to prometiirngy of sediments through the
reduction of flow velocities and temporary detenti€onstructed wetlands are shallow,
extensively vegetated basins that use enhanceaeetiition, fine filtration and pollutant
uptake processes to remove runoff pollutants.

After passing through a BMP, treated stormwataypécally stored at the multiple-
cluster or catchment scale in open water pondsaggotanks, or an aquifer. Harvested
water is often transferred from sub-catchments ¢erdral balancing tank for advanced
treatment and distribution to an irrigation netwo8urface runoff that overflows or

bypasses BMPs, or is not harvested, is lost threngpotranspiration, infiltration to deep
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groundwater storages (possibly after exfiltratingri BMPS), or reaches urban streams
via shallow ground water flow, overland flow, or pervious drainage channels.
Intercepting and harvesting runoff in upstream satchments affects runoff into BMPs
in lower sub-catchments. Downstream impacts shbaldonsidered with the aid of an

integrated stormwater mod@dch, Rauch et al. 2014
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Figure 2-1 Schematic diagram of generic distributedtormwater harvesting system with
central balancing tank

2.2.2 Problem formulation
2.2.2.1 Decision Variables

In the conceptual design of distributed SWH systemegision-makers consider the
type, location, and design parameters of BMPs eamister infrastructure. Appropriate
types and locations of BMPs largely depend ondi@racteristics, including soil type,
topography, infiltration rate, contributing connetimpervious area, and sufficient space
for maintenance and transfer infrastructure. Shtar&cteristics are typically assessed
through site and geospatial studigg(ndar 201% After site assessment, a short-list of
appropriate options is agreed upon amongst stattetmltaking into account the desired

SWH objectives and other socio-political preferengghichakly, Bowden et al. 20).3
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After short-listing, often multiple BMP types an&es options are available at each
location. These decision variables are den@&P [integer], each with associated
surface area options, denoted @& [fraction]. SA is formulated as a fraction of the
maximum available area for a BMP at a location oiethSAnax[area]. Where one BMP
type is available at a locatioBMP is a fixed parameter, arf®lAis a decision variable.
Where multiple BMP types are available at a locgtipothBMP and SA are decision
variables. In the latter case, the surface araargptiepend on the type of BMP selected,
since SAnax based on guidelines and site constraints, vamesng BMP types. BMP
design parameters, such as the dimensions of basams be included as decision
variables. Other parameters required to model Biteseither fixeda priori based on
design guidelines or site constraints, or depenoletite BMP surface area and calculated
once this is known. Pipes and pump configuratich@arameters are selected to transfer

treated water from storage sites to central batansiorage.
2.2.2.2 Objectives

Although objectives depend on stakeholder interetbiee formal objectives are
typically considered and therefore included in greposed framework: cost, supply
volume, and water quality improvement. Cost is & kencern for decision-makers
responsible for maximising the return on investmeraduding capital and ongoing costs.
Maximising supply volume is a primary motivatiorr isnplementing SWH systems in
order to reliably meet irrigation demand (and citte to runoff volume reduction).
Water quality improvement is a key environmentgkeotive considered by regulatory
bodies Chichakly, Bowden et al. 2018ang and Best 20)5As explained b hichakly,
Bowden et al. (2013)due to their qualitative and political naturegiab considerations

are taken into account through stakeholder cortguitatilized when selecting available
BMP types, sizes and locations, and determiningsttamts, as well as when assessing

alternative candidate conceptual designs.

2.2.2.2.1 Cost

In the proposed framework, the cost of SWH condegigns is represented as a life
cycle costLCC [$] (Equation (2-1)), which is a discounted sumegpected future costs
for stormwater management assets, including BMistamsfer infrastructurer aylor
and Wong 200p The life cycle cost objective function for eazdndidate SWH system

is given by:
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MINIMIZE LCC = LCCharvest + LCCtransfer

Equation ( 2-1)
where

LCCharvest = Z?’=1{ (TACpyp,) + PWFestab,BMPi(SABMPi X SAmax,pmp; X ECFgyp, X
MBMPi) + PWFmaint,BMPi(SABMPi X SAmax,pmp; X Mpup, + TACgyp, X Rengyp, +

TACgyp; X DecommBMpl.)}

Equation ( 2-2)

LCCtransfer = CCapPump + CCapTransPipe + PWFmaint(CmPump + CmPipe)

Equation ( 2-3)
where a sum of the cost of BMPs to harvest stormmwanoff,LCChanest[$] (Equation
(2-2)), and to transfer harvested water to balapaitorage for further treatment and
distribution, LCCuanster[$] (Equation (2-3)) is applied witBMP; representing the BMP
type in the™ location in the candidate SWH systaxiinteger] is the number of BMPs,
andTAC([$] is the total acquisition cost as a functiorSéf

The times during and immediately after BMP condtaincare critical to promote plant
growth and prevent erosion. Consequently, intensigmtenance is required in an initial
establishment period to ensure BMPs can meet fumadtperformance criteria. After this
period, less intensive, lower cost, annual mainteeas required to maintain functional
performance. ConsequentleWFkestap [fraction], for the establishment period, and
PWhnaint[fraction], for the remaining design life of systemamponents, are the present
worth factor for a series of annual costs computadg a discount rat&CF [fraction] is
the establishment cost factor (i.e., multipliery fbe annual maintenance caddt[$]
during the establishment period for each BNR@nis the annualised renewal cost and
Decommthe decommissioning cost [represented as fractdAAC]. Ccappump[$] and
Ccaptranspipel$] are the capital costs for required pump stetiand pipes, anGmpumd$]
and Cwripe [$] are the annual pumping and maintenance costmnBing storage, UV

disinfection, and distribution costs apply to smos equally, and are thus excluded.
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2.2.2.2.2 Supply volume

In the proposed framework, volumetric reliabilitgquation (2-4)) is adopted as an
indicator of urban supply volume performance. Tikia measure of the average annual
proportion of demand volume supplied by a SWH systever a simulation period

(Mitchell, McCarthy et al. 2008 This metric was selected because it facilitates

comparison of the ability of SWH concept designsupply potential customers under
several demand scenarios as required in the frankewan easily be converted to a total
volume to estimate annual runoff reduction and irtgzb supply substitution due to

harvesting, and is used in practi@&dwne, Breen et al. 20).2Typically, a volumetric

reliability of 75% to 80% is acceptable for SWHtgyss, since imported supply is usually
available to ‘top-up’ the balancing tank to meeinded when SWH is unable to. The

supply volume objective function is:

Yhee1{Ztefn(Dex—D" i)}
Yh=1{Zten Dk}

MAXIMISE Ry = 1 —

Equation ( 2-4)
whereRy [fraction] is the system volumetric reliabilitly[integer] is the storage BMP
number P [integer] is the number of distributed storagethien SWH systent;, [integer]
is the number of failure intervals (i.e., where @gch fails to be metp)'t [volume] is the
actual supply during th#" [integer] failure intervalD: [volume] is the target demand

during thet" interval, anoN [integer] is the number of intervals in the simida period.

2.2.2.2.3 Water quality improvement

The water quality improvement indicator adoptedhia proposed framework is the
total average annual pollutant load reduction & tamget pollutant (Equation (2-5)). This
indicator is widely adopted to assess the perfoo@af WSUD approaches, including

SWH systems Erowne, Breen et al. 20).2 The target pollutant will depend on

stakeholder interests. The objective function is:

Resid
Source

MAXIMIZE LoadRedn =1 —

Equation ( 2-5)
where,LoadRedr{fraction] is the mean annual pollutant load redarcproportion of

each candidate SWH systeResid[mass yeat] is the mean annual mass of pollutant
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leaving the development area, aB8durce[mass yeat] is the mean annual mass of
pollutant that reaches the catchment outlet in st-development catchment baseline
scenario without WSUDResidand Sourceshould be determined using an integrated
stormwater modelgach, Rauch et al. 2014

2.2.2.3 Constraints

In the proposed optimization framework, constraagply to conditions on types of
BMPs combined in solutions; and pollutant load aaun performance for a range of
pollutants. Each solution is assessed against tonslion the presence and size of BMPs
to avoid candidate SWH system solutions that woubd be adopted in practice.
Impractical solutions can arise due to randomne#isa selection of decision variables in
the optimization process (see Section 2.2.3). kamgple, a candidate solution might
consist of a storage device without a BMP providimftpws or a BMP may treat runoff
but not have adjacent storage where needed. Rartigractical constraints need to be
agreed upon by practitioners on a case-by-cass.basiddition, many regulatory bodies
require a proportion of pollutant load generatedi®ydevelopment to be retained by the
SWH system to promote the health of environmendsivang runoff. The proportion of

load reduction retained by the candidate SWH sy$egiven as:

LoadRedn, = LoadRednTarget,,Vc=1,...,CN

Equation ( 2-6)
where, LoadRedn[fraction] is determined using Equation (2-h)padRednTarget
[fraction] is the mean annual proportion of polhitdoad reduction target set by
regulatorsc [integer] represents a target pollutant, &M [integer] is the number of
target pollutants. As discussed byarchi, Dandy et al. (2016)additional SWH

constraints may arise due to decision variableevaiinges, land available for BMPs,

physical processes (e.g. water and energy balaaé Jocal regulations.

2.2.3 Optimization framework

In the proposed framework, a multiobjective optiati@an evolutionary algorithm
(MOEA; Figure 2-2) is suggested to solve the SHVEtay optimization problem.
MOEAs have several advantages over traditionalngpétion approaches (e.g., linear

programming). They can deal with multiple objecsiv@multaneouslyMaier, Kapelan
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et al. 2014 and have been used successfully in recent plgramd design optimization
studies considering SWHB€h, Dandy et al. 2014aton, Dandy et al. 2014&larchi,
Dandy et al. 2016 and distributed BMP systemg£lifichakly, Bowden et al. 20).3
Furthermore, they can be linked with multiple siatidn models required to calculate

multiple objective functions and check constraogftsandidate solutiond/aier, Kapelan

et al. 201%, can provide confidence in the results of theimjiation process, as
simulation models that are already used in localHS@#écision-making can be used
(Maier, Kapelan et al. 20J4and can enable problems with complex mathematica

properties to be considered without simplifying tiimization problem, which is not

the case when more traditional optimization appneaare used.

As part of the optimization process (Figure 2-2)uanber (population) of solutions is
generated with the aid of an MOEA. Each solutigreésents decisions, on the type, size
and location of BMPs in a particular SWH concepsige, formulated as a vector of
decision variable options. Then, solutions are-gmgptively’ checked against conditions
on the configuration of BMPs. If a solution violatinese conditions (i.e., is impractical),
it is not evaluated with the aid of the simulatimodel(s), which saves computational

time (Asadzadeh, Razavi et al. 2Q014Mext, the performance of practical solutions is

evaluated by calculating objective functions andoiing constraints. This evaluation
requires two simulation models, including a lifecley cost model, and an integrated
stormwater model. The cost model can be a lookhble @f costs associated with SWH
system components. The integrated stormwater malateeded to evaluate the
volumetric reliability and water quality improventeachieved with the distributed SWH
conceptual designs under consideration. The integna@odel should be able to model:
hydrologic behaviour; pollutant generation; hydraaind treatment behaviour of BMPs;
downstream impacts of BMPs; and water recyclingugh SWH. According t@ach,

Rauch et al. (2014eWaterMUSIC (eWater 200pis the only readily available model

that includes all of these.

After evaluation, penalties are applied to objexfivnction values of solutions that fail
to meet pollutant reduction targets. The MOEA ustgiective function values to assess
the fitness of solutions and iteratively modify tip@pulation using evolutionary
processes, such as reproduction, mutation, crossodeselection. Over generations, the
population of solutions converges towards the dePareto optimal SWH concept
designs, which are the non-dominated designan@mee of the objective functions can be
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improved in value without degrading one or moré¢hefother objective values) in the set
of all possible designs. The MOEA evolves the papoh until specific termination
criteria are met. The algorithm is run from a neutial population for a number of
demand scenarios in order to estimate the potesujgbly volume from the catchment,
which is not typically knowra priori. The non-dominated solutions identified by the

MOEA are Pareto optimal or near Pareto optimal Sshktept designs for each scenario.

Problem formulation

1 |
1 |
1 |
i | START: Determine stormwater ,| Determine end uses and customer |
1 | harvesting objectives demand scenarios |
I v v I
1 . - I
: Specify performance indicators Selectcapture, treatment, and !
1 | to calculate objective function storage BMP locations, types and I
1 . |
1 | values parameteroptions I
1 |
: v v |
| | Determine BMP configuration Determine configurations fortransfer | |
1 | constraints, and pollutant * infrastructure e.g. balancingtank, !
; L_reduction targets pipe network, pump stations !

Optimization process

1 1
1 I
1 1
' Decision variables: select BMP types and START: For !
" sizes, and determine required transfer each demand !
: infrastructure scenario I
: v :
' Practical constraints: pre-emptively check :
I population forvalid BMP configuration Generate :
: ¥ new :
: Model pre-emption: Feasible solutions? ) population :
1 NO YES ¥ !
' Simulation: run costand integrated |  __ | |
1 I I
' stormwater models - : Multi- | !
|
! ' Objective ! |
' Performance Constraints: check pollutant ] E Ij . : !
! reduction constraints ¢ Evolutionary I
' v \  Algorithm | | !
: [ ] Objectives: evaluate objective functions, : (MOEA) : :
1 a
) apply penalties !
1 1
: y '
: ( Termination criteria met? :
1 YES :
1 1
: Y I
1 / Determine Pareto optimal stormwater harvesting systems / |
1 I
1

Figure 2-2 Optimization framework for distributed stormwater harvesting system design.
Typical steps in an optimization process are shaded
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2.3 Case study

The proposed optimization framework was applieal 8WH system design case study
for a proposed housing development consisting of23allotments on 245 ha of
underutilized farmland north of Adelaide, South &aba. Figure 2-3 shows the proposed
catchment layout, including four sub-catchmentdcliaent characteristics are listed in
Table 2-1. A natural creek flows to the catchmertlat at the southwest of sub-catchment
4. The footprint of flood retarding basins (propger the future development) were
available for multiple-cluster-scale wetlands amafilbers. South Australian regulations

require a minimum 1 kL rainwater tank per allotment

In this study, there was no opportunity to considkeholders directly. Rather,
consultants who developed a SWH system for the stasky site, provided planning and
design data but were not available to comment culte Decision variable values
corresponding to BMP types and surface areas wamergted using a MOEA, which
were combined with fixed and decision variable aelemt parameters to form a candidate
SWH system. The objective function values were weatald with a lookup-table cost
model and an integrated stormwater simulation matileloped using the eWater
MUSIC version 6.1 softwaresf{Vater 200% Details of the case study decision variables,

parameters, objectives, constraints, MOEA and sititail model are presented below.
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Figure 2-3 Location of potential BMPs for proposechousing development in Adelaide,
South Australia. An irrigation balancing tank is located in sub-catchment 2

Table 2-1 Case study catchment characteristics

Sub-catchment Area (ha) Fraction Impervious (%)

1 120.2 50
2 70.4 50
3 54.7 60
4 30.2 55
Roof to RWT 33.4 100

Note: For all sub-catchments field capacity = 30;nmpervious area rainfall threshold
= 30 mm/day; pervious area soil storage capac#@ mm; groundwater daily recharge
rate = 25%; groundwater daily base flow rate = BY/T = rainwater tank.

2.3.1 Decision variables and model inputs

The decision variables corresponding to each looatiere the surface area and, if

multiple BMPs were available at a location, theetygf BMP. The decision variable
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options corresponding to locations within sub-catehts are summarised in Table 2-2.
BMP type BMP [integer]) options in sub-catchments 2 and 4, wimeore than one BMP
type was available, included wetlands, geotexiiled biofilters, and sediment basins
suitable for SWH in South Australia. Two locatidos wetlands were available, both at
the base of retarding basins in the creek. Thesditms had adequate space for a wetland
inlet pond and a macrophyte zone and receivedcseriti inflows from multiple-clusters.
Biofilters were also available at the retarding iba®otprints (as an alternative to
wetlands), and distributed at the cluster-scalestel biofilters were suitable for locations

where space was limited near residential open sgaaatchments 1, 2, 3 and 4.

Table 2-2 Case study decision variables

Decision variable Sub- BMP DV Max. available

# catchment Type Type area (ha)
#

1 1 CB area 0.92

2 1 P area 0.50

3 2 CB area 0.55

4 2 SB,W, or MCB type NA

5 2 SB,W, or MCB area a

6 2 P area 1.00

7 3 CB area 0.50

8 3 P area 0.35

9 4 SB,W, or MCB type NA

10 4 SB,W, or MCB area b

11 4 P area 1.00

Note: CB = cluster-scale biofilter, P = pond; SBediment basin; W = wetland; and
MCB = multiple-cluster scale biofilter. NA = not plgcable.

&SB =0.869 ha; W = 1.00 ha; MCB = 0.730 ha.

b SB =0.836 ha; W = 2.20 ha; MCB = 0.730 ha.

Open-water ponds were available to store treatathstater at four locations within

the development site (one in each sub-catchmeng)stirface are&A[fraction]) options

for BMPs were 0% (no BMP), 33.3%, 66.6%, or 100%hefavailable area for a location.
If a BMP size of 0% was selected by the MOEA, arsedt basin was set at multiple-
cluster-scale locations (even if a wetland or Itiafiion basin was selected as the BMP
type) and a junction was set at cluster scale ilmesit The wetland macrophyte zone area
was limited by the space available in the retardiagin footprints. The maximum total
sizes of biofilters were limited to 1.5% of contrilng impervious catchment area or

limited by site constraints, as per the relevasigieguidelinesFayne, Hatt et al. 2015
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The sediment basin at each location had fixed sleeggned to accommodate peak 1 in
1-year annual recurrence interval inflows from ugetn sub-catchments. Discretization
of the decision variables was selected to limitdeapace size due to the long run times
(approx. 12.5 seconds) required to evaluate eauatlidae solution with the stormwater

model.

Stormwater model inputs included fixed- and decisi@riable dependent- design
parameters, as follows. Wetlands had an inlet patidsurface area fixed at 15% of the
macrophyte zone area and 2 m depth. Inflows higten those with peak 1 in 1-year
annual recurrence interval peak flows were divettedn overflow bypass. A 48-hour
nominal detention time (residence time) was uséiks & typical for SWH wetlands in
South Australia, which is a function of the wetlarddume and is achieved by calculating
the corresponding nominal outlet orifice size. A30m extended detention depth limited
the duration and frequency of inundation of wetlflodh, but also the available detention
capacity. A 300 mm average permanent pool depthadapted for the macrophyte zone
and was assumed to be initially full. Biofilterginded biofiltration cells with a maximum
area of 800 rh(Water by Design Australia 201and were modelled as a lumped single

cell for each catchment. Multiple-cluster-scale ides received inflows, diverted from
the natural creek channel, that were lower tharitimel-year annual recurrence interval
peak flow rate for upstream catchments to preveotrsof the filter media. Multiple-
cluster-scale biofilters had less restrictive sgastraints than cluster-scale biofilters. This
is reflected in their fixed dimensions. These ét¢at the multiple cluster scale, 400 mm
for biofilter detention depth, 800 mm for filterpte and 400 mm for the submerged zone;
and (2) at the cluster-scale, 200 mm for biofittetention depth, 500 mm for filter depth,
and 200 mm for the submerged zone. Both device@@dm/hr hydraulic conductivity,
an underdrain with geotextile liner to maximize \esting potential by preventing
exfiltration, and a submerged zone to promote giaatth in extended dry periods and to

maximize volume retention. The interested readesfesrred taPayne, Hatt et al. (2015)

and Water by Design Australia (2015r comprehensive diagrams illustrating these

dimensions for lined biofilters. Storage ponds t2agn total depth and 0.1 mm/hr
exfiltration rate. Extended detention depth wasteset00 mm (minimum allowable in
MUSIC) to minimize treatment modelled in the storagedp@ll RWT parameters were
fixed for a 1 kL tank size. RWTs in a sub-catchmeete modelled as a lumped tank
node. RWTs were connected to 100afiroof area (40% of total roof area) per allotinen
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and supplied 50 L/day for toilet flushing. Grosdly@ant traps were not modelled, as per

relevant modelling guideline¥\ater By Design Australia 20).0

Cost model inputs included lifecycle cost paranset@ssociated with BMPs in a
solution and with pipe and pump infrastructure cielé to transfer water from storage
ponds to an underground balancing storage in stabwoeent 2. All transfer pipes were
assumed to be 150 mm PVC to minimise pipe velecdied head losses for the highest
demand scenario. Where a BMP was selected in dchroant 3 or 4, an 8 kW
submersible pump supplied 9 L/s at 60 m head tbalencing storage, as per the detailed
design adopted for the real-life SWH system (J.t@Qaa personal communication, 2014).

2.3.2 Objectives

The objective function for lifecycle costCC [$], was calculated using Equation (2-1)
to (2-3). The parameters ftwCCharest [$] (Equation (2-2) were estimated from cost
schedules developed by Melbourne Water Austrd@l® and the eWateMUSIC
(eWater 200plifecycle costing tool (Table 2-3). A typical di€ycle period of 50 years
was adopted. A discount rate of 5.5% per year veasl o calculate the present worth
factors. Although RWTs were a major cost of the Sgylstem ($10.7 M), this cost was
incurred in all solutions and, therefore, omitteai the life cycle cost objective function.
The parameters fdrCCianster [$] (Equation (2-3)) were estimated as follows pital
costs for pipe and pump infrastructu€@;aptranspipe[$] and Ccappump[$], Were derived
from costing data for the SWH system developedtiar site (J. Cantone, personal
communication, 2014; Table 2-4). The capital cdst tansfer component was included
if at least one pond requiring the component wécssd by the MOEA. The net present
value (NPV) of operating costs of pipe maintenaamg pumpingCmpipe[$] and Cmpump
[$], were assumed to be negligible compared tBi® establishment and maintenance
costs, based on analysis of detailed costings deeral SWH conceptual designs in

Inamdar (2014)The costs of gross pollutant traps were not oetlin the objective

function value since the costs applied to all sohg. Volumetric reliability Rv [fraction])
was calculated (Equation (2-4)) using SWH modellissRy was the total demand
supplied divided by total demand requested foNIp®nds in each SWH concept design.
Total Suspended Solids (TSS) reduction was theifgpgollutant constituent adopted
for the water quality objective. Maximising TSSda@duction was particularly important

since TSS limit the ability of a water body to sapgpiversity of aquatic life, introduce
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contaminants, such as heavy metals and nutriémis navigability and fish passage due
to sedimentation, and have undesirable aesthé#ictaiBilotta and Brazier 2008Load
reduction LoadRedsss [fraction]; Equation (2-5)) was calculated basedoatchment
outlet total TSS load divided by a baseline scen&8S load without SWH or RWTSs,
determined using the stormwater model.

Table 2-3 Breakdown of life cycle costs

Lifecycle cost components  Wetland Sediment Pond Cluster Multiple-

Basin biofilter cluster
biofilter

Total Acquisition Cost 100 150 150 500 250
(TAC)($/nv) @
Annual Maintenance Cost 2 5 5 10 5
($/n7) @
Establishment Cost Factor 2 2 2 2 2
Establishment Period 2 2 2 2 2
(years)?
Annualized Renewal cost 0.00641 x 0.0172 x 0.0172 x 0.0243 x 0.0243 x
($/mP) b TAC TAC TAC TAC TAC
Renewal Period (year8) 25 15 25 20 25
Decommissioning cost 0.52 x 0.47 x 0.47 x 0.49 x 0.49 x
($/m) b TAC TAC TAC TAC TAC

Note: Annual establishment period maintenance £dstnual maintenance cost x
establishment cost factor. Costs are in Austrdliattars (2015%).
@ Based orMelbourne Water Australia (2013)

b Based oreWater (2009)

Table 2-4 Breakdown of transfer component costs

Transfer Transfer component required?  GcapTransPipe +
component Pond 1 Pond 2 Pond 3 Pond 4 Ccappump($ M)
Pipe 1 Yes No No No 0.168
Pipe 2 Yes Yes No No 0.044
Pipe 3 No No Yes Yes 0.205
Pipe 4 No No Yes Yes 0.205
Pipe 5 No No Yes Yes 0.184
Pump station Yes Yes Yes Yes 0.692

2.3.3 Constraints

Solutions generated by the MOEA that violated peattconstraints were allocated
extreme objective function values ($1.0 * 1i@& cycle cost and 0.0% reliability), and

were not simulated. The practical constraints onPBddnfiguration specific to the case
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study were: in sub-catchments 1 and 3, if a BMP sescted, an adjacent pond had to
be selected, and conversely, if no BMP was selea@ddjacent pond could be selected;
and in sub-catchments 2 and 4, ponds could notleeted unless adjacent to at least one
BMP. Three pollutants and load reduction targetm@RednTargeffraction]; Equation
(2-6)) were recommended for Adelaid®yers, Cook et al. 20)1 TSS; 80%; total
nitrogen (TN, 45%); and total phosphorous (TP; 45%)

2.3.4 Multiobjective optimization algorithm

The non-dominated sorting genetic algorithm (NSGA3ED, Pratap et al. (2002yas

used as the multiobjective optimization enginejtassariants have been successfully

applied to optimization of BMP systeniddrchi, Dandy et al. 20)@&nd it has been found

to perform well when compared with more recent atgjms applied to a number of water
distribution system optimization problem&&ng, Guidolin et al. 201Bi, Dandy et al.
2016 Zheng, Zecchin et al. 20).8n this study, an NSGA-II variant, the Water &ys
Multiobjective Genetic Algorithm, developed bYu, Simpson et al. (2010yvas used.

The algorithm has been applied to a range of wataurces studie®éton, Maier et al.
2014h Beh, Maier et al. 2015 seehttps://github.com/jeffrey-newman/WSMGA-with-
Wrapper-and-Analytigs The left-hand side of Figure 2-4 shows the majeps in the

NSGA-II for one scenario. The algorithm randoml{eses decision variable values for
an initial population of candidate solutions. Eadfution is evaluated to determine its
objective function values, which influence optintina operators (selection, crossover,

and mutation) to generate new populations untiveogence criteria are met.
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Figure 2-4 Details of case study optimization proas (adapted from Marchi, Dandy et al.
2016)

2.3.5 Integrated stormwater simulation model

The Model for Urban Stormwater Improvement Concalion MUSICversion 6.1,

eWater (2009) was used to evaluate harvested water supply aatérwquality

improvement objectives, and pollutant reductionfqgrenance.MUSIC is an integrated
stormwater model that evaluates rainfall/runoff gadlutant generation and transport,
hydraulic and pollutant removal performance of BM&sd SWH water balanc&dch,
Rauch et al. 2004MUSICis used as a SWH design tool in Australia andtkeand has
been used in watershed-scale SWH system reliabitiéyysis Browne, Breen et al. 20)2
and WSUD optimizationMontaseri, Hesami Afshar et al. 201MUSIC algorithms

simulate runoff based on models developehijew and McMahon (1999nd urban

37



pollutant load relationshipased on rmalysis byDuncan (1999) The model SWH

drainage networks consisted of nodes represenBMPs (and junctions at locations
where no BMP was selected by the MOEA); catchmenbff sources including roof,
ground impervious and pervious fractions of eaditGatchment; and a catchment outlet.
Nodes were connected via drainage links. The fiigimd side of Figure 2-4 shows how
MUSIC models were linked with NSGA-II. Input parametBnsMUSIC included: BMP
type and surface areas generated by the MOEA,; ma&tichmodel parameters determined
a priori; andfixed design parameters determiregdriori or calculated after the surface
areas were knowrMUSIC modelled the spatial distribution of BMPs througluting
flow and pollutant transport between nodes at ¢iaoh step.

2.3.6 Analyses conducted

The optimization framework was run for three demseeharios. These were Scenario
1) low irrigation demand (61.0 ML/year), Scenarjohigh irrigation demand (for high
amenity open space; 122.0 ML/year), and Scenartud) demand plus 40.0 ML/year
export to a neighbouring school for non-potable (162.0 ML/year). Annual demand
was disaggregated in proportion to potential evapspiration minus rainfall in each
hour for each year, using the ‘PET-rainfall’ demdmaction inMUSIC, as suggested in
the MUSIC guidelines. After a solution was selected by th@eBA, each storage pond
demand was allocated as follows: firstly, pondsenadlocated their local sub-catchment
irrigation demand; then demand for sub-catchmettfsowt ponds was allocated to the
closest downstream pond, or the closest upstrearags pond if no downstream ponds
existed. At each time-step, demand was extractéitl aimvater depth of 500 mm was
reached. Regional pervious surface storage paresnieteheMUSIC manual éWater
2009 calibrated for Adelaide were adopted, which issidered an appropriate approach

for MUSIC (Inamdar 201} especially since the proposed development hdugla

impervious fraction dominating runoff volume3dtto, Deletic et al. 200)1 A one-hour

time step was adopted, since larger steps cart iedurvested volume underestimation
(Coombes and Barry 2007As recommended bMitchell, McCarthy et al. (2008for

SWH simulation, a series of mostly complete rainfgta over a 10-year period that

include representative long-term rainfall charastmis was selected for simulation
purposes. Consequently, data from 1990-1999 werd, s they have a mean annual

rainfall of 409 mm/year, which is close to the lelegm annual average (430 mm/year).

38



It should be noted that this is not the case foremecent data, as South Australia
experienced a severe drought between 2001-201€heAselected data were stationary
(unlike the more recent data), they are also sleitbdy perturbation for use in climate
impact studies, if desired (s€&aton, Maier et al. (201B)Flood retention, peak flow

attenuation performance, and routing were not ohetuas these analyses are typically
carried out separately to water quality and wai@amce assessment using separate
simulation packages with a smaller time step, amchat form part of SWH objectives
(Water By Design Australia 20).0Flows exceeding the 1 in 1-year design volumeswe

diverted away from BMPs in thelUSIC model. A baseline scenario for a catchment
without SWH or rainwater tanks (i.e. only catchmentoff source nodes connected to a
catchment outlet node) was simulatedidSIC, in order to obtain th8ource(Equation
(2-5)) pollutant load values. The baseline catchingenerated an annual average runoff
of 479 ML with 57,900 kg TSS, 139 kg TP, and 871Tky

The NSGA-II runs had a population size of 200 witlossover and mutation
parameters of 0.9 and 0.1, respectively, and wach terminated after 100 generations.
These parameters were selected after trial-and-euns with various parameter
combinations. NSGA-Il was run eight times usingfediént random starting seeds in
decision variable space in order to minimize thkience of the stochastic generation of
the initial population and the probabilistic effectf some of the parameters controlling
the search. Each run took approximately 45 houra 8 10GHz computer with 8 GB of
RAM. For each demand scenario, non-dominated swisiirom the eight seed runs were

merged and the non-dominated solutions identified.

The optimization results were compared with a catti-outlet SWH approach to
provide a benchmark comparison. The catchmenttoaperoach describes a design
approach where treatment and storage BMPs arectbaatareas of the catchment that
receive large inflows, near the catchment outléictvis a typical approach for designing
SWH systems in practice (Browne et al. 2012; Inan{#l4). The catchment-outlet
conceptual designs were feasible (not necessantignal) solutions of the SWH problem
formulation in this paper. The catchment-outletigles considered had a pond and
wetland or biofilter located near the catchmentaiuisub-catchment 4), and a
sedimentation basin (sub-catchment 2). A designefmoh combination of BMP size
options was manually evaluated for each demandasicensing the cost model and
MUSIC. The results were sorted to identify the non-d@ted catchment-outlet solutions,
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which were compared with Pareto optimal solutiodgntified in the NSGA-II
optimization runs. All model source code, inputagjand results are availabMithael,
Dandy et al. 2016a

2.4 Results and discussion

2.4.1 Distributed versus catchment-outlet approaches

The results indicate that there is significant Iién@ using the optimization
framework, since the distributed SWH system optaton results dominate the
catchment-outlet designs, except for two low-castltment outlet approaches that lie on
the Pareto front under scenario 3 (Figure 2-5)trbisted approaches were able to supply
more of the demand requested than the largest ibagatchment-outlet design, which
indicated space at the catchment outlet limitedhiduerest capacity of catchment outlet
approaches (Figure 2-5). Additionally, the catchtneutlet approaches had limited
capacity to reduce TSS loads. Therefore, distribaiestems achieved higher supply and
TSS reduction levels by utilizing several locatidos SWH components. Optimization
results comparing distributed and catchment-osilstem performance could be used in
negotiation with stakeholders to support a disteduapproach, especially where

catchment outlet space is limited.
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Figure 2-5 Pareto optimal and catchment outlet sokipns
2.4.2 Trade-offs in cost and volumetric reliability objages

The cost and volumetric reliability trade-off profens in Figure 2-6. show that there
is a ‘knee’ region for each demand scenario. Mowalogg each front in a direction away
from the knee region, there is a diminishing returigost or reliability, suggesting that
solutions in this region may represent a desirahlee-off between reliability and cost.
Noticeably, the knee regions occur at differentelsvof reliability in each demand
scenario. For example, to achieve an acceptablemaitic reliability of 80%, an
investment of $4.19 M is required for demand sdenhrand a $9.42 M investment is
required for scenario 2; no scenario 3 solution al@s to achieve a volumetric reliability
of 80% (the maximum value achieved was 76.1% at6bRD). For demand scenario 1,
limited returns in volumetric reliability were al@ble away from the knee region in the
direction of increasing costs. For example, a supglability of 93.2% was available for

$7.52 M, whereas the maximum system reliabilit9®8% required an additional 38.7%
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investment (i.e. $10.43 M). Compared to scenariaa®3, the demand scenario 1 front
had noticeable discontinuities and the knee relgamha smaller cost range. These were a
result of the limited number of BMPs utilized ines@ario 1's non-dominated cost-
reliability solutions, as discussed below.

2.4.3 Trends in design decisions in cost-volumetric rddiity Pareto optimal

solutions

Performance and design decision values of seledkdions are given in Table 2-5
and Table 2-6. The solutions represent an extrdsjexive function value (solutions 1,
16,17, 42, 43, and 77) or occur at a trade-o#arpoint’ in the objective space or design
decision space. The solutions were identified tspai inspection of the Pareto optimal
solution objective and design decision spaces. dkehuitions utilized multiple-cluster-
scale BMPs, as shown in the sub-catchment 2 antMR Bize columns in Table 2-6.
Furthermore, multiple-cluster-scale biofilters apdnds at a central location (sub-
catchment 2) and near the catchment-outlet (suthwcent 4) were thenly BMPs in all
demand scenario 1 solutions, and in low cost saerzaand 3 solutions, for example
solutions 17, 19, and 43. For demand scenario 1P8Mt these locations captured
sufficient inflows and had sufficient pollutant tbeeduction performance to meet water
quality targets, without having to rely on clusseale BMPs. For demand scenarios 2 and
3, moving from low to high cost solutions, the nmawm available area for BMPs at
multiple-cluster locations was utilized before dmtohial cluster-scale BMPs. Distributed
cluster biofilters and ponds were selected momguieatly in solutions with higher levels
of reliability and to meet higher demand supplywoés. These results are consistent with

sensitivity analysis of distributed BMP systerhed, Selvakumar et al. 201 designed

for flow reduction and water quality improvementhieh demonstrated BMPs at
locations receiving large inflows consistently agmgel in Pareto optimal solutions.
Biofilters provided best return on investment fopgly volume and TSS reduction, since
all Pareto optimal solutions had a biofilter inedst one location (Table 2-6). Only two,
high cost, Pareto optimal solutions had wetlandsrame had a sedimentation basin.
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Table 2-5 Objective function and performance indictor values of selected solutions

Demand Soluti LCC Rv TSS LCCharvest LCCuansfer Avg. TN TP
Scenario on# ($M) (%) reduction (™M) ($ M) Supply  reduction reduction
(%) (ML/yr) (%) (%)

1 1 3.462 72.31 81.9 2.726 0.736 44.10 53.8 59.3
3 4.186 82.68 80.4 3.451 0.736 50.43 51.9 58.6
4 4.762 84.68 80.2 3.637 1.125 51.65 53.0 62.7
7 5.672 89.57 80.8 4.547 1.125 54.63 54.3 63.9
8 6.455 89.71 83.8 5.330 1.125 54.72 57.5 65.5
16 10.427 93.84 87.2 9.302 1.125 57.23 63.9 72.5
17 4.374 58.84 80.6 3.293 1.081 71.77 52.6 62.1
19 5.284 70.08 80.4 4.204 1.081 85.49 53.7 64.5
20 5.672 75.70 81.8 4.547 1.125 92.34 58.3 66.9
27 9.428 80.88 86.0 8.303 1.125 98.66 64.8 73.5
28 10.761 81.01 85.8 9.636 1.125 98.82 63.8 73.1
29 12.152 81.12 80.9 10.860 1.293 98.95 57.5 68.9
40 17.592 83.59 89.4 16.299 1.293 101.97 69.9 77.7
41 18.241 83.66 88.1 16.948 1.293 102.05 67.6 76.6
42 19.760 83.67 88.8 18.467 1.293 102.06 68.8 77.5

3 43 4.374 50.88 80.8 3.293 1.081 82.42 53.5 62.9
44 4.762 61.75 81.5 3.637 1.125 100.02 58.0 66.5
45 5.486 66.82 80.0 4.361 1.125 108.24 56.5 66.0
47 6.424 68.37 80.4 5.299 1.125 110.75 57.7 67.0
58 10.682 72.86 85.8 9.352 1.330 118.02 64.9 74.3
63 12.978 73.56 89.6 11.648 1.330 119.15 71.4 78.4
64 13.136 73.68 85.7 11.843 1.293 119.35 65.8 74.3
77 20.555 76.13 90.2 19.057 1.498 123.32 72.1 79.9

Note: TSS = total suspended solids, TN = totabgin, TP = total phosphorous.

2.4.4 Trade-offs between cost, reliability, and water dityaobjectives

Figure 2-6 shows all Pareto optimal solutions iderat by NSGA-II projected in 2-D

objective space. For all demand scenarios, sosifpoaviding the best trade-off

between volumetric reliability and cost did notyide high TSS reduction, indicating a

trade-off exists between TSS reduction and volumettiability. Lower-cost solutions

tended to have lower TSS reduction, whereas hilgrkty was achievable at

relatively low-cost. For a given cost, higher T&8uction was achievable for a

compromise in reliability. A similar maximum TSSdteetion (of approximately 95%)

was achieved in all scenarios coinciding with theximum cost solutions. This is
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contrasted with volumetric reliability, which dim&med with increasing demand
volumes as systems reached supply capacity maredngly. From Table 2-6, in lower-
cost and lower-reliability solutions, higher TS@diareduction was achieved by
investing in larger biofilters and smaller pondsr Example, the highest reliability
solution in demand scenario 1 (solution 16) ha&& Teduction performance of 87.2%;
however, solutions with a slightly lower reliabyliand similar cost (with smaller pond
sizes shown in Table 2-6) provided far higher T8&iction. When assessing solutions
that are non-dominated in cost-reliability spatakeholders should consider slightly
inferior solutions with respect to these objectitlest provide considerably higher TSS
reduction. In order to explain conflicting traddsoin the SWH system objectives,

design decisions are discussed further below.
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Table 2-6 Decision variable values of selected sbans

Demand Solution #  Biofilter Pond Biofilter BMP 2 SA?2 Pond 2  Biofilter Pond BMP 4 SA4 Pond 4
scenario Cluster 1 Cluster 1 Cluster 2 (central) (central) (central) Cluster3 Cluster 3 (outlet) (outlet) (outlet)
1 1 1 - - - B 10C 33.% - - B 33.%
3 3 - - - B 66.€ 66.€ - - B 33.%
4 4 - . . B 10C 33.% - - B 33.%
7 7 - - - B 10C 66.€ - - B 33.%
8 8 - . . B 66.€ 66.€ - - B 66.€
16 1€ - - - B 10C 10¢ - - B 10C
2 17 17 - - - B 33.% - - - B 66.€
19 18 - . . B 33.% - - - B 66.€
20 2C - - - B 10C 66.€ - - B 33.%
27 27 - . . B 10C 10C - - B 66.€
28 28 - - 33.% B 66.€ 10¢ - - B 66.€
29 29 33.% 10C . B 33.% 10C - - B 33.%
40 4c 66.€ 10C 33.% B 10C 10C - - B 66.€
41 41 66.€ 10C 33.% w 10C 10¢ - - B 66.€
42 42 66.€ 10C 66.€ w 10C 10C - - B 66.€
3 43 43 - - - B 33.% - - - B 66.€
44 44 - . B 10C 33.% - - B 33.%
45 45 - - - B 66.€ 66.€ - - B 33.%
47 47 - - - B 66.€ 10C - - B 33.%
58 58 - . . B 10C 10C 33.% 66.€ B 33.%
63 62 - - - B 10C 10C 33.% 10¢ B 10C
64 64 33.2 10C 33.% B 10C 10C - - B 33.%
77 77 66.€ 10C 33.% B 10C 10¢ 66.€ 10¢ B 33.2

Note: BMP type BMP): B = biofilter; W = wetland. Surface are8A); percentage of maximum availablex 0.0% (junction).
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2.4.5 Impact of design decisions on cost, reliability, dwater quality

Figure 2-7 shows that biofilters at the centralb¢satchment 2) and outlet (sub-
catchment 4) locations (labelled as ‘BMP 2’ and ‘BMI' in Table 2-6) were preferred in
most Pareto optimal solutions for scenario 1. Thiicates, in addition to volumetric
reliability benefits as discussed previously, npiéticluster-scale biofilters provided cost-
effective TSS reduction. In addition, in solutiongh high TSS reduction, the central
sub-catchment 2 storage pond, and not the outtetatchment 4 pond, was preferred.
The sub-catchment 2 pond contributed to the supplyme objective only and was
mandatory where the sub-catchment 2 multiple-ciestale biofilter was selected,
whereas pond 4 was not mandatory. Cluster-scalétdis were selected more frequently
than other cluster BMPs in solutions with TSS reiuclevels above 90%. In particular,
cluster biofilter 3 was selected frequently andvpited desirable cost-TSS reduction
performance. This may be because cluster bioftareated runoff from the sub-
catchment with the highest impervious fraction (§0%hich had inflows with higher
pollutant concentration and volumes than othertetubiofilters, resulting in higher
treatment efficiency, and intercepted runoff whatherwise reached the catchment-outlet
BMPs, which overflowed quickly due to the large tdouting catchment and limited
capacity at the outlet.
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Figure 2-7 Heat maps of Pareto optimal solution désion variable values for scenario 1

2.5 Summary and conclusions

A general multiobjective optimization framework wasveloped for the conceptual
design of spatially distributed stormwater harvestiSWH) systems to address
knowledge gaps in the SWH optimization literaturee approach was applied to a case
study SWH system for a housing development nortAd#laide, South Australia. The
results demonstrate the benefits of adopting Payptional spatially distributed SWH
systems identified using the framework, compareth wiaditional catchment-outlet
approaches. Results indicate that where storage spdimited at the catchment outlet,
in addition to better water quality improvementttee harvested stormwater supply
reliability can be achieved by distributing captuireatment, and storage BMPs in an
integrated SWH system. In the case study, bioilletocations with high runoff inflows
were preferred in solutions that were non-dominatgl respect to all three objectives:
lifecycle cost, volumetric reliability and TSS rexion. Maximum TSS reduction was
limited primarily by available treatment BMP sizésaddition, solutions with the highest
reliability did not coincide with those with theghiest TSS reduction. This is because

although pollutant load reduction through abstoacof harvested water contributed to
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improved runoff quality, major drivers for TSS retion performance were the size and
location of BMPs. Of the cluster-scale biofiltetepse strategically placed in a sub-
catchment with the highest impervious fraction thiserwise directly contributed to the
catchment outlet BMP provided the best return ovestment for improvement in
reliability and TSS reduction. If decision-makerghwa particular budget accepted a
slightly lower harvested water supply reliabiligglutions with significantly higher TSS
reduction were available as an alternative to smistnon-dominated in cost-reliability

space.

There were several limitations to the work caroetlin this study and further research
opportunities were identifiedrirstly, future studies could include operatingesilas
decision variables to optimize transfer and reldsde/een storage ponds, to maximize
supply volume and optimize detention storage sBecondly, in the case study
application, MUSIC simulations were a major contributor to computan-times.
Consequently, decision variable options were lithite order to limit the search space
and hence the number of model evaluations. Thasvall convergence towards Pareto
optimal solutions in a practical time frame. Paiathtion of model simulations, surrogate
modelling techniques, or additional optimizationemgiors to prevent simulation of

inferior solutions could reduce run-time furthes, discussed iMaier, Kapelan et al.

(2014) This would permit additional decision optionsesarios including the impact of
climate change on optimal BMP placement, as wellcassideration of solution

robustness and uncertainty analyses.

Despite these limitations, the results presentdlismstudy clearly show the potential
benefits provided by optimization of distributed BVgystems. As recommended by
Askarizadeh, Rippy et al. (201%ptimization frameworks, such as the one propased

this study, will be important decision support ®@r the selection and siting of BMPs
for urban SWH into the future.
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Abstract

Catchment management often involves the selectican ortfolio of stormwater best
management practices (BMPs) to achieve desirecls@sivironmental and economic
benefits. However, selection of BMPs requires thgnoum use of limited resources to
obtain the maximum possible benefit. In previouslgs, BMP selection has either been
formulated as a multi-criteria decision analysisijdem without optimization, or a formal
optimization problem with water quality and costodgectives. However, modern BMP
technologies are designed to provide multiple catft benefits, and decision-makers
are required to select from large numbers of coatimns of BMPs whilst considering
many objectives. This study presents a formal majgetive optimization approach to
identify and select from efficient portfolios of BR. The optimization approach was
applied to a 4-objective case study to identifytfodios of biofilters, wetlands and swales
for a regional-scale urban catchment in a majortialian city. Visual analytics was used
to identify the trade-offs and impacts of decismptions on Pareto optimal portfolio
performance. Case study results show that signifiteade-offs exist between total
nitrogen reduction and cost, and between stormweteresting capacity and cost. This
indicates that large increases in these beneétpa@ssible for small increments in cost by
adopting selected combinations of BMPs. Low-costfplos required a small number
of cost-effective ‘flagship’ projects, but had lawban greening and amenity benefits.
Portfolios that provide a desirable compromise lketw the four objectives were

identified by considering information from the pleim objective and decision spaces.

3.1 Introduction

Sustainable integrated catchment management ofteolves the selection of a
portfolio of stormwater best management practicBMHFs) with precinct-sized
contributing catchments (i.e. < 1 Kmto achieve desired social, environmental and
economic benefits within a larger catchment oegion Marlow, Moglia et al. 2013

BMPs may include structural and non-structural roess for detention, harvesting,
infiltration, evaporation, and transport of non4mourban stormwater runoffLérer,

Arnbjerg-Nielsen et al. 20)5Catchment managers must consider a range afrpeathce

criteria due to several socio-political driversluding: water supply security, public

health protection, social amenity, urban flow reginmprovement, environmental
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protection and flood mitigatioriMarlow, Moglia et al. 2013Askarizadeh, Rippy et al.

2015. In response to these drivers, BMPs have beeelde®d to provide multiple
functions in addition to water quality improvemefadr example stormwater harvesting
(Mitchell, Deletic et al. 200, Clark, Gonzalez et al. 201Bi Matteo, Dandy et al. 2017

and urban vegetation and amenity improvem8hb(ma, Pezzaniti et al. 2016

To maximize total catchment benefits for a giveddert, decision-makers must select
a combination, or portfolio, of BMPs that providé® best trade-off between many
objectives. This is difficult for the following reans Moglia, Kinsman et al. 2032(a)

many planning objectives need to be considekéitthell, Deletic et al. 2007 (b) there

are often many viable BMPs and therefore a largabmr of combinations of BMPs to

choose fromNlaringanti, Chaubey et al. 20009c) identifying and representing the trade-

offs between many (more than 3) objectives can drapatationally expensive and

cognitively challenging for decision-makeBufshouse and Fleming 200¢d) the non-

intuitive nature of multi-dimensional value analysind unanticipated and emergent
trends can prevent decision-makers from understgnaind trusting portfolio analysis
results Fitzgerald and Ross 20gt5%nd (e) the ability to identify the best porifobf

BMPs is made even more difficult in practice, asofimited resources are available for

performing this taskMoglia, Kinsman et al. 20)2Therefore, to assist with selection of

suitable portfolios of BMPs to implement in a cat@nt management strategy, catchment
managers would benefit from a decision support @gr that 1) considers numerous,

possibly conflicting, performance criteria; 2) hesda large number of decision options

and potential strategies; 3) facilitates the ideraiion and representation of trade-offs

between performance criteria; 4) develops trustetegjies; and 5) operates within the

limits of existing planning capacities.

To enable consideration of many performance catesi number of multi-criteria

decision analysis (MCDA) technique&dicoechea, Hansen et al. 198%ave been

developed for ranking and selecting individual BMBHis, Deutsch et al. 200610glia,

Kinsman et al. 201,2Jia, Yao et al. 20)3and portfolios of BMPsAceves and Fuamba

2016a Aceves and Fuamba 20J6kand have been adopted in practideglia, Kinsman

et al. 2012 The multi-criteria decision analysis (MCDA) appches consider many (>3)

performance criteria but require arpriori definition of stakeholder weightings for each

criterion, or exploration within a limited regiorf interest, to determine ‘the most

preferred’ portfolio of BMPs or a small set of pakd portfolios for further
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consideration. However, in practice decision makéen “...don't know what they want

until they know what they can get...Lducks 2012 Maier, Kapelan et al. 20)4This

means a change in preferences and a better untirggaf the problem may occur once
a full representation of the trade-offs between wagious performance criteria is

visualized and exploredMoodruff, Reed et al. 201 34atrosov, Huskova et al. 2015
Therefore, although MCDA approaches allow for maerformance criteria to be
considered when selecting BMPs, they do not alleaision makers to understand the
full range of trade-offs for the given problem befaletermining their preferences, which
limits the ability to identify a suitable comproraisolution. In addition, a limited number
of alternative portfolios are generated in MCDA jethlimits exploration and analysis of

the influence of BMPs on the performance of portfothat provide the best trade-offs.

Formal multiobjective optimization approaches héeen developed for catchment
management problems to assist in identifying theof§d8MPs that represent the best
possible trade-offs among the competing performanderia from among the large
number of combinations possible. Recent approadtese typically included an
integrated stormwater simulation modd&atCh, Rauch et al. 20)4inked with an

evolutionary algorithm for the optimal sizing goldcement of BMP<Ji Matteo, Dandy

et al. 201F within a watershed to achieve environmental héndirom treating
stormwater runoff. However, formal objectives hdeen limited to ecosystem health
benefits and cost for regional-scale catchment gemant problemds.ge, Selvakumar
et al. 2012 Chichakly, Bowden et al. 201&hen, Qiu et al. 201%ou, Riverson et al.

2015. A potential reason for this is that the numblesautions required to characterise

the Pareto front increases exponentially as oljestare added, making this process
exceptionally computationally expensive for morartitwo or three objectives for many

complex water resources problen®aifshouse, Deb et al. 2014As discussed in recent

optimization studieskasprzyk, Reed et al. 201Rasprzyk, Reed et al. 201Blatrosov,

Huskova et al. 2015Woodruff 2016 optimizing management solutions for a sub-

problem of a many-objective problem can lead t@fstve myopia’, which is a negative
decision-making bias that arises due to drawingnmct inferences and conclusions from
limited problem information. In this light, the lited number of formal objectives in
existing studies may have encouraged solutions with-optimal performance with
respect to criteria that are not included as forotgéctives in the optimization problem
but that are important to contemporary catchmemtagars \Voodruff, Reed et al. 20}.3
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It is therefore preferable to optimize with respecimany (relevant) formal objectives

where possible.

While it is important to consider many objectivas,well as trade-offs between them
(rather than having pre-defined weightings, as iIBDW), this makes the analysis of
many-objective optimization results difficult. Ths because: (1) visualizing the trade-
offs between objectives in more than two or threeethsions can be cumbersome, (2)
many-objective Pareto fronts can have large numifensn-dominated solutions, as the
number of Pareto optimal solutions grows exponéntiaith the number of formal
objectives Hughes 2005Chand and Wagner 20153) human decision makers have a

limited cognitive load and can select between @ngmall number of solutions at a time
(Miller 1956), which requires techniques to reduce the Pametatiér to a sub-set of
diverse and promising solutions to present to dmtimakers Purshouse, Deb et al.

2014, and (4) visualizing solution performance sepayatrom decision options may

cause decision maker bias&agprzyk, Reed et al. 201&iuliani, Herman et al. 2014

Matrosov, Huskova et al. 20lRecently, advanced interactive visual analytitsim,

Andrienko et al. 200B8approaches have been applied to help humans seake of large

and complex data sets such as many-objective ggtian resultsKasprzyk, Reed et al.

2009. However, these approaches have not been applib@ catchment management

optimization literature.

In order to enable trusted catchment managemeategtes that are likely to be
adopted in practice to be developed within existotgnning capacities, stakeholder
engagement should be encouraged in all aspecgstiaiipation studies applied to water

resources problemsvéinov and Bousquet 20]1MMaier, Kapelan et al. 20}4The

problem formulation and system models should ino@e existing practitioner
modelling practice. In addition, practitioners shibaim to use optimization as a
complementary tool to existing approaches wheresiples In the existing BMP
optimization literature, there is a lack of end+us®gut or use of problem domain
knowledge that influences optimization algorithmhé@our @i, Dandy et al. 2016

Consequently, catchment management strategiesopeeeby algorithms may not be
trusted and adopted by decision-makers who aremilida with the optimization process
and who may perceive the process of selecting #inet® set of BMP portfolios to be a

‘black box’ (Maier, Kapelan et al. 20}4In addition, integrated catchment simulation-

optimization approachessfivastava, Hamlett et al. 200Rlaringanti, Chaubey et al.
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2009 may not complement current practice for managéménarge regional urban
catchments, which typically involves ad hoc setattand implementation of BMPs as
funding becomes available. In addition, since @xgstdata are often insufficient to
develop useful integrated catchment models at ¢lggonal scaleBach, Rauch et al.

2014, model development may not be feasible withimatéd planning time-frame and
resources. Therefore, a formal decision approaeh itvolves stakeholders in the
selection, evaluation and analysis of portfoliogndividual BMPs, but without requiring
a catchment simulation model, might encourage w@ptak formal decision support

approaches by decision-makers, which would imprgx@n current practices.

As identified in the above discussion, catchmennagament decision support
approaches need to handle several objectives, danthie full trade-off space, and
develop trusted solutions based on current modellmactice. However, current
approaches have failed to meet all of these né&tiie MCDA methods allow many
performance criteria to be considered when selgdaiportfolio of BMPs, they require
decision-makers to define their preferences withknbdwledge of the full-trade-off
patterns between portfolios. Many-objective optiatian approaches overcome this
limitation since they produce an approximation loé tPareto front, which allows an
exploration and analysis of a large number of ptid$ to identify solutions that represent
a desirable compromise between performance critdfiawever, many-objective
optimization approaches can be computationally esiwe and produce a large number
of solutions to select from. In addition, simula@toptimization based approaches may
not be feasible within a catchment management atglso planning capacities,
complementary to existing practices, nor desirabbecision-makers do not trust the
solutions developed by the optimization algorithm.

In order to address the shortcomings of existingr@gches discussed above, the
objectives of this paper are: (i) to present a flroptimization approach that identifies
the best combinations of BMPs for many (> 3) olwecttatchment planning; (i) to
demonstrate the utility of the approach by applyingo a case study based on an
integrated catchment management plan for a majgrrciAustralia; and iii) to use the
case study to a) investigate the possible manyetibgetrade-offs between lifecycle cost,
water quality improvement, stormwater harvestingacity and urban vegetation and
amenity improvement, b) investigate the importanéea many-objective approach
compared to a bi-objective water quality-cost oftation, as has been done in most
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previous studies, ¢) demonstrate trends in the étrgfgparticular BMP projects on Pareto
optimal portfolio performance, and how this mayluehce decision-making, and d)
identifying opportunities in the application of tiramework for improving stakeholder

buy-in to optimization results.

3.2 Proposed Many-Objective Optimization Approach

This section contains a description and mathemdtoaulation of the multiobjective
BMP portfolio optimization problem (decision variab, objective functions and
constraints) and the proposed formal optimizatramiwork for solving it.

3.2.1 Conceptual Outline of the Proposed BMP Selectionphpach

A conceptual outline of the proposed approach tdress limitations in existing
approaches to many-objective best management ggg@MP) selection for integrated
catchment management is shown in Figure 3-1. Tareranly viable and trusted BMPs
are considered, initially, a list of potential dateent management BMRs,is determined
by stakeholders. These BMPs are then evaluatedidhgilly by stakeholders and the
interdependencies between them determined. All ipesscombinations of these
individual projects make up the full portfolio sban space, which is expected to be too
large to adequately evaluate by trial-and-erroeoumeration. Therefore, in order to
allow consideration of many performance critefig,and a wide exploration of the
potential portfoliosP, a formal optimization approach is adopted. Tha& bembinations
of BMPs are represented as Pareto optimal solytlehso a many-objective portfolio
optimization problem formulatiorCfuz, Fernandez et al. 2014n order to analyse the

large number of Pareto optimal solutions producedtlie optimization process,
interactive visual analytics are used to explosddroffs and impacts of BMPs on
portfolio performance. To ensure results are tdusaed determined within limited
planning capacity, the domain knowledge of pramtiirs is required to evaluate the
performance of individual projects. This is alseefu$ to identify interdependencies
between projects and to ensure appropriate contdrand interactions are incorporated
into the evaluation of portfolio objective functgrThis is a pragmatic and parsimonious
alternative approach to integrated urban water lsiimun models that model interactions
in urban drainage, water supply and broader integrarban water systemi8gch, Rauch
et al. 201%, but may be costly to develop for catchment manant planners. The
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approach is appropriate where a large number oénpel BMPs are worthy of
consideration within a large catchment area, eaffgavhere integrated models may not
be available or necessary. The approach can beisegreliminary planning-phase to
screen and select BMPs for further consideratiarfuither ensure decision-makers trust
the optimization results, the visual analytics éaamnd-users to help make the selection
of a final portfolio by illustrating the complicatdogic and benefits of performance

criteria trade-offs and impact of individual BMPs wtal portfolio performance.

1. Identify feasible BMPs 2. Evaluate BMPs
P1|P2|P3|Ps|Ps|Pes|P7
Cost e o |+ |+ ||+ |+
Bent |+ |*|*|*|*]°]"
Ben.2, o+ |+ o [+ |+ +
Ben.3, + [+ oo |+ ||+

3. Determine many-objective
Pareto optimal BMP portfolios

4. Explore and analyze portfolios

P1|P2|P3|Pa|Ps|Pes| P

*
P*, o|o o|o

*
px, | © 0 0

*
L pN.oooooo

Benefit 1

o ® l Cost | Ben.l | Ben.2 | Ben.3
/
q- Fl +HHH+ HHHH +H+ +H
Benefit 3 FZ -+ HHHH +HH+ +HH
— , *
Cost Benefit 2
FN + + 0 +

Figure 3-1 Conceptual outline of the proposed manghbjective optimization approach for
catchment management best management practice (BMBglection.

3.2.2 Proposed Formal Optimization Framework

The proposed formal optimization framework for sétn of BMPs for a catchment

management strategy is shown in Figure 3-2, anthergal in the following sections.
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{a) Problem formulation

I |
I |
I |
: START: Determine N Identify potential projects to meet :
: objectives for catchment plan objectives :
! v ; |
: Specify performance Delermir}e potential synergies, N |
. indicators to calculate cannlballsm" and mutual exc':l'uswlty :
: objective function values between prgects‘ and conditions :
1 on the maximum number of BMPs |
: y : |
: Evaluate individual BMP Formulate functions for interactions :
I performance between projects |
I |
I |

{b) Optimization process

Initialise search parameters ;

Decision variables: construct portfolio of |
BMPs, respecting maximum portfolio and lg— Many-

1

1

1

1

mutual exclusivity conditions 1 objective 1
1 1

v 1 optimization

1 . 1

Objectives: evaluate objective functions, : algorithm :
including synergies and cannibalism ] update 1
1 1

interactions

v
No
Termination criteria met?

+ Yes
Determine Pareto-optimal BMP portfolios

Figure 3-2 Formal optimization framework for selectng portfolios of BMPs.

3.2.2.1 Problem Formulation

The first part of the optimization framework corsisf steps required to formulate a
portfolio optimization problem that represents gdachment management problem. To
achieve multiple catchment benefits, numerous st@t@er best management practices
(BMPs) are typically considered to intercept andl a@th runoff, at locations distributed
throughout a catchment. Examples of BMPs may irelubiofiltration systems
(biofilters), which typically consist of a basin enaying a filter medium; constructed
wetlands, which are shallow, extensively vegetatemkins that use enhanced
sedimentation, fine filtration and pollutant uptgkecesses to remove runoff pollutants;
and swales, which are vegetated channels. Appteptypes and locations of BMPs
largely depend on site characteristics includiniy type, topography, infiltration rate,
contributing connected impervious area, and sfitspace to access for maintenance.
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Site characteristics are typically assessed throngsite and geospatial studiésaimdar
2014). After site assessment, a short-list of feasiBMPs is agreed upon amongst
stakeholders taking into account the potentiactieve desired performance criteria and
other socio-political factorsGhichakly, Bowden et al. 201¥harma, Pezzaniti et al.
2019.

The performance of each BMP is then evaluated edgently against multiple
criteria, using accepted models based on the tonitng sub-watershed for each BMP,
and in consultation with experienced local exp@riamdar 2013 In the absence of an
adequate regional-scale integrated model to evaling downstream impact of BMPs,
interactions (for examples of formulating interaos in portfolio optimization se€(uz,

Fernandez et al. 20)4between BMPs that influence individual BMP penfiance are

evaluated based on expert judgment and modellifigMPs and multiple contributing
sub-watersheds, to determine decision-making ruesperformance models for
interdependent projects. The individual projedi®irt performance, interdependencies
and practical limitations on portfolio size arertifiermulated as the decision variables,
objectives and constraints of a mathematical ogtation problem (see Section 3.2.3).

3.2.2.2 Optimization Process

The second part of the optimization framework dessrthe algorithmic processes
used to solve the optimization problem. Only pditthat are non-dominated (i.e. none
of the objective functions can be improved in vakuhout degrading one or more of the
other objective function values) can be consideregbortfolios that represent the best
trade-off between objectives. To identify the namhated, or ‘Pareto optimal’ solutions
to the mathematical optimization formulation a mafyective metaheuristic algorithm
is suggested as part of the optimization framewdiaheuristic algorithms have several
advantages over traditional optimization approag¢kesh as linear programming). They

can deal with multiple objectives simultaneougWaler, Kapelan et al. 20)}4nd have

been successful in recent planning and design o&ttiran studies considering urban
water planning $zemis, Maier et al. 201Beh, Dandy et al. 2014aton, Dandy et al.
20144 Marchi, Dandy et al. 2036@nd distributed BMP systemSlfichakly, Bowden et
al. 2013 Di Matteo, Dandy et al. 20}.7 Furthermore, they can be linked with the

evaluation models required to calculate multiplgotive functions and check constraints

of candidate solutiondMaier, Kapelan et al. 20)4and can provide confidence in the
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results of the optimization process, as simulatradels that are already used in local

catchment planning decision-making can be ubtldr, Kapelan et al. 20)4

As part of the optimization process, a number diitsins are generated with the aid
of a many-objective metaheuristic algorithm. Eaolutson represents a set of binary
decisions on whether or not to adopt each availgiotgect in a portfolio. In the
construction of a solution, projects are added pofolio until a maximum number of
projects is reached, or all projects have beenidered i.e. a portfolio can consist of
fewer than the maximum number of projects. Themntfpleos are evaluated against
logical and strategic conditions. If a portfolicolates these conditions, the objective
function values are set to a penalty value. Néwd, gerformance of valid portfolios is
evaluated by calculating objective functions, imlthg interactions. This evaluation
requires a model of the objective values of indmadprojects, and a model for each
interaction, to determine the total portfolio oltjee function values. After evaluation,
final penalties are applied to objective functi@ues of solutions that fail to meet defined
constraints. The metaheuristic algorithm uses d¢bgdunction values to assess the
fitness of solutions and to iteratively modify sidns. Over a number of iterations,
solutions converge towards the set of Pareto opprdfolios, which are non-dominated
in the set of all feasible portfolios. The metah&tio iterative approach continues until
specific termination criteria are met (for examp@lenaximum number of iterations). The
non-dominated solutions identified by the optimi@atprocess are Pareto optimal or near

Pareto optimal catchment management portfolios.

3.2.2.3 Visual Analysis of Pareto optimal

Portfolios

An interactive visual analytics packadéo(lat and Reed 200 Hadka, Herman et al.

2019 is suggested to assist decision makers to expéoralyse and ultimately select
appropriate portfolios that represent a desiredpromise between performance criteria

and practical catchment management strateesef, Kapelan et al. 20}4Firstly, the

Pareto optimal portfolio performance and decisiatadas well as alternative data that
may be useful for decision-making (e.g. averagdrimrting catchment size, BMP type,
number of projects) are uploaded into the visuahldits package. Then, high-

dimensional coordinate plots or parallel coordinali®s (nselberg 200Pare used to

visualize the performance of the large number aktaoptimal portfolios in many-
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objective space. Then, in order to reduce the nuambeortfolios considered for further

analysis, dynamic filtering to eliminate undesigldolutions can be carried out by
analysts based on the decision-maker’s budget r@antst and minimum preferences for
each benefit, and eliminate apparently undesiradmebinations of BMPs not anticipated

a priori (Piscopo, Kasprzyk et al. 20)18Nithin the reduced set, decision-makers and
analysts can use brushing to highlight sub-seistefesting solutions. Multiple linked
plots of the same data set can assist with idengfgnd rationalizing trade-offs, such as
conflicts and areas of diminishing returns betwebjectives and emergent behaviour
caused by the inclusion of particular BMPs withortfolios. Interactive visualization of
optimization objective and decision spaces simelbarsly enables stakeholders, with the
assistance of analysts, to rapidly identify subsdtportfolios that contain preferred
projects and compare their performance to othdfgms. In this way, browsing through
solutions to investigate and learn about the impaahdividual project preferences on
total catchment benefits can allow decision-makersvercome institutional decision-

making biasesKollat and Reed 20Q7Matrosov, Huskova et al. 201L5Ultimately,

several desirable portfolios are selected for Rrtfonsideration.

3.2.3 Optimization Problem Formulation

To identify portfolios that represent the best &adf between many objectives, the
project portfolio selection problem is defined dee toptimization of vectoiF(P),
composed oh objective functions:

F(P) = [fuf2,....fn]

Equation ( 3-1)
whereP is a portfolio of projects, arfdis a vector of the associated costs and benefits
of a portfolio. The decision variables, objectives\d constraints particular to the
catchment management portfolio selection problesraarfollows.

3.2.3.1 Decision Variables

In the framework, it is assumed that each BMP ptdjas a pre-determined size, type
and location. As such, each decision variablebgary variable, d that represents the
decision whether or not to adopt project,There are hpossible projects, and thug N
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decision variables, given bg:=ds, tb,...,di, whered; €0,1, for alli € (positive integers).

A portfolio, P, is defined as the set of projepigor all i whered, = 1
3.2.3.2 Objectives

Although objectives depend on stakeholder inteyésiis formal objectives addressing
one or more economic, social, or environmental batnt management goals are
included in the proposed framework: economic cegiter quality improvement,
stormwater harvesting capacity, and combined urh@getation and amenity
improvement. Economic cost is a primary concerndiecision-makers responsible for
maximizing return on investment, including capitahintenance and operating costs.
Water quality improvement is a key environmentgkeotive considered by catchment

management authoritieliichakly, Bowden et al. 2013Yang and Best 2035

Maximizing stormwater harvesting volume is a prignanotivation for implementing
projects with SWH capacity in order to reliably rmeeigation demand, which can
contribute to runoff volume reduction and groundsvatecharge known to produce

ecosystem health benefitdgkarizadeh, Rippy et al. 20L5An amenity improvement

score was selected as the social criterion, as BM@sypically located in public open
spaces and are maintained using public resourcgsudban vegetation and amenity

improvement are often important criteria for evélug BMPs.

3.2.3.2.1 Cost

In the proposed framework, the economic cost afréfqio of projects is represented
as a life cycle codtCC [$] (Equation (3-2)) Di Matteo, Dandy et al. 20),7which is a
discounted sum of expected future costs for stot@waanagement assets, including

BMPs and transfer infrastructure required to harsesmwater {aylor and Wong 2002

The life cycle cost objective function for each diglate portfolio of BMPs is given by:

MINIMIZE: fCOSt == LCCBMP + LCCSWH

Equation ( 3-2)
where

LCCpyp = ?’:1{ (TACpmp,) + PWFestab,BMPi(SABMPi X ECFgyp, X

MBMPi) + PWFmaint,BMPi(SABMPi X MBMPi)}
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Equation ( 3-3)

LCCSWH = CCapTank + CCapPipe + CCapControl + CCapPump + PWFmaint(CmTank +

CmPipe + CmControl + CmPump)

Equation ( 3-4)
where a sum of the cost of BMPs to capture and steamwater runoffl. CCawp [$]

(Equation (3-3)), and to transfer harvested water balancing storage for further
treatment and distributiohCCswr[$] (Equation (3-4)) is applied witBMP;
representing th#" BMP in the candidate portfolid\ [integer] is the number of projects
in the portfolio, and’AC[$] is the total acquisition cost as a functiors#f,the surface

area oBMP.

PWFestab [fraction], for the establishment period, af¥WFmaint [fraction], for the
remaining design life of system components, areptleeent worth factor for a series of
annual costs computed using a discount & [fraction] is the establishment cost
factor (i.e., multiplier) for the annual maintenanwostM [$] during the establishment
period (typically 1-2 years) for each BMP. For BMRgh a stormwater harvesting
function, Ccaptand$], Ccappipe[$],Ccapcontrol [$], and Ccappump[$] are the capital costs for
required storage tanks, control systems, pipespantp stations, an@mtank[$], Cmpipe
[$], Cmcontrol [$], and Cmpump[$] are the annual maintenance costs for the tpiges,

control systems, and pumps, and operating cosigectively.

3.2.3.2.2 Water Quality Improvement

The water quality improvement indicator adoptedhia proposed framework is the
total average annual pollutant load reduction & tamget pollutant (Equation (3-5)). Only
one target pollutant is adopted to limit the numifesbjectives and therefore limiting the
difficulty in identifying optimal solutions, howevef the trade-offs between multiple
water quality constituents needs to be known thesd can be added as objectives. This

indicator is widely adopted to assess performand@®UD approaches, including SWH

systemsBrowne, Breen et al. 20).2The target pollutant(s) will depend on stakekold

interests. The water quality improvement objecfivection is:
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MAXIMIZE: fya1iey = 2ivq Source;— Resid;

Equation ( 3-5)

where, foyq1ity [Mass yeat] is the mean annual pollutant mass retained by 8MP
each candidate portfoli®\ is the number of BMPs in a portfoliBesid [mass yeat] is
the mean annual mass of pollutant leaving'tH8MP’s contributing catchment area, and
Source[mass yeal] is the mean annual mass of pollutant that reathes” BMP’s
catchment outlet in a post-development catchmesdlivee scenario without intervention.
Residand Sourceshould be determined using a stormwater qualisgssment model
accepted by the catchment management auth@uaygrabes, Kuczera et al. 2Q@ach,
Rauch et al. 204

3.2.3.2.3 Stormwater Harvesting

Average annual supply capacity (Equation (3-6))adopted as an indicator of

stormwater harvesting performandditchell, McCarthy et al. 2008 This metric was

selected because it can be determined from gesteriage-yield-reliability curves for a
catchment at the project screening phase of catthmanagement plannin@iowne,
Breen et al. 2012Hanson and Vogel 20)4or other techniquednamdar 2014 In

addition, the average annual capacity approximdwesunoff volume reduction due to

harvesting, which has ecosystem health benefis&drizadeh, Rippy et al. 20L5The

supply stormwater harvesting objective function is:

MAXIMIZE: fyyppiy = 2L, Supply;

Equation ( 3-6)
whereSupply [volume] is the average annual stormwater hamgstupply capacity

for thei BMP in a portfolio, andN [integer] is the number of projects in a portfolio

3.2.3.2.4 Urban Vegetation and Amenity Improvement

The urban vegetation and amenity improvement itdicdepends on stakeholder
interests, which may include maximizing vegetateord tree coverage and quality of
recreation spaces. Each project should be apprarstdvaluated (scored) by vegetation

experts. The cumulative urban vegetation improverabjective function is:

MAXIMIZE: fyreen = XiL, Green;

67



Equation ( 3-7)
whereGreen [integer]is a score, determined by expert assessment uattitio the™

project in a portfolio.

3.2.4 Constraints

Strategic and logical constraints on the selectbrprojects and performance of
portfolios could be considered, and are case SpdC€ifuz, Fernandez et al. 2014or

example, where multiple sub-region catchment iatihs fund an integrated catchment
strategy, constraints on the selection of projeatdd (1) ensure equitable distribution of
projects amongst constituent catchment managembsegions, (2) limit the maximum
number of projects in a portfolio,nfd, and projects within each sub-region, (3) prevent
the presence of mutually-exclusive projects, asesBMPs may be redundant in the same
portfolio, and (4) limit budget allocated to prdjgavithin each sub-region. Additional

considerations for portfolio-based constraints diszussed irCruz, Fernandez et al.

(2014)

3.3 Case Study

In this study, we demonstrate the many-objectivePBktlection approach on a
regional catchment management strategy for a megastal city in Australia. A
catchment management authority (CMA) commissionadineering consultants to
identify sites for stormwater BMPs within an intaggd catchment with an outlet flowing
into a prominent marine body. The integrated catfincovers an area of approximately
700 knt, with average annual rainfall of 400-700mm, anchpased of highly urbanized
and peri-urban regions managed by three local govent authorities (LGA). A primary
objective for the CMA was to reduce the nutrierdddrom urban stormwater runoff
flowing into the marine body. In addition, since ghotential sites for BMPs were within
public open spaces managed by LGAs, stormwaterebting for irrigation of open
spaces, increasing vegetation and public amenityevavere considered important
additional benefits. The consultants identified Mp=70) potential biofiltration, wetlands
and swale projects at locations distributed in oppaces throughout the three LGA
regions. Thirteen of these have a capacity fornsia@ter harvesting. In addition, the
consultants agreed that a portfolio of 20 projectéewer (Max=20) was practical. The
BMPs were considered mutually independent, asdah&ibuting catchment areas to each
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BMP did not coincide i.e. downstream impact of BMR=auld not affect the performance

of other BMPs within the large regional catchment.

The application of the proposed optimization apphoaas part of a real-world study
involving a multi-criteria analysis conducted tedify a portfolio of BMP projects for a
regional catchment. This allowed the authors toawestrate how the proposed approach
can consider existing BMP selection practices, thsca study objective. As the case
study application was only intended to demonstiaeptimization approach, the results
of the study were reviewed by consultants but weteused to inform decision-making.
The names of stakeholders and catchment regioont/et are not disclosed in this study

for reasons of confidentiality.

Engagement between stakeholders, engineering ¢antsyl and the optimization
analysts (who are the authors of this study), wasied out as follows. Firstly,
engineering consultants ran one workshop wherebtibad catchment management
objectives were established, which was attended stakeholder working group, from
LGAs and the CMA, of approximately 16 people. Cdtasus then identified sites,
assessed them for quantitative metrics (e.g. redugize of BMPs to meet water quality
constraints, cost, and stormwater harvesting capamnd made a preliminary effort to
score each of the qualitative metrics (e.g. vegetamprovement and amenity value)
using objective thresholds. Consultants then dexge preliminary scores to LGAs and
asked to provide a response. These were genemligwed by landscape, bushland,
horticultural and parks and open space staff. Th# mvolved and level of response
varied between the LGAs. Consultants then had &shop with each of the individual
LGAs to review the sites, establish a common undedsng of the whole catchment
management opportunity and confirm the proposedvishaal project scoring. Then,
important objectives were refined into formal opation objectives by the consultants
and optimization analysts. The analysts used thid-priteria evaluation data to inform
the optimization problem formulation including d&on variables (projects), developing
objective functions and project objective functiaiues, and constraints. The data used
for this study are listed in the references, taldapplements and repository at Di Matteo,
Maier et al. (2016b).

69



3.3.1 Problem Formulation
3.3.1.1 Decision Variables

The 70 potential BMPs (Table 3-1) were formulated/@ decision points with two
corresponding decision options; to adopt or nopaddBMP in a portfolio. Following a
preliminary desktop analysis, BMPs were determingd stakeholders to have
contributing catchments ranging in size from 3 ¢ia&21.2 ha, with an assumed 50%
pervious and 50% impervious area. The functionadsiof BMPs were pre-determined
by consultants and sized to meet functional requergs for total nitrogen, total
phosphorous and total suspended solids runoff faoitueduction targets (Dale Browne,

personal communication, 2016).

Table 3-1 Details of available catchment managemeptojects

Local government  Project BMP Contributing Lifecycle cost TN Reduction Total Supply Green
area (LGA) ID Type catchment area (ha) (SNPV) (kaglyr) (ML/yr) score
1 3 Biofilter 225 305,157 72.75 0 4
4 Biofilter 11.6 271,251 37.4 0 4
5 Biofilter 7.7 175,626 24.86 0 5
6 Biofilter 9.3 131,719 30.16 0 5
7 Biofilter 8.2 43,906 26.63 0 5
8 Biofilter 9.4 87,813 30.25 0 5
12 Biofilter 50.3 1,220,630 162.82 0 5
13 Wetland 4.8 169,532 15.49 0 5
23 Wetland 3.0 98,438 9.58 0 5
24 Wetland 135 459,379 43.63 0 5
25 Wetland 13.2 459,379 42.79 0 5
35 Wetland 215 918,757 69.5 0 5
36 Biofilter 45.2 949,379 146.3 0 5
45 Biofilter 24.8 271,251 80.17 0 7
46 Swale 64.5 123,814 208.58 0 7
50 Biofilter 9.6 187,282 31.08 11.95 6
55 Biofilter 8.7 305,157 28.27 0 8
56 Biofilter 84.9 237,345 274.58 0 5
57 Wetland 29.4 1,206,996 95.12 12.83 5
2 1 Biofilter 20.4 508,596 55.79 0 4
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2 Biofilter 25.4 542,502 69.5 0
9 Wetland 91.9 1,220,630 251.32 0
16 Biofilter 28.5 474,689 78.09 0
19 Wetland 22.5 787,506 61.66 0
20 Wetland 14.8 525,004 40.55 0
21 Wetland 59.0 718,815 161.29 0
22 Wetland 21.3 406,877 58.23 0
27 Biofilter 15.3 305,157 41.89 0
29 Wetland 6.2 196,877 16.89 0
37 Wetland 13.6 590,630 37.31 0
42 Wetland 37.5 951,570 102.47 0
47 Biofilter 57.9 712,034 158.47 0
49 Biofilter 36.0 610,315 98.48 0
51 Wetland 17.4 590,630 47.56 0
52 Wetland 21.3 721,881 58.23 0
58 Biofilter 25.5 592,986 69.9 3
59 Biofilter 7.8 224,031 21.21 10
60 Biofilter 50.4 189,135 137.78 2.42
61 Biofilter 57.7 381,297 157.92 40
63 Biofilter 10.4 178,041 28.59 15
66 Biofilter 88.6 2,027,127 242.49 5
68 Wetland 98.4 976,171 269.13 2
70 Wetland 22.0 768,630 60.29 2.5
10 Biofilter 53.1 1,017,191 145.28 0
11 Biofilter 32.8 305,157 89.68 0
14 Wetland 115 295,315 31.52 0
15 Biofilter 16.0 203,438 43.78 0
17 Biofilter 43.7 474,689 119.47 0
18 Biofilter 417.2 474,689 1141.49 0
26 Wetland 4.5 164,064 12.44 0
28 Biofilter 10.6 87,813 29.13 0
30 Biofilter 40.8 542,502 111.75 0
31 Biofilter 7.2 131,719 19.65 0
32 Swale 10.1 114,970 27.73 0
33 Swale 13.5 88,438 37.02 0
34 Wetland 51.4 732,378 140.6 0
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38 Biofilter 97.7 213,213 267.23 1.73 6

39 Biofilter 15.9 175,626 43.59 0 6
40 Biofilter 27.2 610,315 74.48 0 6
41 Biofilter 97.7 97,587 267.23 1.73 6
43 Biofilter 18.7 440,783 51.25 0 7
44 Biofilter 43.7 576,409 119.47 0 7
48 Biofilter 421.2 915,472 1152.38 0 7
53 Wetland 15.1 525,004 41.28 0 6
54 Wetland 63.1 962,941 172.58 0 7
62 Wetland 14.0 576,409 38.19 0 7
64 Wetland 18.8 656,255 51.43 0 7
65 Biofilter 47.4 847,660 129.69 0 7
67 Biofilter 8.4 95,157 23.11 1.29 6
69 Biofilter 47.4 169,532 129.69 0 7

3.3.1.2 Objectives

3.3.1.2.1 Cost

The objective function for lifecycle cost of eacbrtfolio, LCC [$], was calculated
using Equation (3-2) to (3-4). The parameters lf6&Csmp [$] (Equation (3-3)) were
estimated from cost schedules developed by Mell®mWUvater AustraliaZ013 (Table
3-2). A typical lifecycle period of 25 years, a absint rate of 6.5% per year, an
establishment cost factor of 3, and an establishpenod of 2 years, were adopted. The
parameters foLCCswh [$] (Equation (3-4)) were estimated as follows.lidear cost
model for the total net present value (NPV) of steater harvesting components was
determined using regressiort & 0.814) between levelized lifecycle cost [$/ML]dan
estimated annual volume supplied [ML/yr], usingailetd costing data for six stormwater

harvesting projects derived dpamdar (2014)Appendix B, Table B-1). Thus, the

lifecycle cost of stormwater harvesting compondrasn Equation (3-4) was calculated
using the following equation:

N (_ . . 3. .
LCCopr = { L1(~104.49 - Supply; + 6622.6)[7] - Suppy[ML] i 610 <

0 otherwise
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Equation ( 3-8)
whereSupply is the average annual supply capacity ofithBMP in a candidate
portfolio of N BMPs.

Table 3-2 Cost variables for BMPs.

BMP Surface Area Construction Establishment Maintenance

(SA) (m2) Cost Cost Cost
($/m?; ($/mélyr; ($/mélyr;
year 0) year 1-2) year 3-25)
Wetland
0 < SA<500 150 30 10
500 < SA< 10,000 100 6 2
SA > 10,000 75 1.5 0.5

Biofiltration basin

0 <SA<100 1,000 15 5
100 < SA< 500 350 15 S
SA > 500 250 15 5
Swale

All sizes 35 9 3

Note: Establishment cost = Annual maintenancexestablishment cost factor. Costs
are in Australian Dollars (2013$). Values were sdalsing an inflation adjustment factor
of 1.03053 from 2013$ to 2016%.

3.3.1.2.2 Water Quality Improvement

Total Nitrogen (TN) was the specific pollutant couent adopted for the water quality
objective. TN load reduction was particularly im@mt since in the urban catchment it
was found by consultants that maximizing TN reducthrough treatment of stormwater
also tended to reduce phosphorous, total suspesudieid and other pollutants to within
target levels (Dale Browne, personal communicatifi,6). The introduction of excess
anthropogenically-generated nutrients into coasyatems can cause eutrophication,
which has negative impacts. These impacts oftdodecexcessive, and sometimes toxic,
production of algal biomass, loss of important skare habitat, changes in marine
biodiversity and species distribution, increasedirsentation of organic particles, and
depletion of dissolved oxygen. The mean annualfeait mass of TN retained by each
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candidate portfoliof,iit,, [fraction]; Equation (3-5)) was calculated basedite sum
of average annual TN mass retained by individuaPBNh a portfolio. The water quality
improvement of individual BMPs (i.e. not an intetgih system of a portfolio of BMPS)
(Source - Resid ; Equation (3-5) was assessed using the integitghment model,
MUSICversion 6.1 (Model for Urban Stormwater Improvetf@anceptualizion, eWater
(2009)), as suggested by the CMA regulatidMdSICis an integrated stormwater model
that evaluates rainfall/runoff and pollutant getiera and transport, hydraulic and

pollutant removal performance of BMPBach, Rauch et al. 20LAMUSIC algorithms

simulate runoff based on models developedbyew and McMahon (1999nd urban

pollutant load relationshipbased on rmalysis byDuncan (1999) An assessment of

interactions between BMPs was not deemed necedsecguse the contributing

catchments of individual BMPs were spatially mutyiakclusive.

3.3.1.2.3 Stormwater Harvesting

To determine stormwater harvesting capacity of qmisj, experts on stormwater
harvesting from each LGA were asked to evaluatestbienwater harvesting potential of
BMPs within their jurisdiction. They estimated tbepected irrigation demand required
by open spaces near each BMP, and the averagel gmeatial capacity to supply the
demand. The estimates were based on proceduraficspeeach LGA, and reflect the

stormwater harvesting objective performance vahgeepted by decision-makers.

3.3.1.2.4 Urban Vegetation and Amenity Improvement

The ‘green’ score’ of individual projects (which & weighted score of several
indicators, and was developed by the authors aneedgo be used as an optimization
objective by consultants), use scores assigneasres (see section 3.3) from each LGA
interviewed in a workshop session by consultante @xperts were asked to answer the
following questions about the BMP projects witheit jurisdiction: Answer ‘Yes’ ‘No’
or ‘Maybe’ to the following questions: 1) “will nige vegetation increase at the site?”, 2)
“will tree cover increase at the site?”, and, 3)IIthe quality of recreation spaces in the

area increase?”. The total catchment ‘green’ sabjective function was:

3
Green; = Z Score;

j=1
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Equation (3-9)

3  if answeris'Yes'
Scorej = {2 if answer is 'Maybe'
1 if answeris 'No’

Equation ( 3-10)

whereGreen is the sum of scores for each project, &aedreis the number of points
assigned to the answer to fHlequestion. Since there were three questions, eajhch
could achieve a maximum of 9 green points, and padifolio a theoretical maximum of

(20 x 9 =) 180 total green points.

3.3.1.2.5 Evaluation of Individual BMPs

Before the optimization process was run, the casts performance values of each
BMP were determined (Table 3-1). Firstly, the stemater harvesting capacity of
individual projects was determined from LGA expetérviews. Secondly, the individual
project lifecycle costs were determined using pasameters from Equation (3-2) to (3-4)
and (3-8) for each project. Thirdly, the water dyaperformance of each BMP was
determined with the aid #USIC. To do this, a catchment model for a 1 ha catcthimen
area for each LGA was developed. The model conkta 0.5 ha pervious catchment
node, a 0.5 ha impervious catchment node, and #et owde to estimate the average
annual TN load per unit area of catchment witharage 50% impervious surface area

(Browne, Breen et al. 201.20ne year of continuous climate data and pervsuwrface

parameters provided by the CMA were adopted forcditehment nodes. To estimate
Sourcegkg] for each BMRthe TN load from a 1 ha unit catchment area ferrédspective
LGA was multiplied by the contributing catchmenéa@ito each BMP in hectares. Each
BMP size was selected to remove 45% of the TN foawh its contributing catchment
(i.e. Resid = (1 - 0.45) xSource@, which was suggested as an acceptable performance
based on advice from the consultants (D. Brownesqmal communication, 2016).
Finally, Equation (3-7), (3-9) and (3-10) were apglto determine the individual project

green scores.
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3.3.1.3 Constraints

A single constraint was applied to limit portfolitss20 or fewer projects, since more
than 20 projects was determined to be impractaalesign and construct by the CMA,
as mentioned previously. The projects were assuraaddependent in that the inclusion
of one project did not influence the expected bignedst, or feasibility of another. This
assumption was considered acceptable since thbeneatts contributing to each BMP
were mutually exclusive, and customers for stormewharvesting projects could receive

supply from only one project.

3.3.2 Pareto-Ant Colony Optimization (P-ACO) Algorithm

To solve the optimization problem, a variant of Bareto-Ant Colony Optimization

algorithm (P-ACO; Doerner, Gutjahr et al. 20pmetaheuristic search algorithm was

used. P-ACO was selected because it was origirgghyeloped to solve portfolio

optimization problemsOoerner, Gutjahr et al. 200Boerner, Gutjahr et al. 20pehas

been used successfully and adopted as a benchigarkhan in recent three-objective

portfolio optimization applicationgfuz, Fernandez et al. 2014nd has been applied to

complex multiobjective water resources proble®@semis, Dandy et al. 2013zemis,
Maier et al. 2014Nguyen, Dandy et al. 20).6The variant adopted here, PACOA, was

demonstrated to outperform other multiobjective@bny optimization algorithms in a

recent water resources allocation stu@zgmis, Dandy et al. 201L3The algorithm

mimics the cooperative foraging behaviour of an gmecies that leaves a chemical
pheromone on a ground surface. In real-life, sarts traverse short paths to food more
frequently, more pheromone is laid on short (ediit) paths. Thus, paths with higher
pheromone levels are more likely to be selectedrbgnt. In the algorithm, artificial ants
select between paths, which represent decisionsheher not to adopt a BMP in a
portfolio in this instance. An input template anx@eutable for the algorithm are available

as Data Set 3 in the Supporting Information.

A summary of the steps in the PACO algorithm isvaian Figure 3-3. In the
initialization phase, the PACO search control paatams are set. The iterative process
commences whetteants are generated, each ant starting with anygpaptfolio x = (0),
and the objective weights (i.e., the ant’s indiatpreferences) are determined randomly

for each ant. In the construction phase of therdlguo, first the order of BMPs is
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randomly shuffled, to ensure BMPs are providedqurakchance of being considered first
by each ant. Then, the ant decides whether to acld BMP to a portfolio, x, by applying
a pseudo-random-proportional rule using pheromarfiermationz. The pheromone
information is stored in one Rkmatrix for eachi'™ objective, representing the binary
options for theN possible BMPs. If the ant adds the maximum nunotbé&MPS, Nmax
before all BMPs have been considered, then norieeofemaining BMPs are selected.
After a portfolio has been constructed, its perfance is evaluated using the objective
functions (Equation (3-2) and (3-5) to (3-7)). mist case, as individual projects were
determined to be independent, the portfolio obyectunctions were a summation of the

constituent individual project objective functioalues in Table 3-1.

Initialize PACOA

v
< For each iteration iter (iter = 1 to w) ><—
v

< For each ant (ant = 1to b)

Construct candidate portfolio
v
Calculate fitness functions
wifant = b
Non-dominant sort

v

Global update pheromone matrices
y ifits=w

Non-dominated portfolios of
BMPs

Figure 3-3 Portfolio optimization process for Pared Ant Colony Optimization Algorithm
(PACOA)

After each iteration, of thie portfolios generated by theants, the non-dominated
portfolios are stored offline in an array. Thenpast of a global update of every element
of thej pheromone matrices, the first and second besbmeirig solutions ranked for

eachj" objective are used to apply the following equation

ng(l—p)- rg+p-Arg

1



15, t in both best and 2nd best portfolio
10, t in best portfolio

5, t in second best portfolio

0, otherwise

J—
AT, =

Equation ( 3-11)
where, for each BMP, the current pheromone valuedcht™ binary option ang"

objective is reduced by pheromone evaporapoand increased by a pheromone value

(Ar{). Pheromone is evaporated from decisions thanetrén the best solutions for each
objective, which makes it less likely these decisiavill be selected again in future
iterations. In this way, the ant’s decision-makiagdscape is modified to guide ants into
regions of the search space that contain non-ddednportfolios. Since the single
constraint was handled in the construction phasgemalty function is required for this
case study as all constructed portfolios are féasithe interested reader is referred to

Szemis, Maier et al. (20149r examples of objective penalty functions. Thegess of

developing, assessing and updating the pheromaiie tio guide the PACOA to near-
optimal trade-offs continues until a specified nmaxim number of iterationsy, is

reached.

Before the PACOA was applied, a sensitivity analysias conducted to identify
suitable values of parameters that control thecb@#ay behaviour of the algorithm to
maximize the likelihood the best possible approxiom of the Pareto front was
generated. The ranges of parameter values testetharfinal parameters selected are

given in Table 3-3.

Table 3-3 PACOA parameters tested and adopted in gsitivity analysis

PACOA Parameter Range of Values Adopted Value
Tested

Number of antsh) 20, 200, 300,500 500

Initial pheromone#o) 0.5,1.0,10.0 0.5

Evaporation ratep| 0.1, 0.15,0.2,0.4, 0.5 0.4

Evaluations I xw) Up to 2,000,000 600,000

In this study, the PACO was run for 1200 iteratiafis500 ants, which equates to

600,000 objective function evaluations. This numifevaluations was selected because
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the progress of the Pareto front ceased to haveingfal progress (assessed by visually
inspecting the Pareto optimal solution set at 5@@uation intervals) after this number
of evaluations in a trial run of 2,000,000 evaloas. The optimization results were
replicated 50 times using different random starsegds for the pseudo-random number
generator used in the algorithm to minimize th&grice of probabilistic effects of some
of the operators that influence the search. Eaohigok approximately 26 minutes on a
3.10GHz computer with 8 GB of RAM, although muléphstances were run on one
machine simultaneously. The Pareto optimal solstsimown in this paper are the result

of a non-dominated sort of the solutions from tBeéplicate runs.

3.3.3 Interactive Visual Analytics to Explore Pareto Optial Solutions

To visualize and analyse the objective and decisperce trade-offs of the Pareto
optimal set of portfolios, an interactive visualabytics package was selected. The
combined objective space and decision space visi@ins were carried out using the

approach of Kollat and Reed (2007using the DiscoveryDV software package

(DiscoveryDV Version 0.72; available &ttps://www.decisionvis.com/discoveryglv/

The package features an interactive data plot aHatvs brushing, linked views of
solutions, marking and tracing of solutions of iet#, as well as rapid browsing through
solution objective, decision and non-objective parfance data. The package has been

used successfully in several recent many-objecpienization studieswWoodruff, Reed

et al. 2013 Piscopo, Kasprzyk et al. 2015The Pareto optimal solution objective and

decision data were uploaded into the interactigeiali analytics package. This allowed
the analyst to 1) visualize and analyse tradelodtsveen the four objectives, 2) isolate
portfolios from several regions of the trade-ofbrft using interactive brushing and

visualization in multiple linked plots, and 3) vadize the decision and objective space to
analyse the impact and prevalence of particulajept® on the performance of Pareto
optimal solutions. The Pareto optimal solution d@a uploaded into the package is

available as Data Set 3, and a .ddv file for thecbveryDv program containing the

visualizations is included as Data Set S4 in thgp8tting InformationDi Matteo, Maier

et al. 2016h
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3.4 Results and Discussion

This section presents the results of the many-tibgoptimization process for the
catchment management portfolio selection case siutlyned in Section 3.3. The results
of the PACOA runs, from 50 random starting posiioshow the algorithm identified
3654 Pareto optimal (or near-Pareto optimal) pbasoas solutions to the optimization

problem.

3.4.1 Identifying Many-Objective Trade-Offs Between PapeDptimal Catchment

Management Portfolios

Figure 3-4 shows the trade-offs between four objest of the Pareto optimal
portfolios in a 4-dimensional coordinate plot. Aagh trade-off exists between TN
reduction and cost, and between reuse capacitg@stdindicating small increments in
cost can return large increases in both of thegectbes. In contrast, green score tends
to increase with cost, which is expected as higiust portfolios have more BMPs
distributed in the catchment to enable larger tcaéathment urban greening and amenity

improvement.
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Figure 3-4 A many-dimensional interactive coordina¢ plot showing the objectives
performance of Pareto optimal solutions. Each spherrepresents a portfolio of catchment
management BMPs. The lifecycle cost, average annuatal nitrogen (TN) reduction, and
average annual stormwater reuse capacity performarecare represented on the cardinal

axes. The green score performance is representeddalour.

The above inferences are supported and supplembwntéxd alternate representation
of the trade-off surface in parallel coordinatéssé¢lberg 199y In Figure 3-5, small

slopes on some line segments between the adjacembélifecycle cost and stormwater

reuse indicate high reuse portfolios exist for loests. However, these low cost-high
reuse capacity solutions appear to have lower ™aton and green score compared to
other solutions. As mentioned above, green scqoeap to be correlated with lifecycle

cost, however, some solutions exist that have la ¢igen score and relatively low cost.
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Figure 3-5 Parallel coordinate plot, where each pdfolio is represented as a line interval
over four vertical axes indicating objective perfomance values. Lifecycle cost is also
represented by color to identify the cost trade-off against each objective.

In the low-cost region, from Figure 3-4, clustefssolutions form in TN reduction-
reuse capacity space. This indicates that individtgects dominate the contribution to
total portfolio reuse capacity or total nitrogemuetion in this region. Analysis of the
BMPs comprising solutions in these clusters shdwas these portfolios contain a small
number of ‘flagship’ projects with exceptionallydg reuse capacity (e.g. project 61, 40
ML/year; project 67, 12.8 ML/year; project 18, 12Ml/year) or TN reduction (e.qg.
project 48, 1152 kg/year; project 18, 1141 kg/yegmear. Portfolios containing only a
few of these flagship projects can achieve relftivegh total reuse capacity or TN
capacity at relatively low cost, but also a lowegrescore. This causes the noticeable
discontinuity in the objective space in the lowicgion, characterized by clusters of
solutions emanating from a small number of porw®lin the low-cost region in Figure
3-4 and overlapping dark blue (low-cost) line segtegoining parallel axes in Figure
3-5. Moving in the preferred objective directioddang a flagship project to create a new
portfolio on the front can cause a large increasd N reduction or reuse capacity.
Therefore, decision-makers desiring low-cost traffe-solutions could consider
portfolios of a small number of ‘flagship’ projectbut this would considerably
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compromise the urban greening and amenity perfocmahthe catchment management

strategy.

3.4.2 Importance of a Many-Objective Problem Formulatidor Catchment

Planning

The cost and total nitrogen reduction trade-offigethions in Figure 3-6 show trade-
offs between water quality and cost objectives,civtiiave been a typical formulation in
catchment management optimization studies to @aethe front, a slight ‘knee’ region
appears such that when moving along the front anay the knee region, there is a
diminishing return in these objectives. This suggelkat solutions in this region may
represent a desirable trade-off between total ggtnoand cost. The trade-off pattern is
consistent with those in other catchment plannioglies (Maringanti, Chaubey et al.
2009 Lee, Selvakumar et al. 2012hichakly, Bowden et al. 201.3However, only

considering trade-offs between water quality argt objectives neglects the influence of
other objectives that may be important to catchmeaahagement decision makers

(Moglia, Kinsman et al. 2032 This could bias decision makers towards selactib

solutions that would lie at extremities in objeetispace should other formal objectives
be consideredollat, Reed et al. 20)1
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Figure 3-6 Pareto optimal solutions identified by lhe optimization process projected in
water quality-cost objective space, which have bedwpical objectives in previous
stormwater management optimization studies. Non-doimated solutions with respect to
the two objectives are shown as solid, and approxiate the best trade-off between total
nitrogen (TN) reduction and cost. Other Pareto optinal solutions in 4-objective space, but

dominated in water quality-cost space, appear trarsrent.

The importance of the many-objective representabbrthe catchment planning
problem adopted in this study is demonstrateddmjrig a solution from the two-objective
knee region in Figure 3-6 through higher dimendimigective space represented in
Figure 3-7. For this purpose, Portfolio 1 (Tabld)3s selected and marked for further
analysis because it lies at an inflection points@rlied by visual inspection) in the knee
region of the two-objective trade-off front (FiguB7). Using the visual analytics
package, an additional harvesting capacity axiseageen score color axis are added to
create a 4-dimensional plot of the objective sp&egure 3-7). To compare Portfolio 1
with other solutions similar in cost, the analytpeckage’s data brushing tool is used to
highlight solutions with lifecycle costs in the gen[$1.90 M, $2.70 M]. In Figure 3-7,

these solutions of interest appear opaque, andethaining solutions that have been
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‘brushed out’ appear transparent. Portfolio 2 (€aBl4) is selected for comparison
because although it has a 22% greater lifecycleams similar TN reduction compared
to Portfolio 1, it has a vastly higher reuse cajyaand green score. Therefore, although
Portfolio 1 appeared in the region of best tradglafee region) in the lower-dimensional
TN reduction-cost representation of the objectpace (Figure 3-6), it performed poorly
in reuse capacity and green score objectives. dbort2 liesnear but noton the non-
dominated water quality-cost front in Figure 3-hus, it would not have been available
to decision makers in a bi-objective Pareto optatian approach, which has been typical

in catchment planning optimization studies to date.

When considering the project options selected énteo portfolios (Table 3-4), it is
apparent Portfolio 2 is almost identical to Pordd! except for one small project (Project
38 instead of Project 33) and, importantly, twoiiddal projects located in municipality
1 (Projects 60 and 61). Consequently, decision-nsakey consider that Portfolio 2
provides a better compromise between objectivespeaoad with Portfolio 1, due to the

reuse capacity and green score benefit the twdiaddi projects provide.

The above results are consistent with findingsewesal other studies including (1) a
finding by Kollat, Reed et al. (20119ndWoodruff, Reed et al. (2013hat, generally in

optimization studies, lower dimensional problemniatations may bias selection of

solutions that would otherwise exist at low-perforgn extremes if additional
performance criteria were considered as formahap#tion objectives, (2) a finding by
Chichakly, Bowden et al. (2013hat, for catchment planning optimization, dedeab

solutions lie near but away from the two-objectima-dominated Pareto front for water
guality improvement and cost objectives, and (&leroffs for a stormwater harvesting
system design determined IDi Matteo, Dandy et al. (2017which showed slight

increases in system costs could provide large ase®in both water quality improvement

and harvesting capacity.
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Figure 3-7 4-dimesional coordinate plot showing th&ade-off space with solutions in a

defined low-cost range as solid, with all other sations brushed out and appearing

transparent. Portfolio 2 may provide a more desirake alternative to Portfolio 1 in 4-
objective space.

Table 3-4 Objective values and decision options e€lected solutions

Solution TN- cost compromise  Low cost compromise
(2D) (4D)
Portfolio 1 Portfolio 2

Objectives

Lifecycle Cost ($M) 2.06 2.51
Total Nitrogen Reduction 3312 3377
(kglyr.)
Stormwater reuse capacity 3.46 44.15
(ML/yr.)
Green Score (no units) 38 51
Portfolio project decisions
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Projects in Municipality 1 - 60, 61

Projects in Municipality 2 46, 56 46, 56
Projects in Municipality 3 18, 38, 41, 48 18, 33, 48
Total No. projects 6 8

3.4.3 ldentifying Impacts of Project Options on Pareto @mal Portfolio

Performance

Figure 3-8 shows combined objective performancedsmuikion characteristics of the
Pareto optimal portfolios, which helps the analistovercome biases arising from
artificial distinctions between objective perfornganand other characteristics of the

problem Matrosov, Huskova et al. 20.9-or example, the visual interactive plot allows

the analyst to inspect which area of the tradefoifit each project features in Pareto
approximate portfolios. In this way, an analyst a&er the impact of particular projects

on portfolio performance.

In Figure 3-8 (a) the opaque spheres represenfopost containing Project 61
(lifecycle cost $381,297; TN reduction 157.92 kgiyeeuse capacity 40 ML/year; green
score 6), which was the project with the highegseecapacity. Importantly, all portfolios
with 40 ML/year or greater reuse capacity includejétt 61, and these portfolios occur
in nearly the full range of cost, TN reduction agiken score of Pareto solutions.
Therefore, this indicates decision makers shouttbaily consider Project 61 in their
final portfolio. In Figure 3-8 (b), the opaque spee represent portfolios containing
Project 48 (lifecycle cost $915,472; TN reductiob52 kg/year; reuse capacity 0
ML/year; green score 7), which was the project witle highest TN reduction.
Importantly, in the lower cost region, Pareto ogtimportfolios with a number of smaller
solutions dominated inferior portfolios containiBgpject 48. This was because although
the green score of Project 48 was high (7 out ptf® cumulative green score and/or
reuse capacity of low-cost portfolios with morejpots dominated portfolios containing
a small number of projects including Project 48isTimdicates multiple additional
benefits can be achieved for a similar cost bygiaiportfolio of projects rather than one
‘flagship’ project. In addition, decision-makersncaiew and assess additional (non-

objective) characteristics that may influence deanisnaking, for example the percentage
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of the catchment treated, spatial distribution afjgcts throughout the catchment, or
socio-political preferences for particular projects
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Figure 3-8 Coordinate plot showing the combined Paato optimal objectives, decisions, and
alternate data spaces. Portfolios that include, ipart a) Project 61, and in part b) Project
48, are shown as opaque spheres, other portfolioseebrushed out and appear transparent.

The size of spheres is proportional to the numberf@rojects in a portfolio.

3.4.4 Improving Stakeholder Buy-In to Optimization Resalt

Adopting the portfolio optimization approach andvalving stakeholders in the
formulation, exploration and analysis makes theisi@e support framework open to
stakeholder influence and complementary to exidliegision analysis practices, which
can improve trust in the optimization results andreéase the likelihood they will
influence final decision-making. For example, tletfolio optimization approach allows
individual BMPs to be provided by practitioners faan with which BMPs are likely to
be technically feasible and socio-politically adedge, which is not ensured in

simulation-optimization based BMP placement apgneacChichakly, Bowden et al.

2013. In addition, the portfolio approach complemestssting practices where MCDA

approaches are used to handle many-objective prefes to rank BMPs based on

individual or portfolio performanceéMoglia, Kinsman et al. 20)2but has the advantage
that it allows trade-offs and a large number ofeRaoptimal portfolios to be explored
and analysed. When formulating objective functiostakeholders are encouraged to
consider the interdependencies between BMPs, whig result in the discovery and
deeper understanding of aspects of the problemhémhnot been considered previously
(Wu, Maier et al. 2016 Interactively exploring the full Pareto optinddta set enables
analysts to discover the full trade-offs betweegedives, which can help decision-

makers to rationalize preferences for differentdiiém and may change during the
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exploration process. In addition, stakeholders wittreference for particular BMPs can
explore the impact of removing portfolios contagithe BMP from the Pareto set to
rapidly analyse the importance of the BMP and pdssalternatives, which may help
overcome institutional biases favouring particlBMP types. In this way, exploration
may help to rationalize the benefits of a distrdaustormwater harvesting and treatment
approach with a large number of BMPs over a camtdlapproach with high capacity
BMPs, or a mix of bothli Matteo, Dandy et al. 20).7

3.5 Summary and Conclusion

A general multiobjective optimization framework wa@esveloped for the selection of a
portfolio of BMPs for catchment management. Thenigavork addresses the need for a
decision support approach for the selection of BMias 1) considers numerous, possibly
conflicting, performance criteria, 2) handles aglamumber of decision options and
potential strategies, 3) facilitates the identifica and representation of trade-offs
between performance criteria, which 4) developstéu strategies, 5) within the limits of
existing planning capacities. The approach wasieghpd a case study catchment plan for
a catchment authority in a major coastal city insthalia. The results demonstrate the
benefits of exploring full portfolio solution traddfs in a many-dimensional Pareto
optimal front. A comparison between the trade-pHces of the lower dimensional water
guality-cost problem formulation, and the many-chbjee formulation, demonstrated that
low-objective formulations can result in Paretoimgi portfolios with low performance
in non-objective performance criteria. In this stu@hen stormwater harvesting and
vegetation and amenity improvement scores wereudiedd as objective functions,
solutions that were in a region of best trade-onfivater quality-cost space performed
poorly in these additional objectives. The manyechye optimization results show that
sharp trade-offs exist between TN reduction and, @l between reuse capacity and
cost, indicating small increments in cost can retarge increases in both objectives.
Portfolios in the low-cost regions typically feagdra small number of projects including
cost-efficient ‘flagship’ projects that provide higTN reduction or reuse capacity.
However, in order to maximize the vegetation imgment and amenity benefits,
portfolios with a larger number of lower cost BMdistributed throughout the catchment
were preferred. Notably, the optimization formwdatin the case study does not consider

interaction between having a higher harvest capaaight allow for more irrigation of
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green spaces. Using the visual analytics appraaelxlore combined optimization and
decision spaces, the impact of individual projebist may be preferred by decision-
makers was rapidly visualized. This approach caslsist in overcoming institutionally
influenced biases to include particular projectsBMP technologies to demonstrate

alternative similar cost options to decision-makers

Future studies applying the framework could accdandifferences in preferences
between multiple stakeholders that may be resptan&bfunding over different periods
of the project lifecycle. For example, in some fungdschemes, CMAs fund the capital
expenses, whereas LGAs fund the maintenance andinphg@xpenses. The many-
objective problem formulation could be adaptedniude specific objectives important
to LGAs, which might include individual LGA expedteperating expenses, in addition
to total catchment benefits. In addition, the Ragitimal solutions could be explored
taking into account individual objective and norjeabive preferences of multiple
stakeholders. In this way, decision-makers canalizel their preferences on a trade-off
curve and compare and, through an iterative appraasualize and negotiate acceptable
outcomes and solutions. This may be preferabléter@pproaches where weightings are
seta priori, which do not account for decision maker prefeesna the decision space,
nor allow a visual comparison of the regions otiast preferred by several decision-
makers. Finally, the constraint for number of petgecould consider the difficulty of
constructing individual BMP types (e.g., 20 swalaght be easier to construct than 20

wetlands).
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Abstract

In this paper, an optimization-visual analyticanfiework for complex environmental
management problems involving multiple stakeholdedeveloped and illustrated. In the
framework, problems are represented as a seriemnalfer, interconnected optimization
problems, reflecting individual stakeholders’ imtstis. The framework uses interactive
visual analytics to explore and analyze optimizatiesults, and Best Alternatives to a
Negotiated Alternative (BATNAs) and an approach reframe visualizations to
encourage stakeholder negotiation. To demonstrateutility of the framework, it is
applied to a realistic case study involving mutigtakeholder groups funding different
aspects of an integrated catchment managementf@iaa region of a large city in
Australia. The problem features sixteen objectifrem four stakeholders. The results
indicate that the proposed framework enables tbetification of solutions that provide
the best trade-offs between many objectives andgee an effective and efficient means

of assisting stakeholders with identifying accefgalmmpromise solutions. (147 words)

4.1 Introduction

Evolutionary algorithms (EAs) have been used swgfadg and extensively for
solving water resources optimization problems imumber of areas, such as engineering
design, the development of management strategidsnadel calibrationNicklow, Reed
et al. 2010 Zecchin, Simpson et al. 201 Jltimately, EAs are intended to be used to

support decision-making through application to ctampeal-world problems. However,
for real-world problems, the identification of aggbdecision may be difficult, highly

subjective, and dependent on stakeholder valueparptionsNlaier, Kapelan et al.

2014). These issues are compounded in problems thalv@wmultiple stakeholders, each
with their own understanding of the problem stengrfmom their values and priorities
placed on outcomes, costs to be borne, and redjlires once solutions are
implemented. Therefore, in order to improve thelkptof EAs for use as decision support
tools for complex problems, there is a need to ldgveptimization approaches that can

handle multiple stakeholder groups, with multipbgetives for each.

As pointed out byMaier, Kapelan et al. (2014adapting optimization approaches to

account for different stakeholder groups is diffitiecause: i) stakeholders have different
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value sets and interests, making it difficult tawer at a consensus on one mathematical
formulation that all stakeholders will accept, whimay affect the likelihood that
stakeholders will trust the optimization procesd Any-into suggested solutions, ii) the
exploration and analysis of optimization solutisequires stakeholder engagement and
expert input, iii) the non-intuitive nature of muilimensional value analysis and
unanticipated and emergent trends can further ptewtecision-makers from
understanding and trusting optimization resultsl af) the optimization framework is
required to facilitate the identification of a flmeegotiated outcome and/or exploration of

resource management alternatives to be considertgbf.

In the past, there has been little focus on thegeds of optimizatiorMaier, Kapelan

et al. 201%, which largely featured studies on algorithm depment, rather than
optimization approaches for decision-making supporpractice. However, there has

been some progress in relation to this in receatsyencluding:

* The use of iterative approaches, which has allolwednultiple formulations
of the decision variables, objectives and condfsaio be developed to
progressively better define optimization problemd arovide an opportunity
for stakeholders to learn about the problgtollat and Reed 20QTVoodruff,
Reed et al. 201 Piscopo, Kasprzyk et al. 201Wu, Maier et al. 2016

* The development of an optimization framework thratves opportunities for
stakeholders to provide input into the various esagf optimization studies,
including problem definition, the optimization pess, and final decision-
making Wu, Maier et al. 2016

* The development of many-objective optimization agghes that identify
solutions to complex problems that represent thenapb trade-off between
numerous (>3) objectives to better capture stakienalaluesKollat, Reed et
al. 2011 Kasprzyk, Reed et al. 20,12Voodruff, Reed et al. 2013ruz,
Fernandez et al. 201€hand and Wagner 201Hadka, Herman et al. 2015

Matrosov, Huskova et al. 201Borgomeo, Mortazavi-Naeini et al. 2016
Woodruff 2016.

* The use of visual analytics approaches to bettemmonicate the outputs of
optimization studies to stakeholders to help witpleration and analysis of

the trade-offs between objectives, to identify thgact of decisions on
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performance, and ultimately select trusted solgtitow further consideration
(Kollat and Reed 20QKollat, Reed et al. 201 Woodruff, Reed et al. 2013
Hadka, Herman et al. 2015/atrosov, Huskova et al. 201%3orgomeo,
Mortazavi-Naeini et al. 201&Voodruff 2016.

These advances have made EAs more applicable tolexmeal-world problems with
multiple stakeholders and many objectives. Howevier, previous studies, the
optimization problem to be solved has generallynlrepresented by a single formulation,
including all decision variable options, objectivae®sl constraints that were considered to
be relevant. This can result in the inclusion tdrge number of objectives and decision
variable options, making it difficult to identifyphutions that represent the best trade-offs
between objectives (i.e. the non-dominated solstimm the Pareto front, where none of
the objective functions can be improved in valuéhaut degrading one or more of the
other objective values). This is because the nurabeolutions required to characterise
the Pareto front increases exponentially as thebeunof objectives increases, thus
making this process exceptionally computationaldgensive and beyond the capability
of the majority of current EA-Qruz, Fernandez et al. 2QFurshouse, Deb et al. 2014

In addition, despite the recent advances in vianalytics approaches mentioned above,
the inclusion of a large (e.g. >10) number of otiyes makes the identification of
solutions that provide acceptable trade-offs féfiedent stakeholders extremely difficult,
as this can be cognitively challenging for decismakers, particularly when dealing with

large solution setPurshouse and Fleming 2007

In order to address the above difficulties, an wative framework to identifying
stakeholder-driven, optimal compromise solutiongraposed in this paper for problems
with distinct stakeholder groups with potentiallpngpeting sets of objectives. An
example of this is the integrated management ofeat system and its catchment, where
the objectives of stakeholders managing separdteasas of the catchment are most
likely different from each other, and differentrindhose of stakeholders concerned with
managing the catchment as a whole. As part of tbpgsed framework, the overall
optimization problem is represented as a seriesrdller, interconnected optimization
problems, reflecting individual stakeholders aneéirthinterests. The Pareto optimal
solutions resulting from this analysis provide ftim@ut into a collaborative, multi-
stakeholder negotiation process, as part of whishal analytics are used to identify
trusted and accepted compromise solutions. A katyfe of the proposed framework is
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the use of ‘best alternatives to negotiated altere@a(BATNAS)' as a reference point
during the collaborative negotiation process, whiigirespond to the solutions individual
stakeholders would implement if they were to aciswiation. This has been shown to
increase the efficiency with which negotiated coompise solutions can be achieved
(Fitzgerald and Ross 20]Bitzgerald and Ross 2015itzgerald and Ross 20116

The objectives of this paper are: (i) to presert@timization-visualisation framework
that is geared towards the identification of negjeti compromise solutions for problems
with multiple stakeholders with distinct sets ofedtives; (ii) to demonstrate the utility
of the framework by applying it to a case studydobgn the integrated management of a
catchment in a major city in Australia; and iii) ise the case study to a) illustrate how
the use of BATNAS can encourage the efficient idieation of compromise solutions,
and b) investigate how to identify solutions thatmbute benefits and costs equitably

across stakeholders.

The remainder of this paper is organized as folldwshe next section, the proposed
framework is presented. This is followed by a dgsiom of the catchment management
case study, analyses, discussion of results, andusions, including limitations and

future research.

4.2 Proposed multi-stakeholder  optimization-visual  anajtics

framework

A conceptual outline of the proposed framework tlarassing the limitations of
existing optimization approaches outlined in thigdduction is shown in Figure 4-1. As
can be seen, the first step involves the solutibnindependent, multiobjective
optimization problems for each stakeholder grouprder to identify ‘best alternatives to
negotiated alternative’ (BATNAS)’ for each of thegeups, which represent the solutions
each stakeholder would implement if they were toimgsolation. Knowledge of these
solutions provides a reference point for each $takier group during the collaborative
negotiation stage (steps 3 and 4), which is likelincrease final solution quality and the
speed with which acceptable compromise solutiomsden stakeholders are identified.
Identification of the solutions that are considetkding the collaborative negotiation

stage occurs in steps 2 and 3. In step 2, a nuohlo@erconnected optimization problems,
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one for each stakeholder, are formulated and spleading to the identification of joint
Pareto optimal solutions. These, and the BATNAs,then analysed in step 3 with the
aid of visual analytics in order to identify soluts that represent suitable compromise
trade-offs between the objectives of different stakder groups, which are then
considered in the collaborative negotiation pro¢step 4) in order to arrive at an optimal
compromise solution that is acceptable to all dtalders. Details of each of these steps

are given in the subsequent sections.

1. Each stakeholder individually formulates and solves
an optimization problem assuming no negotiated
outcome, to select the best alternative to negotiated
agreement (BATNA) solution.

A. Problem oo
foriiulations ‘ B. Optimisation

D. Select BATNA - C. Exploration and
- Analysis

Individual input

4. Stakeholders explore and analyze solutions in
multiple problem spaces, reframed with respect
to individual BATNAs.

2. Stakeholders collaborate to formulate and solve
several problem formulations reflecting individual
stakeholder value sets and interests, generating
several Pareto sets of solutions.

A. Problem B. Optimisation

formulations - ‘
C. Determine Pareto
ne n sets
Andk ah

Collaborative input

¥

3. Analysts identify and visualise joint-
Pareto front solutions (set ABCD) from

Pareto sets. -

e
ExZRC T adul )

Figure 4-1 Conceptual outline of the proposed mulistakeholder optimization-visual
analytics framework incorporating multiple problem formulations to encourage a
negotiated outcome. Steps are adapted from recommastions by Fitzgerald and Ross

(2016)

ow

H
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4.2.1 Selection of best alternative to negotiated agreatm@ATNA)

The concept of using a BATNA for multi-stakeholdeegotiation applied to

engineering systems design was developed and tbgtétzgerald and Ross (2015)

based on principles from negotiation thedfgéney and Raiffa 199Fisher, Ury et al.

2017). Fitzgerald and Ross (2015k-framed’ the visualisation of the performande o

engineering systems options about an origin definethe performance of the BATNAs
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of individual stakeholders, which improved the dalof solutions selected by
collaborating stakeholder groups, as well as treedpghis was done. When used as a
reference point for alternative solutions to thebbem, BATNAs defines what the
theoretical benefits and losses to stakeholdersfaagriving at a compromise solution.
This improves decision-making, since humans hawn lshown to be more strongly
averse to decisions that result in outcomes belosteaience value (losses) than they are

positive about results above the reference valam$y Eitzgerald and Ross 200 d here

is often some synergistic benefit to collaboratifmm,example through cost efficiencies
and access to more funding or a wider range ofilplessptions and outcomes. Therefore,
setting theoretical ‘go it alone’ BATNAS as refecerpoints highlights what is ‘lost’ by
not reaching a negotiated outcome, encouragingektdéters to avoid the costs of not
collaborating during the exploration and analygialternative solutions.

As part of the proposed approach, it is suggesieiddntify the BATNA for each
stakeholder group with the aid of multiobjectiveiopzation, as shown in Figure 4-1. In
this case, the formulation of the optimization penb represents a theoretical scenario
where each stakeholder develops solutions in isolainstead of developing joint
solutions with other stakeholders in a collaboetmanner. These multiobjective
optimization problems are solved using a suitalidy@rihm and the resulting Pareto
optimal solutions are explored and analysed usirsgav analytics by individual
stakeholders, with each selecting their ‘best a#teve to a negotiated agreement’

(BATNA). Details of each of these steps are givethie following sub-sections.

4.2.1.1 BATNA optimization problem

formulations

To identify solutions that represent the best trafidetween many objectives for each
individual stakeholder's ‘go it alone’ solution, separate optimization problem is

formulated for each stakeholder as follows:

Minimize Fgaryas(Ps) = Fparnas = [featna1 featnazs ) fBaTNAR]

subject to

gl(P)SO, i:].,...,m
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h(P)=0, i=1,..p

Equation (4-1)

where Ps is a set of decisions taken in isolation i.e. with collaboration by an
individual stakeholder, drsatna is a set of the associated costs and benefitheof t
decisionsfsatnai IS an objective function used to measure a cosepefit ofP under the
BATNA scenario,n is the number of objective functions representhng stakeholder’s
values g is a set of inequality constraints, amd set of equality constraints bounding the
feasible solution space. It should be noted, tlzaheobjective function used in the
BATNA problem formulation should be comparable waithe of the objective functions
used in the collaborative scenario outlined in Bact.2.2. Although the indicators of
performance of objectives might be different, tyyget of objectives should be consistent
for each stakeholder to allow for comparison ofdpémization results between the two

scenarios.
4.2.1.2 Solving the BATNA optimization problems

Only solutions to Equation (4-1) that are Parettono@l for an individual stakeholder
can be considered as solutions that represenestdrade-off between objectives within
each stakeholder’s problem space. It is suggestedé many-objective metaheuristic
optimization algorithms to identify these Paretdimml points, as these algorithms have
several advantages over more traditional optinomatapproaches (such as linear
programming), including their ability to deal withultiple objectives simultaneously

(Maier, Kapelan et al. 20)4their successful application in recent planramgl design

optimization studies§zemis, Maier et al. 201Beh, Dandy et al. 20]4#aton, Dandy et

al. 2014aMarchi, Dandy et al. 203@nd their successful linkage with many-objective

visual analytics package#tatrosov, Huskova et al. 2015~urthermore, they can be

linked with the models required to calculate mudtipbjective functions and check

constraints of candidate solutionMdier, Kapelan et al. 20}4 and can provide
confidence in the results of the optimization pss;@s simulation models that are already
used in stakeholder decision-making can be uskdef, Kapelan et al. 204

4.2.1.3 Selecting a BATNA solution

In order to enable each stakeholder to select aNBASolution from their Pareto

optimal solutions, use of the approach introducgdbMatteo, Dandy et al. (20173
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suggested. The approach uses a metaheuristic évagermptimization results, and visual
analytics to assist decision makers to explorearadyse their Pareto optimal solutions,
enabling solutions that represent an acceptablepaomise to be identified. Further
details of the approach are given in Section 3.3.

4.2.2 Formulation and optimization of multiple stakeholdgroblem spaces

While the solutions obtained in this step stillrespond to optimal alternatives from
the perspective of individual stakeholders, as wees case for the BATNAS, these
solutions are to problems that are formulated bolatively between different
stakeholder groups, taking into account interastiamd dependencies between the
problems faced by these groups, as well as angiazitiies gained. Consequently, this
step also provides an opportunity for relationdhifiding for stakeholders and to record
informal attributes of the problem that may assigtxploring and analysing solutions. It
is possible after collaboration commences thatestaklers find that their values align to
a degree that they form a ‘coalition’ and negoteg@ne stakeholder group from a shared
position. Consequently, there may be fewer stakinolgroups undertaking the
negotiation than there were individual stakehol@ssessing their BATNA.

This step consists of a number of sub-steps, imjuthe formulation of individual
optimization problems for each stakeholder, theutsmh of this problem with an
appropriate multiobjective optimization algorithmdadetermination of the joint Pareto
front. Details of each of these steps are givehenfollowing sub-sections.

4.2.2.1 Collaborative optimization problem

formulations

To identify solutions that represent the best trafidetween many objectives for each
stakeholder group, s”, a separate optimizationlenolis formulated for each stakeholder

group as follows:
Minimize F;,(P;,) = F;, = [fcoLLas1, feoLLas2, - fecorLanl
subject to
gs;(P) <0, i=1,...m
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hg,(P)=0, i=1,..,p

Equation ( 4-2)
whereP is a set of decisions taken by a stakeholder gieyis a set of the associated
costs and benefits of the decisiofys,is an objective function used to measure a cost or
benefit of P under the collaborative scenario (which shouldcbenparable to one
objective function in the BATNA problem formulatiai each individual stakeholder in
the group, see Section 4.2.21)is the number of objective functiong,is a set of
inequality constraints, anda set of equality constraints bounding the feassallution

space.

During the formulation of each of tl# optimization problems, stakeholders should
collaborate to ensure interdependencies betweerbehefits and costs of decisions,
available decision options and constraints arecefd in the mathematical formulations.
For each formulation, performance indicators cquoesling to different objective
functions can represent the individual values siiskeholder. However, the selected cost
indicators should enable a comparison between fiations in order to make it possible
to analyse how equitably a solution distributessasid benefits amongst stakeholders.
For example, while the cost performance indicabaia be represented as a lifecycle cost
or as separate objectives for capital and operatxpgnses, the corresponding indicator
should allow for consistent comparison amongst dpémization problems for the
different stakeholders. In addition, if an opti@hested by one stakeholder affects another
stakeholder’s available decision options or obyecfunction value(s), then this should

be included in the decision variables of affectmitesholders.

As part of the above process, apart from the fonalblem aspects, analysts should
also record the key elements of the problem stractiiat may be useful during later

negotiationsKitzgerald and Ross 20L& hese may include interests of stakeholders that

are divisible (for example, the possibility of sihgr capital expenditure for certain
projects), or relationships between stakeholdeng;imcan be important in informing how
the exploration and analysis should be conductedekample, if there are known pre-
existing negative relationships between stakehs|delirectly comparing desired

alternatives may limit the effectiveness of explim@aand should be avoided.
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4.2.2.2 Solving the collaborative optimization

problems

As discussed in Section 4.2.1, it is proposed te meetaheuristic optimization
algorithms for the identification of the solutiotisat represent the best trade-offs within
each stakeholder's problem space. In the contesdlwing the collaborative optimization
problem, the fact that these algorithms can beelinkith existing simulation models has
the additional advantage that selection of an gpmate system model can assist with
relationship-building and increase the likelihod@ megotiated outcome. This is because
models can potentially be developed amongst sta¢tersthrough a ‘joint fact finding’
exercise to establish credible and objective datupport models; this being one of the

foundations of principled negotiatioki{zgerald and Ross 20)L%Alternatively, where

models cannot be determined through joint factifigdstakeholders may offer existing
system models in order to promoteFull, Open, and Truthful Exchangewhich is

important in successfully achieving negotiated ouates Fitzgerald and Ross 20115

4.2.2.3 Determining the joint-Pareto front

Solutions that lie in all Pareto sets for the doha to thes’ individual stakeholder
problems, that is the joint-Pareto solutions, are abvious choice for potential
compromise solutions. This is because these saktitp not require stakeholders to
consider solutions that are not optimal for theirtigular problem, although changes in
their relative preferences for different objectiveght be required in order to identify a
solution that satisfies all stakeholders. To deteenthe joint-Pareto front, firstly the
Pareto optimal solution data sets fromsheptimization problems are aggregated. Next,
the joint Pareto front solutions, that is, solusdhat lie on the Pareto front for every
stakeholder, are identified and selected. As sugddsyFitzgerald and Ross (2013)

no joint solutions can be identified, then the RuRareto Number (FPN) of solutions
close in objective space to the Pareto fronts fmmhestakeholder can be considered
(Smaling 2005Fitzgerald and Ross 2012

4.2.3 Visualization of the multi-stakeholder trade-off spe

In the third step of the proposed framework, aryat@enerates a visualisation of the
solution set on the joint-Pareto front for intenraet exploration and analysis by
stakeholders so that they can ultimately selecuitewols that represent a desirable
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compromise between performance criteria amongstthiiple representations of the

problem spaceMaier, Kapelan et al. 20)4 This may occur in a workshop setting or

virtually in real-time and can be done with the aifdan interactive visual analytics
package Kollat and Reed 20QHadka, Herman et al. 20)5as part of which high-

dimensional coordinate plots or parallel coordinategs (nselberg 200Pcan be used to

visualize the performance of the large number akefaoptimal solutions in many-

objective space.

As part of the proposed framework, a separateiplgénerated for each stakeholder.
These plots should be linked such that isolatingparking a solution in one plot updates
automatically on other plots. In this way, the peariance of a solution can be compared
simultaneously in each stakeholder’s problem spglge.individual BATNA solution of
each stakeholder should be plotted using a distmetyle (e.g. bold or coloured line) to
act as a reference point. Axes representing obgealues should be oriented such that
positive outcomes point in the same directionhdtigd be noted that in parallel coordinate
plots, if the positive direction is at the top bktaxis, the solutions with all objective
values above (or equal to) the BATNA representaprovement on the reference point.

In visualisation of trade-offs between many-objees$i using multiple axes, it is
possible that solutions improve upon the BATNA imeobenefit but not others. For
solutions with these characteristics, whether th&TIBA is superior depends on
stakeholder preferences. Therefore, an indicattheperformance of solutions relative
to the BATNA should also be visualised within eathkeholder’s problem space. This
allows stakeholders to rapidly detect how a solutperforms relative to their own
BATNA and the BATNAs of other stakeholders by insireg the multiple problem space
visualisations. An example of possible categorasaf problem formulation with four
objectives — one cost, three benefits — is showrainle 4-1. In the example, Category 1
solutions are obviously superior to those in CatggoHowever, when choosing amongst
Category 2-7 solutions, stakeholder input is neargssis improvements or losses in one
benefit might be valued more highly than thosetimecs. In addition to visualising the
category of solutions, automated preference selettichniques might further assist with
selecting between solutions and reducing the dizelarge solution seE{tzgerald and
Ross 201k
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Table 4-1 Categories of solutions indicating perfanance relative to BATNA

Category  Lower cost than Number of benefits
BATNA? exceeding BATNA

Yes 3
Yes
Yes

No

No
No

0o N o o0~ W N P

2
1
3
Yes 0
2
1
0

No

4.2.4 Exploration of the multi-stakeholder trade-off spas

In the fourth step of the proposed framework, aslyet guides stakeholders through
an exploration and analysis of the solution seméthod to do this is adapted from steps
for a multi-stakeholder trade-off space analysiggested byRoss, McManus et al.
(2010) as outlined below.

4.2.4.1 Each stakeholder selects several ‘good’

solutions

Firstly, several good solutions are selected byividdal stakeholders, only
considering the performance of joint-Pareto sohgim their own problem space (i.e. the
problem spaces of other stakeholders are hiddenylolthis, the stakeholder can use a
visual analytics method to isolate promising solusi. For example, in order to reduce
the number of solutions considered for further ysia] dynamic filtering to eliminate
undesirable solutions can be carried out by anyatsabased on the decision-maker’s
budget constraints and minimum preferences for baakfit. This process will eliminate
apparently undesirable combinations of decisionioopt not anticipated when

formulating the problemRiscopo, Kasprzyk et al. 2015Within the reduced set,

decision-makers and analysts can use brushing ghligint sub-sets of interesting
solutions. Multiple linked plots of the same da&t san assist with identifying and
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rationalizing trade-offs, such as conflicts andaaref diminishing returns between
objectives and emergent behaviour influenced by dbkection of various decision
options. Interactive visualization of optimizatioobjective and decision spaces
simultaneously enables stakeholders, with the @ssie of analysts, to rapidly identify
subsets of solutions that contain preferred detssemd compare their performance to
that of other solutions. In this way, browsing tigh solutions to investigate and learn
about the impact of individual decision preferencas allow decision-makers to
overcome institutional decision-making biasdsolfat and Reed 20Q7Matrosov,

Huskova et al. 2005 Ultimately, several desirable solutions are ctel@é for further

consideration.

4.2.4.2 Stakeholders share their preferred

solutions

Stakeholders then share their selected solutiotivianalise the selected solutions of
others in their problem space. Stakeholders casrdaghich solutions they will consider
further. Negotiations and compromises in preferenc@mmence. As an indicator of
solution performance that can be compared amorkglstéders, the solution category
relative to the BATNA can drive negotiation for cpramise in preferences of
stakeholders whose solutions are more favouralibkeSolders may express which
objectives they are willing to compromise in, amh cet minimum limits on particular
benefits using brushing tools, that hide solutidhat do not meet their minimum
performance criteria on other stakeholders’ prob&paces. The many-objective plots
show explicit trade-offs in each objective, anckstelders can make judgements on the
benefits lost or gained when opting for one solutbwer another. Compromises can be
expressed through negotiation, which makes exphtiat is being compromised and
traded.

4.2.4.3 Negotiate and identify compromise

solutions

Advanced techniques for eliminating solutions tigtowelaxation of value constraints
and cost bargaining can be undertaken to isolageootwo solutions for further analysis

(Fitzgerald and Ross 201 3f stakeholders determined they are indiffertenthe values

a particular objective takes, they may remove digective from the visualisation of the
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problem space. Omitting one objective may redueentimber of solutions in the joint-

Pareto set. If the visualisation dataset is linicetthe full set of optimization results, a new
Pareto sort on the remaining objectives will eliatensolutions dominated in the lower-
objective space. As a compromise for removing geative, stakeholders might increase
their minimum acceptable benefit on other objestivEor minimum performance

constraints on objectives that eliminate a largelner of solutions, a stakeholder might
consider accepting a lower benefit in exchangeldorering the maximum cost to

contribute to a solution. In addition, cost bargagnmight be undertaken amongst
stakeholders, especially where slight increasesstfor one stakeholder make available
solutions that create much higher benefits for isthgltimately, one or two acceptable

compromise solutions should be determined for &rrttonsideration.
4.2.4.4 Explore better compromise solutions

Once acceptable compromise solutions have beetifiddnstakeholders search the
full set of joint-Pareto solutions for comparabldusions that are ‘fairer’. These are
identified by negotiation. The compromise soluticare plotted with an identifying
marker. To compare the solution set to the compmemolutions, an additional indicator
that measures the distance in objective space fhmmsolution for each stakeholder
problem can be determined. An additional plot vakes of equity indicators and/or a
breakdown of the distribution of costs can be useidentify solutions that improve on

the compromise.
4.2.45 Further consider selected solutions

Finally, solution(s) that are acceptable to alketeolders may be explored and tested in

more depth e.qg. for robustness or other metHiesran, Reed et al. 201Giuliani and

Castelletti 201pMaier, Guillaume et al. 20)6and a final solution selected.

4.3 Case study

The proposed framework was demonstrated on a tadg ®r an urban catchment
management problem in Australia, which expands upen case study originally
formulated in Section 3.3. The problem involved rf@atakeholders. A catchment
management authority (CMA) was responsible for fgdthe capital expenses of
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stormwater control systems distributed throughocétahment. Three local government
authorities (LGAs) managed regions within the cateht and were responsible for
maintenance to ensure systems remain functionaltbes design life. It should be noted
that there was no stakeholder involvement in th@iegtion of the proposed framework
to the case study, which was undertaken soleljhbyahalyst for the sake of illustrating
the approach. However, although stakeholders wargwolved directly in this exercise,
the generic preferences and motivations of staklenslwere discussed between the
analyst and engineering consultants who had irdestl stakeholder groups in

workshops related to the problem under considaratio

The application of the proposed optimization apphoaas part of a real-world study
involving a multi-criteria analysis conducted tedify a portfolio of BMP projects for a
regional catchment. This allowed the authors toaestrate how the proposed approach
can consider existing BMP selection practices, tvhsca study objective. As the case
study application was only intended to demonstifaeptimization approach, the results
of the study were reviewed by consultants but weteused to inform decision-making.
The names of stakeholders and catchment regions/ey are not disclosed in this study

Engagement between stakeholders, engineering ¢antsyl and the optimization
analysts (who are the authors of this study), wasied out as follows. Firstly,
engineering consultants ran one workshop wherebtibad catchment management
objectives were established, which was attended $takeholder working group, from
LGAs and the CMA, of approximately 16 people. Cdtasus then identified sites,
assessed them for quantitative metrics (e.g. redusize of BMPs to meet water quality
constraints, cost, and stormwater harvesting capamnd made a preliminary effort to
score each of the qualitative metrics (e.g. vegetamprovement and amenity value)
using objective thresholds. Consultants then desge preliminary scores to LGAs and
asked to provide a response. These were genesligwed by landscape, bushland,
horticultural and parks and open space staff. Ta# smvolved and level of response
varied between the LGAs. Consultants then had &shop with each of the individual
LGAs to review the sites, establish a common urdeding of the whole catchment
management opportunity and confirm the proposedvishaal project scoring. Then,
important objectives were refined into formal opation objectives by the consultants
and optimization analysts. The analysts used thié-oriteria evaluation data to inform
the optimization problem formulation including d&on variables (projects), developing
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objective functions and project objective functia@ues, and constraints.. The data used
for this study are listed in the references, taldapplements and repository at Di Matteo,
Maier et al. (2016b).

4.3.1 Background

4.3.1.1 Catchment management problem

considered

Sustainable integrated catchment management ofteolves the selection of a
portfolio of stormwater best management practicBMHFs) with precinct-sized
contributing catchments (i.e. < 1 Kmto achieve desired social, environmental and

economic benefits within a larger catchment or aegMarlow, Moglia et al. 2018

BMPs may include structural and non-structural messs for treatment, detention,
harvesting, infiltration, evaporation, and trangpdrnon-point urban stormwater runoff

(Lerer, Arnbjerg-Nielsen et al. 20L5Catchment managers must consider a range of

performance criteria due to several socio-politidalvers, including: water supply
security, public health protection, social amentyban flow regime improvement,

environmental protection and flood mitigatiavigrlow, Moglia et al. 201,3Askarizadeh,

Rippy et al. 201p In response to these drivers, BMPs have beealaesd to provide
multiple functions in addition to water quality imgvement, such as stormwater
harvesting Mitchell, Deletic et al. 200, Clark, Gonzalez et al. 201Bi Matteo, Dandy

et al. 201Y and urban vegetation and amenity improvem&tiatma, Pezzaniti et al.

2016. To maximize total catchment benefits for a givenmget, decision-makers must
select a combination, or portfolio, of BMPs thatyades the best trade-off between many
objectives. Selection of a portfolio of BMPs is reatdore difficult in practice, as often

limited resources are available for performing taisk Moglia, Kinsman et al. 2032

4.3.1.2 Multi-stakeholder aspects of the problem

In recent years, millions of dollars have been #ted into stormwater treatment best
management practices (BMPs) in Australia to improviean ecosystem health. The
investment strategy may involve an integrated catoit approach, where a catchment

authority subsidises construction and establishroénistributed BMPs to be operated
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and maintained by LGAsE@die 201R Without incentives, maintenance of BMPs —
which is essential for functional performance of B&1 and therefore catchment
ecosystem benefits — may cease to be a priority@#s over the lifetime of BMP assets.
Fortunately, LGAs may be willing to bear mainteraraosts if BMPs produce local
benefits, in addition to benefits to the total batent. For example, BMPs functioning as
part of a stormwater harvesting system for opegepagation, or providing high urban
amenity and recreation benefits, are more likelyb® maintained. The ongoing
maintenance promotes optimal runoff quality improeat, thereby improving urban
ecosystem health. The benefits of BMPs are valuigerehtly by LGAs depending on
their local area planning strategies. Therefore,maximize return on investment,
integrated catchment planners need to target fgnidira portfolio of BMP projects that
provides multiple ongoing benefits to individual A& and catchment management

stakeholders, in addition to overall catchment fiene
4.3.1.3 Potential solutions

In the case study considered, the CMA commissiogregineering consultants to
identify sites for potential stormwater best mamaget practices (BMPs) within a
regional catchment with an outlet flowing into @minent marine body. The catchment
covers an area comprised of highly urbanized amdupean regions managed by three
local government authorities (LGA). A primary oljjee for the CMA was to reduce the
nutrient load from urban stormwater runoff flowirgo the marine body. In addition,
since the potential sites for BMPs were within priloipen spaces managed by LGAS,
stormwater harvesting for irrigation of open spadesreasing vegetation and public
amenity value were considered to be important addit benefits. The consultants
identified 70 (N=70) potential biofiltration, wetlands and swalejpcts at locations
distributed in open spaces throughout the three laBas (see Table C-1 in Appendix
C). Thirteen of these projects have a capacitgformwater harvesting. In addition, the
consultants agreed that a portfolio of 20 projectiewer (Nnax=20) was desirable from
a practical perspective. The BMPs were considereduatly independent, as the
contributing catchment areas to each BMP did notoide i.e. downstream impact of
BMPs would not affect the performance of other BMWishin the large regional

catchment.
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4.3.2 Selection of best alternative to negotiated agreat@ATNA)

For the sake of demonstrating the proposed apprd8mhNAs were selected by
analysts based on a ‘build alone’ scenario, whaoh stakeholder is responsible for the
capital and operating costs (total lifecycle cosfsthe projects they select. The optimal
solutions were identified with the aid of the gealemultiobjective optimization
framework introduced in Section 3.2, as this wasetitged for the selection of a portfolio
of BMPs for catchment management, as is the case. Ade formulation of the
optimization problem is detailed in Section 4.3,2ldtails of the objective functions and
how they were evaluated are given in Section £2&8d the specifics of the optimization

engine used are provided in Section 4.3.2.3.

4.3.2.1 BATNA optimization problem

formulations

Details of the optimization problem formulations tbtaining the BATNAS for each
of the four stakeholders are given in Table 4-2.cas be seen, LGA stakeholder
portfolios consisted of up to 7 projects locatethwai their jurisdictions. The catchment
management authority was assumed to have permigshorild and operate up to a total

of 20 projects should no agreement to share cagitdloperating costs be negotiated.

Table 4-2 Optimization problem formulations for stakeholder best alternative to
negotiated agreement (BATNA)

Formulation Stakeholder Decision Objectives Constraints
problem space variables (Featng
1 Catchment All projects LCC,cma < 20 projects
management fquality,cmA
authority (CMAY fsw, cma
fareen cma
2 LGA 1 LGA 1 LCC1 <7 projects
projects fquality,1
fswh,1
fGreenl
3 LGA 2 LGA 2 LCC,2 <7 projects
projects fquality,2
fswh,2
fGreenZ
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4 LGA 3 LGA 3 LCC3 <7 projects
projects fquality,3
fswh,3
fGreenB

1. Optimization of problem formulation 1 (only) wasdertaken in Section 3.3, and the
results from that study are used here.

4.3.2.2 Objective function formulation and

evaluation

The objectives considered for each of the fouredtalders include cost minimisation,
total nitrogen reduction, maximisation of stormwabarvesting, and urban vegetation
and amenity improvement. The mathematical formoiteti of these objectives were
adapted from those iDi Matteo, Dandy et al. (2017and are detailed in Appendix D.

Based on these mathematical formulations, valuealfdour objectives were obtained

for each of the BMPs, shown in Table C-1 in App&r@dias detailed below.

Firstly, the stormwater harvesting capacity of wndiial projects was determined from
LGA expert interviews. Secondly, the individual jeat lifecycle costsL.CC, were
determined using cost parameters from Equationk){io{D-4) for each project. Thirdly,
the water quality performance of each BMP was datexd with the aid of the integrated
catchment simulation model eWatdiJSIC version 6.1 (Model for Urban Stormwater
Improvement Conceptualizatiog\Water (2009) which is further explained in Appendix
E. To do this, a catchment model for a 1 ha catchraea for each LGA was developed.
The model consisted of a 0.5 ha pervious catchmauhé, a 0.5 ha impervious catchment
node, and an outlet node to estimate the averageahtotal nitrogen load per unit area

of the catchment with an average 50% impervioufasarareaBrowne, Breen et al.

2012. One year of continuous climate data and perviautace parameters provided by
the CMA were adopted for the catchment nodes. Timate the catchment TN load in
Equation (D-5) Sourcegkg], for each BMPthe TN load from a 1 ha unit catchment area
for the respective LGA was multiplied by the cobtring catchment area to each BMP
in hectares. Each BMP was assumed to remove 45B& diN load from its contributing
catchment. To calculate the pollutant removal pertnce of BMPs, the residual TN load
at the catchment outl&esid was calculated as a proportionSsurce (i.e. in Equation
(D-5), Resid = (1 - 0.45) xSourceg), which was suggested as an acceptable performance
based on advice from the consultants. Finally, BEqos (D-7) to (D-9) were applied to
determine the individual project green scores.
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4.3.2.3 Optimization algorithm and analyses

As mentioned previously, the above multiobjectipéimization problem formulations
for each of the four stakeholders were solved ugimg many-objective portfolio
optimization approach in Section 3.2. The apprazds a metaheuristic algorithm, the
Pareto Ant Colony Optimization Algorithm (PACO), iwh was previously demonstrated
successfully for the single stakeholder case stadgion of the catchment management
problem, also in Section 3.3. The algorithm mintlos cooperative foraging behaviour
of an ant species that leaves a chemical pheromoagyround surface. In real life, since
ants traverse short paths to food more frequemtigre pheromone is laid on short
(efficient) paths. Thus, paths with higher pheromtavels are more likely to be selected
by an ant. In the algorithm, artificial ants seleetween paths, which represent decisions
whether or not to adopt a BMP in a portfolio instimstance, with paths that result in

better objective function values receiving morerph®ne.

The steps in the PACO algorithm are shown in Figuge In the initialization phase,
the PACO search control parameters are set. Tradite process commences whére
ants are generated, each ant starting with an epgtfolio x = (0), and the objective
weights (i.e., the ant’s individual preferences) determined randomly for each ant. In
the construction phase of the algorithm, firstdihéer of BMPs is randomly shuffled, to
ensure that all BMPs are provided an equal chahbeing considered early on by each
ant. Then, the ant decides whether to add each BM#® portfolio, x, by applying a
pseudo-random-proportional rule using pheromonermétion, 7. The pheromone
information is stored in one Rkmatrix for eachj™ objective, representing the binary
options for theN possible BMPs. If the ant adds the maximum nunotb&@MPS, Nmax
before all BMPs have been considered, then norkeofemaining BMPs are selected.
After a portfolio has been constructed, its perfance is evaluated using the objective
functions (Equation (D-2) and (D-5) to (D-7)). Imig case, as individual projects were
determined to be independent, the portfolio obyectuinctions were a summation of the

constituent individual project objective functioalues in Table D-1.
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Initialize PACOA
v

For each iteration iter (iter = 1 to w)
L 4
For each ant (ant = 1to b)

v

Construct candidate portfolio

v
Calculate fitness functions
vifant = b
Non-dominant sort

v

Global update pheromone matrices

y ifits=w

T

Non-dominated portfolios of
BMPs

Figure 4-2 Portfolio optimization process for Pared Ant Colony Optimization Algorithm
(PACOA)

After each iteration, of thie portfolios generated by theants, the non-dominated
portfolios are stored offline in an array. Thenpast of a global update of every element
of thej pheromone matrices, the first and second besbmeirig solutions ranked for

eachj" objective are used to apply the following equation
‘L'g =1-p)- T{+p-Arg

15, t in both best and 2nd best portfolio
10, t in best portfolio

5, t in second best portfolio

0, otherwise

J _
Aty =

Equation ( 4-3)
where, for each BMP, the current pheromone value&cht binary option ang"
objective is reduced by pheromone evaporapoand increased by a pheromone value,
Ar{. Pheromone is evaporated from decisions that arénrthe best solutions for each
objective, which makes it less likely these decisiwill be selected again in future
iterations. In this way, the ant’s decision-makiagdscape is modified to guide ants into
regions of the search space that contain non-ddednportfolios. Since the single
constraint was handled in the construction phasg@emalty function is required for this
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case study as all constructed portfolios are féasiihe process of developing, assessing
and updating the pheromone trails to guide the PAQGO® near-optimal trade-offs

continues until a specified maximum number of tierss,w, is reached.

Before the PACOA was applied, a sensitivity analysias conducted to identify
suitable values of parameters that control thecb@#ay behaviour of the algorithm to
maximize the likelihood the best possible approxiom of the Pareto front was
generated. The sensitivity analysis was applieohi® stakeholder problem formulation,
formulation 1, which is the CMA’s BATNA scenario rfaulation. The results of
formulation 1 were explored in depth in Section 313 ranges of parameter values tested
and the final parameters selected for all formatei(i.e. formulations 1-8 in this study)

are given in Table 4-3.

Table 4-3 PACOA parameters tested and adopted in gsitivity analysis

PACOA Parameter Range of Values Adopted Value
Tested

Number of antsk) 20, 200, 300,500 500

Initial pheromone,) 0.5,1.0,10.0 0.5

Evaporation ratep] 0.1,0.15,0.2,0.4,0.5 0.4

Evaluations I xw) Up to 2,000,000 600,000

In this study, as in Section 3.3.2, the PACO wasfar 1200 iterations of 500 ants,
which equates to 600,000 objective function evabnat This number of evaluations was
selected because there were no further meaningéuiges in the Pareto front (assessed
by visually inspecting the Pareto optimal solutsat at 5,000 evaluation intervals) after
this number of evaluations in a trial run of 2, evaluations. The optimization results
were re-run 50 times using different random stgrsieeds for the pseudo-random number
generator used in the algorithm to minimize theaotf probabilistic effects of some of
the operators that influence the search. Each aak approximately 26 minutes on a
3.10GHz computer with 8 GB of RAM, although muléphstances were run on one
machine simultaneously. The Pareto optimal solstion each stakeholder shown in this
paper are the result of a non-dominated sort oktheations from the 50 replicate runs.
Once the Pareto set of portfolios was determineduitable BATNA portfolio was

selected for each stakeholder, as detailed in @edtd.1.
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4.3.3 Formulation and optimization of multiple stakeholdgroblem spaces

The overall process used to identify the solutitmst provide the input into the
collaborative, multi-stakeholder negotiation precesidentical to that used to identify
the BATNAs in that individual optimization probleimmulations are developed for each
of the four stakeholders, which are solved usiegiiany-objective portfolio optimization
approach in Section 3.2. However, the formulatiohthe optimization problems were
altered to reflect the proposed shared fundingreehm the collaborative scenario, as
shown in Table 4-4. These formulations reflect pnheposed strategy where the CMA

funds capital costs and the LGAs fund ongoing cokfsojects.

Table 4-4 Optimization problem formulations for stekeholder negotiations

Formulation Stakeholder Decision Objectives  Constraints
problem space variables (fcoLLas”)
5 Catchment All projects CAPEXcwma, < 20 projects
management fqualitycMA,
authority fswh, cma,
(CMA) fGreen cma
6 LGA1 LGA 1 OPEX, <7 projects
projects fquality 1,
fswh,1,
fGreenl
7 LGA 2 LGA 2 OPEX <7 projects
projects fqualitys2,
fswh,2,
fGreenZ
8 LGA 3 LGA 3 OPEX, <7 projects
projects fquality,3,
fswh,3,
fGreenB

The objective functions for total nitrogen reduntistormwater harvesting, and urban
vegetation and amenity improvement used were icantd those used for the BATNA
formulations (see. Equation (D-4) to (D-8)). Thigams that the values @fiaiiy, fswr
fereenare simply the sum of the values for the LGAs. ldwer, the cost objective functions

were revised for the stakeholder collaboration [mwobas the CMA funded capital costs
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(CAPEX) and LGAs funded operating costs (OPEX). TREX cost objective function

used for formulations 5-7, representing the maimter of BMPs, was:

Equation (4-4)
where

N
LCCgmp,oPEX = Z{ PWFmaint,BMPL-(SABMPL- X MBMPL')}

=1

LCCSWH,OPEX = PWFmaint(CmTank + CmPipe + CmControl + CmPump)

Equation (4-5)
The CAPEX cost objective function used for formidat 8, representing the

construction and establishment cost of BMPs, was:

MINIMIZE: CAPEX cya = LCCgup.cappx + LCCowm caprx

Equation (4-6)
where

LCCpyp,carex = 2?21{ (TACpyp,) + PWFestab,BMPi(SABMPi X ECFgyp; X MBMPi)}

LCCSWH,CAPEX = CCapTank + CCapPipe + CCapControl + CCapPump

Equation (4-7)

Where OPEXca are the ongoing maintenance costs of BMPs and WHS
infrastructure situated within an LGA'’s jurisdiatipand CAPEXwma is a sum of the
construction and establishment costs of BMPs tducapand treat stormwater runoff,
LCCawmp.carex[$] (Equation 4-7), and to transfer harvested wadea balancing storage
for further treatment and distributiobCCswh,care$] (Equation (4-6)). The terms in
Equations (4-4) and (4-5) are identical to thosthenlifecycle cost equation used for the
BATNA formulations, i.e. Equation (D-2) and (D-3yhich are detailed in Appendix D.
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Similarly to the BATNA formulation, LGA stakeholdgortfolios consisted of up to 7
projects located within their jurisdictions and ttetichment management authority was
assumed to have permission to build and operate agotal of 20 projects within each
LGA, should no agreement to share capital and tipgraosts be negotiated.

The optimization results from formulations 5-8 waggregated into one data set. The
joint-Pareto front was determined as the subsefuldf CMA portfolios that were
exclusively combinations of Pareto optimal portislfrom each LGA. It should be noted
that by definition, every portfolio on the joint4fe¢o front consists of a Pareto optimal

portfolio from each stakeholder.

4.3.4 Visualization of the multi-stakeholder trade-off spe

To visualize and analyse the objective and decisjerce trade-offs of the Pareto
optimal set of portfolios, an interactive visuabbtics package was used. The combined
objective space and decision space visualization®tir plots representing stakeholder

problem spaces were carried out using the approgglollat and Reed (2007gnd the

approach in Section 3.2 using the DiscoveryDV safenpackage (DiscoveryDV Version

0.80; available ahttps://www.decisionvis.com/discoveryglviThe package features an

interactive data plot that allows brushing, linkeews of solutions, marking and tracing

of solutions of interest, as well as rapid browsimgugh solution objective, decision and
non-objective performance data. The package hasusssl successfully in several recent
many-objective optimization studieg/podruff, Reed et al. 201 ®iscopo, Kasprzyk et

al. 2015, as well as in the single stakeholder versiothisf catchment management case

study in Section 3.3.

The joint-Pareto optimal solution objective andiden data were uploaded into the
interactive visual analytics package. Then, a perabordinate plot was generated for
each stakeholder, with the objectives of each &talkler oriented such that positive
values were at the top of the axes. The BATNA sotufor each stakeholder was
visualised using a thick bolded line on each stalddr’s plot. The plots were visualised
simultaneously on a large screen, and the anabrfonmed the role of exploring and

analysing solutions.

In each of the plots, the relative objective fuotvalues were shown in the first four
vertical axes, with the last two axes showing thieiteon category relative to BATNA
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and solution type (on the BATNA axis: BATNA = 1,réto optimal = 2). The colour of

the line segment indicated whether the solution lbar or higher cost and benefits
compared with the BATNA. A blue line segment indezhthe most desirable (Category
1) solutions, which has all three benefits highed a lower cost than the BATNA of the
stakeholder. A red line segment indicated the l@esirable (Category 8) solutions, which
have all three benefits lower, and a higher caat the BATNA. Other colours represent
categories that have a combination of benefits avgd and not improved, and higher or
lower costs, compared to the BATNA, as describe@ahle 4-1. It should be noted that
the category indicator should not be used as amlesndicator of preference, as it does
not take into account which of the benefits is comnised. It may be desirable to
compromise on some objectives and not others, wiictependent on stakeholder

preferences.

Visualising the solution categories with colour ft stakeholders simultaneously
allows analysts and stakeholders to inspect théoieance of negotiated solutions
compared to what they would otherwise achieve (ekative to the BATNA). As the
benefits/consequences of a negotiated outcomd &iakeholders are visualised, framing
the solution space in this way can encourage std#tefs to continue to engage in

negotiations until a compromise is found and to/'mio’ the negotiated outcome.

4.3.5 Exploration of the multi-stakeholder trade-off spas

To demonstrate the proposed framework, an anady8inmed the task of stakeholders
selecting solutions from the collaborative problEmrmulation optimization results and
analysing them with respect to the individual statder spaces. Stakeholders were not
available, and also a workshop setting with mudtiphrticipants was outside the scope of
this study. Instead, this study aimed to includseta technologies (i.e. interactive visual
analytics, and approaches in multi-stakeholder espdce analysis) into a novel
framework to solve many-objective optimization gesbs. First, ‘good’ solutions were
selected for each stakeholder from the joint PasetoUsing interactive visualisation, a
small number of solutions preferred by each stakignavas selected individually, and
shown in the trade-off space of other stakeholttergsualise their performance. To do
this, using the visual analytics package, the atatientified one or two solutions that
each stakeholder would be comfortable with as #gotiated outcome. The process for

selecting these solutions was like the selectiath®@BATNA, except the trade-off space
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consists of the joint-Pareto front solutions. Thkisons were then visualised in the multi-
stakeholder trade-off space to determine how gwisti selected for individual
stakeholders perform for all other stakeholdersmaly, for each stakeholder, each
solution was analysed against the performanceeoptaferred solution and BATNA of
that stakeholder, and suggested reasoning for whekie stakeholder would accept,

maybe accept or not accept the solution were recoirda table.

4.4 Results and discussion

4.4.1 ldentifying Best Alternatives to Negotiated AgreemiéBATNAS)

The outcome of the multiobjective optimization pFes of the ‘stand-alone’
formulations developed for each of the four stakidrs (Section 4.3.2) is a parallel
coordinate plot for each stakeholder, where eawh dorresponds to a Pareto optimal
solution, as illustrated in Figure 4-3 for oneloé . GAs. The plots are linked via a data
set, in that manipulations (e.g. brushing out sohg) in one plot are updated immediately
on all others. In order to determine the BATNA frdahese solutions, the following

process was used.

For each LGA, firstly the lifecycle cost budget wiamited by constraining the
assumed capital expenditure (CAPEX) available fmtfplios using a brushing tool on
the interactive plot in order to reduce the nunmidfesolutions from which to select the
BATNA. Although not a formal objective, CAPEX waslscted as a limiting constraint,
as it was assumed LGAs had limited funds avail&blspend on projects in the short-
term. Next, solutions that provided a desirablddraff between stormwater harvesting
and green score (with TN reduction as a less inflak objective for LGAs) were
selected. This was done by gradually increasingrtimtmum allowable green score or
SWH until two solutions with equal performance hede objectives remained. The
solution with the highest TN reduction was therestd as the BATNA, as shown by the
dark blue solution in Figure 4-3. For the catchmmanagement authority (CMA), the
portfolio that maximized TN reduction after the \#@n space was constrained to a
lifecycle cost budget of $5 million was assumede BATNAs for each stakeholder
resulting from the above process are shown in Télie
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Figure 4-3 Interactive parallel coordinate plot ofPareto optimal catchment management
portfolios for one stakeholder. Axes include four bjectives (Lifecycle cost, total nitrogen
reduction, stormwater harvesting capacity, and gree score) and an additional axis
(capital expenditure) to assit with isolating a besalternative to negotiated agreement

(BATNA).

Table 4-5 Objective values for Best Alternative tiNegotiated Agreement (BATNA) for
stakeholders

Stakeholder Lifecycle Cost TN SWH  Green
(BNPV) Reduction (ML/yr)  score
(kglyr)
CMA 4,900,000 3282.9 66.1 93
LGA 1 467,000 127.71 11.95 26
LGA 2 968,000 387.39 53.92 30
LGA 3 703,000 759.96 4.75 37

4.4.2 Visualizing the multi-stakeholder trade-off space

Figure 4-4 shows the linked parallel-coordinatégldescribed in Section 4.3.4, of the
Pareto optimal solutions for the collaborative optiation problem formulations,
presented in Section 4.3.3, for each of the foakedtolders. The BATNAS, identified in

Section 4.4.1, are shown as bolded lines as aergferpoint for assessing the performance
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of solutions. As can be seen, the LGA stakeholtax® a large number of solutions in
Category 1 (blue), which indicates negotiated $ohst will provide them additional
benefit for all objectives at lower cost compareithvthe BATNA. This is because the
BATNA requires individual LGAs to fund both OPEX &ICAPEX of their projects,
whereas the CMA funds CAPEX in a negotiated sotutidherefore, disregarding
external factors impacting decision-making, all L&SAave an incentive to arrive at a
negotiated solution. Although individual solutiomsy lie in Category 1 for some, but
not other, LGAs, visualising the trade-off spacéis way can remind stakeholders that

improvements on the BATNA are possible, which mejlitate negotiation.

The CMA, however, does not have any solutions ite@ary 1, which means it must
compromise on at least one benefit achieved bB&HENA and/or opt for a higher cost
solution. Although Category 1 solutions were featuin the CMA’s full trade-off space
of 2535 solutions, the joint-Pareto front solutievere not among these. Since the CMA
must compromise in at least one benefit to impramvés BATNA for an equal or lower
cost, it could suggest ways to arrive at a compsenwith other stakeholders. For
example, the CMA could indicate to stakeholdersilt only accept a solution that
provides much higher benefit in one of its primabjectives (e.g. reducing TN load to
the bay). Alternatively, it may request additiosahtributions from the LGAs towards
the CAPEX.
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Figure 4-4 Interactive many-objective, multi-stakelolder trade-off space plot. Parallel coordinate plts showing joint Pareto front of full
portfolios and individual stakeholder BATNAs visuaised with respect to each stakeholder’s objective¥he colour axis represents the 8
solution categories grouped by performance relativeo the BATNA. A category (1) dark blue solution csts less and outperforms the BATNA
in all benefits, whereas a category (8) red line kdion costs more and underperforms the BATNA in al benefits. Categories 2-7 have a
combination of higher or lower cost and improvemenin various numbers of benefits, therefore stakehdkr input is required to determine
which of these categories are preferred
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4.4.3 Exploring the multi-stakeholder trade-off spaces

The results of an analyst exploring the individstakeholder problem spaces to select
‘good’ individual options, presenting those optiama visualization intended to illustrate
their distribution of costs and benefits amongskeholders, and analysis of the solutions
in the individual trade-off space of stakeholdeas, described in Section 4.3.5, are

presented in this section.
4.4.3.1 Selecting ‘good’ solutions

For the case study considered, individual LGA aniACsolutions were selected by
an analyst using parallel coordinate plots of stak#er objectives, as stakeholders were
not available, as mentioned previously. To sele@ALsolutions, only Category 1
solutions were considered. Two solutions were saetetor each LGA, one from high-
cost and one from low-cost Category 1 solutionsrrBivater harvesting capacity and
green score were prioritised over total nitrogemaeal for solutions proximate in the
cost regions. To select CMA solutions, Category and solutions that exceeded the
BATNA’s TN removal with cost less than $6M, werensaered. Two CMA solutions
were selected, one high cost and one low costsé&leeted solutions are shown in Table
4-6.
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Table 4-6 Individual stakeholder selected solutions

Selected Solution

Solution characteristic CMA CMA LGA 1 LGA 1 LGA 2 LGA 3 LGA 3 LGA 2
Low High Low Costs  High Benefits Low Costs High Benefits  Low Costs High
Costs Benefits Benefits
CMA data
CAPEXcva 3,650,000 5,710,000 4,130,000 7,450,000 5,880,000 6,510,000 2,970,000 10,200,000
TNcma 3,802 3,581 1,357 3,967 1,753 4,150 1,345 4,295
SWHema 51.17 83.22 69.1 76.93 84.45 32.12 29.12 78.16
GRNewa 86 118 109 114 111 115 90 113
BATNA Category 3 4 6 4 6 6 5 4
LGA 1 data
OPEX 118,000 405,000 193,000 517,000 357,000 406,000 7,000 565,000
TNy 509.79 190.68 187.81 500.1 162.41 765.57 166.15 0.485
SWH - 24.78 11.95 24.78 24.78 11.95 11.95 24.78
GRN 17 29 33 43 21 35 26 28
CAPEX 639,000 1,530,000 799,000 2,120,000 1,270,000 01090 641,000 2,350,000
BATNA Category 3 1 1 1 2 1 1 4
LGA 2 data
OPEX 358,000 589,000 626,000 735,000 703,000 529,000 8,000 1,160,000
TN 384.58 605.27 685.65 706.57 681.71 376.57 270.37 93.51
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SWhH 46.42 55.42 55.42 50.42 54.92 15.42 12.42 49.92
GRNe 25 43 44 31 45 34 22 39
CAPEX 1,210,000 2,230,000 2,430,000 3,100,000 2,850,000 2,430,000 1,030,000 5,360,000
BATNA Category 5 1 1 2 1 3 5 2

LGA 3 data
OPEX 351,000 372,000 166,000 428,000 351,000 432,000 1,006 482,000
TNs 2,907.40 2,784.80 483.88 2,760.50 908.93 3,007.90 908.33 2,951.10
SWH 4.75 3.02 1.73 1.73 4.75 4.75 4.75 3.46
GRNs 44 46 32 40 45 46 42 46
CAPEX; 1,800,000 1,960,000 901,000 2,230,000 1,760,000 ,1802000 1,300,000 2,520,000
BATNA Category 1 2 5 2 1 1 1 2

Miscellaneous

|r?1i;r)2(r:\t/|i¥) Ssog?sgt?hda) 680 649 243 711 316 737 241 769
No. Projects 14 19 18 18 18 19 15 18
LifeCycle Cost ($NPV) 4,480,000 7,080,000 5,020, 9,130,000 7,290,000 7,880,000 3,660,000 120600,
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4.4.3.2 Sharing preferred solutions

Figure 4-5 shows the parallel coordinate plot ukeddentify solutions that are a
compromise between stakeholder preferences. Ax@s 8te CMA capital expenditure
breakdown by LGA, and solution equity indicatorkevant to the problem. In this case,
solutions that are likely to be preferred by stakdérs should distribute CAPEX funding
amongst stakeholders fairly whilst ensuring retumnnvestment through total catchment
benefits are achieved. Visualising how a solutimtrithutes costs and benefits amongst
stakeholders can assist in the negotiation proCEss. can be done by visualising
objective performance (CAPEX), non-objective d&APEX of LGAS), as well as equity
indicators (maximum BATNA category) in parallel ecdmate plots. The interactive plots
allow analysts to rapidly brush out unfavourabliusons. This reduces the number of
solutions to consider and thus the cognitive loadtakeholders.

In addition, Figure 4-5 shows how CAPEX from the EN& distributed amongst
LGAs for the selected solutions. Although the CAPRete is more than the CMA’s
BATNA cost, the CMA may investigate higher costusmns, as it had no Category 1
solutions in the joint Pareto front. This coulduks the avoidance of solutions that have
extremely low or high individual LGA CAPEX expendlies. Since the CMA s
compromising its preferences by increasing its CARKer its BATNA cost, it would
most likely want to maximize its primary objectiwehich is to reduce total nitrogen
reduction to the bay. The ‘maximum category’ agisn equity indicator that assumes
that a smaller number of categories is preferattevever, which of the benefits are
compromised is important to decision makers. FangXe, the CMA may be willing to
accept a higher category solution (e.g. higher emst compromise in one or more
benefits) that has a much higher total catchmentddction than other solutions. An
additional axis isolates solutions that appear ateGory 1 for all LGAs, as there were
numerous Category 1 solutions available in the Ltesle-off spaces. The indicator
shows none of the selected solutions lie in Catedofor all LGAs. Determination of
how each solution performs with respect to all skatdder objectives would be required

in order to better understand the compromises eidr on investment for the CMA.

127



CMJ&.LDWS'__\ o 0 0 0'q 04
"

CMA Hi Ben. | ™ P —
LGAL Low S |
LEAL HLBer § of o I ‘,,:"r.f:- § -.---.-.'F.':--_;_ e — 1 |-_ -E'\'__
LGAL Low s | ‘

LGA1 Hi Ben. | gl

LGAL Low s | BV

.f,z"z & Besc 4 8 Besin i dms { i s ."-_

LGA1 HiBen. |~ %

BATNA | 1.1e+07 | 6e+06. | Ge+06 | Ge+06 | 6.
Solution CAPEX CIMA CAPEX LGA1 CAPEX LGAZ  CAPEX LGA3 Max. Category

Figure 4-5 Breakdown by recipient LGA of the catchnent management authority capital
expenditure for joint Pareto solutions. Colour axisshows the selected solutions. A lower
maximum category number indicates a solution thatd likely to be preferable or equitable
to all stakeholders (in this case, since all LGA &ations were Category 1, maximum
category reflects the CMA category). BATNAs are noshown.

4.4.3.3 ldentifying compromise solutions

Figure 4-6 shows the selected solutions, visualseal screenshot of interactive many-
objective, multi-stakeholder trade-off space p{@ATNAs are not shown). The analyst
evaluated the performance of the selected solutiatis respect to each stakeholder’s
values, by visualizing the solutions’ performanceach stakeholder objective space and
comparing each solution to the stakeholder’s pretkoptions. The stakeholder evaluated
the relative performance of other stakeholder smistwith their own BATNA and own
selected solutions. An analyst recorded the likelththat each stakeholder will accept
each solution, and the rationale for the evaluatstrown in Table 4-7. A “yes” was
recorded where there was a large increase in heréfsimilar cost or lower costs with
similar benefit, compared to solutions suggestedhay stakeholder; a “maybe” was
recorded if there was an increase in some berefdsiot others at additional cost; a “no”
was recorded where costs were higher with smallooincreases in benefits. Recording

the rationale may be useful for further bargaining.

In the “CMA low $” solution, all stakeholders arkdly to be satisfied with the solution
except LGA 2, who is concerned about a lower béemefboth stormwater harvesting
capacity and green score compared to their BATNA. absist with identifying a

compromise solution that agrees with LGA2’s valugtekeholders can consider the
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projects making up the portfolio using the visuslgtics package, as was done in Section
3.3. Looking at the projects making up the portipthe LGA2 projects include Project
60 and 61, two small biofilters, and Project, 18rge wetland. This provides information
for bargaining, e.g. to identify the impact of r@ghg or adding projects to the portfolio
with those that LGA2 would like to implement andattother stakeholders might be
willing to fund. Alternatively, returning to a vialisation of the full trade-off space,
isolating selected solutions and using the brusiiand, would enable the selection of
solutions proximate to the “CMA low $” solution @ach stakeholder’s objective space,

which represents a good compromise solution.

The results here show one iteration of the nedotigirocess. If none of the selected
solutions can be agreed upon, stakeholders sheuddidwed to revise their BATNA or
selected solutions as new information about thélpro arises Kitzgerald and Ross
2019.
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Figure 4-6 Interactive multi-stakeholder trade-off space showing selected solutions.
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Table 4-7 Indicative stakeholder preferences for $ected solutions

CMA
Stakeholder| “MA | High
Low $
Ben.
CMA Yes Yes
Reason
LGA 1 Yes Yes
Reason Category| Category
1 1
LGA 2 Maybe | Maybe
Reason low low
benefit | benefit
LGA 3 Yes Maybe
low
Reason SWH
Viable? Maybe | Maybe

4.5 Summary and conclusions

In this study, a general optimization-visualisatfoamework that deals with multiple
stakeholders with multiple objectives, and encoesa@ negotiated outcome for a
portfolio optimization problem, was presented. Ttzenework addresses the need for a
decision support approach for identifying solutit@momplex environmental problems
that i) handles multiple stakeholder formulatiohsh@ problem reflecting their interests
and values, ii) enables interactive exploration amdlysis of possible solutions by
stakeholders, iii) encourages stakeholder trusthen final selected solution, and iv)
facilitates a final negotiated outcome. Improversenh existing multi-stakeholder
exploration approaches were developed. These iadlisdialisation of the full trade-offs
between extremely large numbers of objectives usialjiple linked parallel coordinate
plots in a visual analytics package. Solutions wesened within the plots to compare
proposed solutions to a best alternative acrosgipteulobjectives. This was done to
facilitate negotiation by emphasising the bengjasned and losses prevented through
accepting a negotiated outcome. This also highdigigquities between stakeholders and

facilitates bargaining where equitable outcomesaaeglable
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An innovative indicator for determining the rela&ivmprovement upon a Best
Alternative to a Negotiated Alternative (BATNA) sdibn allows stakeholders to rapidly
assess how well a solution performs across multpiectives and multiple objective
spaces. In addition, as the joint-Pareto solutemesPareto optimal with respect to each
stakeholder’s individual problem formulation, thissists with arriving at a consensus on
a final compromise solution. This is because stakkgis do not have to compromise by
accepting a solution that is dominated in the dbjespace of their preferred formulation,
nor do they have to explore and analyse results sihgle problem formulation with

aggregated or agreed upon objectives that do ressarily reflect their values.

The approach was demonstrated on a multi-stakehaldechment management
problem, requiring 16 different objectives fromks&tholders to assess solutions. Eight
optimization formulations were solved to generati@tsons to a best alternative scenario
and a collaborative scenario. From a set of salgttbat were joint-Pareto optimal within
the collaborative scenario, a set of selected isoisit were identified for further

consideration by stakeholders.
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CHAPTER 5

Conclusion

Recently, the application of Water Sensitive UrBasign (WSUD) has demonstrated
an ability to mitigate the impacts of developmentwban water supply security and

natural ecosystem healtigkarizadeh, Rippy et al. 20L5An increasingly popular

WSUD technique is urban stormwater harvesting (SWAHjch incorporates stormwater
best management practices (BMPs) in systems usetetaept and capture, treat, store
and distribute surface stormwater runoff for latuse. WSUD approaches, especially
SWH, can provide multiple benefits such as a r&dialbater supply for irrigation,
improvement in urban vegetation and amenity, astbration of urban runoff quality and

guantity closer to pre-development levelefcher, Mitchell et al. 2007 However,

optimizing WSUD systems to achieve these multiplgectives, which are often
conflicting, can make planning and design tasks emoomplex than traditional
stormwater management systems. Compounding tHisullij are the multiple possible
spatial scales at which BMPs can be distributeaitinout a catchment, the large number
of different types of system components and intewvadetween components, and the
large number of decision options (e.g. size, typeé lcation of BMPs) and therefore
large number of possible solutions. ConsequentlnynWSUD system planning and
design problems are suited to be formulated mathtieatig as multiobjective
optimization problems with large and complex santspaces; which consist of a set of
planning or design decisions that need to be s#ldotmaximize a set of objectives given
practical constraints.

While formal multiobjective optimization approachescluding the use of
metaheuristics linked with models to evaluate thgective function performance, may
be well suited to solving WSUD planning and degmgoblems, their application also
presents a number of challenges. An optimizatiamé&work that considers all aspects of
the SWH system preliminary design problem is neargst® take into account multiple
objectives, different system components, the dhston of components throughout a
catchment and a formal optimization approach. Iditaxh, to ensure the results of the
application of optimization approaches are trusted used in practice, it is necessary to
adapt approaches to incorporate stakeholder inpdtfacilitate negotiation between
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multiple stakeholder groups with different prefesesito encourage the adoption of a final
WSUD solution. In order to address these issuesgtbptimization frameworks using
multiobjective metaheuristic algorithms were intwodd in this thesis, which are able to:
1) handle SWH systems preliminary design incorpoegamultiple objectives, different
types of system components, distribution of BMRg, @large number of decision options
in a holistic fashion, 2) encourage the adoptiontted results of optimization by
incorporating input from stakeholders in the probl®rmulation and evaluation using
portfolio optimization approach, and exploratioreoglysis of optimization results using
visual analytics, and 3) facilitate negotiationvieén a number of stakeholder groups,
each with different value sets and interests, tijincalinnovative multi-stakeholder visual

analytics approach to identify, explore, analyse se&lect from jointly optimal solutions.

5.1 Research Contribution

The overall contribution of this research is thevelepment of three optimization
frameworks for optimal WSUD systems planning andigie using multiobjective
optimization algorithms. In the first framework,topal SWH systems with components
distributed at the development scale are identifted maximize water quality
improvement and SWH capacity, at minimal cost, ecibfo practical limits on the
combination of BMPs within systems and pollutiorduetion requirements set by
regulators. The benefits of this framework are destrated using a real-world case study
based on a new housing development located nortkdefaide, South Australia. The
second framework produces optimal integrated cagchhrmanagement plans consisting
of BMP projects for maximizing water quality impewment, SWH capacity, and urban
vegetation and amenity improvement at the regisnale and is applied to a real case
study for a major Australian city. The third fram@w incorporates the optimization
approach in the second framework into a multi-dtakder optimization-visual analytics
framework to facilitate the selection of a solutimncomplex environmental planning
problems through negotiation between parties. Tigiss visual analytics considering
extremely large numbers (>10) of objectives andpiglied to a sixteen objective multi-
stakeholder catchment management plan problem farahcase study for a major

Australian city.
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The specific research contributions to addresslifectives stated in the Introduction

are as follows:

1. A generic multiobjective optimization frameworkdssess trade-offs in spatially
distributed SWH system designs, featuring the Nomihated Sorting Genetic
Algorithm (NSGA-II) linked with an integrated stowater model (eWater
MUSIC) and a lifecycle cost model, was developed in Pap&his framework
is able to identify SWH system designs that maxentrade-offs between water
guality, stormwater harvesting capacity and minaritecycle cost of BMPs and
water transfer infrastructure. A SWH systems degigsblem for a real case
study for a new housing development north of AdigaiSouth Australia was
used to demonstrate the utility of the frameworke Tesults demonstrate the
benefits of adopting Pareto optimal spatially adstted SWH systems identified
using the framework, compared with traditional dasiwith BMPs located at
the catchment-outlet. Results indicate that, wiseseage space is limited at the
catchment outlet, better harvested stormwater guptibbility as well as better
water quality improvement can be achieved by disting capture, treatment,
and storage BMPs in an integrated SWH system.

2. A general multiobjective optimization framework fible selection of a portfolio
of BMPs for catchment management was developedpeP2. The framework
addresses the need for a decision support appfoattie selection of BMPs that
considers numerous, possibly conflicting, perforogaariteria, handles a large
number of decision options and potential stratedaaslitates the identification
and representation of trade-offs between performamiteria, which develops
trusted strategies, within the limits of existingnqming capacities. The approach
was applied to a case study catchment plan fotchreent authority in a major
coastal city in Australia. The results demonstthte benefits of exploring full
portfolio solution trade-offs in a many-dimensiorigdareto optimal front. A
comparison between the trade-off spaces of a loiveensional water quality-
cost problem formulation (typical in previous cat@nt management plan
optimization studies) and the many-objective foratioh, demonstrated that
low-objective formulations can result in Paretoimyatl portfolios with low
performance in non-objective performance critéfiae study demonstrated that
the use of the visual analytics approach to exptorabined optimization and
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decision spaces could assist in overcoming ingiitatly influenced biases to
include particular projects or BMP technologies demonstrate alternative
similar cost options to decision-makers.

3. A general optimization-visualisation framework thdeals with multiple
stakeholders with multiple objectives, and encoesag negotiated outcome for
a portfolio optimization problem, was presentedPiaper 3. The framework
addresses the need for a decision support appfoaathentifying solutions to
complex environmental problems that i) handles iplelt stakeholder
formulations of the problem reflecting their intst® and values, ii) enables
interactive exploration and analysis of possibleitsans by stakeholders, iii)
encourages stakeholder trust in the final selestéddtion, and iv) facilitates a
final negotiated outcome. Improvements on existingulti-stakeholder
exploration approaches were developed. These iactigiialization of the full
trade-offs between extremely large numbers of divjes using multiple linked
parallel coordinate plots in a visual analytics kzage. Solutions were framed
within the plots to compare proposed solutions tbeat alternative across
multiple objectives. This was done to facilitategagation by emphasising the
benefits gained and losses prevented through asgeptnegotiated outcome.
This also highlights inequities between stakehalderd facilitates bargaining
when equitable outcomes are available. An innoeatdicator for determining
the relative improvement upon a Best Alternativeatblegotiated Alternative
(BATNA) solution allows stakeholders to rapidly ass how well a solution
performs across multiple objectives and multiplgeotive spaces. In addition, as
the joint-Pareto solutions are Pareto optimal witbpect to each stakeholder’s
individual problem formulation, this assists withiang at a consensus on a final
compromise solution. The approach was demonsti@ted multi-stakeholder
catchment management problem, requiring sixtedardiit objectives from four
stakeholders to assess solutions. Eight optimizdaomulations were solved to

generate solutions to a best alternative scenadaacollaborative scenario.

5.2 Limitations

The limitations of this research are discussedvibelo
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. The framework for a SWH preliminary design in Papepnsiders harvesting and
water quality control functions, but not flood catfunctions as is the case in
many WSUD systems. The case study was selectelioto the water quality
control volumes in BMPs to be sized separately franmy flood control

infrastructure dealing with greater than 1 in 1nyf@od events.

. The objective functions selected in Papers 1, &, &meflect commonly used
WSUD indicators of performance but additional objyexs may also be important.
Where additional objectives are added to optimmaproblem formulations in
application of the framework this may require theeuof multiobjective

metaheuristic algorithms that have been demonsdttatevork on problems with

more than four objectives.

. The utility of the proposed framework in Paper $ baen demonstrated via the
development-scale case study, as its applicatiabled optimal solutions to be
identified within a given computational budget. Hower, application of the
framework will not necessarily support real-worlgkctsion making, particularly
in places where a large number of nodes in a syaterossible, requiring orders

of magnitude more simulations and much longer magretimes.

. Although economic factors (e.g., capital and maiatee costs of WSUD

components) have been included in the proposedeframks, there is no

consideration of the sensitivity of the optimal WI3Bystems obtained to different
cost assumptions. In particular, the long-term a@jstnaintenance to maintain
functional performance of WSUD assets, as wellre®tainty about these costs,
iIs a subject of ongoing research. For example, dbgt model assumes a
proportional relationship between the size of BMIAd cost, however does not
take into account the amount of sediment captur&MPs, which means smaller
BMPs may have underestimated costs compared vagetastimated by a model
including associated costs to remove sediment tantmia functional

performance.

The water quality, stormwater harvesting and urlkiagetation and amenity
values were not subjected to a sensitivity analysisnodel inputs, therefore

optimization results should be tested further. hrtipular, to determine the
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pollutant load reduction of a WSUD systemNRJSIC it is typical practice to
simulate the system several times with a stochfastition for the pollutant wash-
off model inMUSIC switched on, and to then to calculate an averagemmance
value. This was not possible in the framework ipd?d. due to limitations on run-

time. The stormwater harvesting performance ofrojttion solution should be

further tested using several climate scenariosiggested inNlarchi, Dandy et
al. 2016.

The visualization method presented in Paper 3 bageat been demonstrated in a
stakeholder workshop setting, and impacts of thewerld application are yet to

be tested and understood.

In the proposed frameworks, the WSUD systems areldeged using one rainfall
pattern, whereas the harvesting performance ishaaypacted by future climate

changes (althougi@lark et al. 201Hhave found climate change is not likely to be

critical to urban runoff when compared to incregiirdense urban development,
in South Australia). Demand for alternate watenigs (i.e. non-potable quality)
Is also a critical variable that should be consder

Notably, the optimization formulations in the casedies in Paper 2 and 3 do not
consider interaction between having a higher hawagsacity, which might allow

for more irrigation of green spaces.

5.3 Future Work

From the above limitations, some future studiesecemmended below.

1.

2.

Future application of the framework in Paper 1,mhgpnsider an additional flood
control objective and linking a flooding model teetframework. This would be
possible through the use of metaheuristic algomsthimat allow for multiple linked

models to evaluate multiple objectives.

As long model run-time and computational budgeitéohthe size of case study
available to apply the framework in Paper 1, initiolial to the model pre-emption
method employed, future studies could consider ligéization of model

simulations, surrogate modelling techniques, oitaal optimization operators
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to prevent simulation of inferior solutions thatuteb reduce run-time further, as

discussed inVaier, Kapelan et al. (2014)This would permit larger WSUD

systems, additional decision options, scenariokidieg the impact of climate
change on optimal BMP placement, as well as corsid@ of solution robustness

and uncertainty analyses.

. Future studies on the impact of climate changedistnibuted systems of BMPs
used for stormwater harvesting should be investtjads has been done for BMP
systems not including harvestinghichakly, Bowden et al. 20).3

. As economic sensitivities, as well as other modehmeter and objective function
sensitivities are important for real-world WSUD t&yas planning and design,
there is a need to take into account this factduitner studies. Furthermore, risk
management should be also addressed to evaluatapghet of maintenance cost

sensitives.

. Adding more objectives to the optimization formidas could provide decision-
makers with even more insight into the performanage-offs of optimal WSUD
systems. However, the number of solutions thatessgt Pareto front increases
exponentially with the number of objectives, makisglutions representing
optimal trade-offs more difficult to identify, exgle and analyse. Therefore,
metaheuristics that have been demonstrated to workproblems with high
numbers of objectives should be used to identifynogd solutions (e.g. BORG;
Hadka and Reed (20)2Nonetheless, visual analytics approaches atepkrly

useful for exploring and analysing optimizationuies of problems with large

number of objectives as demonstrated in Paper@articular.

. The optimization-visual analytics presented in Papehould be tested in an
experimental workshop setting, to demonstrate hiity to facilitate the rapid

selection of compromise solutions.

. The problem formulation in Paper 2 and 3 shouldsmer synergistic (or
cannibalistic) interaction between objectives suah projects with higher
harvesting capacity, which may increase the iridgatapacity, thus increasing

green score of projects nearby.
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APPENDIX A

Paper 1 Published Version

Published version of Paper 1 from Chapter 2:

Di Matteo, M., Dandy, G.C. & Maier, H.R., 201Rultiobjective optimization of
distributed stormwater harvesting systendeurnal of Water Resources Planning and
Management, 10.1061/(ASCE)WR.1943-5452.0000756.
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APPENDIX B

Paper 2 Supplemental Data

This appendix contains a table of cost data usetttermine the model for stormwater

harvesting lifecycle cost for the case study ind?&p(Equation (3-8)).
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Table B- 1 Detailed costings of stormwater harvesty components used to develop the model for LCCSW$] (Egn. 8) in the case
study application of the optimization framework. Based on values idlnamdar (2014). SWH component cost values were adjusted

from 2012$ to 2016$, at 1% p.a (D. Browne, personabmmunication, 2016)

Underground Conc. Storage  Stormwater pipes CoS8ysiem Pump system Electricity

Volume Capital Cost ~ Annual  Capital Annual Capital Annual Capital Annual Annual NPV NPV Total Levelized
Supplied %) Cost Cost Cost Cost Cost Cost Cost Capital  Annual NPV cost

ML/yr ($lyear) Cost  ($/year) (2016%) ($/year) (2016%) ($lyear) ($lyear) Cost Cost (2016%) (2016$/ML)

%) (2016%$) (2016%)

Pleasance Garden 5.6 191750 3020 49500 650 30000 1400 19180 5000 156 22302 128544 430765 6306
levers Reserve 5.6 153400 3020 65250 650 30000 1400 19428 5000 173 96278 128757 407719 5969
Batman Park 5.7 191750 3020 20925 650 30000 1400 19428 5000 173 74272 128757 401502 5775
Birrarung Marr Park 15.1 536900 3020 82620 650 30000 1400 39300 5000 864 78616 137443 854230 4638
Holland Park 18.5 920400 3020 47790 650 30000 1400 48190 5000 605 88833 134188 1223051 5420
Clayton Reserve 26 767000 3020 151200 650 30000 1400 29102 5000 735 169BD 135822 1152802 3635
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Figure B-1 Capacity vs cost per volume supplied foMelbourne stormwater harvesting projects. Based owalues inlnamdar (2014).
SWH component cost values were adjusted from 20128 2016$, at 1% p.a (D. Browne, personal communidai, 2016).
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APPENDIX C

Paper 3 BMP project data

The data associated with the 70 stormwater besagement practice (BMP) projects
evaluated in the case study application of the @sed optimization approach are

presented in Table C.1 below.
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Table C-1 Details of available catchment managemeptrojects

Contributing

Lifecycle

TN

Total

Lg\iglmment Project BMP catchment cost CAPEX OPEX Reduction  Supply Green
authority D Type area (ha)  (@NPv)  CNPY) BNPV) g (ML) Seore
(LGA)
3 Biofilter 22.5 305,157 257,198 48,123 72.75 0 4
4 Biofilter 11.6 271,251 228,621 42,776 37.4 0 4
5 Biofilter 7.7 175,626 155,531 21,388 24.86 0 5
6 Biofilter 9.3 131,719 116,649 16,041 30.16 0 5
7 Biofilter 8.2 43,906 38,883 5,347 26.63 0 5
8 Biofilter 9.4 87,813 77,766 10,694 30.25 0 5
1 12 Biofilter 50.3 1,220,630 1,028,792 192,493 182.8 0 5
13 Wetland 4.8 169,532 142,888 26,735 15.49 0 5
23 Wetland 3 98,438 116,649 16,041 9.58 0 5
24 Wetland 13.5 459,379 400,086 74,858 43.63 0 5
25 Wetland 13.2 459,379 400,086 74,858 42.79 0 5
35 Wetland 215 918,757 800,172 149,717 69.5 0 5
36 Biofilter 45.2 949,379 800,172 149,717 146.3 0 5
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45 Biofilter 24.8 271,251 228,621 42,776 80.17 0 7

46 Swale 64.5 123,814 400,086 74,858 208.58 0 7
50 Biofilter 9.6 187,282 116,649 21,415 31.08 11.95 6

55 Biofilter 8.7 305,157 257,198 48,123 28.27 0 8

56 Biofilter 84.9 237,345 200,043 37,429 274.58 0 5

57 Wetland 29.4 1,206,996 1,000,215 192,428 95.12 23831 5

1 Biofilter 20.4 508,596 428,663 80,206 55.79 0 4

2 Biofilter 25.4 542,502 457,241 85,553 69.5 0 4

9 Wetland 91.9 1,220,630 2,571,981 481,233 251.32 0O 4

16 Biofilter 28.5 474,689 400,086 74,858 78.09 0 6

19 Wetland 22.5 787,506 685,862 128,329 61.66 0 4
20 Wetland 14.8 525,004 457,241 85,553 40.55 0 4
21 Wetland 59 718,815 1,514,611 283,393 161.29 0 4
22 Wetland 21.3 406,877 857,327 160,411 58.23 0 4
27 Biofilter 15.3 305,157 257,198 48,123 41.89 0 6

29 Wetland 6.2 196,877 171,465 32,082 16.89 0 6
37 Wetland 13.6 590,630 514,396 96,247 37.31 0 5
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42 Wetland 37.5 951,570 828,749 155,064 102.47 0

47 Biofilter 57.9 712,034 600,129 112,288 158.47 0 7
49 Biofilter 36 610,315 514,396 96,247 98.48 0

51 Wetland 17.4 590,630 514,396 96,247 47.56 0

52 Wetland 21.3 721,881 628,706 117,635 58.23 0

58 Biofilter 25.5 592,986 485,819 97,209 69.9 3

59 Biofilter 7.8 224,031 155,531 26,966 21.21 10

60 Biofilter 50.4 189,135 155,531 27,758 137.78 22.4 6
61 Biofilter 57.7 381,297 257,198 50,566 157.92 40 6
63 Biofilter 10.4 178,041 142,888 33,201 28.59 15 6
66 Biofilter 88.6 2,027,127 1,686,076 321,575 292.4 6
68 Wetland 98.4 976,171 3,286,420 621,322 269.13 2 7
70 Wetland 22 768,630 657,284 129,343 60.29 2.5

10 Biofilter 53.1 1,017,191 857,327 160,411 145.28 5
11 Biofilter 32.8 305,157 257,198 48,123 89.68 0

14 Wetland 11.5 295,315 257,198 48,123 31.52 0

15 Biofilter 16 203,438 171,465 32,082 43.78 0
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17
18
26
28
30
31
32
33
34
38
39
40
41
43
44
48
53

Biofilter
Biofilter
Wetland
Biofilter
Biofilter
Biofilter
Swale
Swale
Wetland
Biofilter
Biofilter
Biofilter
Biofilter
Biofilter
Biofilter
Biofilter
Wetland

43.7

417.2

4.5
10.6
40.8

7.2
10.1
13.5
51.4
97.7
15.9
27.2
97.7
18.7
43.7
421.2
15.1

474,689
474,689
164,064
87,813
542,502
131,719
114,970
88,438
732,378
213,213
175,626
610,315
97,587
440,783
576,409
915,472

525,004

400,086
400,086
142,888
77,766
457,241
116,649
371,508
285,776
1,543,189
171,465
155,531
514,396
77,766
371,508
485,819
771,594
457,241

74,858
74,858
26,735
10,694
85,553
16,041
69,511
53,470
288,740
38,524
21,388
96,247
17,136
69,511
90,900
144,370
85,553

119.47
1141.49
12.44
29.13
111.75
19.65
27.73
37.02
140.6
267.23
43.59
74.48
267.23
51.25
119.47
1152.38
41.28

0



54
62
64
65
67
69

Wetland
Wetland
Wetland
Biofilter
Biofilter

Biofilter

63.1
14
18.8
47.4
8.4
47.4

962,941
576,409
656,255
847,660
95,157
169,532

2,029,007
485,819
571,551

714,439
77,766

142,888

379,639

90,900
106,941
133,676
17,182
26,735

172.58

38.19

51.43
129.69
23.11
129.69



APPENDIX D

Paper 3 Objective function

formulations

The objective function formulations for the casedst application of the proposed
approach are presented below. The objective fumstiare adapted from a single
stakeholder catchment management optimization enolpgresented in Chapter 3. The
objective functions include a mathematical formolat of cost, a water quality
improvement indication (total nitrogen (TN) redwoct), a stormwater harvesting

indicator, and an urban vegetation and amenitycatdr, as outlined below.
Cost

The economic cost of a portfolio of projects isresgented as a life cycle cdsECs
[$] (Equation (D-1)), which is a discounted sumegpected future costs for stormwater
management assets, including BMPs and transfeasimércture required to harvest

stormwater Taylor and Wong 2002 The life cycle cost objective function for each

candidate portfolio of BMPs is given by:

MINIMIZE: LCC = LCCgyp + LCCswy

Equation ( D-1)
where

LCCpmp = XiL1{ (TACgmp,) + PWFestangmp, (SAmp, X ECFpyp, X

MBMPi) + PWFmaint,BMPi(SABMPi X MBMPi)}

Equation ( D-2)

LCCSWH = CCapTank + CCapPipe + CCapControl + CCapPump
+ PVVFmaint(CmTamk + CmPipe + CmControl + CmPump)

D-1



Equation ( D-3)
where a sum of the cost of BMPs to capture and steamwater runoffLCCawp [$]
(Equation (D-2)), and to transfer harvested watelatbalancing storage for further
treatment and distributionLCCswn [$] (Equation (D-3)) is applied withBMP;
representing thé" BMP in the candidate portfolidy [integer] is the number of projects
in the portfolio, andTAC [$] is the total acquisition cost as a functionS#,the surface
area oBMP. M [$) is this the annual maintenance cost per unit sugeez

PWFestab [fraction], for the establishment period, af¥WFmnaint [fraction], for the
remaining design life of system components, areptiegeent worth factor for a series of
annual costs computed using an appropriate discoatet ECF [fraction] is the
establishment cost factor (i.e., multiplier) foetannual maintenance cdgt[$] during
the establishment period (typically 1-2 years)dach BMP. For BMPs with a stormwater
harvesting functionCcaptan{$], Ccappipe[$], Ccapcontrol[$], andCcappump[$] are the capital
costs for required underground storage tank, cbeyrstems, pipes, and pump stations,
andCmtand$], Cmpipe[$], Cmcontrol[$], andCmpumd$] are the annual maintenance costs for
the tank, pipes, control systems, and pumps, aathtipg costs, respectively.

For the case study, the objective function forchfele cost of each portfolia,CCs[9$],
was calculated using (Equation (D-1) to (D-3)). Plaeameters fdrCCswmp [$] (Equation
(D-2) were estimated from cost schedules develdpe#lelbourne Water Australia
(2013) (Table D-1). A typical lifecycle period of 25 yesara discount rate of 6.5% per

year, an establishment cost factor of 3, and aabkshment period of 2 years, were

adopted. The parameters ta€Cswn[$] (Equation (D-3)) were estimated as follows. A
cost model for the total net present value (NPV¥tofmwater harvesting components
was determined using regressiot=(0.814) between levelized lifecycle cost [$/MLJan

estimated annual volume supplied [ML/yr], usingailetd costing data for six stormwater

harvesting projects derived lhyamdar (2014)see Section 3.2.3.1). Thus, the lifecycle

cost of stormwater harvesting components from BEqudD-4) was calculated using the

following equation:



N $
LCCoyy = [Zi=1(—104.49 - Supply; + 6622.6) [m] - Supply;[ML] ,if Supply; > 0

0 otherwise

Equation ( D-4)
whereSupply is the average annual supply capacity ofithBMP in a candidate
portfolio of N BMPs.

Table D-1 Cost variables for BMPs

BMP Surface Construction Establishment Maintenance

Area(SA) Cost Cost Cost

(m?) ($/m?; ($/mélyr; ($/mélyr;
year 0) year 1-2) year 3-25)

Wetland

0 < SA <499.99 150 30 10

500 < SA< 9,999 100 6 2

SA > 10,000 75 15 0.5

Biofiltration basin

0 < SA<99.99 1,000 15 5
100 < SA<499.99 350 15 5
SA > 500 250 15 5
Swale

All sizes 35 9 3

Note: Establishment cost = Annual maintenancexestablishment cost factor. Costs
are in Australian Dollars (2013$). Values were sdalsing an inflation adjustment factor
of 1.03053 from 2013$ to 2016%.

Water Quality Improvement

The water quality improvement indicat&yuaiity,s, is the total average annual pollutant
load reduction of one target pollutant (EquationrS)p The water quality improvement

objective function is:
N
MAXIMIZE: fyyatity = Z (Source;— Resid;)
i=1

D-3



Equation (D-5)

where,fqyality [Mass yeat] is the mean annual pollutant mass retained by 8MP
each candidate portfoli®\ is the number of BMPs in a portfoliBesid [mass yeat] is
the mean annual mass of pollutant leaving'tH8MP’s contributing catchment area, and
Source [mass yeal] is the mean annual mass of pollutant that reathes" BMP’s
catchment outlet in a post-development catchmesdlivee scenario without intervention.
Residand Sourceshould be determined using a stormwater qualisgssment model
accepted by the catchment management auth@uaygrabes, Kuczera et al. 2Q@®ach,
Rauch et al. 2004

Total Nitrogen (TN) was the specific pollutant couent adopted for the water quality
objective. The mean annual pollutant mass of Tidined by each candidate portfolio
was calculated based on the sum of average anhualaks retained by individual BMPs
in a portfolio. The water quality improvement othaBMP Source - Resid ; Equation
(D-5)) was assessed using the integrated catchmedel, MUSIC version 6.1 (Model
for Urban Stormwater Improvement Conceptualizat{ellyater 200¥), as suggested by
the CMA regulations.MUSIC is an integrated stormwater model that evaluates
rainfall/runoff and pollutant generation and tram$phydraulic and pollutant removal
performance of BMPsBach, Rauch et al. 20L.4MUSIC algorithms simulate runoff

based on models developed Gitiew and McMahon (1999nd urban pollutant load

relationships based on analysisiyncan (1999)An assessment of interactions between
BMPs was not deemed necessary because the commgizgtchments of individual
BMPs were spatially mutually exclusive.

A.3 Stormwater Harvesting

Average annual supply capacity (Equation (D-6))adopted as an indicator of
stormwater harvesting performance. The supply st@ter harvesting objective function

is:

n

MAXIMIZE: fgypp1y = Z 1Supplyi
1=

D-4



Equation ( D-6)
whereSupply [volume] is the average annual stormwater hardestéume for the'"
BMP in a portfolio, andN [integer] is the number of projects in a portfolio

Experts on stormwater harvesting from each LGA wasked to evaluate the
stormwater harvesting potential of BMPs within theirisdiction. They estimated the
expected irrigation demand required by open spaeas each BMP, and the average
annual potential capacity to supply the demand. &dtienates were based on procedures
specific to each LGA, and reflect the stormwatewbsting objective performance values

accepted by decision-makers.
Urban Vegetation and Amenity Improvement

The urban vegetation and amenity improvement inidicdepends on stakeholder
interests, which may include maximizing vegetateord tree coverage and quality of
recreation spaces. Each project should be apprarstdvaluated (scored) by vegetation

experts. The cumulative urban vegetation improverabjective function is:

n
MAXIMIZE: fgreen = z 1Greeni
i=

Equation ( D-7)
whereGreen [integer]is a score, determined by expert assessment Lttt the™

project in a portfolio.

The ‘green’ score’ of individual projects (whichasveighted score of several
indicators, and was developed by the authors arekddo be used as an optimisation
objective by consultants), use scores assignedjpsres (see section 3.3) from each
LGA interviewed in a workshop session by consuffamhe experts were asked to
answer the following questions about the BMP prigj@adthin their jurisdiction:
Answer ‘Yes’ ‘No’ or ‘Maybe’ to the following querins: 1) “will native vegetation
increase at the site?”, 2) “will tree cover inceeasthe site?”, and, 3) “will the quality
of recreation spaces in the area increase?”. Tthedatchment ‘green’ score objective

function wasGreen; = Y7, Score;
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3 ifansweris 'Yes'
Score; = {2 ifanswer is 'Maybe'

1 ifansweris 'No’

Equation ( D-8)
whereGreen is the sum of scores for each project, &aedreis the number of points
assigned to the answer to fHlequestion. Since there were three questions, eajbcp
could achieve a maximum of 9 green points, and padifolio a theoretical maximum of

180 (20 x 9) total green points.
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APPENDIX E

Paper 3MUSIC model background

The Model for Urban Stormwater Improvement Conceltion MUSICversion 6.1;

eWater (2009) was used to evaluate pollutant reduction perfoceaMUSIC is an
integrated stormwater model that evaluates rafnfaibff and pollutant generation and
transport, hydraulic and pollutant removal perfonoce of BMPs, and water balance

(Bach, Rauch et al. 201.AMUSIC is used as a stormwater management design tool in

Australia and the UK and has been used in watersbalé stormwater management
system reliability analysisBfowne, Breen et al. 20)2and WSUD optimization

(Montaseri, Hesami Afshar et al. 201BUSIC algorithms simulate runoff based on

models developed @hiew and McMahon (199%nd urban pollutant load relationships

based onmalysis byDuncan (1999)






