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Abstract 

This dissertation presents research concerning project selection problems 

motivated by issues affecting Air Force information production activities. First, an 

optimization methodology is presented for a deterministic project selection and 

scheduling problem variant composed of variable intensity work activity, benefit-event 

deadlines, and predecessor constraints.  An experiment with 1,800 problem instances is 

performed and the results show the methodology produces an equal or a better optimized 

solution compared to a methodology proposed in literature for every problem instance. 

Second, an optimization formulation is proposed for a project selection and sequencing 

problem variant including project re-execution decisions to account for the aging, 

information-based product of the projects. A case study finds the formulation 

computationally tractable and the results insightful for cost-vs-benefit analysis. Third, a 

technique used to address modeling inadequacies is revisited. The technique generates 

decision-space diverse solutions for the presentation to the decision maker. Limitations of 

the technique to address solution set content correlation attributes of diversity are 

highlighted. A technique modification is proposed to address these correlation attributes 

of diversity and an experiment is performed for a portfolio selection problem. Paired t-

test results show the proposed technique produces significantly more diverse solution sets 

compared to the original technique regarding correlation-sensitive diversity measures. 

Fourth, a methodology is proposed to address non-constant marginal values in project 

selection problems' portfolio-based objectives. A branch and bound extension of an open 



v 

source non-linear programming solver is proposed and results in a reduction of the 

optimality gap compared to a commercial off-the-shelf solver for a problem dataset from 

the literature. 
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METHODS TO SUPPORT THE PROJECT SELECTION PROBLEM WITH 

NON-LINEAR PORTFOLIO OBJECTIVES, TIME SENSITIVE OBJECTIVES, 

TIME SENSITIVE RESOURCE CONSTRAINTS, AND MODELING 

INADEQUACIES 

 

I.  Introduction 

The project selection problem is a vital concern in many organizations. The crux 

of the problem is an organization has many project opportunities and not enough 

resources to pursue all the projects. The organization must choose a subset (i.e., portfolio) 

of all potential projects to pursue. The degree the organization pursues more valuable 

projects efficiently and effectively ultimately influences the long-term success of the 

organization.  

This dissertation first provides the background and the motivating application of 

this research.  Given the background, research questions are presented based on gaps 

discovered from a literature review.  Next, related work is presented discovered from a 

review of research relating to the project selection problem and to the issues related to the 

problem context. Next, four papers present research regarding research question gaps, a 

method to address the research gaps, and results that show the method’s significance. 

Finally, a summary provides a conclusion of the research findings and, given these 

findings, possible future research. 

1.1 Background 

A DoD intelligence project selection problem is highlighted in a report by the 

Government Accountability Office (Government Accountability Office, 2016).  

Intelligence (i.e., information) users, who include research and development 

organizations, system acquisition organizations, and combat organizations, request many 
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structured intelligence products to support their missions. In the creation of an 

intelligence product, the “project” consumes and ties up research and developmental 

resources. Given a limited intelligence production resource capacity, the intelligence 

organizations cannot satisfy all the production requests and the defense and intelligence 

enterprise must select a subset of intelligence production projects to pursue given 

competing priorities. 

Air Force acquisition organizations face the intelligence-project selection problem 

described above in a slightly different context, this being determining the intelligence 

supportability of a given system and setting their expectations to receive a set of 

intelligence products. For example, if the Air Force acquires a system and the intelligence 

is not produced to the system’s expectations, this may result in an ineffective system and 

a waste of money. With the increasing desire to use intelligence data in sophisticated 

sensor and automation capabilities, acquisition organizations should consider the ability 

of the producers to provide the intelligence needed and set their expectations accordingly 

(selecting a level of expected intelligence based on a set of intelligence projects). The 

growing use of automation in sensor applications and decision support systems, such as 

the F-35, is increasing the demand for intelligence products (Government Accountability 

Office, 2016).  

The intelligence project selection problem described above has attributes that 

make it complex compared to other resource allocation problems. First, the project 

selection problems of interest are strongly affected by events at points in time and over 

time, similar to issues raised in past military focused research (G. G. Brown, Dell, and 

Newman 2004). Budgets and personnel resource changes limit production capacity 
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differently in distinct time periods. Also, the customers of the intelligence projects often 

have time requirements for use, such as an acquisition testing milestone (e.g., if the 

product of an intelligence project is received after a test event, there is no benefit realized 

from the project with regard to that test objective). These time requirements provide a 

deadline for benefit/objective realization. 

Second, decision makers often desire a small set of diverse alternatives to 

manually compare and contrast as a part of a decision making process and part of the 

foundation of sensitivity analysis (Berntsen and Trutnevyte 2017; S.-Y. Chang, Brill, and 

Hopkins 1982; Hennen et al. 2017). This desire is often driven from the realization that 

the optimization model is incomplete based on unquantifiable aspects of the problem. For 

example, the nature of classified projects and an uncertain future imposes modeling 

limitations that an analyst cannot completely address. While a project selection problem 

with just 20 potential projects results in about one million possible alternatives (or 220, 

ignoring any possible feasibility constraints), prescribing a small, diverse set of near-

optimal solutions requires a method to generate these solutions. 

Third, unlike commercial profit-oriented applications that often use net present 

value (NPV) project consequence measurements, military applications do not readily 

suggest a single ratio based unit of measurement for project consequence quantification 

(Bullock 2006; Ewing, Tarantino, and Parnell 2006).  Military applications often consider 

multiple objectives with different units of consequence (i.e., benefit) measurement. For 

example, the product of an intelligence project may ultimately save a pilot’s life, may 

provide a vital piece of information to enable a high-risk mission to strike an adversary’s 

center of gravity, or may just provide slightly better battlespace awareness to a pilot. The 
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product of an intelligence project to support an acquisition or a research and development 

customer may give insights into the effective design of a next generation system (e.g., 

saving lives in future scenarios) or may provide the insight into the efficient design of a 

next generation system (e.g., saving money). Often measurements of these projected 

consequences require normalization that considers all the decision maker’s fundamental 

objectives. In addition, the objective criteria of a project selection problem may possess 

non-constant marginal preferences. Traditional project selection methods do not directly 

support these non-linear characteristics of the portfolio-level value or utility functions 

(Liesiö 2014). For military acquisition decision support, Key Performance Parameters 

(KPPs) are one method that the defense enterprise expresses their objectives to a 

measurable, operational form (R. R. Hill et al. 2013).  From the perspective of the 

intelligence project selection problem, KPPs can be viewed as a basis for holistic 

portfolio-level value functions.  

This dissertation provides insight regarding methodologies to address these 

complexities observed in the intelligence-production project selection problem (or from 

the acquisition consumer perspective, the intelligence requirement selection problem) and 

develops novel methods to address the proposed research questions. In addition, this 

research has wider applicability given the importance of project selection and resource 

allocation activities as demonstrated in past research concerning crowdsourcing 

information production (Basu Roy et al. 2015), software engineering (W. Chen and 

Zhang 2013), and technology portfolio management (Dickinson, Thornton, and Graves 

2001).  
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1.2 Research Questions 

This dissertation provides methods developed to address the following questions 

concerning the project selection problem. These questions are concentrated on issues that 

researchers have not addressed completely in the literature. 

1. How should organizations perform multi-objective project selection given 

complicating time factors, including variable-intensity-project work, resource 

availability changes through time and changes through time given event- 

benefit deadlines?  

Chapter III proposes a new methodology to find the optimal solution to the project 

selection and scheduling problem (PSSP) with variable intensity work and deadlines. The 

methodology finds the problem’s optimal solution for every problem, more efficiently 

compared to a methodology proposed in literature that fails to find the problem’s optimal 

solution for over 1/5 of the problem instances in the experimentation dataset. 

2. How should organizations perform multi-objective project selection given 

ageing, shareable products and project re-execution (i.e., reproduction) 

decisions? 

Chapter IV introduces a new methodology to support solution optimization in regard 

to product deterioration and reproduction decisions. The chapter provides a formulation 

to compute a measurable value baseline with respect to time interactions on decision 

value evaluations. Case study results show the computational tractability and the ability 

of the method to produce cost-vs-benefit insight for an Air Force intelligence production 

planning problem. 

 

 



6 

3. How should an analyst produce a small, diverse set of project selection 

solutions to support decision makers applying their elusive to model 

knowledge to work around modeling inadequacies? 

o What quantitative measure should the analyst use to assess solution set 

diversity? 

Chapter V develops and shows a new project selection alternative generation 

technique that generates significantly more decision-space-diverse alternative sets 

compared to an existing alternative generation technique from literature. Appendix VIII 

presents a new set correlation-sensitive diversity measure based on information entropy 

to quantify the decision-space diversity of a solution set. 

4. How could organizations perform modeling and optimization of project 

selection value with multiple objectives holding non-constant marginal 

values? 

Chapter VI presents progress towards an optimization method for the project 

selection problem with multiple, non-constant-marginal-value objectives. The chapter 

also presents an optimization solver for the non-linear programming formulation and 

shows the solver finds a better solution (reduces optimality gap) compared to a 

commercial-off-the-shelf non-linear solver for a problem dataset provided in literature. 

The proposed methodology incorporates proven multi-objective modeling techniques 

addressing a limitation of a recently proposed method requiring unproven techniques. 
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II. Literature review 

The project selection problem has been researched extensively throughout the 

years (Kleinmuntz 2007). Klienmuntz provides a summary of popular methods often 

incorporated into project selection and resource allocation decision applications. In 

particular, he presents the following methods: 

1) binary integer linear programming (BILP) formulation method for a set of 

projects, 𝐼, and 𝑖 as a member of this set,  

maximize ∑𝑏𝑖𝑥𝑖

 

𝑖∈𝐼

 

subject to 

                    ∑𝑐𝑖𝑥𝑖

 

𝑖∈𝐼

 ≤ 𝒄 

                   𝑥𝑖 = (0 or 1), ∀𝑖 ∈ 𝐼 

 

2) ranking benefit-cost ratio or profitability index method (rank and then select 

projects in order until resources are exhausted), 

benefit-cost ratio       
𝑏𝑖

𝑐𝑖
 

profitability index      
𝑏𝑖 − 𝑐𝑖

𝑐𝑖
 

3) multi-attribute value or utility method for the computation of benefits based on 

multiple objectives (Keeney and Raiffa 1976), including the linear-additive multi-

attribute measurable value function for n objectives: 

𝑏𝑖 = ∑𝑤𝑗𝑣𝑗(𝑦𝑖𝑗)

𝑛

𝑗=1

 

where  



8 

𝑥𝑖 denotes the decision to select project 𝑖, 
𝑏𝑖 denotes the benefits in selecting project 𝑖 
𝑐𝑖 denotes the cost to select 𝑖 
𝒄 denotes the budget 

𝑦𝑖𝑗 denotes the benefit in selecting 𝑖 in regard to objective 𝑗’s criteria 

𝑣𝑗(∙) denotes the 𝑗th objective’s value function 

𝑤𝑗 denotes the weight for the 𝑗th objective 

 

These methods are simple with regards to computing solutions, assuming the data 

inputs are available, though by themselves often do not address significant decision 

context factors. From a survey in 1975 (Baker and Freeland 1975), Baker and Freeland 

classify these factors and present several limitations of project-selection optimization 

methods: 

1. Inadequate treatment of risk and uncertainty 

2. Inadequate treatment of multiple criteria 

3. Inadequate treatment of project interrelationships 

4. No explicit use of the experience and knowledge of the SMEs 

5. Inability to handle nonmonetary aspects 

6. Perception that the models are difficult to understand 

7. Inadequate treatment of time variations 

The project selection topic, as a whole, is revisited again in 1999 (Heidenberger 

and Stummer 1999). Heidenberger & Stummer review project selection and resource 

allocation quantitative modeling approaches and organize their findings as depicted in 

Figure 1. Heidenberger and Stummer (1999) present a few more topics in relation to 

project selection, including the use of simulation models in project selection activities. G. 

G. Brown et al. (2004) review the history of mathematical programming in military 

capital planning activities. They highlight efforts that incorporated time dependencies, 

interactions between decisions, synergistic effects among decision variables, and aged 

inventory issues into mathematical programming models. 



9 

To support this research, the issues of project selection problems and associated 

solution techniques are classified into the following categories: benefit measurement; 

project completion attributes; optimization method; and addressing optimization-method 

inadequacies.  Sub-issues are italicized.  Associations to the subsequent chapters are 

presented as appropriate. Following discussion of these main issues, Table 1 presents an 

organization of references linked to important themes.  

 

FIGURE 1. AN ORGANIZATION OF PROJECT SELECTION TOPICS (HEIDENBERGER AND 

STUMMER 1999) 

2.1 Benefit measurement 

Optimizing project selection, whether concerning a single or multi-objective, 

relies upon benefit measurements. For example Heidenberger and Stummer (1999) 

presents a listing of techniques to measure benefits (Figure 1). Regarding the perspective 

of measurement, most research employs a project centric approach, which this 

dissertation defines as the measurement assumption that the value a project adds to all 

possible portfolios does not depend on what other projects are in the portfolio. For 

example, summing the selected projects’ scores to compute the overall portfolio’s value 

• Benefit measurement methods 

o Comparative Models 

▪ Q-sort approach 

▪ Analytical hierarchy process 

o Scoring Approaches 

▪ Checklist approach 

▪ Traditional scoring models 

▪ Multiattribute utility analysis 

o Traditional Economic Models 

▪ Economic indexes 

▪ Discounted cash-flow methods 

▪ Options approach 

o Group Decision Techniques 

• Decision and Game Theory 

o Decision-Tree Approaches 

o Game-theoretical Approaches 

• Mathematical Programming 

o Linear Programming Models 

o Non-linear Programming Models 

o Integer Programming Models 

o Goal Programming Models 

o Dynamic Programming Models 

o Stochastic Programming Models 

o Fuzzy Mathematical Programming Models 

• Simulation Models 

• Heuristics 

• Cognitive Emulation 

o Statistical Approaches 

o Expert Systems 

o Decision Process Analysis 
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or ranking the benefit-vs-cost value and selecting the projects in order until resources are 

exhausted employ the project-centric perspective assumption. Another perspective is a 

holistic approach enabling non-constant marginal value preferences to be measured (i.e., 

the value of a project depends on what other projects are in the portfolio) and explicitly 

addressed (Liesiö 2014). 

Regarding the dimensionality of measurement, the project selection problem may 

be formed for a single objective, while other problems may be formed for multiple 

fundamental objectives (Ghorbani and Rabbani 2009; Golabi, Kirkwood, and Sicherman 

1981; Medaglia, Graves, and Ringuest 2007; Rabbani, Aramoon Bajestani, and Baharian 

Khoshkhou 2010). Researchers suggest different foundations of objective measurement. 

For instance researchers propose benefit measurements using: 

• natural ratio units, such as net present value (Dickinson, Thornton, and Graves 

2001) 

• relative comparisons, such as AHP (Amiri 2010) 

• normative techniques, such as measurable value functions (Golabi, Kirkwood, and 

Sicherman 1981; Liesiö and Punkka 2014) 

• risk & uncertainty (i.e., utility) approaches (Liesiö and Salo 2012) 

An additional aspect of measurement includes project set interaction effects of 

benefits. For example, two projects may display a synergistic or antagonistic effect when 

both are chosen in a solution (Stummer and Heidenberger 2003).  Another important 

aspect of is the temporal interactions on benefits (Stummer and Heidenberger 2003). 

This dissertation distinguishes between two types of temporal benefit interactions: 
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deterioration such as discounting and appreciation, and event-based such as benefit 

deadlines (J. Chen and Askin 2009).  

This dissertation presents two novel, project-centric perspective methods. Chapter 

III presents a method to address multiple event-based, benefit deadlines. Chapter IV 

presents a method to address deterioration and event-based benefit measurement issues. 

Chapter VI introduces a holistic-perspective benefit-measurement-method incorporating 

a normative measurement foundation of a multi-objective project selection problem.  

2.2 Project completion attributes  

Project selection problems possess issues that restrict when, how, with what, by 

who, and where the projects are completed (Fox, Baker, and Bryant 1984; Zhao and 

Huang 2017). Similar to benefit measurements, optimizing project selection relies upon 

project cost measurements (i.e., resource requirement measurements). Important aspects 

of cost measurement include the dimensionality of measurement (resource types and the 

nature of resource types needed for project completion, such as renewable vs consumable 

resources) and project set interactions effects regarding costs (Zhao and Huang 2017). 

Additional project completion issues may arise from temporal attributes of 

scheduling projects. Research involving resource constrained project scheduling problem 

(RCPSP) provides a foundation for addressing these issues (Hartmann and Briskorn 

2010). Temporal issues include temporal order constraints (i.e., predecessor constraints) 

(Tofighian and Naderi 2015), temporal completion options, which includes intensity 

attributes (X. Li et al. 2015), such as whether projects are of fixed duration or of variable 

intensity (Askin 2003; J. Chen 2005), and renewable resources assignment options. For 
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example, renewable resources assignment options may assume a resource entity is 

assigned to a single project (Taylor, Moore, and Clayton 1982) or to multiple projects 

over the course of the planning horizon and may assume a resource entity’s availability 

changes over time. Another aspect of project completion attributes is the decision nature 

of the resource constraints (i.e., fixed or variable budget).  

Chapter III presents a project selection and scheduling method to address variable 

intensity attributes, temporal order constraints, and resource availabilities changes in 

time. Chapter IV presents a project selection and scheduling method to address temporal 

order constraints derived from re-execution decisions. Chapter III and Chapter IV 

demonstrate an approach to the decision nature of the resource constraints issue given 

the relatively quick optimization computation times enabled by each project selection and 

scheduling optimization methodology. 

2.3 Optimization method 

Project selection research suggests numerous methods to generate an optimal or a 

near-optimal solution. Mathematical programming models are a common method with 

deterministic input parameter assumptions (Kleinmuntz 2007). The literature proposes 

genetic algorithms, simulated annealing, and other heuristic search optimization methods 

to address stochastic input parameter assumptions (Bhattacharyya, Kumar, and Kar 2011; 

Crama and Schyns 2001; Huang 2007). Project selection and scheduling research suggest 

ant colony optimization (Tofighian and Naderi 2015) and genetic algorithms (Rabbani, 

Aramoon Bajestani, and Baharian Khoshkhou 2010) methods. 
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Chapter III and Chapter IV proposes an optimization method for project selection 

and scheduling problem deterministic variants utilizing a computationally tractable 

binary linear programming formulation. Chapter VI proposes an optimization method for 

a multi-objective project selection problem with non-constant marginal values and 

deterministic inputs using a branch and bound enumeration technique over a 

computationally quick non-linear programming solver. 

2.4 Addressing optimization modeling inadequacies  

Optimization methods for problem selection problems rely on assumptions. 

Researchers suggest extra caution in outright acceptance of optimization solutions 

considering potential optimization modeling errors due to invalid assumptions which 

should be addressable by the decision maker after the optimization method provides a 

solution. Research suggests the use of decision support techniques. These techniques 

include the presentation of a decision-space-diverse set of alternatives (E Downey Brill, 

Chang, and Hopkins 1982; DeCarolis et al. 2016), the presentation of a Pareto optimal set 

of alternatives (Kangaspunta, Liesiö, and Salo 2012), an interactive-iterative refinement 

of modeling expressiveness (Argyris, Figueira, and Morton 2011; Nowak 2013), and the 

discovery of robust elements of optimal portfolios over an incomplete information 

parameter space (Fliedner and Liesiö 2016; Liesiö, Mild, and Salo 2008). Chapter V 

presents research into an alternative generation technique that generates a decision-space 

diverse set of project selection solutions. 
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2.5 Cross Reference Table 

To summarize the background material related to the research questions, the 

literature is categorized into the following themes (Table 1): 

• multi-objective methods 

• measurable value functions 

• uncertainty & utility functions 

• preference elicitation methods 

• optimization methods 

• approaches to non-linear issues 

• generating diverse alternatives 

• incomplete information 

• time related issues 

• information production planning topics 
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2.6 Literature Summary 

In total, this dissertation considers over 150 references published from 1957 to 

2017 relating to project selection problems and issues pertinent to the research questions. 
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By most referenced research theme, the dissertation references approximately 61 

references concerning multi-objective issues, followed by 58 references concerning 

optimization methods, and 50 references researching time related issues. The individual 

chapters present additional literature as appropriate and provide a detailed discussion of 

the literature with respect to the research questions.  

III.  Project selection and scheduling with variable intensity work 

Variable-intensity work activities require a fixed amount of total time 

commitment from renewable resource(s) with the option to apply the work in inconsistent 

amounts over time. For a project selection and scheduling problem composed of variable-

intensity work, this paper proposes a methodology to optimize the value of a portfolio of 

projects with regards to deadline dependent benefits. Other attributes of the problem 

include project-predecessor dependencies and varying levels of resource availability over 

time. The methodology only requires the discretization of the planning horizon based on 

benefit deadlines and reduces the number of linear programming decision variables in an 

integer programming model compared to other proposed formulations. Considering a 

dataset consisting of 1,800 problem instances, the results show the methodology results in 

significantly better solutions and more quickly computes optimal solutions compared to a 

previously suggested variable-intensity project selection and scheduling optimization 

methodology from literature. 

3.1 Introduction 

Organizations often encounter situations involving resource limitations that 

restrict the pursuit of all conceived projects. This forces organizations to select a subset 



19 

of the projects that maximizes the organizations’ objective(s) (Kleinmuntz 2007). In more 

complex situations, organizations must perform the selection and plan the execution of 

projects with respect to time dependent objectives specified by a deadline, such as a fixed 

time event desiring the usage of the project’s product to realize additional benefits, and 

with respect to resource availability changes, such as employee leave absences, vacations, 

contractual short-term workforce support, resource maintenance activities, and training 

activities. In even more complex situations, some projects need to be completed before 

other projects can start. 

This paper proposes a methodology to address a variant of this problem. In this 

variant, symmetrical skilled resource entities, such as cross-trained analysts or engineers, 

can work together to finish a project activity quicker in a linear manner, which Chen 

(2005) refers to as variable-intensity work. For example, an activity that requires one 

month of work can be completed by one resource entity in one month, completed by two 

resource entities in 2 weeks, or completed by three resource entities with 2 of these 

entities contributing one week of work and the remaining entity contributing two weeks 

of work. Likewise, more resource entities could complete the work of a project in a 

shorter time. In this variant, the linear resource-work-intensity to duration relationship 

holds up to the number of resource entities available at any given time and the intensity is 

permitted to vary throughout the life of the project. This results in project activities 

having a variable duration based on the intensity of the work provided by the assigned 

resources to complete the project. Also, the problem consists of projects that are simple to 

start resulting in zero startup costs. Organizations may encounter this problem in 

production environments with flexible processing agents and with teams that cultivate 



20 

variable-intensity options to reduce project duration in ad-hoc time-critical situations 

where every resource entity possesses the skills needed for all potential project-work to 

support flexible, robust operations. 

Considering an 1,800 problem instance dataset, the proposed methodology and a 

methodology from literature are used to solve each problem instance. The results show 

the proposed methodology demonstrates positive properties with regard to computational 

tractability and results in significantly better solutions when compared to solutions from a 

method from literature that overly restricts solutions to the discretization of the planning 

horizon. The methodology employs a binary integer linear programming model that 

incorporates fewer decision variables. By decomposing the problem into two stages, the 

proposed method only discretizes the planning horizon using the benefit deadlines 

removing the need for a user to choose a step size for resource assignment in the 

optimization model. The methodology finds an optimal schedule on a continuous time 

dimension. The previously proposed mixed integer linear programming method fails to 

find optimal solutions in over 20% of the problem instances due to overly restricting 

solutions to discrete time model formulations. 

Next, the paper presents findings from a literature review related to project 

selection methods that consider the execution of projects over time. Section 3.3 presents 

the optimization methodology and how the methodology decomposes the problem into 

two stages. Then, Section 3.4 presents the details of an experiment comparing the 

proposed methodology to a methodology proposed in literature. Section 3.5 presents the 

results, a discussion of the results, and possible extensions to the methodology. The paper 
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concludes with some closing remarks regarding this research and possible future research 

topics. 

3.2 Literature Review 

Researchers have studied the project selection problem, also known as the 

resource allocation problem and as the project portfolio selection problem, for over forty 

years (Baker and Freeland 1975; Heidenberger and Stummer 1999). In 2007, Klienmuntz 

(2007) provides a review of project selection research and popular techniques applied to 

the problem. More recently, Liesiö (2014) and Liesiö & Punkka (2014) revisit and 

propose extensions to measurable multi-attribute benefit measurement techniques in 

regard to project selection problems, and Fliedner & Liesiö (2016) and Toppila & Salo 

(2017) study techniques to improve the efficiency and effectiveness of finding problem 

selection problem solutions with incomplete information. 

Before the turn of the century, little research existed considering the simultaneous 

project selection and scheduling problem (PSSP). In 1962, Hess (1962) proposes a 

dynamic programming method to support project selection with time affected decision 

factors. In 1982, Taylor III, Moore, and Clayton (1982) employ non-linear integer goal 

programming to support allocation of individual researcher resources to projects with a 

solution of static researcher assignments through time. In 1996, Coffin and Taylor (1996) 

propose a beam search heuristic method with a scheduling heuristic to solve a project 

selection and scheduling problem for projects with fixed durations decomposed into 3 

stages. 
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After the turn of the century, research regarding the simultaneous PSSP 

intensified and continues with recent research with projects of fixed durations 

(Shariatmadari et al. 2017). The first proposed method discovered to support variable-

intensity work in a project selection and scheduling problem is from (Askin 2003). Askin 

presents a formulation of the problem and provides a heuristic based method to generate 

solutions. Chen (2005) revisits project selection and scheduling with variable-intensity 

tasks and provides a mixed integer linear programming (MILP) model to support solution 

optimization. The formulation permits the bounding of intensity level of project work 

activities and multiple resource types. Other types of variable intensity work research 

exists. Kolisch & Meyer (2006) leverage a genetic algorithm based method to support 

multi-mode project selection and scheduling. Multi-mode scheduling employs a discrete 

set of variable-intensity levels. Li, Fang, Guo, Deng, and Qi (2015) propose a solution 

methodology to project selection problems with project “divisibility”. “Divisibility” is a 

type of variable-intensity work that considers solutions that reduce the normal intensity 

work activity of a project by spreading the work into different time periods. They provide 

a MILP optimization method that allocates resources to discrete time periods to fund the 

execution of the projects.  

In order to optimize the benefit of project portfolios, the measurement of benefits 

is a critical issue in project selection problems (Baker and Freeland 1975; Heidenberger 

and Stummer 1999; Kleinmuntz 2007). The problem of interest assumes the benefits 

from completing each project in regard to an event deadline are measured with net-

present value (NPV) measurements or multi-attribute value functions (Golabi, Kirkwood, 

and Sicherman 1981). The incorporation of multiple, time dependent benefit effects in an 
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optimization method is another issue. The problem of interest derives benefits from the 

completion of projects before deadlines and captures the benefits at the deadlines. 

Numerous efforts suggest measuring the possible benefits at discrete points in time and 

encoding the benefits and the project work decisions through time at these discrete points 

in an optimization model (Askin 2003; Bhattacharyya, Kumar, and Kar 2011; Carazo et 

al. 2010; J. Chen 2005; Dickinson, Thornton, and Graves 2001; Medaglia et al. 2008; 

Sefair and Medaglia 2005; Tofighian and Naderi 2015; Zuluaga, Sefair, and Medaglia 

2007). Chen and Askin (2009) present a model and method to solve a project selection 

and fixed intensity task scheduling problem (PSFITS) with time dependent returns. Sun 

& Ma (2005) propose an iterative integer linear programming (ILP) model method over 

discrete time periods to find solutions to the project selection and scheduling problem 

with fixed length activity durations. Medaglia et al. (2008) present the application of a 

multi-objective, discrete-time-measured project selection and scheduling problem with a 

MILP model based solution. Sefair and Medaglia (2005) employ a dual objective 

optimization to also minimize the NPV variability through time. Zuluaga et al. (2007) 

incorporate NPV project interactions effects in time. Bhattacharyya et al. (2011) provide 

a fuzzy formulation of direct and project interactions benefits in time and proposed a 

multi-objective genetic algorithm solve method. Ghorbani & Rabbani (2009) and 

Tofighian & Naderi (2015) research the ability to optimize a time-dependent project 

selection and scheduling problem while minimizing the changes in resource utilization 

between time periods. Similar to these methods to represent benefits in time, the 

proposed methodology discretizes the planning horizon and measures the potential 

benefits in time at these points. Unlike these methods where a user must make a decision 
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on discretization time step size, the proposed methodology only needs the unique 

deadline times to discretize the planning horizon. 

The problem of interest includes technical interdependencies that require an 

activity’s predecessors to be completed before the start of the activity. The incorporation 

of project interactions has been researched from numerous perspectives and applied to 

nuanced PSSP attributes. Zuluaga et al. (2007) present a method to solve project selection 

and scheduling problems with technical, resource, and benefit interdependencies. Li et al. 

(2015) develop and evaluate a project selection model supporting multi-time periods, a 

single objective (NPV), dependent projects, and project interdependences. Zhao & Huang 

(2017) propose a methodology to consider projects’ non-renewable and renewable 

resource interactions. They propose a generic algorithm to solve the non-linear 

formulation. Dickinson et al. (2001) share research into the application of a non-linear, 

discrete multi-time period optimization model and business process to support the 

selection and scheduling of fixed duration projects with dependency interactions encoded 

as a dependency matrix. Liu & Wang (2011) present a model for project and scheduling 

problems with multiple time dependent resource constraints. The proposed methodology 

models the technical predecessor interdependencies slightly differently by allowing 

predecessors to be completed in the same time period in a mathematical model and post-

processing the mathematical model optimal solution with the flexibility of variable 

intensity work to generate a schedule that respects the predecessor constraints.  

Part of the PSSP problem of interest is assigning the project work to renewable 

resources (e.g., flexible machines, analysts, or engineers) explicitly and respecting the 

resources’ work availability constraints. Researchers have studied project selection with 
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regard to employee scheduling requirements and other time dependent resource issues. 

Gutjahr, Katzensteiner, Reiter, Stummer, & Denk (2010) propose a formulation to a 

project selection and employee assignment problem over multi-time periods and compare 

two meta-heuristic solution techniques: a genetics algorithm technique (NSGA-II); and 

an ant colony optimization technique (P-ACO). Stummer, Kiesling, & Gutjahr (2009) 

present a decision support system method for multi-criteria project selection and 

employee (with different competencies) scheduling. The former methodologies, while 

accounting for employee competences, do not address projects realizing benefits at time 

dependent deadlines of the PSSP problem of interest. They also assume the employees’ 

availability is static throughout the planning horizon (i.e., a fixed number of employees 

throughout the planning horizon that do not change in time due to hiring additions, 

temporary work, or time-off). The methodology proposed permits resource (e.g., 

employee) availability changes in time.  

Numerous research exists regarding the resource-constrained project scheduling 

problem (RCPSP). Brucker, Drexl, Möhring, Neumann, & Pesch (1999) suggest a 

standard notation, classification for RCPSP. They also review the methods to produce 

solutions for the problem. Hartmann & Briskorn (2010) review the literature regarding 

the RCPSP. W. Chen & Zhang (2013) develop a method to find solutions to the software 

task scheduling using Ant Colony optimization. Kopanos et al. (2014) provide a new 

formulation for the RCPSP and compare it extensively to a number of other methods. 

Numerous researchers have proposed methods to address variable-intensity work 

activities in the RCPSP (Kogan and Shtub 1999; Leachman, Dtncerler, and Kim 1990; 

Węglarz 1981). Naber and Kolisch (2014) study the effectiveness and efficiency of 
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various mixed integer programming models for the project scheduling problem with 

flexible resource profiles. They find favorable computational properties in a variable-

intensity model formulation. Kopanos, Kyriakidis, and Georgiadis (2014) propose a 

method to support continuous time scheduling.  

A limitation of the discovered variable intensity PSSP methods discussed above is 

that scheduling imposed requirement to discretize the planning horizon. All the MILP 

techniques reviewed relied on the time discretization to assign resources to projects by 

discrete time periods and ensure project predecessors are completed in preceding discrete 

time periods. For example, to make resource allocations that could change day-by-day, 

the reviewed techniques require the planning horizon to be discretized by days. Choosing 

a too fine discretization may cause a computationally intractable problem and/or the 

reliance on more search iterations. Choosing too large of a discretization limits the solver 

from finding optimal solutions that rely upon completing projects within the same time 

period. The methodology proposed in the next section removes the resource-in-time 

allocation sensitivity of this requirement for the PSSP variant of interest while retaining 

positive computational properties of a small binary linear programming model. 

In consideration of the methodology in regard to the application, the problem 

assumes variable-intensity work scales up to the number of resource entities available at 

any given time. Treating work as variable-intensity requires caution due to the potential 

work inefficiencies at high levels of intensity (Gren 2017); the result of this possible 

ignorance is referred to as the “Mythical Man Month” (Brooks 1995). Research exists 

addressing the significance of this assumption in various project management situations 

(Hsia, Hsu, and Kung 1999; Williams, Shukla, and Antón 2004). This research 
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demonstrates a method to analyze project selection and scheduling results to support pre-

decision discussions with the decision maker and the stakeholders to review a solution’s 

reliance on high intensity work. 

3.3 Methodology 

First, note without loss of problem applicability, the methodology does not make 

a distinction between a project, activities, and tasks as expressed in RCPSP literature. The 

methodology references all workable entities as projects. A RCPSP task or activity in the 

formulation below is denoted as a project without any benefits but required for another 

task to start or for a project benefit to be realized. By only using one level of work 

categorization, the methodology can find solutions employing any subset of work units 

(i.e., the methodology does not artificially constraint the selection and scheduling of work 

units only if a larger set of work units is selected as a whole).  

The formulation below assumes all projects are optional. Section 3.5.1 provides 

an extension that enables the enforcement of mandatory projects. 

TABLE 2. SUMMARY OF NOTATION 

Sets 

𝐷 set of events (with a deadline) in which benefits are realized, 

where 𝑑 denotes an element of the set and 𝑡𝑑 denotes the deadline 

for event 𝑑 

𝑇 set of unique deadline times 𝑡𝑑 , ∀𝑑 ∈ 𝐷 

𝑃 set of selectable projects, where 𝑝 denotes an element of the set 

𝐸 set of predecessor constraints, i.e., 

{(𝑗, 𝑘): project 𝑗 must be completed before project 𝑘 starts, 𝑗, 𝑘 ∈
𝑃}  

𝑅 set of symmetric skilled project execution resource entities, such 

as engineers, where 𝑟 denotes an element of the set 

𝑊𝑟 set of time windows tuples (𝑤start, 𝑤end)  that resource entity 𝑟 is 

available to be assigned a project to work, 𝑤start representing the 

start and 𝑤end representing the end of the time window 
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Parameters 

𝑣𝑑(𝑝, 𝑡) net present value function or normalized measurable value 

function if project 𝑝 is completed by time 𝑡 in regard to event 𝑑 

(the function returns 0 if 𝑡 > 𝑡𝑑) 

𝑐𝑝 variable intensity time required (the cost) to complete project 𝑝 

𝛾𝑡′  number of renewable resource units available up to time 𝑡′ 

Decision variables 

𝑥𝑝𝑡 binary decision to complete project 𝑝 by time 𝑡 

Auxiliary Functions (used in stage 2’s scheduling algorithm) 

𝑐total(𝑅
′, 𝑝) computes the total amount of work for project 𝑝 from resource set 

𝑅′  

𝑡predecessor finish(𝑝) rinds the latest time a predecessor of 𝑝 is currently scheduled to be 

worked 

𝑐reallocate(𝑗, 𝑟
′, 𝛿) partitions and adjusts work on project 𝑗 after 𝛿 to resource 𝑟′ in 

order to complete project 𝑗 sooner so that resources’ working 𝑗 
after 𝛿 will have availability time that equals resource 𝑟′ 

availability time (if possible) and returns the amount of work time 

adjusted 

𝑐free(𝑅
′, 𝑡) computes total uncommitted work time held by resources in 𝑅′ up 

to time 𝑡 

 

The variable-intensity property of the project work allows a decomposition of the 

problem into two stages. In the first stage, the methodology models part of the problem as 

binary linear programming model (BILP), only discretizing the time planning horizon by 

the significant changes to the projects’ benefits with respect to the overall effort’s 

deadline-dependent objectives. The resulting optimal solution indicates the projects 

selected and outlines the schedule by project completion requirements (i.e., sequence). 

Stage one of the methodology considers the overall resource needs and not the specific 

start and end times for each project. Theorem 1 states a feasible schedule exists given a 

BILP model solution. Stage one’s BILP formulation is presented below. 

 max
 

∑ ∑ ∑ 𝑣𝑑(𝑝, 𝑡)𝑥𝑝𝑡

𝑑∈𝐷𝑡∈𝑇𝑝∈𝑃

 (1) 

Subject to: 
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 ∑ 𝑐𝑝(∑ 𝑥𝑝𝑡𝑡≤𝑡′ ) 
𝑝∈𝑃 ≤ 𝛾𝑡′  , ∀𝑡′  ∈ 𝑇  (2) 

 ∑ 𝑥𝑝𝑡𝑡∈𝑇 ≤ 1 , ∀𝑝 ∈ 𝑃  (3) 

 𝑥𝑘𝑡′ − (∑ 𝑥𝑗𝑡𝑡≤𝑡′ ) ≤  0, ∀(𝑗, 𝑘) ∈ 𝐸, ∀𝑡′  ∈ 𝑇  (4) 

 𝑥𝑝𝑡 ∈ {0,1}, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (5) 

Objective (1) maximizes the project portfolio’s total value. The resource time 

windows are condensed to a sum of resource units available up to the end of each 

deadline-distinguished time period 𝑡′, denoted 𝛾𝑡′ in constraint (2) and computed using 

equation (6). Notice the time windows for each resource can start and stop anywhere; the 

methodology does not require them to align with the event-deadline-based discretization 

strategy. The second stage explicitly assigns work given the time window restrictions. 

Constraint set (2) ensures that the total work units needed by all the projects selected to 

be finished up to the end of each deadline-defined time period do not exceed the total 

number of resource units made available up to the end of the time period. Constraint set 

(3) ensures all projects are selected-to-be-completed no more than once over the time 

horizon.  Constraint set (4) enforces the predecessor requirements. Constraint set (5) 

denotes the binary nature of the decision variables. 

 𝛾𝑡′ = ∑ ∑ max {(min{𝑡′, 𝑤end} − 𝑤start), 0}

𝑤∈𝑊𝑟𝑟∈𝑅

 (6) 

The BILP leverages and reflects the flexible nature of variable-intensity projects. 

Specifically, a project’s predecessors can be completed in the same (or earlier) 

discretized time period if enough resource units are available up to that time. The proof 

that this is permissible relies on the variable-intensity attribute of the projects’ work. 

Theorem 1. There exists a schedule over a given time period for a set of selected 

projects composed of variable-intensity work attributes if the set of projects include every 
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project members’ predecessor(s) and the total amount of resource units available over the 

time period meet or exceed the sum of the selected projects’ work requirements. 

Proof. First given any set of selected projects 𝑃𝑠,𝑡′ ≔ {𝑝: 𝑥𝑝𝑡 = 1, 𝑡 = 𝑡′ } ⊂ 𝑃 

containing every predecessor of each project in the set, there exists an ordered list of the 

projects such that each project in the list only requires projects preceding itself in the list; 

if an ordered list does not exist then there is a predecessor cycle defined in the 

predecessor graph which by definition is not allowed. By definition of variable-intensity 

work, a scheduling algorithm can take this ordering and complete the projects in 

sequence at the highest intensity available meeting the predecessor requirements. If 𝑃𝑠,𝑡′ 

also results in ∑ 𝑐𝑝
 
𝑝∈𝑃𝑠,𝑡′

≤ 𝛾𝑡′ (i.e., the total resource units available for work met or 

exceeds the amount of work required), the selected projects will be completed at or 

before the end of the time period. For example, if enough resource time-units in a given 

time period are available for project 𝑝𝐴 and project 𝑝𝐵 and project 𝑝𝐴 is a predecessor of 

project 𝑝𝐵, then the variable-intensity property permits first completing project 𝑝𝐴 using 

the maximum intensity so that the remaining resource time-units available after the 

competition of project 𝑝𝐴 satisfy project 𝑝𝐵’s work needs.  

Allowing extra unallocated resources to start projects scheduled to be completed 

by the next time period and Theorem 1, a feasible schedule exists for each subsequent 

time period through the whole planning horizon. Thus, a feasible schedule exists for stage 

one’s optimal BILP solution. 

Stage two takes the solution to the BILP defined above and builds the detailed 

schedule by adjusting the intensity on a continuous timeline to meet the predecessor 
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constraints and completion requirements. It executes an iterative resource assignment 

algorithm to allocate resources from the start of the planning horizon to the end of the 

planning horizon. See Figure 2 for the algorithm pseudo code. This is just one potential 

algorithm to complete this stage; other algorithms incorporating other heuristics to fulfill 

this stage that may be better suited to other applications (e.g., such as employing paired 

assignments when possible to support the software engineering practice of pairing 

programmers together to complete coding tasks (Williams, Shukla, and Antón 2004)). 

The algorithm presented in Figure 2 assigns work to the first available resource 

unless a predecessor project assignment’s resource(s) can complete the project before the 

end of the active time period. It employs high intensity work assignments (i.e., assigning 

a project to more than one resource at a time) when a project cannot be completed by a 

single resource before the completion requirement derived from stage one and with 

respect to predecessor constraints. It attempts to minimize high intensity work by first 

allocating the project work to all of a resource’s work-availability-time as needed and 

then adjusting to account for any successor projects afterwards. If a successor project 

causes a lock situation (i.e., the algorithm is unable to adjust and move work from one 

resource to a resource that has unallocated availability earlier than the former in order to 

have the resources have availability concurrently without violating a predecessor 

constraint), all the assignments after the first available resource’s availability time within 

in the resource context group, denoted 𝑅′
, are reallocated according to the projects’ 

predecessor constrained order using variable-intensity work to the level specified by the 

cardinality of the resource context group through time as the proof of Theorem 1 relies 

upon. Note that the project resource assignments are made in succession. For example, if 
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one project uses 0.5 time work units of a resource, the next project to be assigned to this 

resource starts right after the previous project assignment. This results in a continuous 

time schedule that generally avoids work activity preemption. 

 inputs: unique deadlines 𝑇, resource set 𝑅, stage one’s optimal solution (project completion requirements 

𝑥𝑝𝑡)  

for each 𝑡 in 𝑇 (and  𝑇 is ordered earliest to latest) 

• 𝑃𝑡 ← {𝑝: 𝑥𝑝𝑡 = 1} 

• 𝑃𝑠 ← elements of 𝑃𝑡 sorted by predecessor dependencies  

projects with predecessor(s) in 𝑃𝑡 come after all of its predecessor(s) 

• for each 𝑝 in 𝑃𝑠 

o 𝑅′ ← ∅ 

o 𝑟′ ← resource in 𝑅 that has the earliest free time available for work allocation 

o 𝛿  ← first time that resource 𝑟′ is free 

o for each 𝑗 in {𝑗: (𝑗, 𝑘) ∈ 𝐷, 𝑘 = 𝑝}  
▪ 𝛼 ← latest time predecessor 𝑗 is currently scheduled to be completed 

▪ if 𝛼 > 𝛿 

• 𝑅′ ← 𝑅′ ∪ {set of resources currently allocated to work project 𝑗 or 

a predecessor ancestor of 𝑗 after time 𝛿} 

o while 𝑐free(𝑅
′, 𝑡)  < 𝑐𝑝 

▪ 𝑟′ ← resource in 𝑅 and not in 𝑅′ that has the earliest free time available for 

work allocation 

▪ 𝑅′ ← 𝑅′ ∪ {𝑟′}  
o while 𝑐total(𝑝, 𝑅′) < 𝑐𝑝 

▪ 𝑟′ ← resource in 𝑅′ that has the earliest free time available for work allocation 

▪ 𝛿 ← first time resource 𝑟′ is free 

▪ if 𝑡predecessor finish(𝑝) >  𝛿 

• 𝑗 ← predecessor of 𝑝 limiting project 𝑝 to be started at  𝛿 

• if 𝑐reallocate(𝑗, 𝑟
′, 𝛿) ≤ 𝜀 (𝜀 representing a very small positive value) 

o Enlarge 𝑅′ with any other resources that have work after 𝛿 

in regard to project 𝑝’s immediate predecessors or 

predecessor ancestors  

o Reallocate 𝑅′ resource work after 𝛿 in predecessor 

constrained order with the full resource-group-context 

intensity through time 

▪ else 

• Assign resource 𝑟′ to work project 𝑝 up to time 𝑡 or the amount of 

time-units the project still needs while only assigning work 

sequentially to time windows 𝑊𝑟′ 

FIGURE 2. SCHEDULING ALGORITHM PSEUDO CODE 

3.4 Experiment Evaluation  

In order to validate the effectiveness of the proposed method, the proposed 

method is compared to the variable-intensity task scheduling mixed integer linear 

programming (MILP) formulation that relies on discrete time steps for resource 
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allocation, as proposed by (Askin 2003) and (J. Chen 2005). Li et al. (2015) employs a 

similar technique with the of use of additional continuous decision variables to denote the 

intensity of project work activity in a given discrete time period. The experiment 

considers multiple configurations of this MILP model by discretizing the planning 

horizon with a step size of either 1, 2, or 3 time units. The MILP method configurations 

are denoted as MILP1, MILP2, and MILP3, the subscript indicating the discretization step 

size. The proposed methodology is denoted as BILP and discretize the planning horizon 

by the benefit deadlines. Every problem instance in the dataset, described below, is then 

solved and the total benefits for each approach and configuration are computed. IBM 

CPLEX 12.7 optimization software with the default settings is used to solve the problem 

instances formulated by both the proposed BILP models and the comparison MILP 

models. The optimizations are performed on a machine with an Intel Xeon 3.6 GHz 

processor and 32 GB of memory.  

Both methods are applied to a dataset consisting of 1,800 problem instances. The 

dataset is based on the scheduling dataset provided by (Vanhoucke et al. 2008). Figure 3 

shows an example problem instance formulation from the scheduling dataset’s Patterson 

formatted files. Each problem instance holds 30 activities which are interpreted as 

optional projects. The successor activity relationship constraints are interpreted as 

designed by (Vanhoucke et al. 2008). The values in this dataset that indicate an activity’s 

fixed duration are interpreted as the number of variable-intensity work units needed for 

project completion. The resources of the dataset are reinterpreted as events that contribute 

benefits with the completion of projects; each problem in the dataset holds four resources 

which are interpreted as events. The activity requirements for each of these resources are 
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interpreted as the project’s benefit measurement in regard to the associated event. Each 

event is provided a deadline in the order they were presented as 6, 12, 18, and 24 time 

units. The planning horizon is fixed at 24 time units. 

 

FIGURE 3. PROBLEM INSTANCE FORMULATION EXAMPLE 

 The proposed methodology’s applicability to resource sizing analysis on a larger 

problem that consists of 300 projects is also demonstrated. For this demonstration, a 

randomly selected problem instance from the dataset generated by (Debels and 

Vanhoucke 2007) is used. This problem instance is interpreted as shown in Figure 3. The 

planning horizon is fixed at 24 time units. The demonstration considers three different 

Dataset file (Patterson file format) 
Source “Node” 

Sink “Node” 

Each row  

represents 

 a project 

Column 1  𝒄𝒑 

Column 2  𝒗𝟏(𝒑, 𝒕): 𝒕 ≤ 𝟔 

Column 3  𝒗𝟐(𝒑, 𝒕): 𝒕 ≤ 𝟏𝟐 

Column 4  𝒗𝟑(𝒑, 𝒕): 𝒕 ≤ 𝟏𝟖 
Column 5 𝒗𝟒(𝒑, 𝒕): 𝒕 ≤ 𝟐𝟒 

Successor list (𝑬) 
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resource profiles (i.e., resourcing alternative). The ‘Status Quo’ resource profile consists 

of 8 resources available over the whole planning horizon. The ‘Part Time Support’ 

resource profile adjusts this profile by adding 4 temporary resources for the first 12 time 

units. The ‘Gradual Hire’ resource profile adjusts the ‘Status Quo’ by adding (hiring) a 

single resource after each time period that would remain throughout the rest of the 

planning horizon. 

3.5 Results and Discussion 

The proposed methodology results in equal or better optimized values for all the 

problem instances in the benchmark dataset compared to all three configurations of the 

MILP-based method. Figure 4 shows the percentage of problem instances that the MILP 

method fails to discover a solution that matches the proposed method optimal solution’s 

value. As the time-step size for the MILP model increases, the MILP methodology more 

frequently fails to find the BILP method’s optimal solution. The average optimal value 

over the 1,800 problem instances for the proposed method resulted is 156, while the 

MILP average optimal values are 147 for MILP1, 136 for MILP2, and 125 for MILP3. 

Notice the MILP time step size of 1 is less than or equal to any single project’s work 

requirement in the dataset. An analyst is not guaranteed the problem’s optimal solution if 

they use the MILP method with the smallest project work requirement as the MILP 

discretization step-size. 

For the problem instances where the MILP methods fail to find an optimal 

solution, the distribution of the percentage of MILP methods’ solution value compared to 
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the proposed methodology’s optimal value is depicted in Figure 5. As the time allocation 

step size of the MILP model increases, the optimal value differences increase. 

 

FIGURE 4. PERCENTAGE OF TIMES MILP METHOD FAILED TO FIND OPTIMAL SOLUTION 

 

FIGURE 5. DISTRIBUTION OF SUB-OPTIMAL SOLUTION VALUES 
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 The proposed methodology’s solutions have more varied work intensity levels 

compared to the MILP solutions. The distribution of the schedule’s average project work 

intensity (i.e., average number of resources assigned to a work activity through time) is 

shown in Figure 6 for the 1,800 problem instances. The average project schedule 

intensity for the proposed method is 2.5 resource entities, while the MILP average 

intensities are 2.86 resource entities (MILP1), 2.27 resource entities (MILP2), and 1.78 

resource entities (MILP3). In 66% of the problem instances, the proposed method creates 

a schedule with a lower average intensity than MILP1. 

 

FIGURE 6. DISTRIBUTION OF WORK AVERAGE INTENSITY BY PROBLEM INSTANCE 

 

The flexibility of the proposed methodology to increase the intensity of work to 

realize additional benefits is highlighted in problem instance 706 (one of the problems of 

which the BILP methodology generates a schedule using the maximum intensity 
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possible). Figure 7 shows the resource to project assignment schedule for this instance 

using each methodology configuration. The projects are denoted ‘P-#’. The x-axis tick 

marks indicate the linear programming discretization of the time planning horizon. The 

problem instance’s successor/predecessor network is characterized by limited branching 

of a long project-to-project predecessor dependency sequence. The proposed 

methodology discovers and prescribes the maximum work intensity of 4 for every project 

selected. In other words, all four resource entities must work on the same project in time 

for every project in order to achieve the optimal solution while accounting for 

predecessor constraints. Notice that for the proposed BILP methodology, the start and 

end time of the work assignments mostly do not fall directly on the benefit deadlines.  As 

the discretization step size increases for the MILP method, the solutions hold more gaps 

where the MILP method fails to find projects to assign to resources while meeting the 

projects’ predecessor requirements. The average resource utilization over all the problem 

instances are 98% for the proposed BILP method, and 94%, 88% and 82% for the MILP 

methods, respectively.  



39 

 

FIGURE 7. RESOURCE ASSIGNMENT SCHEDULE FOR PROBLEM INSTANCE #706 BY SOLUTION 

METHOD 

 The computation simplicity of the proposed BILP method results in a 

significantly quicker computation speed. The average computational speed given for the 

proposed methodology is 0.23 seconds, while the MILP average computational times are 

5.29 seconds (MILP1), 1.16 seconds (MILP2), and 0.56 seconds (MILP3). The proposed 

methodology on average finds an optimal solution in 11.3 seconds for the 300-project 

sized datasets, consisting of 480 problem instances from (Debels and Vanhoucke 2007); 

the MILP1 method sometimes fails to resolve an optimal solution after days of 

computation for a single 300 project problem instance on the experimentation computer 

system.  
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To demonstrate cost-vs-benefit-vs-intensity analysis considering different 

resource profiles, a problem instance, #166, is used from the dataset (Debels and 

Vanhoucke 2007). Three resource profiles (i.e., options) are considered as described in 

section 3.4. The ‘Part Time Support’ option results in the most optimal realization of the 

project benefits, while the ‘Status Quo’ option results in the best benefit-to-resource ratio. 

The ‘Gradual Hire’ option results in a significant increase in work intensity to achieve its 

optimal solution. Figure 8 shows an overview of the optimal schedule solution 

characteristics by resource profile. Figure 9 shows a detailed view of the work schedule 

intensity. This type of intensity analysis adds insight for the organization to prepare the 

execution of the schedule in light of work intensity. Notice that almost 20% of the total 

scheduled work for the ‘Gradual Hire’ resource profile is assigned at an intensity level 12 

(i.e., all 12 resource entities work on the same project at the given times). This highlights 

a limitation of the proposed BILP method compared to the MILP model as proposed by 

(Askin 2003; J. Chen 2005) in that the MILP method permits specified upper variable-

intensity bounds. Solutions from the BILP method may require extra scrutiny to ensure 

the schedule meets work intensity efficiency assumptions, especially in regard to the 

consideration of adding resources. 
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FIGURE 8. OVERVIEW OF BENEFITS AND INTENSITY BY RESOURCE PROFILE 

 

FIGURE 9. PERCENTAGE OF WORK AT INTENSITY LEVEL BY RESOURCE PROFILE 
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3.5.1 Additional Possible Extensions 

The proposed methodology lends itself to extensions that can support additional 

problem characteristics applicable to other applications of the project selection and 

scheduling problem. The paper presents some of these possible extensions now.   

To accommodate additional resource constraints, the methodology could 

incorporate one or many consumable resources into the first stage of the methodology by 

summing the amount of consumable resources available in each time period. This 

assumes that a known amount of consumable resources is promptly available at the start 

of each time period.  

To address assignable resource unit efficiency differences through time, such as a 

new employee working slower than an experienced employee, the methodology could 

incorporate integrable functions of the assignable resources efficiency. The first stage of 

the methodology would compute the resources units available up to the end of the time 

period using an integration sum of the resource efficiency between the start of all time 

periods to the end of the given time period. The second stage’s algorithm would require a 

few more adjustments to make properly time-consumption assignments and to ensure the 

calculations of expected accomplished work from project assignments matches the 

assignment’s resources efficiency. Future research is recommended to investigate this 

concept further.  

To address mandatory projects, constraint (3) could be modified to an equality 

constraint. To address no later than restrictions or no early restrictions, projects’ decision 

variables could be removed from the model or restricted to zero for the appropriate time 

periods. To address project exclusivity restrictions, constraint set (7) could be 



43 

incorporated to enforce the project mutual exclusion requirements where 𝑀𝑖 denotes a set 

of mutually exclusive projects (i.e., at most one project 𝑝 ∈ 𝑀𝑖 ⊆ 𝑃 can be selected), 

indexed by 𝑖 = 1,2, … ,𝑚. 

 ∑ ∑ 𝑥𝑝𝑡𝑡∈𝑇𝑝∈𝑀𝑖
≤ 1 , ∀𝑖 ∈ {1, 2, … ,𝑚}  (7) 

To address project benefit interactions, placeholder, “dummy” projects could be 

incorporated to account for the benefit interaction effect. The dummy projects proposed 

would have predecessors of the projects that take part in the interaction effect and would 

have 0 work unit needs. To enforce the incorporation of negative interaction effects, the 

methodology would require the addition of activation enforcement constraints into the 

first stage binary integer linear programming model, such as constraint (8) that denotes 

interaction effect 𝑘 (represented as a project with 0 work unit needs with predecessor 

edges to the projects holding the interaction) between projects 𝑖 and 𝑗. Other model 

implementation variations have been proposed (Carazo et al. 2010; Stummer and 

Heidenberger 2003). 

 ∑ 𝑥𝑖𝑡

𝑡≤𝑡′

+ ∑ 𝑥𝑗𝑡

𝑡≤𝑡′

− 2 ∑ 𝑥𝑘𝑡

𝑡≤𝑡′

≤ 1, ∀𝑡′  ∈ 𝑇 (8) 

3.6 Conclusions 

 Past project selection and scheduling optimization methods, while addressing 

project dependencies and variable intensity work, can potentially negatively constrain 

themselves from finding the optimal solution by disallowing predecessor projects to be 

completed in the same discrete time period and starting successor projects midway in 

same discrete time period. This paper proposes a project selection and scheduling 

methodology that removes the reliance of resource entity time allocations to the 
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discretization of the planning horizon for a project selection and scheduling problem 

variant characterized by variable-intensity work, deadline defined benefits, and a resource 

pool of symmetrical skilled resources with availability changes in time. The paper 

demonstrates and compares the proposed methodology with a method that strongly relies 

on the discretization of the planning horizon for resource allocation. Based on a dataset of 

1,800 problem instances composed of 30 projects, the results show the proposed 

methodology results in better solutions for over 20% of the problem instances compared 

to a MILP method configured for three different discretization step sizes.  

 The paper presents several ways to analyze the variable-intensity properties of a 

project selection schedule. The results show that even though the proposed methodology 

does not constrain the upper bound of work intensity, the methodology results in an 

average lower intensity for 66% of the problem instances compared to the unbounded 

variable-intensity method. The paper also demonstrates how the methodology can be 

leveraged to support resourcing decisions. The proposed BILP formulation takes less 

time to compute which allows more runs in time constrained environments to gain insight 

into sensitivity of resource inputs and the problem’s objectives through interactive 

decision support systems.  

Future research may be beneficial into the extension of the methodology to 

support unsymmetrical resource entity efficiencies, such as new employees that slowly 

improve work efficiency through the planning horizon. Research into the ability to 

incorporate the proposed methodology into methods that address more complex project 

selection and scheduling problems, such as multiple renewable resource types may also 

be beneficial. Given the relatively quick computational speed of the methodology, future 
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research is suggested into extensions to the methodology to conduct more extensive 

resource allocation analysis and sensitivity analysis. 
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IV.  Project selection considering re-production projects and aging products 

4.1 Introduction 

This paper presents a variant of the project selection and sequencing problem 

encountered by the Air Force, a methodology to address this problem, and a case study 

application of the methodology for an Air Force organization. In this variant, the product 

of the project is information. This paper defines information production planning (IPP) as 

the activity that prescribes what information to produce, when to produce it, and how to 

produce it (by what resources). The IPP problem of interest is to prescribe a production 

plan that maximizes the total value that information provides to multiple customers (i.e., 

requestors or users internal to an organization) with respect to resource constraints that 

limit fully satisfying every request. Organizations may confront the IPP problem in other 

decision situations including business marketing plans, investigative operations, and 

system development activities. 

The problem possesses a few complicating attributes that limit the applicability of 

previously proposed methodologies. First, the problem includes product deterioration 

issues. Existing or to-be-produced information products may become stale by the time of 

usage. Given a multi-year planning horizon, the planning process also includes 

production decisions on to whether to refresh (i.e. reproduce) the information product. 

Second, the information products being considered for production can inform multiple 

customer decisions (not to be confused with the planning production decisions). These 

usage-decisions may have different time use profiles and different objectives. For 

example, a customer may want information for a system engineering test-event being 
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performed next year, another customer may want the same information over the course of 

the next three years to support ongoing system reprogramming decisions, while another 

customer may want the information immediately for early system requirement definition. 

This paper proposes a methodology to prescribe production plans consisting of 

the selection and the scheduling of discrete information production projects over a 

planning horizon given stakeholder defined budget alternatives. This paper first presents 

a literature review, followed by the methodology, a case study employing the 

methodology, the results of the case study, and conclusions. 

4.2 Literature Review 

The IPP problem of interest faces product deterioration issues, reproduction 

decisions, and products that support non-monetary objectives. Recent efforts have studied 

information production planning from the perspective of crowdsourcing (Basu Roy et al. 

2015; Bessai and Charoy 2017; Mavridis, Gross-Amblard, and Miklós 2016; Rahman et 

al. 2015; Sinha, Majumder, and Manjunath 2016; Tran-Thanh et al. 2014). For example, 

Roy et al. present an integer linear programming approach to optimize information 

production planning given crowdsourcing uncertainties and task attributes (Basu Roy et 

al. 2015). A limitation of the discovered crowdsourcing research is that it does not 

address optimization in light of information deterioration issues. 

Research exists concerning the deterioration and perishability of products in 

material based production problems (Amorim, Günther, and Almada-Lobo 2012; Pahl 

and Voß 2014; Rong, Akkerman, and Grunow 2011).  The characteristics of the IPP 

problem’s deterioration, namely a shareable-digital product and different deterioration 
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criteria for different customers’ product usage, are not addressed by the discovered 

supply chain production planning research.  The proposed methodology builds upon the 

value (i.e., benefit) measurement method introduced by (Golabi, Kirkwood, and 

Sicherman 1981) to account for temporal objective effects due to information product 

deterioration and different customer usage timelines. The methodology integrates a 

mathematical modeling formulation similar to techniques proposed in R&D project 

selection research (Carazo et al. 2010; Stummer and Heidenberger 2003) to support the 

optimization of when selected “projects” are produced in regard to time and integrates an 

extension to address reproduction decisions in the mathematical model. 

4.3 Methodology 

The methodology is a 7-step process. Figure 10 shows an overview of the process. 

The first step of the methodology discretizes the planning horizon to adequately account 

for resource levels through time and for the temporal benefit effects from production 

decisions. For example, the case study discretizes the planning horizon based on the 

organization’s fiscal year which provides a clear link to resource budgets, while also 

providing support to temporal planning issues that address deterioration of information 

products. The second step of the methodology is to gather the information requests and to 

estimate the value of information (VOI) for each information request’s usage decision. 

Let 𝑅 represent the set of information production requests and 𝑟 represent an element of 

this set. Let 𝑋 represent the set of requested information products and 𝑥 represent an 

element of the set. Let 𝑅𝑥 denote the set of information production requests for product 𝑥. 

Let there be a many-to-one relationship between requests to information products (i.e., a 
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request specifies a single product, multiple requests may specify the same product). The 

VOI represents the expected value change in outcomes for the requesting decision 

context if the information is procured and used compared to if the information is not 

procured and used. Decision trees are one way to compute the VOI (Lawrence 2012). 

Unlike the decision tree VOI approach, this step of the proposed methodology defers the 

information acquisition decision and cost considerations to a later step to support the 

holistic cost-vs-benefit analysis considering potentially multiple users of the same 

information and other uses of limited resources. During this step, the requests’ use of 

information over time are considered. For continuous information-usage decision 

contexts, these VOI measurements are considered from the perspective of an average 

point in time over the length of the mathematical model’s discrete time periods and for 

each time period if the VOI changes with respect to time. Let 𝑣𝑟,𝑥(𝑡) represent request 

𝑟’s VOI for having the information product 𝑥 at time 𝑡. 

1. Discretize planning 
horizon

2. Define the potential 
benefit from fulfilling 

requests

3. Define the effect of 
aging information on 

requests  benefits

4. Normalize benefits with status 
quo baseline while addressing 
intertwined decision benefits

6. Solve for different 
resourcing alternatives

5. Formulate problem for 
optimization

7. Cost-vs-benefit analysis

 

FIGURE 10. INFORMATION PRODUCTION PLANNING METHODOLOGY FLOW CHART 

The third step is to model the effect of information aging (i.e., deterioration) on 

each request’s VOI. This step can be executed with the first step, incorporating discrete 

decision tree scenarios to represent different ages of information. Taking the discrete 
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values tied to discrete ages, a deterioration factor function could be fit. This step also can 

be executed as a separate study of historical trends regarding similar decision contexts 

and information aging states. An approximation method based on a subject matter expert 

(SME) estimates is also possible. For example, the SME method may elicit the likely age 

of information when the information begins to inaccurately inform the decision context 

and the likely age of information that the information is no longer of value for the 

decision. Using these two inputs, a linear approximation of the degrading VOI may be 

constructed over the possible information product age range. This approximation 

technique assumes the change of VOI through time is independent of changes at static 

points in time. The methodology can support expected, explicit changes at static points in 

time by anchoring age of information value estimation functions to an absolute time and 

date, though the case study does not demonstrate this capability. Let  𝑑𝑟,𝑥(𝑎, 𝑡) denote the 

deterioration factor function (i.e., the percentage of request 𝑟‘s value that is expected to 

be realized due to information product x being of age 𝑎 at time 𝑡). Figure 11 shows two 

examples of how deterioration may affect the VOI in regard to 𝑎 and independently of 𝑡. 

 

FIGURE 11: EXAMPLES OF A REQUEST’S VALUE CHANGES AS THE REQUESTED 

INFORMATION PRODUCT AGES 

The forth step is to normalize the decisions’ VOI measurements to addable 

values. Note that the units of VOI measurement may change between requestors’ 



51 

decision contexts, especially in regard to non-profit oriented organizations or requirement 

centric system engineering environments. A common measurement unit used in profit-

oriented organizations is net present value (NPV). To address non-profit oriented 

objectives, the normalization process utilizes (and validate the assumptions of) 

measurable value functions as necessary (Golabi, Kirkwood, and Sicherman 1981; Liesiö 

2014). Let 𝑣𝑚(𝑣𝑟,𝑥(𝑡)) denote the normalized value for having the information product x 

at time t with respect to request 𝑟. In addition, either approach in the problem of interest 

requires the consideration of a baseline (Liesiö and Punkka 2014). For example, consider 

an information product that was recently produced and a decision maker evaluating 

whether to produce it again over the planning horizon. Reproductions of this information 

product early within the planning horizon cut short the value of past productions since the 

potential future value of the information would already be realized without the re-

production of the product early in the planning horizon. The value of past productions, 

contributing to the value function baseline, must be subtracted from potential future re-

productions aligned in time to accurately capture just the additional benefits of the 

production event(s). Figure 12 shows how the valuation of information production 

incorporates this adjustment with the deterioration factor for a continuous information 

request assuming 𝑣𝑚(𝑣𝑟,𝑥(𝑡)) normalizes the benefit of fulfilling a request to a zero-to-

one scale. Without subtracting the benefit realized by the past productions, information-

product reproduction options would inaccurately include the benefits already realized 

from past productions. The potential result is the selection of reproduction options that 

result in little or no additional value.  
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FIGURE 12: SUBTRACTING STATUS QUO EXPECTED BENEFITS TO COMPUTE THE BENEFIT 

OF REPRODUCTION(S) FOR A CONTINUOUS INFORMATION USAGE REQUEST 

With these inputs, the IPP problem is to choose when to produce or reproduce the 

requested information products over the planning horizon to maximize the total value of 

information, as determined by the sum of the requests’ deterioration-adjusted VOI, given 

resource constraints that limit production activities to fully satisfy all the information 

requests. The fifth step mathematically models this IPP problem. Similar to past project 

selection and scheduling approaches facing a continuous time decision space, this paper 

introduces an approximate discrete optimization formulation that discretizes the 

continuous, time planning horizon while accounting for the value of information time 

interaction effects at these discrete times. 

Let 𝑇 denote the set of end times for each time period dictated by the 

discretization strategy. Let 𝑔𝑥 denote the age of information product 𝑥 at the start of the 

planning horizon. To simplify the formulation without loss of representativeness, 

information products that have not been produced in the past are given a very large 𝑔𝑥 
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value to reflect the current absence of the information product. Let 𝑦𝑥,𝑖,𝑝 denote the 

binary decision variable to first produce information product 𝑥 by time 𝑖, 𝑖 ∈ 𝑇𝑥 ⊂ 𝑇, and 

refresh (reproduce) the product every 𝑝 time periods, 𝑝 ∈ 𝑃𝑥, to the end of the planning 

horizon, where 𝑇𝑥 denotes the set of possible first completion times being considered for 

product 𝑥 and where 𝑃𝑥 denotes the set of refresh policies (number of time periods 

between re-productions) being considered for product 𝑥. Let 𝑈𝑥,𝑖,𝑝 represent a set of 

tuples spanning the planning horizon based on production events as specified by 𝑖 and 𝑝, 

where the tuples (i.e., elements) of 𝑈𝑥,𝑖,𝑝 take the form of (𝑗, 𝑘, 𝑎) such that 𝑗 denotes the 

time a production event is to be completed or the start of the planning horizon, 𝑘 denotes 

the next time a reproduction event occurs or the end of the planning horizon, and 𝑎 

denotes the age of information product at the start of the time interval. Note that 𝑎 holds 

the value of zero for each tuple except for the tuple representing the first time period at 

which 𝑎 holds the value of 𝑔𝑥. Let 𝑏𝑥,𝑖,𝑝 denote the normalized sum of additional benefits 

realized for making this decision as denoted in equation (9). Note that the status quo 

value is subtracted in this equation to derive just the additional benefits from re-

productions of an information product.  

 
𝑏𝑥,𝑖,𝑝 = ∑ ∑ ∫ 𝑣𝑚(𝑣𝑟,𝑥(𝑡)) 𝑑𝑟,𝑥(𝑎 + (𝑡 − 𝑗), 𝑡)

𝑘

𝑗(𝑗,𝑘,𝑎)∈𝑈𝑥,𝑖,𝑝𝑟∈𝑅𝑥

− 𝑣𝑚(𝑣𝑟,𝑥(𝑡)) 𝑑𝑟,𝑥(𝑡 − 𝑔𝑥, 𝑡) 𝑑𝑡  

(9) 

Like the benefits, the resource costs are calculated in regard to time. Let 𝑐first(𝑥) denote 

the estimate cost to (re)produce the information product 𝑥 for the first time in the 

production plan. Let 𝑐refresh(𝑥) denote the estimate cost to reproduce the information 

product 𝑥, also known as the refresh cost. Let 𝑐𝑥,𝑖,𝑝,𝑡, as defined by equation (10), denote 
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the estimated cost levied onto time period 𝑡 if 𝑦𝑥,𝑖,𝑝 is selected. Let 𝑟𝑢 denote the sum of 

the resource units available up to time 𝑢. 

 
𝑐𝑥,𝑖,𝑝,𝑡 = {

𝑐first(𝑥) 𝑖 = 𝑡

𝑐refresh(𝑥) (𝑡 − 𝑖) mod 𝑝 = 0 and (𝑡 − 𝑖) > 0
0 otherwise

 (10) 

With these definitions, the following binary integer linear programming model is 

developed. Let equation (11) denote the objective function. Let equation (12) denote the 

resource constraints for each time period. The resource constraints assume unused 

resources from time periods can be utilized for later time periods. The resource 

constraints can be replicated to support additional consumable resource types. Let 

equation (13) represent the mutual exclusive policy and production options for each 

information product. Let equation (14) represent the binary constraints of the decision 

variables. 

 max
 

∑ ∑ ∑ 𝑏𝑥,𝑖,𝑝𝑦𝑥,𝑖,𝑝

𝑖∈𝑇𝑥𝑝∈𝑃𝑥𝑥∈𝑋

 (11) 

subject to 

 ∑ ∑ ∑ ∑ 𝑐𝑥,𝑖,𝑝,𝑡

𝑡∈{𝑡:𝑡∈𝑇,   𝑡≤ 𝑢}

𝑦𝑥,𝑖,𝑝

𝑖∈𝑇𝑥𝑝∈𝑃𝑥𝑥∈𝑋

≤ 𝑟𝑢 , ∀𝑢 ∈ 𝑇 (12) 

 ∑ ∑ 𝑦𝑥,𝑖,𝑝

𝑖∈𝑇𝑥𝑝∈𝑃𝑥

≤ 1 , ∀𝑥 ∈ 𝑋 (13) 

 𝑦𝑥,𝑖,𝑝 ∈ {0,1}, ∀𝑝 ∈ 𝑃𝑥, ∀𝑖 ∈ 𝑇𝑥, ∀𝑥 ∈ 𝑋 (14) 

Finally, the sixth and seventh step of the methodology solves and presents the 

mathematical model’s optimal solutions (representing production plans) for different 

budgeting alternatives explicitly defined by the stakeholders to a decision maker. 
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4.4 Case Study 

The case study consists of eleven information customers within the Air Force 

making in total 545 requests for 407 information products for use over the next 6 years 

for system engineering and system reprogramming purposes. Production management 

cost models estimate an up-front production cost and a refresh cost for each requested 

information product. The year time-unit discretizes the planning horizon aligning to the 

organization’s fiscal year. The stakeholders incorporate a VOI scale, composed of 

criticality levels (CL), and assigns each request a CL to represent the VOI for the request. 

A “CL 1” request represents the highest priority need. A “CL 4” request represents the 

lowest priority need. The 𝑣𝑟,𝑥(𝑡) value function returns the request’s criticality level 

value if product x is wanted at time t and 0 otherwise. With inputs from subject matter 

experts and organization leaders, the 𝑣𝑚 value function normalizes the values from the 

CL scale according to the tradeoff preferences. Specifically, the “CL 4” requests are 

mapped to a value of 1, the “CL 3” requests are mapped to a value of 2 (two “CL 4” 

requests are equally preferred to one “CL 3” request), the “CL 2” requests are mapped to 

a value of 5, and the “CL 1” requests are mapped to a value of 20. 168 of the requests are 

single point-in-time information usage requests (use the information in only a single time 

period). The remainder of the information requests are continuous requests and include a 

desired refresh rate varying from one year to five years. Deterioration factor functions 

model the effect of information-product-aging on value. For the continuous usage 

requests, the full value of the request is realized for each time period as long as the 

product’s age is less than the request specified refresh rate. Otherwise, partial value of the 

request is realized according to a linear degradation through time until it is considered 
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completely out-of-date (if a product is older than twice the desired refresh rate). For the 

single point-in-time usage requests, if the product already exists or will be created before 

the request specified need (i.e., usage) date then the request realizes the full VOI amount. 

Otherwise, no value is realized. Two product refresh (i.e., reproduction) policies are 

considered: 1) the minimal refresh rate of the requests concerning a product; and 2) none 

(only one production over the planning horizon or only one reproduction if already 

produced). 

Six resource configurations (i.e., budget alternatives) are considered. The budget 

alternative labeled “100% (baseline)” denotes the minimum yearly budget needed to fully 

satisfy all the requests (approximately $14 million dollars over the 6 year planning 

horizon). The other five alternative budget configurations consider a percentage of this 

baseline budget. For each budget alternative, CPLEX 12.7 software (with the default 

settings) on an Intel 3.6GHz processer computer and 32 GB of memory solves the 

problem models and generates a production plan for each budget alternative. 

4.5 Results 

CPLEX finds the mathematical model optimal production plans for the six 

considered budget alternatives in 50 seconds. Figure 13 show a cost-vs-benefit plot of 

these production plans where the x-axis represents the cost (i.e., total budget sum over the 

6 year planning horizon) and the y-axis represents the benefit (i.e., percentage of the 

information requests total value realized by the production plan). The 33%-of-baseline 

budget alternative’s production plan realizes approximately 90% of the information 

requests’ value. The gradual change in percentage of information value realization going 
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from the baseline budget down to the 33%-of-baseline budget suggests several relatively 

less valued, but very costly information products were requested. 

 

 

FIGURE 13: PRODUCTION PLANS COST-VS-BENEFIT PLOT 

 

Figure 14 shows the percentage of total value realized over time given the 

different production plans. If no additional production takes place from the present time, 

the results suggests approximately 10% of the information requests’ value is realized 6 

years from FY17 due to information becoming stale and the lack of additional production 

or reproduction of requested information products. Figure 15 shows value gaps from the 

perspective of the case study’s VOI criticality levels (CL) for the 33% and 50%-of-

baseline alternative’s optimal production plan. Each row in this figure represents a 

requested information product. The color of each cell represents the size of the value gap 

caused from the production plan given the budget and all of the information requests 
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relevant at any given time. The dark blue color, not applicable (“NA”), represents the 

time a product is not expected to be needed by any request. The 33%-of-baseline 

production plan results in few CL 1 gaps while mostly satisfying the majority of the 

information product needs through time. Furthermore, the 50%-of-baseline production 

plan prevents the occurrence of CL 1 value gaps.  As the budget increases from 50%, 

only CL 2 or smaller gaps remain in the optimal production plans given the budget 

constraints. 

 

FIGURE 14. BENEFIT THROUGH TIME BY PRODUCTION PLAN PLOT 
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FIGURE 15. VALUE GAPS THROUGH TIME PLOTS 

 

4.6 Conclusions 

This paper introduces an information production planning problem with product-

value-deterioration attributes and multiple customers holding temporal objectives. This 

paper then proposes a methodology to support the creation of a production plan that 

maximizes the value the produced information contributes to the organization’s 

objectives while addressing: 1) how to evaluate information production decisions and 

reproduction policies considering the benefit to multiple information customers’ requests 

in time; 2) how to incorporate the deterioration of information products into an 

production benefit evaluation method; and 3) how to mathematically model the 

information production decisions to support production planning optimization. A case 

study incorporates the methodology and shows the methodology’s computation 
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tractability for an instance of this problem encountered at a defense organization. The 

study shows numerous cost-vs-benefit insights including approximately $5 million 

dollars of the $14 million dollar fully funded budget realizes over 90% of the requested 

information potential value and 50% of the fully funded budget production plan prevents 

the occurrence of the most critical value gaps. Future research is suggested into semi-

automated methods to perform sensitivity analysis on the funding levels and into methods 

to support ongoing planning processes incorporating past production plans. 
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V.  Addressing modeling inadequacies 

Elusive-to-model preferences and problem attributes hinder decision makers 

directly accepting a mathematical model’s optimal solution for project portfolio and 

similar resource allocation problems with many near-optimum alternatives.  Past research 

proposes generating a small, decision-space-diverse, set of near-optimum alternatives and 

letting decision makers leverage their elusive-to-model knowledge to choose or to base 

an alternative from this set through a decision support system. This paper highlights a gap 

in past research to address a correlation attribute of this decision-space-diversity 

objective for portfolio selection problems.  The paper proposes an extension to a 

prevalent alternative generation technique to address this correlation attribute of diversity 

and applies the technique to a fantasy sports portfolio problem’s binary linear 

programming optimization formulation. An extensive numerical experiment is performed 

for multiple technique settings and problem sizes with the problem instances developed 

from parameter distributions displayed in a real-world dataset. The results show the 

proposed extension significantly increases diversity when correlations of the generated 

solutions’ attributes are considered.  

5.1 Introduction 

The portfolio problem consists of the selection of a subset of conceivable 

elements (e.g., projects) to maximize objectives with limited resources and technical 

constraints (Kleinmuntz 2007). For a portfolio selection problem with 𝛽 number of 

selectable elements (e.g., projects), a decision maker must choose one portfolio (i.e., a 

combination of projects) from 2𝛽 possible projects combinations, ignoring technical and 
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resource constraints that restrict many of these alternatives. Mathematical optimization 

models are commonly employed to support portfolio decision problems (A. Salo, Keisler, 

and Morton 2011). 

Even with rigorous mathematical optimization modeling, decision makers often 

do not immediately choose the first, mathematically-model optimum solution given 

elusive-to-model problem considerations (Hennen et al. 2017; Voll et al. 2015). 

Approaches to handle modeling or information inadequacies include interactive decision 

support systems (Argyris, Figueira, and Morton 2011; Nowak 2013; da Silva et al. 2017) 

and preference programming (Fliedner and Liesiö 2016; Liesiö, Mild, and Salo 2007; 

Pape 2017). An approach suggested by E Downey Brill, Chang, & Hopkins (1982) is 

expanded upon in this paper. E Downey Brill et al. suggests the presentation of multiple, 

decision-space-diverse near-optimal solutions to a decision maker to address these 

elusive-to-model problem considerations. The reasoning is that the explicit differences 

manifested in the suggested solutions provides a tangible bridge or spark for a decision 

maker to employ their elusive-to-model knowledge. E Downey Brill et al. labels the 

process of alternative generation “Modeling to Generate Alternatives” (MGA) since the 

process employs additional modeling to discover decision-space-diverse solutions among 

the potentially large set of near-optimal solutions. This paper denotes a MGA technique’s 

result (e.g., a set of near-optimal portfolios to present to a decision maker) as a solution 

set. Figure 16 depicts the relationships of these components used within a decision 

support system (DSS) for a portfolio decision problem.  
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FIGURE 16. OVERVIEW OF COMPONENTS AND CONTEXT OF EFFORT 

The objectives of MGA techniques are to produce diverse solution sets (e.g., more 

diversity between the suggested solutions leads to more opportunities for a decision 

maker to recognize and ultimately address any un-modeled preferences or other technical 

interactions between the decision variables in a solution) and that these solutions in this 

set are nearly-optimal from the perspective of the original optimization model’s objective 

function. This paper proposes and evaluates an extension to the flexible Hop Skip Jump 

(HSJ) MGA technique (E Downey Brill, Chang, and Hopkins 1982; DeCarolis et al. 

2016) to address a correlation attribute of this diversity objective in portfolio problems. 

HSJ takes an original optimization model, equations (15), and initial solution (such as the 

optimal solution to the original optimization model) and solves an adjusted model, such 

as model (16), where 𝑋 represents the feasible decision space, 𝑥 represents a feasible 

multi-variate decision, 𝑓(𝑥) represents the original objective function. Next, an adjusted 

model is iteratively solved to generate additional solutions different from the previously 

generated solutions. Model (16) represents a simple form of this adjusted model where 𝐾 
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denotes the set of non-zero decision variables in past solutions (including the initial 

solution) and 𝑇 represents a near-optimality threshold. The adjusted model is solved 

iteratively until stopping criteria is met such as generating a desired number of solutions. 

The minimization of past, non-zero decision variables causes decision-space-diverse 

solutions while the 𝑓(𝑥) ≥ 𝑇 constraint enforces near-optimality. Brill et al. allude to 

additional forms of the adjusted model’s objective function including weighting the 

decisions variables. For example, DeCarolis, Babaee, Li, & Kanungo (2016) study two 

adjusted HSJ adjusted model formulations employing decision variable weights with 

respect to an energy system optimization problem. 

 max𝑓(𝑥) ,    subject to  𝑥 ∈ 𝑋 (15) 

 

 
min ∑ 𝑥𝑘

 

𝑘∈𝐾

    subject to   𝑓(𝑥) ≥ 𝑇, 𝑥 ∈ 𝑋 (16) 

Note that HSJ techniques provide desirable features for use in portfolio decision 

support systems.  HSJ techniques can be applied to any decision support system modified 

linear programming optimization formulation without extensive calibration, such as the 

binary linear programming formulation of the portfolio selection problem presented in 

Section 3. HSJ techniques only require a threshold for near-optimality input to extend the 

original optimization model. Also, decision support systems (DSS) utilizing HSJ can 

generate and present additional solutions in a piecemeal fashion as desired by the DSS 

user. 

The HSJ technique can be classified as a greedy heuristic approach to generate 

decision-space-diverse solution sets. The original HSJ technique executes iteratively and 

at each iteration generates a near-optimal solution that minimizes the selection of past 
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elements without considering how the elements are combined (i.e., selected together) in 

past solutions; this potentially can cause unnecessary element selection combinations 

(i.e., increased selection correlations) in the solution set for portfolio based problems. The 

authors qualitatively observed this result in testing datasets and this paper quantitatively 

evaluates this limitation compared to a HSJ extension proposed in Section 5.2.  Related 

MGA research, (Baugh Jr., Caldwell, and Brill Jr. 1997; S.-Y. Chang, Brill, and Hopkins 

1982; Loughlin et al. 2001; Shir et al. 2010; Zechman and Ranjithan 2007), does not 

explicitly consider this aspect of diversity through the use of measures not affected by 

solution set correlation such as the pair-wise average distance. Equation (17) defines pair-

wise average distance, denoted 𝐷 
PWA , where 𝑆 𝑖𝑠 𝑎𝑛 𝑛 𝑥 𝑞 matrix and 𝑆𝑘,𝑖 =

{
1 𝑖𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖 𝑖𝑠 𝑖𝑛 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑘

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 . 

 
𝐷 

PWA (𝑆) =
∑ ((∑ 𝑆𝑘,𝑖

𝑛
𝑘=1 )(∑ 1 − 𝑆𝑘,𝑖)

𝑛
𝑘=1 )𝑞

𝑖=1

(
𝑛
2
)

, (17) 

To demonstrate this issue, consider two solution sets generated from MGA 

techniques. Both sets contain four solutions. The first solution set contains two portfolios 

with elements A & B and two other portfolios with elements C & D.  The second solution 

set contains one portfolio with elements A & B, another portfolio with elements C & D, 

one portfolio with elements A & C, and one portfolio with elements B & D. From a pair-

wise average distance diversity perspective, these solution sets are equally diverse. 

Incorporating correlation attributes as part of the diversity criteria, the second set is more 

diverse and is more preferred given the smaller covariance. The off-diagonals elements of 

the covariance matrix, equation (18), represent the selection covariance for solution sets, 

where 𝑠𝑖,𝑗
2  is calculated using equation (19). Table 3 presents the diversity and covariance 
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measures of these solution sets (i.e., the more covariance in the covariance heat map 

demonstrates the increased correlation of the first solution set). The columns of 𝑆 

represent the elements A, B, C, and D, followed by two other elements. 

 

cov(𝑆𝑛×𝑞) =

[
 
 
 
 
𝑠1,1

2 𝑠1,2
2

𝑠2,1
2 𝑠2,2

2

⋯
⋯

𝑠1,𝑞
2

𝑠2,𝑞
2

⋮ ⋮ ⋱ ⋮
𝑠𝑞,1

2 𝑠𝑞,2
2 ⋯ 𝑠𝑞,𝑞

2 ]
 
 
 
 

 (18) 

 
𝑠𝑖,𝑗

2 =
1

𝑛 − 1
∑(𝑆𝑘,𝑖 − 𝜇𝑖)(𝑆𝑘,𝑗 − 𝜇𝑗)

𝑛

𝑘=1

 (19) 

where 𝜇𝑖
  is the average value of the 𝑖th column of 𝑆. 

TABLE 3. SOLUTION SET COVARIANCE MEASUREMENTS WITH RESPECT TO PAIRWISE 

AVERAGE DISTANCE DIVERSITY MEASURE 

𝑆  𝐷(𝑆) 
PWA  

Covariance Matrix 
Heat Map 

𝐷(𝑆) 𝜃=0.5
SP  𝐷(𝑆) 

I  

[1,1,0,0,1,0], 
[1,1,0,0,0,1], 
[0,0,1,1,1,0], 
[0,0,1,1,0,1] 

4 

 

2.58 1.38 

[1,1,0,0,0,1], 
[1,0,1,0,1,0], 
[0,1,0,1,1,0], 
[0,0,1,1,0,1] 

4 

 

2.84 2.38 

 

Ulrich et al. (2010) highlights similar limitations of the pairwise average 

difference measurement approach to quantify diversity of MGA techniques’ results based 

on continuous decision variables and suggests the use of the Solow & Polasky diversity 

measure (Solow and Polasky 1994). The Solow-Polasky measure, denoted 𝐷(𝑆) 
SP , 

recognizes increased correlations in portfolio solution sets and successfully distinguishes 

the increased diversity of the second solution set as demonstrated in Table 3. See Section 

5.4 for the formulation of this correlation sensitive diversity measure. This papers uses 

both the 𝐷(𝑆) 
SP  measure and a proposed information entropy based measure, 𝐷(𝑆) 

I , in 

the evaluation of the diversity objective of interest.  
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The paper proceeds as follows: Section 5.2 formally presents the portfolio 

problem and optimization model, the original HSJ technique tailored to this portfolio 

problem, and a proposed HSJ extension technique. Section 5.3 introduces an application 

of the portfolio optimization problem and HSJ techniques in regard to a fantasy sports 

decision support system. Section 5.3 also includes a discussion of the complexity of the 

problem given the application problem. Section 5.4 provides the details for the numerical 

experiment and the correlation sensitive diversity measures. Section 5.5 presents the 

results and a discussion of the experiment’s outputs.  

5.2 Methods, HSJ and proposed extension 

This paper studies HSJ techniques with respect to a parametrized portfolio 

problem (F. Li et al. 2012). In this problem, the decision maker must select a subset of 

discrete elements (binary yes/no decisions) to maximize the benefits the elements 

produce given deterministic resource constraints and element benefit estimates. The 

problem is modeled below with a binary linear programming optimization formulation 

where  

Table 4  presents the notation used in this formulation, equation (20) denotes the 

objective, equation (21) denotes the selection constraints given a budget, equation (22) 

denotes the number of elements that must be included in any portfolio solution, equations 

(23) represents a set of technical constraints on the parameters of each project, and 

equation (24) denotes the binary nature of the decision variables. 

 

max∑𝑏𝑖𝑥𝑖

𝑞

𝑖=1

 (20) 

Subject to: 



68 

 

∑𝑐𝑖𝑥𝑖

 𝑞

𝑖=1

≤ 𝐶 (21) 

 

∑𝑥𝑖

𝑞 

𝑖=1

= 𝑚 (22) 

 
∑ 𝑥𝑖

 

𝑖∈𝐼𝑝=𝑣

≤ (≥) 𝑙 , ∀(𝑝, 𝑣, 𝑙, 𝑜) ∈ 𝐿 (23) 

 𝑥𝑖 ∈ {0, 1} (24) 

 

TABLE 4. OPTIMIZATION MODEL NOTATION 

Symbol Description 

𝐼 set of selectable elements described by a 𝛿-tuple, indexed by 𝑖 = 1,… , 𝑞 ; 𝐼 =
{(1,… , 𝛿)𝑖|𝑖 = 1,… , 𝑞} and where 𝑖𝑝 is the 𝑝th parameter of the 𝑖th tuple  

𝐼𝑝=𝑣 set of indices 𝑖 such that the 𝑝th parameter of the 𝑖th 𝛿-tuple is equal to 𝑣; 𝐼𝑝=𝑣 =

{𝑖|(1,… , 𝛿)𝑖 ∈ 𝐼 and 𝑖𝑝 = 𝑣} 

𝑥𝑖  binary decision variable for selecting 𝑖𝑡ℎ tuple of 𝐼  

𝑏𝑖 estimated benefits of selecting 𝑖𝑡ℎ tuple of 𝐼  

𝑐𝑖 cost of selecting 𝑖𝑡ℎ tuple of 𝐼  

𝐶 budget  

𝑚 number of elements that the portfolio must contain 

𝐿 set of 4-tuples (𝑝, 𝑣, 𝑙, 𝑜) that define values of interest 𝑣 for the 𝑝th parameter of 

(1, … , 𝛿)𝑖 ∈ 𝐼; 𝐿 = {(𝑝, 𝑣, 𝑙, 𝑜)𝑗|𝑗 = 1,… , 𝑟}, where 𝑙 is a bound on the number of 

elements (1, … , 𝛿)𝑖 ∈ 𝐼 that can be selected with this parameter value and 𝑜 is the 

direction of that bound, 𝑜 = 0 denotes ≤ and 𝑜 = 1 denotes ≥ 

𝑉𝑝 set of unique 𝑝th parameter values of tuples in 𝐼; 𝑉𝑝 = {distinct 𝑖𝑝|𝑖 = 1,… , 𝑞} 

 

With respect to the parametrized portfolio model, we employ the original HSJ 

technique (E Downey Brill, Chang, and Hopkins 1982) with decision variable weighting 

to pursue 𝐷 
PWA  diversity within a parameter 𝜌. We assume the 𝜌th parameter also defines 

{(𝜌, 𝑣, 1,0)|∀𝑣 ∈ 𝑉𝜌} technical constraints (i.e., {(𝜌, 𝑣, 1,0)|∀𝑣 ∈ 𝑉𝜌}  ⊆ 𝐿). For example, 

the 𝜌th parameter defines a project while the rest of the element parameters defines a 



69 

project implementation mode (i.e., how the project is executed or deployed). We replace 

the objective function of the original optimization model with equation (25) in the HSJ 

adjusted model that minimizes the weighted sum of elements that possess parameter 

values equal to previously selected elements. Constraint (26) represents HSJ’s near-

optimality constraint. It is used to restrict alternative generation to near-optimal solutions. 

We slightly deviate from HSJ, as proposed by Brill, to accommodate the decision maker 

requesting a specific number of unique solutions, 𝑛, in the solution set by adding 

constraints (27). These constraints represent a type of Gomory cut (Gomory 1958); they 

ensure no identical solutions, as defined by the elements’ 𝜌 parameter, are added to the 

solution set more than once. Voll et al. (2015) provide an alternative integer cut 

formulation that could replace constraint set (22) for problems without a fixed number of 

selections constraint (22). 

 
min ∑ ∑ 𝑤𝜌,𝑣𝑥𝑖

𝑖∈𝐼𝜌=𝑣

 

𝑣∈𝑉𝜌

  (25) 

subject to 

 Constraints (21), (22), (23), (24)  

 

∑𝑏𝑖𝑥𝑖

𝑞

𝑖=1

≥ 𝑇 (26) 

 ∑ ∑ 𝑥𝑖

𝑖∈𝐼𝜌=𝑗𝜌𝑗∈𝑆𝑘
1

≤ (𝑚 − 1), ∀𝑘 ∈ {1,… , 𝛼} 
(27) 

where 𝛼 denotes the number of solutions in 𝑆 (𝛼 ≤ 𝑛), 𝑤𝜌,𝑣 = ∑ ∑ 𝑆𝑘,𝑗
 
𝑗∈𝐼𝜌=𝑣

𝛼
𝑘=1  (i.e., 

count of selected elements in solutions of 𝑆 that have the 𝜌th parameter equal to 𝑣), and 

𝑆𝑘
1 = {𝑖|𝑆𝑘,𝑖 = 1}. 
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To address the low correlation preference of solution set diversity, we propose an 

extension to the HSJ technique which we denote as ‘HSJP’ (Hop Skip Jump Pairs). At 

each HSJ iteration, the adjusted model incorporates additional binary decision variables, 

𝑦𝑔,ℎ indicating the decision to select two elements that have the 𝜌th parameter equal to 𝑔 

for one element and equal to ℎ for another element, for each selection pair combination in 

the previous solutions. Constraints (29) and (30) control the selection of these auxiliary 

decision variables and forces the selection of the auxiliary decision variables. We 

incorporate these decision variables as part of the HSJ adjusted model’s objective 

function, equation (28), to minimize the reselection of element combinations (i.e., the 

correlation of the element selections in the solutions). This causes the adjusted model to 

penalize the selection of element pairs and related element pairs if they were already 

selected together in past solutions. 

 
min ∑ ∑ 𝑤𝜌,𝑣𝑥𝑖

𝑖∈𝐼𝜌=𝑣

 

𝑣∈𝑉𝜌

+ ∑ 𝑤𝜌,(𝑔,ℎ)𝑦𝑔,ℎ

 

(𝑔,ℎ)∈𝑃𝑆

 (28) 

subject to 

 Constraints (21), (22), (23), (24), (26), (27)  

 ∑ 𝑥𝑖

𝑖∈𝐼𝜌=𝑔

+ ∑ 𝑥𝑖

𝑖∈𝐼𝜌=ℎ

−  2𝑦𝑔,ℎ ≤ 0, ∀(𝑔, ℎ) ∈  𝑃𝑆 (29) 

 𝑦𝑔,ℎ ∈ {0, 1}, ∀(𝑔, ℎ) ∈  𝑃𝑆 (30) 

where 𝑤𝜌,(𝑔,ℎ) = ∑ (∑ 𝑆𝑘,𝑖
 
𝑖∈𝐼𝜌=𝑔

)(∑ 𝑆𝑘,𝑗
 
𝑗∈𝐼𝜌=ℎ

)𝛼
𝑘=1  and 𝑃𝑆 = {distinct (𝑔, ℎ)|𝑔 =  𝑖𝜌, 𝑖 ∈

𝑆𝑘
1, ℎ = 𝑗𝜌, 𝑗 ∈ 𝑆𝑘

1, 𝑖 ≠ 𝑗, ∀𝑘 ∈ {1,… , 𝛼} } (i.e., the set of unique 𝜌th parameter value pairs 

within a solution of 𝑆).  
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5.3 Application problem 

Fantasy sport participants face the portfolio problem in many types of fantasy 

sport competitions when the players take the form of the selectable elements; this paper 

refers to the portfolio problem composed of player selection decisions as the lineup 

selection problem. The lineup selection problem of interest is based on a decision maker 

facing the choice of which players to select to maximize the points realized from the 

selected players in the next day’s game performances (with the points computed from 

their performances in these games). For each day of games, the participant is presented a 

decision problem in which they must select 8 players from any of the players taking part 

in the next day’s games with technical constraints restricting the number of players for a 

certain position and a budget constraint.  

The lineup selection problem of interest is manifested as part of a fantasy sports 

DSS. The DSS receives player performance predictions from an external proprietary 

model. The DSS possesses some means to tailor the mathematical model to users’ unique 

preferences; the DSS can only accommodate changes to the model that are anticipated. 

For example, Smith, Sharma, & Hooper (2006) discover personalized heuristics fantasy 

sports participants utilize to support lineup decisions. The lineup selection optimization 

incorporates the player performance predictions and any custom decision maker lineup 

preferences into a binary linear programming model to find an optimum lineup that 

maximizes the total number of points from the lineup’s selected players. Considering a 

real-world dataset from this DSS consisting of 5 games and 147 decision variables, this 

problem instance has 1,433 near-optimum solutions 2.5% from the optimal solution value 

and 111,550 near-optimum solutions 5% from the optimum solution value.  The MGA 
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technique is used by the DSS to generate a small set of these near-optimum solutions to 

present to the DSS user. 

The lineup optimization model takes the form of the binary linear programming 

model presented in Section 2. The decision element tuples are formed from two 

parameters (𝛿 = 2).  The first parameter, 𝑖1, represents the player. The second parameter, 

𝑖2, represents the position (i.e., role). The possible positions include: point guard (PG), 

shooting guard (SG), center (C), small forward (SF), and power forward (PF). For 

example, the DSS user may choose a basketball player to fulfill the role of the PG or the 

role of the SG assuming the given basketball player fulfilled the PG and SG role in the 

past.  The 𝜌 parameter is set to 1 to base diversity on the player parameter of the selection 

elements.  The original objective, equation (20), is to maximize the number of points 

from the player selections where 𝑏𝑖 represents the predicted points the player of 𝑖 is 

expected to generate. The decision maker is given a budget and player costs that 

constrain the lineup selection, constraint (21). The decision maker must select 8 players 

(i.e., 𝑚 = 8).  Constraints (23) are defined given  

𝐿 = {(2,PG, 1,1), (2,SG, 1,1), (2,C, 1,1), (2,SF, 1,1), (2,PF, 1,1), (2,SF ∪ PF, 3,1), (2,PG ∪ SG, 3,1)} ∪ 𝑀 

where 𝑀 = {(1, 𝑣, 1,0)|∀𝑣 ∈ 𝑉1} (i.e., constraints to ensure a player is not selected for 

more than one position). The model also includes optional constraints (e.g., do not select 

players from a given team) or objective function embellishments (e.g., penalize the point 

estimates for a given set of players) made available to the fantasy sports player through 

the decision support system. HSJ and HSJP incorporates these optional embellishments 

by including the changes into the adjusted model as requested by the DSS user.  
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Regarding algorithm complexity, the original portfolio optimization model, the 

HSJ adjusted model, and the HSJP adjusted model are binary linear programming 

models. The iterative nature of the HSJ and HSJP techniques requires 𝑛 − 1 executions 

of the optimization technique employed to solve the adjusted binary linear programming 

model. The complexity of the solving binary linear programming models can be analyzed 

through the number of decision variables and constraints (Meindl and Templ 2012). The 

original optimization model requires approximately 300 decision variables for problem 

sizes derived from 10 games (10 games, 2 teams per game, 12 players per team, 1.25 

positions per player, i.e., on average 25% of players can be selected for 2 positions). The 

original HSJ technique adds one constraint for the near-optimality constraint and does not 

add any additional decision variables for the adjusted optimization model. HSJP may add 

up to 28 (8 choose 2) additional decision variables and constraints at each iteration for 

each player selection pair. Considering HSJP generating 50 additional solutions (i.e., 50 

iterations of adding 28 decision variables and constraints), HSJP may increase the 

complexity of the binary programming model by up to 1400 additional decision variables 

and 1400 additional constraints. Meindl & Templ demonstrate the positive computational 

feasibility of integer linear programming formulations more complex than this in regard 

to the number of decision variables and constraints; Section 5 demonstrates the 

computational feasibility of the HSJP technique applied to the portfolio selection problem 

of interest. Equation (31) provides an upper bound to the number of additional decision 

variables and constraints HSJP may introduce for the 𝑛th iteration of the adjusted model 

where 𝑚 represents the maximum number of elements in a portfolio (e.g., 𝑚 = 8 for the 

applied lineup selection problem of interest). 
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 min ((
𝑚
2

) (𝑛), (
𝑞
2
)) (31) 

5.4 Experiment  

To evaluate the proposed HSJP technique’s ability to increase diversity through 

the reduction of solution set correlation, an extensive numerical experiment is performed 

with 225 problem instances derived from the distribution of parameters held by a real-

world basketball fantasy sports dataset. The real-world dataset consists of predicted 

points, salaries, and positions for players for five basketball games taking place the next 

day. 25 random problem instances are generated for problem sizes consisting of 2 to 10 

games using player-parameter distributions discovered from the real-world dataset. For 

each game, 24 (2 teams of 12 players) players with salary, points, and position(s) 

parameters are randomly generated. An offset, exponential random variable distribution 

is used to generate the players’ salaries. A linear relationship is observed in the real-

world dataset between the players’ salary and point variables. Linear regression analysis 

with salary as the input and the predicted points as the regressor results in a good fit. The 

standard deviation of the regression predicted values from actual values differences is 

used to generate a random normal distribution error from the regression predicted points 

given the salary random variable. Any generated random point value less than 0 points is 

assigned 0 points. Each player is randomly, uniformly assigned a position from the 

standard basketball positions. 25% of the players, roughly the percentage of players in the 

real-world dataset having two possible position options, are randomly, uniformly 

assigned a second position from the remaining positions. 
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The original HSJ technique and the proposed HSJP technique are executed to 

generate 50 solutions for each problem instance and for numerous near-optimality 

thresholds (𝑇 = 2.5%, 𝑇 = 5%, 𝑇 = 10%, and 𝑇 = 15% decrease from the initial 

solution's original objective value). The initial solution generated is the first optimal 

solution found to the original optimization formulation. The adjusted model is iteratively 

solved until the solution set contains 50 solutions or until the adjusted model is unable to 

find an additional unique near-optimal solution. CPLEX 12.7 optimization software is 

used, with default settings, on Intel Xeon processor computers to solve the binary linear 

programming model optimizations. The low correlation diversity objective is evaluated 

for solution sets sizes of 10, 25, and 50 solutions with respect to two measures, described 

directly subsequently, that negatively value solution sets that possess more element 

selection correlations: the Solaw-Polasky measure, 𝐷 
SP ; and a measure this paper 

presents based on information entropy theory denoted entropy weighted variance, 𝐷 
I . To 

assess significance of diversity differences, paired t-test statistics (paired by problem 

instance) are computed, confirming paired t-test assumptions hold. Statistical significance 

is determined with a p-value being smaller than a 1% threshold.  

5.4.1 Correlation sensitive diversity measurements 

Solow & Polasky (1994) recognize that many diversity indexes and applications 

ignore the “distance” between objects in a set. They provide the example “a set consisting 

of four species of ants is some sense less diverse than a set consisting of one species of 

ant, one species of elephant, and one species of fern.” They propose three requirements 

for a set diversity measure and called measures that met these criteria a “pure” diversity 

measure and propose equation (35) as a “pure” diversity measure. They show equation 
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(35) is a lower bound for a probability-based benefit (i.e., utility) function and propose an 

interpretation of the measure as the “effective number of species”. A properly calibrated 

Solow-Polasky measure results in the value of 1 when each element of the set is 

significantly the same and up to a value of the cardinality of the set size 𝑛, the number of 

objects in the set, when every object in the set is completely unique in regard to the 

diversity benefit. A starting point for the Solow-Polasky measure are distance functions, 

denoted in regard to portfolios as 𝑑(𝑆𝑘, 𝑆𝑙), that quantify the distance between two 

portfolios of the solution set 𝑆. The 𝑑(𝑆𝑘, 𝑆𝑙) function by definition meets the conditions 

specified by equations (32), (33), and (34). The Solow & Polasky measure requires the 

specification of 𝑓, a positive definite function, that acts as a “correlation” transformation 

of the distance computations (𝑓 results in 0 if no correlation, 1 if completely correlated). 

In this experiment, three configurations of the Solow-Polasky measure (𝜃 = 0.25, 𝜃 =

0.5, or 𝜃 = 0.75 ) are considered using the pair-wise difference count as 𝑑(𝑆𝑘 , 𝑆𝑙).  

 𝑑(𝑆𝑘, 𝑆𝑙) ≥ 0 (32) 

 𝑑(𝑆𝑘, 𝑆𝑘) = 0 (33) 

 𝑑(𝑆𝑘, 𝑆𝑙) = 𝑑(𝑆𝑙, 𝑆𝑘) (34) 

 

 𝐷(𝑆) = 𝟏′𝐹−1𝟏 
SP  (35) 

 

𝐹 = [
𝑓(𝑑(𝑆1, 𝑆1)) ⋯ 𝑓(𝑑(𝑆1, 𝑆𝑛))

⋮ ⋱ ⋮
𝑓(𝑑(𝑆𝑛, 𝑆1)) ⋯ 𝑓(𝑑(𝑆𝑛, 𝑆𝑛))

] (36) 

 𝟏 = 𝑛 vector of 1s  (37) 

 𝑓(𝑑) =  𝑒−𝜃𝑑 (38) 

The diversity objective is also evaluated with a proposed measure that 

summarizes correlation insight from a solution set’s covariance matrix with information 

entropy concepts, which this paper denotes as entropy weighted variance, 𝐷 
I . Similar to 
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how principal component analysis uses eigenvectors of the covariance matrix to reduce 

the number of dimensions in the original dataset (Dillon and Goldstein 1982), the average 

amount of information needed to encode the solutions differences in these hidden 

components is estimated.  

The player/project pairwise selection covariance matrix, equation (18), is a 

summary of how each selectable player of a solution set varies from the portion of times 

it was selected (i.e., mean) in relation to the other selectable players of the dataset. If two 

selectable players vary from their mean in opposing (similar) directions, then the 

covariance between the two selectable players is negative (positive).  Likewise, if two 

selectable players vary from the mean randomly or out of sync with respect to one 

another the covariance tends to zero. Eigenvectors of the covariance matrix are the 

vectors, 𝑤, that satisfy equation (39) where 𝝀 represents the set of eigenvalues of cov(𝑆). 

Since the covariance matrix is positive semi-define, the eigenvalues are non-negative 

(Horn and Johnson 1985). The eigenvectors of the covariance matrix represent a set of 

orthogonal directions that explain the variance within the original dataset. The direction 

of the eigenvectors account for how the dataset’s selected players are included in lineup 

solutions together.  The eigenvector corresponding to the largest eigenvalue represents 

the transformed dimension that has the strongest correlation in the dataset. 

 cov(𝑆)𝑤 = 𝝀𝑤  (39) 

 The reduced, orthogonal dimensions (i.e., the components) are assumed to 

represent hidden, underlying factors of the variance observed in the dataset. Given that 

the sum of the covariance matrix eigenvalues equals the sum of variance and that the 

eigenvalues represent the amount of variance explained by the corresponding 
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eigenvector-based component, the portions of the total variance explained by each 

underlying component can be determined. For example, if the first two largest 

eigenvalues sum to a value 80% of the total variance, the transformed components 

represent or retain 80% of the total variance in the dataset. Considering every difference 

unit being linked to an underlying-hidden component, the portion of these difference 

units linked to an underlying component are represented by the normalized eigenvalues. 

Let 𝝀n represent the non-zero, normalized vector of eigenvalues of cov(𝑆) (i.e., each 

eigenvalues is scaled by 1 over the eigenvalues sum (i.e., the total variance of 𝑆). 

Assuming the difference units are communicated or focused upon randomly and 

independently, the amount of information needed to communicate the specific source of 

all the variance units in a given dataset from the underlying component perspective is 

quantified using information entropy.  The total variance is analogous to the expected 

number of messages needed to explain one of the solution’s differences from the solution 

set mean. A term this paper denotes as covariance entropy, equation (40), is analogous to 

the expected size of a message distinguishing the underlying source component of a 

difference. Multiplying both results in the expected amount of information needed to 

distinguish the sources of the differences from the dataset’s mean of a single lineup 

within a solution set (in bits given log2). This paper denotes equation (41) as the entropy 

weighted variance.  

𝐻(𝝀) = −∑𝜆𝑖
n

|𝝀|

𝑖

log2(𝜆𝑖
n) (40) 

𝐷(𝑆) 
I = (∑𝜆𝑖

 

|𝝀|

𝑖

)𝐻(𝝀) =
𝐷 

PWA (𝑆)

2
𝐻(𝝀) (41) 
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The results are also compared using the pair-wise difference average diversity 

measure, 𝐷 
PWA , however this common measurement of diversity does not take into 

account the correlation of the solution set’s selections. 

5.5 Results and Discussion 

Regarding diversity of the generated solutions, Table 5 shows the paired t-test 

results, paired by problem instance, comparing the solution set diversity measure 

difference from the original HSJ method to the proposed HSJP method for numerous 

parameter configurations and diversity measures. ‘+’ denotes the proposed HSJP is 

significantly better (i.e., HSJP produces more diverse solution sets given a 0.01 

significance level) than the original HSJ technique, ‘-’ denotes the original HSJ technique 

is significantly better, and ‘=’ denotes failure to find any difference. For every 

correlation- sensitive diversity measure and for every configuration with the exception of 

two test comparisons at one configuration setting, the proposed HSJP technique produces 

significantly more diverse solution sets. The two test comparisons where the difference is 

not significantly different, occurs when the solution set size in small (𝑛 = 10) and the 

near-optimal criteria is at the largest considered threshold (𝑇 = 15%). This suggests if 

the near-optimality threshold enables many solutions and only a small number of 

decision-space-diverse solutions are requested, the original HSJ technique may result in 

solution sets with low-correlation matching that of HSJP. With respect to diversity using 

𝐷 
PWA , the paired t-test suggests no significant diversity difference exists between HSJ 

and HSJP for 3 of the 12 parameter configurations. At the remaining 9 parameters 



80 

configurations, the original HSJ method’s solution sets are more diverse in regard to the 

correlation in-sensitive 𝐷 
PWA  measure. 

TABLE 5. PAIRED DIVERSITY DIFFERENCE T-TEST SIGNIFICANCE RESULTS 

𝑇 2.5% 5% 10% 15% 

𝑛 

Metric 
10 25 50 10 25 50 10 25 50 10 25 50 

𝐷(𝑆) 
PWA  - = - - = - - - - - = - 

𝐷(𝑆)𝜃=0.25
SP  + + + + + + + + + = + + 

𝐷(𝑆)𝜃=0.5
SP  + + + + + + + + + + + + 

𝐷(𝑆)𝜃=0.75 
SP  + + + + + + + + + = + + 

𝐷(𝑆) 
I  + + + + + + + + + = + + 

 

Figure 17 shows the diversity t-test difference comparisons by problem size, 

diversity measure, and near-optimality threshold (each comparison incorporates 25 of the 

225 problem instances). For every correlation sensitive diversity comparison, HSJP 

generates an equal or significantly more diverse solution set compared to HSJ. At 𝑛 = 25 

and 𝑛 = 50, the number of comparisons where HSJP generates significant more diverse 

solution sets compared to HSJ is greater than the number of similar comparison results at 

𝑛 = 10. This suggests HSJP’s potentially greater usefulness for uses when 𝑛 > 10 for 

the application problem. At 𝑛 = 50, 𝑇 = 2.5%, and for four of the five smallest problem 

sizes, the 𝐷(𝑆)𝜃=0.25
SP  measure suggests the diversity of the HSJP’s solution sets are equal 

to HSJ’s solution sets. This suggests the solution sets may be approaching covariance 

limits given the finite number of near-optimal solutions and some curvature in the 

amount of covariance reduction possible given the restrictive near-optimality threshold 

and the smaller problem sizes. At 𝑛 = 25, 50 and 𝑇 = 10%, 15%, HSJP generates more 

significant diverse results in regard to 𝐷(𝑆) 
PWA . This demonstrates that the greedy 
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heuristic methods of the original HSJ technique at times fails to minimize 𝐷(𝑆) 
PWA . Note 

HSJP retains the greedy heuristic attributes to pursue correlation-sensitive diversity. 

 

FIGURE 17. PAIRED DIVERSITY DIFFERENCE T-TEST RESULTS FOR DIFFERENT PROBLEM 

SIZES BY SOLUTION SET SIZE (𝑛) 

Figure 18 summarizes the amount of covariance in the generated solution sets for 

both the orignal HSJ technique and the proposed HSJP technique by taking the average 

2𝐻(𝜆) (note that 𝐻(𝜆) is the entropy of the solution sets’ covariance matrix eigenvalues) 

over the 225 problem instances by each near-optimiatliy threshold value (𝑇). 2𝐻(𝜆) is 

anagolous to the number of equally important components needed to explain the variance 

in the solution set. The more number of components required to explain the variance 

(higher entropy) the less solution set correlation. HSJP at 𝑇 = 10% almost exceeds the 

covariance entropy of HSJ at 𝑇 = 15% highlighting the ability of HSJP to reduce 

correlation in solution sets without requring the expanision of the near-optimalitiy 

criteria. As the solution set size (𝑛) increases to 50 at the less restrictive near-optimaility 

𝑛 = 10 𝑛 = 25 𝑛 = 50 
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thresholds, HSJP’s ability to generate low-correlated solutions increases relative to HSJ 

compared to the most restrictive near-optimiatily threshold of 𝑇 = 2.5%. Figure 19 also 

shows this difference increase. Note that increasing the solution set size equal to the 

number of near-optimal solutions causes the same solution set from each MGA technique 

and subsquently the same diversity. As 𝑛 increases and approaches the number of near-

optimal solutions, this diversity difference is expected to approach zero. 

 

FIGURE 18. SOLUTION SET COVARIANCE ENTROPY AVERAGES 
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FIGURE 19. SOLUTION SET DIVERSITY AVERAGES 

 

For every problem instance HSJ and HSJP generate 50 near-optimal solutions in 

acceptable times for the decision support system. The computational times range from 10 

seconds to approximately 4 minutes. Figure 20 shows the minimum, maximum, median, 

25% quartile, and 75% quartile computation times for the 225 problem instances. HSJP 

demonstrates more varied and longer computational times given the additional decision 

variables and constraints that increase the problem size modeled in the adjusted model’s 

binary linear programming formulation.  
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FIGURE 20. COMPUTATIONAL TIMES TO GENERATE 50 SOLUTIONS BY NEAR-OPTIMALITY 

THRESHOLDS 

Finally, note HSJP retains the positive features of HSJ for use in a decision 

support system. HSJP can be applied to any decision support system modified linear 

programming optimization formulation without extensive calibration, such as the binary 

linear programming formulation of the lineup selection problem presented in Section 2. 

Like HSJ, HSJP only requires a threshold for near-optimality input to extend the original 

optimization model. Also, decision support systems (DSS) utilizing HSJP can generate 

and present additional solutions in a piecemeal fashion as desired by the DSS user.   

5.6 Conclusions 

This paper revisits modeling to generate alternatives (MGA) with respect to a 

portfolio selection problem with a binary linear programming optimization formulation. 

This paper presents a new HSJ technique variation that incorporates minimizing the 
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selection of past selected pairs to produce multiple, low-correlated diverse near-optimal 

solutions. The proposed HSJP technique is compared to a variant of the original HSJ 

technique regarding the low-correlation diversity objective of the MGA techniques’ 

solution sets. The results of a numerical experiment show the proposed HSJP technique 

produces significantly more diverse solution sets for 45 of the 48 comparisons given 

different near-optimality thresholds, different solution set sizes, and four different 

correlation-sensitive diversity measures. 

Given the results, several future issues may benefit from more research. Future 

research is recommended to explore the genetic and evolutionary algorithm based MGA 

techniques compared to the proposed HSJP technique with respect to the correlation 

sensitive diversity measures. Screening MGA techniques that account for selection 

correlations are another suggested research avenue to improve MGA techniques with 

respect to correlation sensitive diversity. Future research is also suggested into the 

robustness and the calibration of MGA techniques for use in a daily-used, multi-user DSS 

considering daily changing inputs, specifically methods that automatically calibrate and 

adjust the near-optimality threshold requirements for techniques such as HSJ and HSJP. 
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VI.  Progress towards addressing multiple, non-constant marginal value objectives 

6.1 Introduction 

Past multi-objective approaches applied to the project selection problem suggests 

summing the normalized project values computed from multi-attribute measurable value 

(Golabi, Kirkwood, and Sicherman 1981). An assumption of the multi-attribute 

measurable value approach is that the decision maker’s portfolio preferences have 

constant marginal values with respect to the objective’s measurement criteria. For some 

project selection problems the constant marginal value assumption does not hold 

(Kleinmuntz 2007). For example, consider a city management organization that is 

considering a number of projects to improve the city’s environment. Assume the city 

holds two objectives of maximizing tree-park space and maximizing drinking water 

quality. If a portfolio contains a set of projects that as a group result in great water 

quality, the city organization may value a project that contributes additional water quality 

less than valuing the same project with respect to a portfolio that contains a set of projects 

that results in low water quality as a whole. Economists refer to this common preference 

phenomenon as the law of diminishing marginal utility. 

This paper presents an approach to support optimization of the multi-objective 

project selection problem in regard to the objectives’ measurement criteria having non-

constant marginal value. The approach permits the decision maker to holistically evaluate 

the objectives of a portfolio, while also leveraging common multi-objective decision 

analysis value elicitation techniques as suggested by (Keeney and Raiffa 1976). The 

project selection problem is formulated as a non-linear binary integer programming 
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model. Specifically, the formulation could be described as a binary integer version of a 

sigmoidal programming problem (Udell and Boyd 2013). 

Next, Section 6.2 presents a literature review of techniques to address this issue. 

Section 6.3 proposes a new methodology to address this issue and an optimization solver 

to optimization the mathematical model. Section 6.4 provides the results of a 

demonstration of the methodology in regard to an environmental project selection 

problem compared to two other optimization approaches.  

6.2 Literature Review 

Past multi-objective project selection research works around optimization 

modeling limitations that force constant marginal value assumptions with iterative 

decision maker methods. Golabi et al. (1981) employ an iterative method that solves the 

linear programming optimization model, presents the solution to the decision maker to 

evaluate, and allows the decision maker to constrain objectives to be above a chosen level 

with a linear constraint to explore solutions that may capture relatively higher marginal 

value, which the original binary linear programming model’s optimization did not 

discover. Dickinson et al. (2001) exclude some objectives from the objective function and 

modeled the objectives as constraints. This paper denotes techniques that enforce the 

realization of some non-constant marginal value of an objective with a constraint as a 

constraint estimator. This paper denotes techniques that ignore non-constant marginal 

values to model portfolio objectives in a linear objective function as a linear estimator. 

Figure 21 shows the potential effects of constraint estimations and linear estimations on 

representing non-constant marginal value objectives where 𝑉𝑜 denotes the portfolio value 
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function for objective 𝑜 and 𝑧𝑜 denotes objective 𝑜’s raw criteria measurement 

contributed by a set of selected projects.  Constraint estimators only permit solutions that 

are equal or greater than the constraint. In this manner, constraint estimators ignore or 

undervalue solutions that fall below the constraint and overvalue solutions that barely 

meet the constraint since these solutions are valued the same as a solution with the best 

possible value on the criterion range. Linear estimators over value solutions when the 

solution results in a value that is larger in regard to the true decision maker value curve.  

Kleinmuntz (2007) describes a common workaround used in the application of portfolio 

decision analysis problems denoted “threshold constraints” that uses both, a constraint 

estimator and a linear estimator. 

 

FIGURE 21. ESTIMATION EFFECTS ON NON-CONSTANT VALUES 

 Numerous methods to address projects’ benefit interactions have been proposed. 

Table 6 provides a summary of past approaches discovered to address benefit interactions 

between projects in multi-objective project selection problems. A small set of this 

research (Argyris, Figueira, and Morton 2011; Liesiö 2014) directly addresses the non-

constant marginal value benefit interaction type. A limitation of the approach suggested 

by (Liesiö 2014), as it was presented, is that it relies on unproven project-centric decision 
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maker elicitation methods to construct symmetric multilinear value functions that may be 

unnatural for decision maker preference modeling with non-constant marginal values and 

may be inappropriate when projects may largely vary in scope, size, and objective 

significance. For example, if one project being considered contributes a very significant 

amount to one objective many multiples more than any other project, the project centric 

value function would have to reflect this for this one project. Subsequently, eliciting for 

the objective’s portfolio value function for this criteria, as proposed by (Liesiö 2014), 

requires the use of the best project with respect to this criteria as this elicitation step-size; 

the large step-size caused from this one project can gloss over the smaller non-constant 

marginal preference changes through the objective criteria range. A limitation of the 

method proposed by (Argyris, Figueira, and Morton 2011) is that the value functions are 

restricted to concave or linear forms (i.e., convex marginal values are not supported). In 

the next section, the paper proposes a non-linear optimization methodology that addresses 

multi-objectives with concave and convex non-constant marginal value attributes while 

reducing the need to use project-centric value elicitation methods to formulate the 

optimization model’s objective function.  

TABLE 6. PROJECT BENEFIT INTERACTION RESEARCH 

Research # of Objectives Objective Function Form Solution Technique 

(Carazo et al. 2010) 2 ,4 ,6+ Polynomial Pareto-optimal, search 

(Bhattacharyya, Kumar, and Kar 2011) 3+ Polynomial Pareto-optimal, genetic 
algorithm 

(Crama and Schyns 2001) 2 Polynomial Simulated annealing 

(Rabbani, Aramoon Bajestani, and Baharian 
Khoshkhou 2010) 

3 - Particle Swarm, SPEAII 

(Dickinson, Thornton, and Graves 2001) 1 Polynomial COTS non-linear solvers 

(Blecic, Cecchini, and Trunfio 2012) 1 Polynomial Search Heuristics, Evolution 
Strategy 

(Eilat, Golany, and Shtub 2006) 1 Ratios Data Envelopment Analysis 

(Fox, Baker, and Bryant 1984) 1 Quadratic Polynomial Linearization 

(Stummer and Heidenberger 2003) k Polynomial Linearization 

(Liesiö 2014) k Symmetric Multilinear Enumeration, Heuristic 

(Argyris, Figueira, and Morton 2011) k Concave piece-wise linear 
additive  
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6.3 Methodology 

The methodology begins with an analysis of the portfolio’s multiple objectives 

from a holistic portfolio perspective. At this point, the fact that portfolio-alternatives are 

defined by a combination of projects is ignored. This approach employs problem 

objective modeling and validation to ensure the objective attributes are mutually 

preferentially independent. This enables an additive value function representation of the 

decision maker preferences (Keeney and Raiffa 1976). This is the first requirement of the 

methodology. Next, value functions are constructed for each objective and the objectives 

are assigned weights using traditional multi-objective techniques with two exceptions. 

First, for each portfolio objective, value function inputs are to be based on extensive (i.e., 

addable) attributes (Krantz et al. 1971) computable for each project. This is the second 

requirement of the proposed methodology. In many instances, a natural extensive 

attribute exists to measure the contribution of a project to the portfolio objective, such as 

acres of land preserved in an environmental-preservation project selection problem. In 

other instances, a measurable value function with baseline definition may be required to 

translate project attributes into an extensive attribute, such as attributes specified on a 

Likert scale (from a SME-provided-assessment) in regard to the projects’ contribution to 

the portfolio objective to improve city aesthetics. Second, each portfolio-objective’s 

value function denoted 𝑉𝑜 is a sigmoidal function. A sigmoidal function is defined as a 

function that is Lipschitz continuous and is either concave, convex, or concave to convex 

(or convex to concave) at a single point through the input range (Udell and Boyd 2013). 

Let 𝑂 represent the set of objectives. Let 𝑃 denote the set of potential projects with 𝑝 

denoting a project in this set. Let 𝑏𝑝𝑜 represent 𝑝’s measurement in regard to portfolio 
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objective’s 𝑜 extensive attribute. Let 𝑧𝑜 represents the sum of the selected projects 

extensive measurement regarding objective 𝑜 and the input into 𝑉𝑜.  Employing 

traditional weight elicitation methods to normalize the portfolio criteria values, let 𝑤𝑜 

denote the weight of objective 𝑜. 

The resulting non-linear binary integer sigmoidal programming problem is 

represented by equations (42), (43), and (44) where 𝑥𝑝 denotes the binary (i.e., yes/no) 

decision to pursue project 𝑝, 𝑅 represents the set of limited resources, 𝑟 represents one of 

these resources, 𝑎𝑟 represents the amount of resource 𝑟 available, and 𝑐𝑝𝑟 represents the 

resource cost to select project p with respect to resource 𝑟. Equation (44) represents the 

binary nature of the decision variables. A non-linear optimization solver is then utilized 

to prescribe a solution. 

max
 

∑ 𝑤𝑜𝑉𝑜(∑ 𝑏𝑝𝑜𝑥𝑝

 

𝑝∈𝑃

) 

 

𝑜∈𝑂

 (42) 

subject to:  

∑ 𝑐𝑝𝑟𝑥𝑝

 

𝑝∈𝑃

≤ 𝑎𝑟 , ∀𝑟 ∈ 𝑅 (43) 

𝑥𝑝 ∈ {0,1}, ∀𝑝 ∈ 𝑃 (44) 

To solve this problem, this paper extends the sigmoidal programming solver 

proposed by (Udell and Boyd 2013) to account for binary decision variables. The 

extended solver employs branch and bound techniques to address the binary decision 

variable characteristics. To seed the lower bound of the brand and bound technique, the 

proposed solver finds the optimization solution to the linear approximation of the 

problem. To generate the linear problem approximation, the solver replaces the non-

linear value functions with a linear value function derived from the range of the non-
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linear value function inputs and anchoring the endpoints at the minimum and maximum 

values. Next, the branch and bound technique initially treats every binary decision 

variable as continuous and constrained between 0 and 1. The proposed solver branches on 

each decision variable to restrict the decision variable back to a binary 0 and a binary 1 

value. The solver first proceeds in depth first manner exploring the binary 1 branch. It 

ensures the problem is feasibility and solves the continuous sigmoidal programming 

problem using Udell and Boyd’s solver. If the continuous solution is less than the bound 

then the branch is pruned otherwise the branch is branched again. If the problem is at a 

leaf (all decision variables have been restricted to 1 or 0) and the value is more than the 

lower bound, then the lower bound is updated to this solution’s optimal value and this 

solution is retained. The branch and bound technique enumerates every branch until 

every branched is pruned or evaluated. 

6.4 Demonstration 

To demonstrate the computational feasibility of the methodology, this paper 

considers an example and dataset studied and provided by (Liesiö 2014). The dataset 

consists of fifty projects representing unique areas to be conserved, with five decision 

maker objectives. The projects would publicly fund the purchase of privately-owned 

forests for a period of 10-20 years; public officials seek to maximize the conservation 

value of the selected portfolio. Portfolio value functions are reproduced after the 

multilinear value functions used by (Liesiö 2014).  The reproduced portfolio value 

functions are not exact replicates given the different approaches to modeling the 

preferences; this precludes direct comparison of this paper results to the symmetrical 
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multilinear optimized results. Three of the five objectives are naturally measured with an 

extensive attribute and do not require any additional project-centric value function. The 

objective to maximize area to be conserved is measured by the extensive (addable) acre 

property. The objective to maximize the protection of endangered species is measured by 

the extensive number of endangered animals protected property. The objective to 

maximize the amount of old broad-leaved trees is measured by the extensive volume (m3) 

of trees. For the two remaining objectives, project-based measurable value function that 

converts the qualitative or quantitative project measurement into an extensive value for 

input into the portfolio value function are developed.  The portfolio value functions are 

shown in Figure 22 and derived from equation (45) and the parameters in Table 7. The 

objective weights, resource needs, and resource limits are used as specified in the 

symmetrical multi-linear example. 

𝑉(𝑧) = 𝐴 +
𝐾 − 𝐴

1 + 𝑒(−𝐵(𝑧−𝑀))
 (45) 

 

TABLE 7. OBJECTIVE VALUE FUNCTION PARAMETERS AND WEIGHTS 

Objective Objective Index 𝐴 𝐾 𝐵 𝑀 𝑤𝑜  

Maximum area 1 -0.3273 1.3273 0.02 70 0.15 

Maximum trees 2 -1 1 0.002 0 0.1 

Maximum 
Water Economy 

3 -1.03 1.03 0.05 0 0.15 

Maximum 
Homes of 
Endangered 
Species 

4 0 1 0.007 750 0.25 

Close to natural 
reserves 

5 0 2 0.15 50 0.35 

 

To study the effectiveness of the proposed solver, an off-the-shelf commercial 

non-linear solver provided with Microsoft Excel is used to solve the non-linear 
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mathematical model.  The proposed solver’s solution is also compared to a solution from 

solving a linear relaxed variation of the model (the same one to seed the proposed solver). 

For the linear relaxed variation, a linear function over the range of the raw criteria range 

is mapped to the portfolio value from 0 to 1. 

Figure 22 shows the solution’s objective values to each optimization technique. 

The final value of the sigmoidal branch-and-bound non-linear solver solution is 0.5740, 

Microsoft Excel solver methods results a solution having a value 0.5737, while the linear 

relaxed method results in a solution having a final value of 0.5713 as computed from the 

non-linear model’s objective function. While the proposed solver provides a better 

solution, uncertainties persist regarding the practical significance. Both non-linear solver 

solutions select 32 projects holding 2 project selection differences. Comparing the non-

linear solutions to the linear relaxed solution, there are 7 and 8 different project-selection 

differences. 
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FIGURE 22. EXAMPLE PORTFOLIO VALUE FUNCTIONS AND SOLUTIONS 

The approach in this paper is different than (Liesiö 2014) with respect to the 

method of formulating and eliciting the portfolio value functions. Liesiö’s proposed 

method utilizes a symmetric multilinear preference formulation. The symmetric 

multilinear formulation, as presented, incorporates a project specific value function for 

each objective and anchors the elicitation of the criterion-specific portfolio value 

functions to the project with the most value for the criterion; they do not suggest a means 

to address non-constant marginal value less than this value. In doing so, the symmetric 

multilinear approach, as proposed, possibly requires more and unnatural elicitations. The 

proposed approach only needs a project specific value function if the portfolio objective’s 

criteria does not possess natural ratio scale properties.  
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In addition, the proposed method of portfolio selection can be extended to support 

project interaction effects with regard to portfolio specific criteria. If a set projects hold 

an interaction effect with regard to a portfolio specific criterion, one could create an 

activation variable to account for this interaction effect and place a linear constraint on 

the project’s decision variable to be less than or equal to both of the projects contributing 

to the interaction effect. One such extended model formulation is shown below where 𝑥𝑖 

denotes the activation variable for interaction i, 𝑏𝑖𝑜 denotes the interaction’s effect on 

objective o‘s criteria, 𝑃𝑖 denotes the set of projects required to activate 𝑖, and 𝐼 represents 

the set of interactions.  Many other model embellishments are possible to account for 

different types of project benefit interactions; for example see (Stummer and 

Heidenberger 2003). 

max
 

∑ 𝑤𝑜𝑉𝑜(∑𝑏𝑝𝑜𝑥𝑝

 

𝑝∈𝑃

+ ∑𝑏𝑖𝑜𝑥𝑖

 

𝑖∈𝐼

) 

 

𝑜∈𝑂

 (46) 

subject to:  

∑ 𝑐𝑝𝑟𝑥𝑝

 

𝑝∈𝑃

≤ 𝑎𝑟 , ∀𝑟 ∈ 𝑅 (47) 

𝑃𝑖 ⊂ 𝑃, ∀𝑖 ∈ 𝐼 (48) 

∑ 𝑥𝑝

 

𝑝∈𝑃𝑖

≥ |𝑃𝑖|𝑥𝑖, ∀𝑖 ∈ 𝐼 (49) 

𝑥𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐼 (50) 

𝑥𝑝 ∈ {0,1}, ∀𝑝 ∈ 𝑃 (51) 

6.5 Conclusion 

In this paper an approach to the project selection problem is proposed that enables 

a decision maker to value project portfolios from the portfolio-as-a-whole perspective. 

The approach provides a means to model non-constant marginal values in portfolio 
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objectives and other value interactions.  Also, the approach enables the use of traditional, 

multi-objective value function elicitation methods as proposed by (Keeney and Raiffa 

1976). The method is demonstrated with a dataset from literature and solved using a 

proposed branch and bound implicit-enumeration non-linear solver that finds a better 

solution compared to Microsoft Excel’s non-linear solver and compared to a portfolio 

linear additive model that assumes constant marginal value. 

An area of possible future research is to study how the decision context affects a 

decision makers’ ability to accurately formulate their preferences using symmetric 

multilinear project-centric methods as proposed by (Liesiö 2014) compared to the method 

suggested in this paper. Another area of future research is to explore extending symmetric 

multilinear value functions elicitation methods to account for non-constant marginal 

value smaller than the best project. Another area of future research is on new or existing 

non-linear solver techniques and theory for the integer sigmoidal programming 

formulation. The extended model shows promising aspects to explicitly represent 

interaction effects and non-constant marginal values. Future research studying the 

feasibility in employing the extended model to support the project selection problem with 

project-set-benefit interactions is recommended. 
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VII.  Summary and Conclusions 

This dissertation provides novel techniques and methods to support resource 

allocation for information production activities. Viewing the information production 

problem in relation to research concerning project selection problems, this dissertation 

highlights research gaps in project selection methods and presents results to show the 

significance of the proposed methods to address these gaps. 

Chapter III presents a methodology to support optimization of a project selection 

and scheduling with variable intensity work problem. The methodology is compared to a 

previously proposed methodology in regard to a dataset consisting of 1,800 problem 

instances. In every problem instance the presented methodology produces an equal or 

better solution. 

Chapter IV presents a project selection problem consisting of projects that 

produce information. A novel methodology to support solution optimization is presented 

to address project selection and scheduling with project product deterioration and 

reproduction decisions. The chapter provides a formulation to compute a measurable 

value baseline with respect to time interactions on value function evaluations. The case 

study results show successfully employing the methodology on an information 

production planning problem for an Air Force organization. 

Chapter V presents a new variation of a project selection alternative generation 

technique embeddable in project selection decision support systems. The chapter 

develops and shows the proposed alternative generation technique generates significantly 

more decision-space-diverse alternative sets compared to the original alternative 
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generation technique. The chapter also utilizes a new set diversity measure based on 

information entropy to quantify the decision-space diversity of an alternative set. 

Chapter VI presents progress towards an optimization method for the project 

selection problem with multiple, non-constant-marginal-value objectives. The chapter 

proposes an optimization solver and shows the solver finds a better solution compared to 

a commercial-off-the-shelf non-linear solver for a problem dataset provided in literature. 

The methodology incorporates proven multi-objective modeling techniques addressing a 

limitation of a recently proposed method incorporating unproven techniques. 

The methods this dissertation proposes assume deterministic input parameters. A 

possible future research topic is possible extensions of these methods to address 

stochastic input parameters or incomplete information assumptions. Another possible 

future research area is into methods to support both the non-constant marginal objective 

criteria issues researched in Chapter VI and the scheduling issues addressed in Chapter 

III and IV. 
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VIII. Appendix A. Measuring portfolio set diversity 

To evaluate the decision-space-diversity of a set of portfolios, this paper 

introduces a diversity index based on information entropy and the portfolio set’s selection 

covariance matrix and shows how the index addresses shortcomings held by previously 

proposed diversity indexes. This paper demonstrates the ability of the proposed index to 

quantify diversity considering the selection correlations within a portfolio set.  

8.1 Introduction 

The objectives of alternative generation techniques incorporated into a decision 

support system are to produce diverse solutions (e.g., more diversity between the 

suggested portfolios leads to more opportunities for a decision maker to recognize and 

ultimately address any un-modeled preferences or other technical interactions between 

the selected elements in a portfolio) and that these solutions are nearly-optimal from the 

perspective of the original optimization model. To evaluate the decision-space-diversity 

aspect of these solution sets, this paper reviews methods other fields have used to 

quantify the diversity of a set of things, identifies shortcomings in these methods, and 

proposes a new diversity index to account for the shortcomings identified. The paper 

demonstrates how the proposed diversity index addresses these shortcomings and then 

discusses some of the properties held by the proposed diversity index. 

8.2 Literature 

Numerous measurement indexes have been used to evaluate an alternative 

generation technique’s ability to overcome modeling inadequacies by quantifying the 

diversity of the generated solution sets. E Downey Brill et al. (1982) suggest three 
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measures to quantify a solution set’s ability to overcome modeling inadequacies: 1) sum 

of pairwise absolute differences in decision variables; 2) number of non-basic variables 

introduced; and 3) solution set range in mean-objectives. Researchers since have used  

variations of sum of pairwise absolute decision variable differences in the evaluation of 

MGA techniques (Baugh Jr., Caldwell, and Brill Jr. 1997; S.-Y. Chang, Brill, and 

Hopkins 1982; Loughlin et al. 2001; Shir et al. 2010; Zechman and Ranjithan 2007). Shir 

et al. (2010) use a sum of pairwise differences normalized to the diameter of the decision 

space to quantify the differences in a solution set. Ulrich et al. (2010) note a limitation of 

the pairwise difference measurements approach to quantify diversity. In continuous 

decision spaces, pairwise-difference optimizations often result in a set of points that 

overlap at the decision corners points and do not span across the decision space. After a 

discussion of approaches other fields have used to quantify diversity and the limitations 

of these and pairwise difference measures from the perspective of the lineup decision’s 

binary decision space, this paper revisits Ulrich et al.’s approach to quantify the diversity 

of a set of solutions. 

In other fields, researchers have proposed several different methods to quantify 

differences. Shannon (1948) introduces information entropy as a means to quantity 

uncertainty in the flow of information within a communication systems. Information 

entropy is a measurement of the amount of information needed to represent variability in 

information communications. Shannon defines discrete entropy as equation (52) where 𝑛 

represents the number of discrete events, 𝑥𝑖 represents the discrete event (i.e., the 

symbols that may appear over an information channel), 𝑃(𝑥𝑖) represents the probability 

of event 𝑥𝑖, and 𝑏 represents the information encoding units (such as 𝑏 = 2 for bits). 
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Entropy, as defined here, is the minimum expected amount of information needed to 

distinguish between the set of discrete events. If these discrete events happen in time 

independently, the total amount of expected information needed to encode the result of 𝑚 

number of events is 𝑚𝐻(𝑥). 

 
𝐻(𝑥) = − ∑𝑃(𝑥𝑖) log𝑏 𝑃(𝑥𝑖)

𝑛

𝑖=1

 (52) 

  (Jost, 2006) discusses and compares efforts to measure diversity from an ecology 

perspective. Jost advocates for “true diversities” of the equation (53) form, proposed by 

Hill (1973), where 𝑝𝑖 denotes the portion of species 𝑖 in the total animal population. Jost 

states that the diversity index should double when the number of species (or discrete 

event types) double assuming equal species proportions. Lucas et al. (2017) calls this the 

replication principle. Hill (1973) shows the relationship between Shannon Entropy (52) 

and the diversities of the form 𝐷 
𝑞  is lim

𝑞→1
𝐷 

𝑞 =  𝑏𝐻(𝑥).   

 

𝐷 = (∑𝑝𝑖
𝑞

𝑛

𝑖=1

)

1
1−𝑞

 
𝑞  (53) 

Lucas et al. (2017) surveys diversity indexes used in ecology for comparative 

analysis of molecular datasets. They list essential criteria for their index and find the 

diversity indexes of the form 𝐷 
𝑞  met all their criteria if the choice of q is done 

deliberately considering the trade-off weighting given to rare and abundant entities. 

Mcdonald & Dimmick (2003) present thoughts on the concept and measurement of 

diversity from a network radio programming perspective. They empirically show a few of 

the diversity indexes, including Shannon’s entropy, 𝐻(𝑥), are sensitive to the “richness” 

(number of unique types, denoted here as 𝑅) and the abundance proportion properties. 



103 

The true diversity measures as proposed by (M. O. Hill 1973) are not directly 

applicable given the lack of a clear distinction of a species in the lineup selection 

problem. For example, if each portfolio that is different is considered a “species” then all 

solution sets of the same cardinality would be equal in diversity (all solutions are 

different since at least one selection in a portfolio is different from another portfolio) no 

matter how many different selection elements were incorporated and the dispersion of the 

selection in the suggested portfolios.  A more relevant application of the true diversity 

measurements is possible if each selected project is considered as a species.  Let 𝑝𝑗 

represent the portion that the project 𝑗 was selected defined by the count of the number of 

times project 𝑗 was selected divided by the total number of project selections in the entire 

solution set. 

Pairwise difference, 𝐷 
𝑞 , or 𝐻(𝑥) diversity measurements (with the specification 

of 𝑝𝑖
  as defined above) fail to recognize correlations of selected elements between 

portfolios within a solution set. Consider the solution set as a 0-1 multi-variate matrix, 

denoted here as 𝑆 where the rows (indexed with 𝑖) represent the suggested portfolios, the 

columns (indexed with 𝑗) represent the selectable projects, and the values denote the 

selection (1) or non-selection (0). Table 8 shows solution set examples and some past 

methods to quantify diversity where 𝐷(𝑆) 
v  represents the total variance of a solution set, 

equation (54), 𝐷 
PWT (𝑆) represents the total number of pairwise differences in a solution 

set, equation (55). Equation (56) shows the relationship between the average pairwise 

differences denoted 𝐷 
PWA (𝑆), to total pairwise differences, and to the total variance. See 

section 8.5 for proof of this scaler relationship between the total variance to the average 

number of pairwise differences. 
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𝐷(𝑆) 

v = var(𝑆𝑛×𝑐) =
1

𝑛 − 1
 ∑∑(𝑀𝑖,𝑗 − 𝜇𝑗)

2
𝑛

𝑖=1

𝑐

𝑗=1

 (54) 

 
𝐷 

PWT (𝑆𝑛×𝑐) = ∑((∑𝑆𝑖,𝑗

𝑛

𝑖=1

)(∑1 − 𝑆𝑖,𝑗)

𝑛

𝑖=1

)

𝑐

𝑗=1

 (55) 

 
𝐷 

PWA (𝑆) =
𝐷 

PWT (𝑆)

(
𝑛
2
)

= 2 𝐷(𝑆) 
v  (56) 

 

TABLE 8. SOLUTION SET EXAMPLES WITH TRADITIONAL DISTANCE DIVERSITY 

MEASUREMENTS 

𝑆 𝐷 
PWT , 𝐷 

PWA  𝐷 
v  

# of Elements 
Incorporated that 

changed 

Portions or 
Relative 

Abundances (𝑝𝑗) 
𝐷 

𝑞=0  𝐷 
𝑞=1  𝐷 

𝑞=2  

[1,1,1,0,0,0,0,0,0,0,0,0], 
[1,1,0,1,0,0,0,0,0,0,0,0], 
[1,1,0,0,1,0,0,0,0,0,0,0], 
[1,1,0,0,0,1,0,0,0,0,0,0] 

12, 2 1 4 
4/12, 4/12, 
1/12, 1/12, 
1/12, 1/12 

6 4.76 4.0 

[1,1,0,0,1,0,0,0,0,0,0,0], 
[1,1,0,0,0,1,0,0,0,0,0,0], 
[0,0,1,1,1,0,0,0,0,0,0,0], 
[0,0,1,1,0,1,0,0,0,0,0,0] 

24, 4 2 6 2/12 (for all 6) 6 6.0 6.0 

[1,1,0,0,0,1,0,0,0,0,0,0], 
[1,0,1,0,1,0,0,0,0,0,0,0], 
[0,1,0,1,1,0,0,0,0,0,0,0], 
[0,0,1,1,0,1,0,0,0,0,0,0] 

24, 4 2 6 2/12 (for all 6) 6 6.0 6.0 

[1,1,1,0,0,0,0,0,0,0,0,0], 
[0,0,0,1,1,1,0,0,0,0,0,0], 
[0,0,0,0,0,0,1,1,1,0,0,0], 
[0,0,0,0,0,0,0,0,0,1,1,1] 

36, 6 3 12 1/12 (for all 12) 12 12.0 12.0 

 

Notice that these diversity indexes ignore the relationship of how the selection of 

one element in the portfolios varies compares to another element. For example, consider 

the second solution set in the table. The first four element selection variables (columns) 

vary together; either the first two elements are selected, and the next two elements are not 

selected or vice versus. These four decision variables could be reduced to one binary 

variable that is a composite of the original four variables. This reduction would 

drastically reduce the “richness” of the solution set. If the two first columns represents 
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elements from group-A and the next two columns represent elements from group-B then 

the second solution set suggests 2 portfolios with elements mostly from group-A and 2 

portfolios with elements mostly from group-B. Notice the third solution set would 

suggest 1 portfolio with elements mostly from group-A, 1 portfolio with elements mostly 

from group-B, and 2 mixed element portfolios. None of the diversity measures in Table 8 

recognize this reduced correlation between the second solution set and the third solution 

set which does not possess these strong element selection correlations.  

Ulrich et al. (2010) suggest a measure that can account for this. They incorporate 

a variation of a measure suggested by Solow & Polasky (1994) to quantify the diversity 

of a MGA method’s solution set.  Ulrich et al. provide a visual justification of the Solow-

Polasky measure for decision spaces with continuous decision variables. They compare 

the maximization of pairwise distances distributions vs Solow-Polasky based 

distributions. The points that maximize pairwise distance measures cluster on top of each 

other at the corner points of the space while the points that maximize the Solow-Polasky 

measure are relatively distributed evenly across the space. 

 Solow & Polasky (1994) recognize that many diversity indexes and applications 

ignore the “distance” between objects in a set. They provide the example “a set consisting 

of four species of ants is some sense less diverse than a set consisting of one species of 

ant, one species of elephant, and one species of fern.” They propose three requirements 

for a set diversity measure and called measures that met this criterion a “pure” diversity 

measure. Weitzman (1992) is the first to suggest a “pure” diversity measure and to show 

the measure met the diversity measurement criteria as formally presented by (Solow and 

Polasky 1994). A starting point for the Weitzman measure and the Solow-Polasky 
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measure are distance functions, denoted 𝑑(𝑖, 𝑗), that quantify the distance between two 

objects, denoted here as 𝑖 and 𝑗, that may belong to a set, denoted here as 𝑆. The 𝑑(𝑖, 𝑗) 

function by definition meets the conditions specified by equations (32), (33), and (34). 

The Weitzman measure, equation (60), uses recursion and employs a dynamic 

programming method for computation.  Solow & Polasky (1994) propose equation (35) 

that met this criteria for some formulations. A properly calibrated Solow-Polasky 

measure results in the value of 1 when each element of the set is significantly the same 

and up to a value of the cardinality of the set size 𝑛, the number of objects in the set, 

when every object in the set is completely unique. The Solow & Polasky measure 

requires the specification of 𝑓, a positive definite function, that acts as a “correlation” 

transformation of the distance computations (𝑓 results in 0 if no correlation, 1 if 

completely correlated). 

 𝑑(𝑖, 𝑗) ≥ 0 (57) 

 𝑑(𝑖, 𝑖) = 0 (58) 

 𝑑(𝑖, 𝑗) = 𝑑(𝑗, 𝑖) (59) 

 𝐷(𝑆) =  max
𝑠𝑖∈𝑆

( 𝐷(𝑆 − 𝑠𝑖) + 𝑑𝑆
 (𝑠𝑖, 𝑆 − 𝑠𝑖) 

W ) 
W  (60) 

 𝑑𝑆
 (𝑠0, 𝑆) =  min

𝑠𝑖∈𝑆
𝑑(𝑠0, 𝑠𝑖) (61) 

 𝐷(𝑆) = 𝑒′𝐹−1𝑒 
SP  (62) 

 

𝐹 =  [
𝑓(𝑑(𝑠1, 𝑠1)) ⋯ 𝑓(𝑑(𝑠1, 𝑠𝑛))

⋮ ⋱ ⋮
𝑓(𝑑(𝑠𝑛, 𝑠1)) ⋯ 𝑓(𝑑(𝑠𝑛, 𝑠𝑛))

] (63) 

 𝑒 = 𝑛 vector of 1s  (64) 

 𝑓(𝑑) =  𝑒−𝜃𝑑 (65) 

The “pure” diversity measurements demonstrate positive properties regarding the 

correlation of differences in the example solution sets, see Table 9. The pairwise count of 

differences (hamming distance) represents the 𝑑(𝑖, 𝑗) function for these measurements.  
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TABLE 9. SOLUTION SET EXAMPLES WITH "PURE" DIVERISTY MEASUREMENTS 

Solution Set (S) 𝑑(𝑖, 𝑗) Matrix 𝐷 
W  𝐷𝜃=0.5

SP  

[1,1,1,0,0,0,0,0,0,0,0,0], 
[1,1,0,1,0,0,0,0,0,0,0,0], 
[1,1,0,0,1,0,0,0,0,0,0,0], 
[1,1,0,0,0,1,0,0,0,0,0,0] 

[[ 0.  2.  2.  2.] 
[ 2.  0.  2.  2.] 
[ 2.  2.  0.  2.] 
[ 2.  2.  2.  0.]] 

6.0 1.90 

[1,1,0,0,1,0,0,0,0,0,0,0], 
[1,1,0,0,0,1,0,0,0,0,0,0], 
[0,0,1,1,1,0,0,0,0,0,0,0], 
[0,0,1,1,0,1,0,0,0,0,0,0] 

[[ 0.  2.  4.  6.] 
[ 2.  0.  6.  4.] 
[ 4.  6.  0.  2.] 
[ 6.  4.  2.  0.]] 

10.0 2.58 

[1,1,0,0,0,1,0,0,0,0,0,0], 
[1,0,1,0,1,0,0,0,0,0,0,0], 
[0,1,0,1,1,0,0,0,0,0,0,0], 
[0,0,1,1,0,1,0,0,0,0,0,0] 

[[ 0.  4.  4.  4.] 
[ 4.  0.  4.  4.] 
[ 4.  4.  0.  4.] 
[ 4.  4.  4.  0.]] 

12.0 2.84 

[1,1,1,0,0,0,0,0,0,0,0,0], 
[0,0,0,1,1,1,0,0,0,0,0,0], 
[0,0,0,0,0,0,1,1,1,0,0,0], 
[0,0,0,0,0,0,0,0,0,1,1,1] 

[[ 0.  6.  6.  6.] 
[ 6.  0.  6.  6.] 
[ 6.  6.  0.  6.] 
[ 6.  6.  6.  0.]] 

18.0 3.48 

 

A limitation of the Solow-Polasky measure is the requirement for the 

specification and calibration of an additional function to produce a relatable diversity 

index. If the 𝑓 function of the Solow-Polasky measure is underestimated any difference 

looks significant and every solution in a set would look totally different reducing our 

ability to quantify any small diversity differences between the solutions. A limitation of 

the Weitzman (dynamic programming computed) measure is that it fails to compute in a 

reasonable time for solution set sizes greater than 20. 

Section 8.3 introduces entropy weighted variance that: 1) is capable of 

quantifying solution set diversity in light of the element selection correlations between 

the portfolios using information entropy theory; 2) is computationally tractable; and 3) 

does not require the specification of an additional input from the user.  
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8.3 Diversity Measurement Methodology 

 To evaluate the diversity of the solution sets and to address the limitations of the 

diversity measures discussed above, this paper introduces a diversity index labeled 

entropy weighted variance that incorporates correlation insight from a solution set’s 

covariance matrix. The project pairwise selection covariance matrix, equation (66), is a 

summary of how each selectable element of a dataset varies from the portion of times it 

was selected (i.e., mean) in relation to the other selectable elements of the dataset. If two 

selectable elements vary from their mean in opposing (similar) directions, then the 

covariance between the two selectable elements is negative (positive).  Likewise, if two 

selectable elements vary from the mean randomly or out of sync with respect to one 

another the covariance tends to zero.  The covariance matrix is symmetric and positive 

semi-definite (Horn and Johnson 1985). 

 

cov(𝑆𝑛×𝑐) =

[
 
 
 
 
𝑠1,1

2 𝑠1,2
2

𝑠2,1
2 𝑠2,2

2

⋯
⋯

𝑠1,𝑐
2

𝑠2,𝑐
2

⋮ ⋮ ⋱ ⋮
𝑠𝑐,1

2 𝑠2,𝑐
2 ⋯ 𝑠𝑐,𝑐

2 ]
 
 
 
 

 (66) 

 
𝑠𝑖,𝑗

2 =
1

𝑛 − 1
∑(𝑆𝑘,𝑖 − 𝜇𝑖)(𝑆𝑘,𝑗 − 𝜇𝑗)

𝑛

𝑘=1

 (67) 

Principal component analysis uses eigenvectors of the covariance matrix to reduce 

the number of dimensions in the original dataset (Dillon and Goldstein 1982). 

Eigenvectors of the covariance matrix are the vectors, v, that satisfy equation (39). Each 

eigenvector corresponds to an eigenvalue, 𝜆. Since the covariance matrix is positive 

semi-define, the eigenvalues are non-negative. The eigenvectors of the covariance matrix 

represent a set of orthogonal directions that explain the variance within the original 

dataset. The direction of the eigenvectors account for how the dataset’s selectable 
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elements are included in portfolio solutions together.  The eigenvector corresponding to 

the largest eigenvalue represents the transformed elements that have the strongest 

correlation in the dataset.  

 cov(𝑆)𝒗 = 𝜆𝒗  (68) 

Principal component analysis looks to reduce a dataset dimensionality by rotating 

a multivariate dataset to a less-dimensional dataset while retaining the majority of the 

variance. The reduced, orthogonal dimensions (i.e., the components) represent hidden, 

underlying factors of the variance observed in the dataset. Given that the sum of the 

covariance matrix eigenvalues equals the sum of variance and that the eigenvalues 

represent the amount of variance explained by the corresponding eigenvector, the 

portions of the total variance explained by each underlying component can be 

determined. For example, if the first two largest eigenvalues sum to a value 80% of the 

total variance, the transformed components represent or retain 80% of the total variance 

in the dataset. The number of components (i.e., the number of non-zero eigenvalues) 

represents an alternative view of the “richness” (𝑅) of a dataset. This fact is used with 

information entropy concepts to quantify diversity considering the number of components 

that it takes to explain all the variance and the dispersion of the variance among the 

underlying components.  

Consider a decision maker reviewing a solution set in a DSS. In the act of the 

reviewing the solution set, the decision maker reviews the solution set for differences 

being communicated through the DSS. How much information does it take to 

communicate the source of these differences? The number of differences is quantified by 

the total number of pairwise differences (note the direct scale relationship to the total 
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variance measure). Considering every pairwise difference unit being linked to an 

underlying-hidden component, the portion of these units linked to an underlying 

component are represented by the normalized eigenvalues. Assuming the pairwise 

difference units are communicated or focused upon randomly and independently, the 

amount of information needed to communicate the specific source of all the variance 

units in a given dataset from the underlying component perspective is quantified using 

information entropy.  

Let 𝝀 represent the vector of eigenvalues of cov(𝑆). Note that the covariance 

matrix versus the correlation matrix is used to retain the relationship to the binary 

decision variable (selecting an element). Let 𝝀n represent the non-zero, normalized vector 

of eigenvalues (i.e., each eigenvalues is scaled by 1/ 𝐷 
v (𝑆)).  The total variance is 

analogous to the expected number of messages needed to explain one of the solution’s 

differences from the solution set mean. The value, denoted as variance entropy, equation 

(40), is analogous to the expected size of a message distinguishing the underlying source 

component of a difference. Multiplying both results in the expected amount of 

information needed to distinguish the sources of the differences from the dataset’s mean 

of a single lineup within a solution set (in bits given log2). Equation (41) is labeled 

entropy weighted variance. Table 10 shows the results for the solution set examples 

presented earlier. The value denoted as the entropy weighted total pairwise differences, 

equation (71), represents the total amount of information needed to explain all the 

differences’ sources in the dataset. This paper proposes the use of entropy weighted 

variance to compare the diversity of solutions sets of the same size. The paper proposes 
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the use of entropy weighted total pairwise differences for comparing solution sets of 

different sizes.  

TABLE 10. SOLUTION SET EXAMPLES WITH VARIANCE ENTROPY AND WEIGHTED 

VARIANCE MEASUREMENTS 

𝑆 𝐷 
v  

Non-zero 

Eigenvalues (𝝀) 

Variance 

Entropy (𝐻(𝝀)) 

Entropy 

weighted 

variance ( 𝐷 
I ) 

[1,1,1,0,0,0,0,0,0,0,0,0], 
[1,1,0,1,0,0,0,0,0,0,0,0], 
[1,1,0,0,1,0,0,0,0,0,0,0], 
[1,1,0,0,0,1,0,0,0,0,0,0] 

1 
0.333, 0.333, 

0.333 
1.585 1.585 

[1,1,0,0,1,0,0,0,0,0,0,0], 
[1,1,0,0,0,1,0,0,0,0,0,0], 
[0,0,1,1,1,0,0,0,0,0,0,0], 
[0,0,1,1,0,1,0,0,0,0,0,0] 

2 1.333, 0.667 0.918 1.837 

[1,1,0,0,0,1,0,0,0,0,0,0], 
[1,0,1,0,1,0,0,0,0,0,0,0], 
[0,1,0,1,1,0,0,0,0,0,0,0], 
[0,0,1,1,0,1,0,0,0,0,0,0] 

2 
0.667, 0.667 , 

0.667 
1.585 3.169 

[1,1,1,0,0,0,0,0,0,0,0,0], 
[0,0,0,1,1,1,0,0,0,0,0,0], 
[0,0,0,0,0,0,1,1,1,0,0,0], 
[0,0,0,0,0,0,0,0,0,1,1,1] 

3 
1.000, 1.000, 

1.000 
1.585 4.755 

 

Note the diversity index incorporates both the revised richness (number of 

components with non-zero eigenvalues), the evenness (entropy of the normalized 

eigenvalues), and the abundance of differences (the total variance of the solution set). 

Using just the variance entropy as a measure of diversity ignores the abundance of 

component differences. This is evident in the presented examples in Table 10. 

 

𝐻(𝝀) = −∑𝜆𝑖
n

|𝝀|

𝑖

log2(𝜆𝑖
n) (69) 

 

𝐷(𝑆) 
I = (∑𝜆𝑖

 

|𝝀|

𝑖

)𝐻(𝝀) =
𝐷 

PWA (𝑆)

2
𝐻(𝝀) (70) 
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𝐷(𝑆) 
TI = 2(

𝑛
2
)(∑𝜆𝑖

 

|𝝀|

𝑖

)𝐻(𝝀) =  𝐷(𝑆) 
PWT  𝐻(𝝀) (71) 

 

The entropy weighted variance possesses a few desirable properties compared to 

the “pure” diversity indexes. Unlike the Solow-Polasky measure, entropy weighted 

variance does not require the specification and calibration of an additional function to 

produce a relatable diversity index. The experimentation datasets did not encounter any 

computation issues computing the entropy weighted variance unlike the Weitzman 

dynamic programming-based measure. Note that the entropy weighted variance does 

retain the limitations in regard to measurement of diversity in continuous based decision 

spaces as visually presented by (Ulrich, Bader, and Thiele 2010). This limits the 

applicability in using entropy weighted variance to quantify diversity of a set of things 

based on non-binary attributes. 

8.4 Conclusions 

This paper provides a foundation for a diversity index from information theory 

and shows that, without additional calibration as compared to the Solaw-Polasky 

measure, the entropy weighted variance measure overcomes the failure of the direct 

pairwise difference based measures to account for correlation in solution sets diversity 

measurements. 

8.5 Proofs and discussion 

Proof that the average number of pair-wise differences (or hamming distance) per binary 

multi-variate dataset equals 2 𝐷 
v (𝑥).  
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First, it is shown this relationship applies for a single dimension (column) of the 

multi-variate dataset. Let 𝑛1(𝑛0) represent the count of ones (zeros) in the given column 

and 𝜇 represent the average value. Note that when 𝑛1 = 0 or 𝑛0 = 0 both the variance 

and pair-wise difference are 0 for any n. To consider the cases when 𝑛1 > 0 and 𝑛0 > 0, 

the equations are shown to be equal (see below).  
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To complete the proof for a multi-variate dataset, note this applies for each dimension; 

the sum of equal values results in total values that are equal.  
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Upper entropy weighted variance bound for a fixed number of selectable elements 

portfolio problem 

Let n represent the number of portfolios (rows) in the dataset.  Let k be a fixed, 

exact number of elements required to be in each portfolio. Then the maximum diversity 

index value is 

𝑘 (− ∑ (
1

𝑛 − 1
log2

1

𝑛 − 1
)

𝑛−1

1

) 

The proof above showed that the total variance was equal to 0.5 of the average 

pair-wise difference. Thus, maximizing the average pair-wise difference then maximizes 

the total variance. Clearly, the maximum average pair-wise difference is 2𝑘, (no elements 

overlap from any portfolio in the set). This results in an maximize variance of 𝑘. Next, 

note that the maximum number of components possible in a multi-variate dataset is the 

number of portfolios in the dataset minus 1. Thus, 𝑛 − 1 components that evenly explain 

variance the total variance provides the maximum variance entropy.  

 

Lower entropy weighted variance bound discussion for a fixed number of selectable 

elements portfolio problem 

An obvious lower bound for the entropy weighted variance for all multi-variate 

binary datasets is zero. The total variance is always greater than or equal to 0; the 

variance entropy is also greater than or equal to 0. If all the variance is explainable by 1 

underlying component, notice that the variance entropy is zero. Note by restricting the 

alternative generation technique, duplicate portfolios are not permitted in a solution set. 
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To minimize the total variance, the average number of pair-wise differences can 

be minimized. Let 𝑛 represent the number of portfolios (rows) in the dataset.  The 

minimum number of average pair-wise differences for a fixed size portfolio is 2. Thus, 

the minimum variance is 1 given the variance relationship proved above. The minimum 

number of pair-wise differences for an unconstrained size portfolio is 1 and the minimum 

variance is thus 0.5. To distinguish between 𝑛 different portfolio from the decision space 

perspective, at least celing(log2(𝑛)) components (i.e., number of non-zero eigenvalues) 

are required. This is the minimum richness, 𝑅, of a 𝑛 sized prescription set. 
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