19,114 research outputs found

    The Modified Direct Method: an Approach for Smoothing Planar and Surface Meshes

    Get PDF
    The Modified Direct Method (MDM) is an iterative mesh smoothing method for smoothing planar and surface meshes, which is developed from the non-iterative smoothing method originated by Balendran [1]. When smooth planar meshes, the performance of the MDM is effectively identical to that of Laplacian smoothing, for triangular and quadrilateral meshes; however, the MDM outperforms Laplacian smoothing for tri-quad meshes. When smooth surface meshes, for trian-gular, quadrilateral and quad-dominant mixed meshes, the mean quality(MQ) of all mesh elements always increases and the mean square error (MSE) decreases during smoothing; For tri-dominant mixed mesh, the quality of triangles always descends while that of quads ascends. Test examples show that the MDM is convergent for both planar and surface triangular, quadrilateral and tri-quad meshes.Comment: 18 page

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher

    A multilevel approach for obtaining locally optimal finite element meshes

    Get PDF
    In this paper we consider the adaptive finite element solution of a general class of variational problems using a combination of node insertion, node movement and edge swapping. The adaptive strategy that is proposed is based upon the construction of a hierarchy of locally optimal meshes starting with a coarse grid for which the location and connectivity of the nodes is optimized. This grid is then locally refined and the new mesh is optimized in the same manner. Results presented indicate that this approach is able to produce better meshes than those possible by more conventional adaptive strategies and in a relatively efficient manner

    Parallel implementation of an optimal two level additive Schwarz preconditioner for the 3-D finite element solution of elliptic partial differential equations

    Get PDF
    This paper presents a description of the extension and parallel implementation of a new two level additive Schwarz (AS) preconditioner for the solution of 3-D elliptic partial differential equations (PDEs). This preconditioner, introduced in Bank et al. (SIAM J. Sci. Comput. 2002; 23: 1818), is based upon the use of a novel form of overlap between the subdomains which makes use of a hierarchy of meshes: with just a single layer of overlapping elements at each level of the hierarchy. The generalization considered here is based upon the restricted AS approach reported in (SIAM J. Sci. Comput. 1999; 21: 792) and the parallel implementation is an extension of work in two dimensions (Concurrency Comput. Practice Experience 2001; 13: 327)

    Tetrahedral mesh improvement using moving mesh smoothing, lazy searching flips, and RBF surface reconstruction

    Get PDF
    Given a tetrahedral mesh and objective functionals measuring the mesh quality which take into account the shape, size, and orientation of the mesh elements, our aim is to improve the mesh quality as much as possible. In this paper, we combine the moving mesh smoothing, based on the integration of an ordinary differential equation coming from a given functional, with the lazy flip technique, a reversible edge removal algorithm to modify the mesh connectivity. Moreover, we utilize radial basis function (RBF) surface reconstruction to improve tetrahedral meshes with curved boundary surfaces. Numerical tests show that the combination of these techniques into a mesh improvement framework achieves results which are comparable and even better than the previously reported ones.Comment: Revised and improved versio

    Locally optimal unstructured finite element meshes in 3 dimensions

    Get PDF
    This paper investigates the adaptive finite element solution of a general class of variational problems in three dimensions using a combination of node movement, edge swapping, face swapping and node insertion. The adaptive strategy proposed is a generalization of previous work in two dimensions and is based upon the construction of a hierarchy of locally optimal meshes. Results presented, both for a single equation and a system of coupled equations, suggest that this approach is able to produce better meshes of tetrahedra than those obtained by more conventional adaptive strategies and in a relatively efficient manner
    • …
    corecore