35,235 research outputs found

    Stratified Negation in Limit Datalog Programs

    Full text link
    There has recently been an increasing interest in declarative data analysis, where analytic tasks are specified using a logical language, and their implementation and optimisation are delegated to a general-purpose query engine. Existing declarative languages for data analysis can be formalised as variants of logic programming equipped with arithmetic function symbols and/or aggregation, and are typically undecidable. In prior work, the language of limit programs\mathit{limit\ programs} was proposed, which is sufficiently powerful to capture many analysis tasks and has decidable entailment problem. Rules in this language, however, do not allow for negation. In this paper, we study an extension of limit programs with stratified negation-as-failure. We show that the additional expressive power makes reasoning computationally more demanding, and provide tight data complexity bounds. We also identify a fragment with tractable data complexity and sufficient expressivity to capture many relevant tasks.Comment: 14 pages; full version of a paper accepted at IJCAI-1

    Specification-Driven Predictive Business Process Monitoring

    Full text link
    Predictive analysis in business process monitoring aims at forecasting the future information of a running business process. The prediction is typically made based on the model extracted from historical process execution logs (event logs). In practice, different business domains might require different kinds of predictions. Hence, it is important to have a means for properly specifying the desired prediction tasks, and a mechanism to deal with these various prediction tasks. Although there have been many studies in this area, they mostly focus on a specific prediction task. This work introduces a language for specifying the desired prediction tasks, and this language allows us to express various kinds of prediction tasks. This work also presents a mechanism for automatically creating the corresponding prediction model based on the given specification. Differently from previous studies, instead of focusing on a particular prediction task, we present an approach to deal with various prediction tasks based on the given specification of the desired prediction tasks. We also provide an implementation of the approach which is used to conduct experiments using real-life event logs.Comment: This article significantly extends the previous work in https://doi.org/10.1007/978-3-319-91704-7_7 which has a technical report in arXiv:1804.00617. This article and the previous work have a coauthor in commo

    On the Expressiveness of LARA: A Unified Language for Linear and Relational Algebra

    Get PDF
    We study the expressive power of the Lara language - a recently proposed unified model for expressing relational and linear algebra operations - both in terms of traditional database query languages and some analytic tasks often performed in machine learning pipelines. We start by showing Lara to be expressive complete with respect to first-order logic with aggregation. Since Lara is parameterized by a set of user-defined functions which allow to transform values in tables, the exact expressive power of the language depends on how these functions are defined. We distinguish two main cases depending on the level of genericity queries are enforced to satisfy. Under strong genericity assumptions the language cannot express matrix convolution, a very important operation in current machine learning operations. This language is also local, and thus cannot express operations such as matrix inverse that exhibit a recursive behavior. For expressing convolution, one can relax the genericity requirement by adding an underlying linear order on the domain. This, however, destroys locality and turns the expressive power of the language much more difficult to understand. In particular, although under complexity assumptions the resulting language can still not express matrix inverse, a proof of this fact without such assumptions seems challenging to obtain

    Architecture for Analysis of Streaming Data

    Full text link
    While several attempts have been made to construct a scalable and flexible architecture for analysis of streaming data, no general model to tackle this task exists. Thus, our goal is to build a scalable and maintainable architecture for performing analytics on streaming data. To reach this goal, we introduce a 7-layered architecture consisting of microservices and publish-subscribe software. Our study shows that this architecture yields a good balance between scalability and maintainability due to high cohesion and low coupling of the solution, as well as asynchronous communication between the layers. This architecture can help practitioners to improve their analytic solutions. It is also of interest to academics, as it is a building block for a general architecture for processing streaming data

    Decision support model for the selection of asphalt wearing courses in highly trafficked roads

    Get PDF
    The suitable choice of the materials forming the wearing course of highly trafficked roads is a delicate task because of their direct interaction with vehicles. Furthermore, modern roads must be planned according to sustainable development goals, which is complex because some of these might be in conflict. Under this premise, this paper develops a multi-criteria decision support model based on the analytic hierarchy process and the technique for order of preference by similarity to ideal solution to facilitate the selection of wearing courses in European countries. Variables were modelled using either fuzzy logic or Monte Carlo methods, depending on their nature. The views of a panel of experts on the problem were collected and processed using the generalized reduced gradient algorithm and a distance-based aggregation approach. The results showed a clear preponderance by stone mastic asphalt over the remaining alternatives in different scenarios evaluated through sensitivity analysis. The research leading to these results was framed in the European FP7 Project DURABROADS (No. 605404).The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 605404

    Preassociative aggregation functions

    Get PDF
    The classical property of associativity is very often considered in aggregation function theory and fuzzy logic. In this paper we provide axiomatizations of various classes of preassociative functions, where preassociativity is a generalization of associativity recently introduced by the authors. These axiomatizations are based on existing characterizations of some noteworthy classes of associative operations, such as the class of Acz\'elian semigroups and the class of t-norms.Comment: arXiv admin note: text overlap with arXiv:1309.730
    • …
    corecore