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Abstract. We investigate the associativity property for varying-arity
aggregation functions and introduce the more general property of pre-
associativity, a natural extension of associativity. We discuss this new
property and describe certain classes of preassociative functions.
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1 Introduction

Let X,Y be nonempty sets (e.g., nontrivial real intervals) and let F : X∗ → Y be
a varying-arity function, where X∗ = ∪n>0X

n. The n-th component Fn of F is
the restriction of F to Xn, i.e., Fn = F |Xn . We convey that X0 = {ε} and that
F0(ε) = ε, where ε denotes the 0-tuple. For tuples x = (x1, . . . , xn) and y =
(y1, . . . , ym) in X∗, the notation F (x,y) stands for F (x1, . . . , xn, y1, . . . , ym),
and similarly for more than two tuples. The length |x| of a tuple x ∈ X∗ is a
nonnegative integer defined in the usual way: we have |x| = n if and only if
x ∈ Xn.

In this note we are first interested in the associativity property for varying-
arity functions. Actually, there are different equivalent definitions of this prop-
erty (see, e.g., [6, 7, 11,13,15]). Here we use the one introduced in [15, p. 24].

Definition 1 ( [15]). A function F : X∗ → X is said to be associative if for
every x,y, z ∈ X∗ we have F (x,y, z) = F (x, F (y), z).

As an example, the real-valued function F : IR∗ → IR defined by Fn(x) =∑n
i=1 xi is associative.
Associative varying-arity functions are closely related to associative binary

functions G : X2 → X, which are defined as the solutions of the functional
equation

G(G(x, y), z) = G(x,G(y, z)), x, y, z ∈ X.

In fact, we show (Corollary 6) that a binary function G : X2 → X is associative
if and only if there exists an associative function F : X∗ → X such that G = F2.

Based on a recent investigation of associativity (see [7, 8]), we show that
an associative function F : X∗ → X is completely determined by its first two
components F1 and F2. We also provide necessary and sufficient conditions on the
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components F1 and F2 for a function F : X∗ → X to be associative (Theorem 7).
These results are gathered in Section 3.

The main aim of this note is to introduce and investigate the following gen-
eralization of associativity, called preassociativity.

Definition 2. We say that a function F : X∗ → Y is preassociative if for every
x,y,y′, z ∈ X∗ we have

F (y) = F (y′) ⇒ F (x,y, z) = F (x,y′, z).

For instance, any real-valued function F : IR∗ → IR defined as Fn(x) =
f(
∑n

i=1 xi) for every n ∈ IN, where f : IR → IR is a continuous and strictly
increasing function, is preassociative.

It is immediate to see that any associative function F : X∗ → X necessarily
satisfies the equation F1◦F = F (take x = ε and z = ε in Definition 1). Actually,
we show (Proposition 8) that a function F : X∗ → X is associative if and only
if it is preassociative and satisfies F1 ◦ F = F .

It is noteworthy that, contrary to associativity, preassociativity does not
involve any composition of functions and hence allows us to consider a codomain
Y that may differ from the domainX. For instance, the length function F : X∗ →
IR defined as F (x) = |x| is preassociative.

In this note we mainly focus on those preassociative functions F : X∗ → Y
for which F1 and F have the same range. (When Y = X, the latter condition is
an immediate consequence of the condition F1 ◦F = F and hence those preasso-
ciative functions include the associative ones). Similarly to associative functions,
we show that those functions are completely determined by their first two com-
ponents (Proposition 12) and we provide necessary and sufficient conditions on
the components F1 and F2 for a function F : X∗ → Y to be preassociative and
have the same range as F1 (Theorem 15). We also give a description of these
functions as compositions of the form F = f ◦H, where H : X∗ → X is associa-
tive and f : ran(H)→ Y is one-to-one (Theorem 13). This is done in Section 4.
Finally, in Section 5 we focus on some noteworthy axiomatized classes of asso-
ciative functions and show how they can be extended to classes of preassociative
functions.

The terminology used throughout this paper is the following. We denote by
IN the set {1, 2, 3, . . .} of strictly positive integers. The domain and range of any
function f are denoted by dom(f) and ran(f), respectively. The identity function
is the function id: X → X defined by id(x) = x.

The proofs of our results have intentionally been omitted due to space limi-
tation but will be available in an extended version of this note.

2 Preliminaries

Recall that a function F : Xn → X is said to be idempotent (see, e.g., [11]) if
F (x, . . . , x) = x for every x ∈ X. A function F : X∗ → X is said to be idempotent
if Fn is idempotent for every n ∈ IN.
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We now introduce the following definitions. We say that F : X∗ → X is
unarily idempotent if F1(x) = x for every x ∈ X, i.e., F1 = id. We say that
F : X∗ → X is unarily range-idempotent if F (x) = x for every x ∈ ran(F ),
or equivalently, F1 ◦ F = F . We say that F : X∗ → Y is unarily quasi-range-
idempotent if ran(F1) = ran(F ). Since this property is a consequence of the
condition F1 ◦ F = F , we see that unarily range-idempotent functions are nec-
essarily unarily quasi-range-idempotent.

We now show that any unarily quasi-range-idempotent function F : X∗ → Y
can always be factorized as F = F1 ◦H, where H : X∗ → X is a unarily range-
idempotent function. First recall that a function g is a quasi-inverse [17, Sect. 2.1]
of a function f if

f ◦ g|ran(f) = id|ran(f),
ran(g|ran(f)) = ran(g).

For any function f , denote by Q(f) the set of its quasi-inverses. This set is
nonempty whenever we assume the Axiom of Choice (AC), which is actually just
another form of the statement “every function has a quasi-inverse.”

Proposition 3. Assume AC and let F : X∗ → Y be a unarily quasi-range-
idempotent function. For any g ∈ Q(F1), the function H : X∗ → X defined as
H = g ◦ F is a unarily range-idempotent solution of the equation F = F1 ◦H.

3 Associative Functions

As observed in [15, p. 25] (see also [5, p. 15] and [11, p. 33]), associative functions
F : X∗ → X are completely determined by their unary and binary components.
Indeed, by associativity we have

Fn(x1, . . . , xn) = F2(Fn−1(x1, . . . , xn−1), xn), n > 3, (1)

or equivalently,

Fn(x1, . . . , xn) = F2(F2(. . . F2(F2(x1, x2), x3) . . .), xn), n > 3. (2)

We state this immediate result as follows.

Proposition 4. Let F : X∗ → X and G : X∗ → X be two associative functions
such that F1 = G1 and F2 = G2. Then F = G.

A natural and important question now arises: Find necessary and sufficient
conditions on the components F1 and F2 for a function F : X∗ → X to be
associative. To answer this question we first yield the following characterization
of associative functions.

Theorem 5. A function F : X∗ → X is associative if and only if

(i) F1 ◦ F1 = F1 and F1 ◦ F2 = F2,
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(ii) F2(x1, x2) = F2(F1(x1), x2) = F2(x1, F1(x2)),
(iii) F2 is associative, and
(iv) condition (1) or (2) holds.

Corollary 6. A binary function F : X2 → X is associative if and only if there
exists an associative function G : X∗ → X such that F = G2.

Theorem 5 enables us to answer the question raised above. We state the
result in the following theorem.

Theorem 7. Let F1 : X → X and F2 : X2 → X be two functions. Then there
exists an associative function G : X∗ → X such that G1 = F1 and G2 = F2

if and only if conditions (i)–(iii) of Theorem 5 hold. Such a function G is then
uniquely determined by Gn(x1, . . . , xn) = G2(Gn−1(x1, . . . , xn−1), xn) for n > 3.

Thus, two functions F1 : X → X and F2 : X2 → X are the unary and binary
components of an associative function F : X∗ → X if and only if these functions
satisfy conditions (i)–(iii) of Theorem 5. In the case when only a binary func-
tion F2 is given, any unary function F1 satisfying conditions (i) and (ii) can be
considered, for instance the identity function. Note that it may happen that the
identity function is the sole possibility for F1, for instance when we consider the
binary function F2 : IR2 → IR defined by F2(x1, x2) = x1+x2. However, there are
examples where F1 may differ from the identity function. For instance, for any
real number p > 1, the p-norm F : IR∗ → IR defined by Fn(x) = (

∑n
i=1 |xi|p)1/p

is associative but not unarily idempotent (here |x| denotes the absolute value of
x). Of course an associative function F that is not unarily idempotent can be
made unarily idempotent simply by setting F1 = id. By Theorem 5 the resulting
function is still associative.

4 Preassociative Functions

In this section we investigate the preassociativity property (see Definition 2) and
describe certain classes of preassociative functions.

As mentioned in the introduction, any associative function F : X∗ → X is
preassociative. More precisely, we have the following result.

Proposition 8. A function F : X∗ → X is associative if and only if it is pre-
associative and unarily range-idempotent (i.e., F1 ◦ F = F ).

Remark 9. The function F : IR∗ → IR defined as Fn(x) = 2
∑n

i=1 xi is an in-
stance of preassociative function which is not associative.

Let us now see how new preassociative functions can be generated from given
preassociative functions by left and right compositions with unary maps.

Proposition 10 (Right composition). If F : X∗ → Y is preassociative then,
for every function g : X → X, the function H : X∗ → Y , defined as Hn =
Fn ◦ (g, . . . , g) for every n ∈ IN, is preassociative. For instance, the squared
distance function F : IR∗ → IR defined as Fn(x) =

∑n
i=1 x

2
i is preassociative.



Preassociative Aggregation Functions 5

Proposition 11 (Left composition). Let F : X∗ → Y be a preassociative
function and let g : Y → Y be a function. If g|ran(F ) is constant or one-to-
one, then the function H : X∗ → Y defined as H = g ◦ F is preassociative.
For instance, the function F : IR∗ → IR defined as Fn(x) = exp(

∑n
i=1 xi) is

preassociative.

We now focus on those preassociative functions which are unarily quasi-
range-idempotent, that is, such that ran(F1) = ran(F ). As we will now show,
this special class of functions has interesting properties. First of all, just as for as-
sociative functions, preassociative and unarily quasi-range-idempotent functions
are completely determined by their unary and binary components.

Proposition 12. Let F : X∗ → Y and G : X∗ → Y be preassociative and unar-
ily quasi-range-idempotent functions such that F1 = G1 and F2 = G2, then
F = G.

We now give a description of the preassociative and unarily quasi-range-idem-
potent functions as compositions of associative functions with unary maps.

Theorem 13. Assume AC and let F : X∗ → Y be a function. The following
assertions are equivalent.

(i) F is preassociative and unarily quasi-range-idempotent.
(ii) There exists an associative function H : X∗ → X and a one-to-one function

f : ran(H)→ Y such that F = f ◦H. In this case we have F = F1 ◦H, f =
F1|ran(H), f

−1 ∈ Q(F1), and we may choose H = g ◦ F for any g ∈ Q(F1).

Remark 14. If condition (ii) of Theorem 13 holds, then by (1) we see that F can
be computed recursively by

Fn(x1, . . . , xn) = F2((f−1 ◦ Fn−1)(x1, . . . , xn−1), xn), n > 3.

A similar observation was already made in a more particular setting for the
so-called quasi-associative functions, see [18].

We now provide necessary and sufficient conditions on the unary and binary
components for a function F : X∗ → X to be preassociative and unarily quasi-
range-idempotent. We have the following two results.

Theorem 15. Assume AC. A function F : X∗ → Y is preassociative and unar-
ily quasi-range-idempotent if and only if ran(F2) ⊆ ran(F1) and there exists
g ∈ Q(F1) such that

(i) H2(x1, x2) = H2(H1(x1), x2) = H2(x1, H1(x2)),
(ii) H2 is associative, and

(iii) the following holds

Fn(x1, . . . , xn) = F2((g ◦ Fn−1)(x1, . . . , xn−1), xn), n > 3,

or equivalently,

Fn(x1, . . . , xn) = F2(H2(. . . H2(H2(x1, x2), x3) . . .), xn), n > 3,
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where H1 = g ◦ F1 and H2 = g ◦ F2.

Theorem 16. Assume AC and let F1 : X → Y and F2 : X2 → Y be two
functions. Then there exists a preassociative and unarily quasi-range-idempotent
function G : X∗ → Y such that G1 = F1 and G2 = F2 if and only if ran(F2) ⊆
ran(F1) and there exists g ∈ Q(F1) such that conditions (i) and (ii) of Theo-
rem 15 hold, where H1 = g ◦ F1 and H2 = g ◦ F2. Such a function G is then
uniquely determined by Gn(x1, . . . , xn) = G2((g ◦ Gn−1)(x1, . . . , xn−1), xn) for
n > 3.

5 Axiomatizations of some Function Classes

In this section we derive axiomatizations of classes of preassociative functions
from certain existing axiomatizations of classes of associative functions. We re-
strict ourselves to a small number of classes. Further axiomatizations can be
derived from known classes of associative functions.

5.1 Preassociative Functions Built from Aczélian Semigroups

Let us recall an axiomatization of the Aczélian semigroups due to Aczél [1] (see
also [2, 8, 9]).

Proposition 17 ( [1]). Let I be a nontrivial real interval (i.e., nonempty and
not a singleton). A function H : I2 → I is continuous, one-to-one in each ar-
gument, and associative if and only if there exists a continuous and strictly
monotonic function ϕ : I → J such that

H(xy) = ϕ−1 (ϕ(x) + ϕ(y)) ,

where J is a real interval of one of the forms ]−∞, b[, ]−∞, b], ]a,∞[, [a,∞[ or
IR = ]−∞,∞[ (b 6 0 6 a). For such a function H, the interval I is necessarily
open at least on one end. Moreover, ϕ can be chosen to be strictly increasing.

Proposition 17 can be extended to preassociative functions as follows.

Theorem 18. Let I be a nontrivial real interval (i.e., nonempty and not a
singleton). A function F : I∗ → IR is preassociative and unarily quasi-range-
idempotent, and F1 and F2 are continuous and one-to-one in each argument if
and only if there exist continuous and strictly monotonic functions ϕ : I → J
and ψ : J → IR such that

Fn(x) = ψ(ϕ(x1) + · · ·+ ϕ(xn)), n ∈ IN,

where J is a real interval of one of the forms ]−∞, b[, ]−∞, b], ]a,∞[, [a,∞[ or
IR = ]−∞,∞[ (b 6 0 6 a). For such a function F , we have ψ = F1 ◦ ϕ−1 and I
is necessarily open at least on one end. Moreover, ϕ can be chosen to be strictly
increasing.
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5.2 Preassociative Functions Built from t-norms and Related
Functions

Recall that a t-norm (resp. t-conorm) is a function H : [0, 1]2 → [0, 1] which is
nondecreasing in each argument, symmetric, associative, and such thatH(1, x) =
x (resp. H(0, x) = x) for every x ∈ [0, 1]. Also, a uninorm is a function
H : [0, 1]2 → [0, 1] which is nondecreasing in each argument, symmetric, asso-
ciative, and such that there exists e ∈ ]0, 1[ for which H(e, x) = x for every
x ∈ [0, 1]. For general background see, e.g., [3, 10–13,17].

T-norms can be extended to preassociative functions as follows.

Theorem 19. Let F : [0, 1]∗ → IR be a function such that F1 is strictly increas-
ing (resp. strictly decreasing). Then F is preassociative and unarily quasi-range-
idempotent, and F2 is symmetric, nondecreasing (resp. nonincreasing) in each
argument, and satisfies F2(1, x) = F1(x) for every x ∈ [0, 1] if and only if there
exists a strictly increasing (resp. strictly decreasing) function f : [0, 1]→ IR and
a t-norm H : [0, 1]∗ → [0, 1] such that F = f ◦H. In this case we have f = F1.

If we replace the condition “F2(1, x) = F1(x)” in Theorem 19 with “F2(0, x) =
F1(x)” (resp. “F2(e, x) = F1(x) for some e ∈ ]0, 1[”), then the result still holds
provided that the t-norm is replaced with a t-conorm (resp. a uninorm).

5.3 Preassociative Functions Built from Ling’s Axiomatizations

Recall an axiomatization due to Ling [14]; see also [4, 16].

Proposition 20 ( [14]). Let [a, b] be a real closed interval, with a < b. A
function H : [a, b]2 → [a, b] is continuous, nondecreasing in each argument, as-
sociative, and such that H(b, x) = x for all x ∈ [a, b] and H(x, x) < x for all
x ∈ ]a, b[, if and only if there exists a continuous and strictly decreasing function
ϕ : [a, b]→ [0,∞[, with ϕ(b) = 0, such that

H(xy) = ϕ−1(min{ϕ(x) + ϕ(y), ϕ(a)}).

Proposition 20 can be extended to preassociative functions as follows.

Theorem 21. Let [a, b] be a real closed interval and let F : [a, b]∗ → IR be a
function such that F1 is strictly increasing (resp. strictly decreasing). Then F
is unarily quasi-range idempotent and preassociative, and F2 is continuous and
nondecreasing (resp. nonincreasing) in each argument, F2(b, x) = F1(x) for every
x ∈ [a, b], F2(x, x) < F1(x) (resp. F2(x, x) > F1(x)) for every x ∈ ]a, b[ if
and only if there exists a continuous and strictly decreasing function ϕ : [a, b]→
[0,∞[, with ϕ(b) = 0, and a strictly decreasing (resp. strictly increasing) function
ψ : [0, ϕ(a)]→ IR such that

Fn(x) = ψ(min{ϕ(x1) + · · ·+ ϕ(xn), ϕ(a)}).

For such a function, we have ψ = F1 ◦ ϕ−1.
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