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Abstract

Given a tetrahedral mesh and objective functionals measuring the mesh quality which take into
account the shape, size, and orientation of the mesh elements, our aim is to improve the mesh
quality as much as possible. In this paper, we combine the moving mesh smoothing, based on
the integration of an ordinary differential equation coming from a given functional, with the lazy
flip technique, a reversible edge removal algorithm to modify the mesh connectivity. Moreover,
we utilize radial basis function (RBF) surface reconstruction to improve tetrahedral meshes with
curved boundary surfaces. Numerical tests show that the combination of these techniques into a
mesh improvement framework achieves results which are comparable and even better than the
previously reported ones.

1 Introduction

The key mesh improvement operations considered in this work are smoothing, which moves the mesh
vertices, flipping, which changes the mesh topology without moving the mesh vertices, and a smooth
boundary reconstruction. Previous work shows that the combination of smoothing and flipping achieves
better results than if applied individually [16, 31]. In this paper, we combine the recently developed
flipping and smoothing methods into one mesh improvement scheme and apply them in combination
with a smooth boundary reconstruction via radial basis functions.

Mesh smoothing improves the mesh quality by improving vertex locations, typically through Laplacian
smoothing or some optimization-based algorithm. Most commonly used mesh smoothing methods are
Laplacian smoothing and its variants [11, 34], where a vertex is moved to the geometric center of its
neighboring vertices. While economic, easy to implement, and often effective, Laplacian smoothing
guarantees neither a mesh quality improvement nor mesh validity. Alternatives are optimization-based
methods that are effective with respect to certain mesh quality measures such as the ratio of the
area to the sum of the squared edge lengths [1], the ratio of the volume to a power of the sum of the
squared face areas [36], the condition number of the Jacobian matrix of the affine mapping between
the reference element and physical elements [15], or various other measures [16, 33, 32, 2]. Most
of the optimization-based methods are local and sequential, combining Gauss-Seidel-type iterations
with location optimization problems over each patch. There is also a parallel algorithm that solves a
sequence of independent subproblems [14].

In our scheme, we employ the moving mesh PDE (MMPDE) method, defined as the gradient flow
equation of a meshing functional (an objective functional in the context of optimization) to move the
mesh continuously in time. Such a functional is typically based on error estimation or physical and
geometric considerations. Here, we consider a functional based on the equidistribution and alignment
conditions [21] and employ the recently developed direct geometric discretization [23] of the underlying
meshing functional on simplicial meshes. Compared to the aforementioned mesh smoothing methods,
the considered method has several advantages: it can be easily parallelized, it is based on a continuous
functional for which the existence of minimizers is known, the functional controlling the mesh shape
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and size has a clear geometric meaning, and the nodal mesh velocities are given by a simple analytical
matrix form. Moreover, the smoothed mesh will stay valid if it was valid initially [24].

Flipping is the most efficient way to locally improve the mesh quality and it has been extensively
addressed in the literature [30, 16, 17, 31]. In the simplest case, the basic flip operations, such as
2-to-3, 3-to-2, and 4-to-4 flips, are applied as long as the mesh quality can be improved. The more
effective way is to combine several basic flip operations into one edge removal operation, which extends
the 3-to-2 and 4-to-4 flips. This operation removes the common edge of n ≥ 3 adjacent tetrahedra by
replacing them with m = 2n− 4 new tetrahedra (the so-called n-to-m flip). There are at most Cn−2

possible variants to remove an edge by a n-to-m flip, where Cn = (2n)!
(n+1)!n!

is the Catalan number. If
n is small (e.g., n < 7), one can enumerate all possible cases, compute the mesh quality for each
case, and then pick the optimal one. Another way is to use dynamic programming to find the optimal
configuration. However, the number of cases increases exponentially and finding the optimal solution
with brute force is very time-consuming.

In this paper, we propose the so-called lazy searching flips. The key idea is to automatically explore
sequences of flips to remove a given edge in the mesh. If a flip sequence leads to a configuration which
does not improve the mesh quality, the algorithm reverses this sequence and explores another one
(see Section 3 and Figs 2a to 2c). Once an improvement is found, the algorithms stops the search and
returns without exploring the remaining possibilities.

When considering more arbitrary meshes (which may not be piecewise planar), we need to make sure
that new nodes are added in a consistent way. To achieve this we use RBF surface reconstruction
as introduced in [3]. Radial basis functions are a very useful tool in the context of higher-dimensional
interpolation as they dispense with the expensive generation of a mesh [13, 29, 40]. Here, we will
employ them to approximate the underlying continuous surface so that we can project nodes onto it as
proposed in [6, 5]. This problem turns out to be very challenging for meshes with arbitrary boundary.
Hence, we begin with a relatively simple mesh. For more complicated examples we first refine the
boundary by using the RBF reconstruction and projection method and then keep the boundary nodes
fixed while interior nodes may move.

In this paper, we provide a detailed numerical study of a combination of the MMPDE smoothing with the
lazy searching flips and RBF surface reconstruction. More specifically, we compare the results of the
whole algorithm with Stellar [31], CGAL [39] and mmg3d [8]. We also compare the lazy searching
flips and the MMPDE smoothing with the flipping and smoothing procedures provided by Stellar.

2 The moving mesh PDE smoothing scheme

The key idea of this smoothing scheme is to move the mesh vertices via a moving mesh equation,
which is formulated as the gradient system of an energy functional (the MMPDE approach). Originally,
the method was developed in the continuous setting [27, 28]. In this paper, we use its discrete
form [23, 24, 26], for which the mesh vertex velocities are expressed in a simple, analytical matrix form,
which makes the implementation more straightforward to parallelize.

2.1 Moving mesh smoothing

Consider a polygonal (polyhedral) domain Ω ⊂ Rd with d ≥ 1. Let Th denote the simplicial mesh
as well as #Nh and #Th the numbers of its vertices and elements, respectively. Let K be a generic
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mesh element and K̂ the reference element taken as a regular simplex with volume |K̂| = 1/#Th.
Further, let F ′K be the Jacobian matrix of the affine mapping FK : K̂ → K from the reference element
K̂ to a mesh element K. For notational simplicity, we denote the inverse of the Jacobian by JK , i.e.,
JK := (F ′K)−1 (see Fig. 1).

K̂
K

FK

F−1
K

JK := (F ′K)−1

Figure 1: Reference element K̂ , mesh element K , and the corresponding mappings FK and F−1
K .

Then, the mesh Th is uniform if and only if

|K| = |Ω|
#Th

and
1

d
tr
(
JTKJK

)
= det

(
JTKJK

) 1
d ∀K ∈ Th. (1)

The first condition requires all elements to have the same size and the second requires all elements
to be shaped similarly to K̂ (these conditions are the simplified versions of the equidistribution and
alignment conditions [22, 28]).

The corresponding energy functional for which the minimization will result in a mesh satisfying Eq. (1)
as closely as possible is

Ih =
∑
K

|K| G (JK , det JK) (2)

with

G(J, det J) = θ
(
tr
(
JJT
)) dp

2 + (1− 2θ) d
dp
2 (det J)p, (3)

where θ ∈ (0, 0.5] and p > 1 are dimensionless parameters (in Section 6, we use θ = 1/3 and
p = 3/2). This is a specific choice and other meshing functionals are possible. The interested reader
is referred to [25] for a numerical comparison of meshing functionals for variational mesh adaptation.

In Eq. (2), Ih is a Riemann sum of a continuous functional for variational mesh adaptation based on
equidistribution and alignment [21] and depends on the vertex coordinates xi, i = 1, . . . ,#Nh. The
corresponding vertex velocities vi for the mesh movement are defined as

vi :=
dxi

dt
= −

(
∂Ih
∂xi

)T

, i = 1, . . . ,#Nh, (4)

where the derivatives dxi

dt
are considered to be row vectors.

2.2 Vertex velocities and the mesh movement

The vertex velocities vi can be computed analytically [23, Eqs (39) to (41)] using scalar-by-matrix
differentiation [23, Sect. 3.2]. Denote the vertices of K and K̂ by xK

j and x̂j , j = 0, . . . , d, and define
the element edge matrices as

EK = [xK
1 − xK

0 , . . . ,x
K
d − xK

0 ],

Ê = [x̂1 − x̂0, . . . , x̂d − x̂0].

DOI 10.20347/WIAS.PREPRINT.2373 Berlin 2017



F. Dassi, L. Kamenski, P. Farrell, H. Si 4

Note, that ÊE−1
K = JK . Then, the local mesh velocities are given element-wise [23, Eqs (39) and (41)]

by (vK
1 )

T

...

(vK
d )

T

 = −GKE
−1
K + E−1

K

∂GK

∂J
ÊE−1

K +
∂GK

∂ det J
det(Ê)

det(EK)
E−1

K , (5)

(vK
0 )

T
= −

d∑
j=1

(vK
j )

T
,

where

GK = G(JK , det JK),

∂GK

∂J
=
∂G

∂J
(JK) = dpθ

(
tr(JKJTK)

) dp
2
−1JTK ,

∂GK

∂ det J
=

∂G

∂ det J
(det JK) = p(1− 2θ)d

dp
2 (det JK)p−1

are the derivatives of G with respect to its first and second argument [23, Example 3.2] evaluated at
J = JK and det(J) = det JK .

The moving mesh equation (4) becomes

dxi

dt
=
∑
K∈ωi

|K|vK
iK
, i = 1, . . . ,#Nh, (6)

where ωi is the patch of the vertex xi and iK is the local index of xi on K .

During smoothing, we use the current vertex locations as the initial position and integrate Eq. (6) for a
time period (with the proper modification for the boundary vertices, see Section 2.3). The connectivity
is kept fixed during the smoothing step. In our examples in Section 6, we use the explicit Runge-Kutta
Dormand-Prince ODE solver [9].

The moving mesh governed by Eq. (6) will stay nonsingular if it is nonsingular initially: the minimum
height and the minimum volume of the mesh elements will stay bounded from below by a positive
number depending only on the initial mesh and the number of the elements [24].

2.3 Velocity adjustment for the boundary vertices

The velocities of the boundary vertices need to be modified. If xi is a fixed boundary vertex, then its
velocity is set to zero Otherwise, xi is allowed to move along a boundary curve or a surface represented
by the zero level set of a function φ and its velocity is modified so that its normal component along the
curve (surface) is zero:

∇φ(xi) ·
∂xi

∂t
= 0.

For the special case of a piecewise linear complex (PLC) [35] the velocity adjustment is straightforward:

facet vertices: project the velocity onto the facet plane,

segment vertices: project the velocity onto the segment line,

corner vertices: set the velocity to zero.
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For a general non-polygonal or non-polyhedral domain, a simple way to adjust the boundary vertices
is to move the vertex and then project it onto the boundary to which it belongs, which proved to work
well for simple surface geometries (see Section 6.2). However, for complicated geometries, this simple
projection can fail and a more reliable approach is needed.

3 Lazy searching flips

In this section, we explain how to remove an edge and how to reverse the removal using flips. In
addition, we present the lazy searching algorithm which can be used to improve the quality of a mesh.

3.1 Edge removal and its inverse

A basic edge removal algorithm performs a sequence of elementary 2-to-3 and 3-to-2 flips [38]. We
extend this algorithm by allowing the flip sequence to be reversed. Our algorithm saves the flips online
and it uses no additional memory.

Let [a, b] ∈ Th be an edge with endpoints a and b and A[0, . . . , n − 1] be the array of n ≥ 3
tetrahedra in Th sharing [a, b]. For simplicity, we assume that [a, b] is an interior edge of Th, so that all
tetrahedra in A can be ordered cyclically such that the two tetrahedra A[i] and A[(i + 1) mod n]
share a common face. The index i takes values in {0, 1, . . . , n−1}. Throughout this section, additions
involving indices will be modulo n.

Given such an array A of n tetrahedra, we want to find a sequence of flips that will remove the edge
[a, b]. Moreover, we also want to be able to reverse this sequence in order to return to the original state.

Our edge removal algorithm includes two subroutines

[done,m] :=flipnm(A[0, . . . , n− 1],level),

flipnm_post(A[0, . . . , n− 1],m)

with an array A (of length n) of tetrahedra and an integer level defining the maximum recursive level
as input.

flipnm executes “forward” flips to remove the edge [a, b]. It returns a Boolean value indicating
whether the edge is removed or not and an integer m (3 ≤ m ≤ n). If the edge is not removed
(done = FALSE), m indicates the current size of A (initially, m := n).

flipnm_post must be called immediately after flipnm. It releases the memory allocated in
flipnm and can perform “backward” flips to undo the flip sequence performed by flipnm.

The basic subroutine flipnm(A[0, . . . , n− 1],level) consists of the following three steps:

Step 1. Return done = TRUE if n = 3 and flip32 is possible for [a, b] and done = FALSE
otherwise.

Step 2. For each i ∈ {0, . . . , n− 1} try to remove the face [a, b, pi] by flip23. If it is successfully
flipped, reduce the size of A by 1. Update A[0, . . . , n− 2] so that it contains the current set of
tetrahedra sharing the edge [a, b]. Reuse the last entry, A[n− 1], to store the information of this
flip23 (see Figure 2c). It then (recursively) calls flipnm(A[0, . . . , n− 2], level). When no
face can be removed, go to Step 3.
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Step 3. If level > 0, try to remove an edge adjacent to [a, b] using flipnm. For each i ∈
{0, . . . , n − 1}, let [x, y] be given by either edge [a, pi] or edge [b, pi]. Initialize an array
B[0, . . . , n1 − 1] of n1 ≥ 3 tetrahedra sharing [x, y] and call flipnm(B[0, . . . , n1 −
1], level − 1). If [x, y] is successfully removed, reduce |A| by 1. Update A[0, . . . , n − 2]
to contain the current set of tetrahedra sharing the edge [a, b]. Reuse the last entry, A[n− 1],
to store the information of this flipnm and the address of the array B (to be able to release
the occupied memory later). Then (recursively) call flipnm(A[0, . . . , n− 2]). Otherwise, if
[x, y] is not removed, call flipnm_post(B[0, . . . , n1 − 1],m1) to free the memory. Return
done = FALSE if no edge can be removed.

Since flipnm is called recursively, not every face and edge should be flipped in Steps 2 and 3.
In particular, if B is allocated, i.e., flipnm is called recursively, we skip flipping faces and edges
belonging to the tetrahedra in A ∩B.

In the simplest case, that is, ignoring the option to reverse the flips, flipnm_post(A[0, . . . , n−
1],m) simply walks through the array A from A[m] to A[n − 1] and checks if a flipnm flip has
been saved. If so, the saved array address B is extracted and its memory is released.

In Step 2 there are at most
(

n
n−3

)
/(n− 3)! different flip sequences, depending on the specific choice

of faces in A. Each individual flip sequence is equivalent to a sequence of the n vertices (apexes) in
the link of the edge [a, b]. We reuse the entries of A to store each flip sequence. After a 2-to-3 flip, the
number of the tetrahedra in array A is reduced by one (two tetrahedra out, one terahedron in), since
only one of the three new tetrahedra contains the edge [a, b]. The remaining tetrahedra are shifted by
one in the list, so that the last entry, A[n− 1], can be used to store this flip (cf. Fig. 2c). In particular,
the following information is saved:

� a flag indicating a 2-to-3 flip;

� the original position i, meaning that the face [a, b, pi] is flipped.

Both is compressed and stored in the entry A[n− 1] (note that a flag requires just a few bits of space).
This stored data allows us to perform the reversal of a 2-to-3 flip as follows:

� use A and the position i with

A[i− 1] = [a, b, pi−1, pi+1]

to locate the three tetrahedra sharing the edge [pi−1, pi+1]: [pi−1, pi+1, a, b], [pi−1, pi+1, b, pi],
and [pi−1, pi+1, pi, a];

� perform a 3-to-2 flip on these three tetrahedra;

� insert two new tetrahedra into the array A:

A[i− 1] = [a, b, pi, pi−1],

A[i] = [a, b, pi, pi+1].

In Step 3, if the selected edge [a, pi] is removed, the sequence of flips to remove [a, pi] is stored
in B. We then use the last entry A[n− 1] to store this sequence of flips. In particular, the following
information is saved:
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(a) The initial state. (b) The lazy flip search tree for removing the edge [a, b]. pi identifies the face [a, b, pi] which is
flipped via a 2-to-3 flip. The search path is highlighted with arrows.

(1) (2) (3) (4)

(5) (6) (7) (8)

(c) The sequence of flips. The edge [a, b] is represented by one vertex in the center (except (8)). A face [a, b, pi] is
represented by an edge. Arrays attached to each figure show the current content of A. (1) n = 5 tetrahedra share the edge
[a, b]. In (2) and (3), [a, b, p1] is removed by a 2-to-3 flip. In (4) and (5), a 2-to-3 flip is performed on [a, b, p3]. In (6) and
(7), [a, b, p5] is removed by a 2-to-3 flip. In (8), the edge [a, b] is removed by a 3-to-2 flip.

Figure 2: An example of an edge removal by a sequence of flips.

� a flag indicating that this entry stores the flip sequence to remove the edge [a, pi];

� the original position i, i.e., the edge [a, pi] is flipped;

� the address of the array B which stores the flip sequence.

This information allows us to reverse this sequence of flips exactly.

3.2 Lazy searching flips

During the mesh improvement process we perform flips to improve the mesh quality. Let us consider
the case when it becomes necessary to remove an edge. The maximum possible number of flips for
an edge removal is the Catalan number Cn−2 (n is the size of A). Hence, the direct search for the
optimal solution is only meaningful if n is very small. In most situations, an edge may not be flipped
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if we restrict ourselves to adjacent faces of the edge. Our strategy is to search and perform the flips
as long as they improve the current mesh quality. Our lazy searching scheme is not restricted by the
number n and can be extended to adjacent edges.

The lazy searching flip scheme is like a walk in a k-ary search tree (a rooted tree with at most k children
at each node, see Fig. 2b). The root represents the edge [a, b] to be flipped and each of the tree nodes
represents either an adjacent face [a, b, pi] or an adjacent edge [a, pi] or [b, pi] of [a, b]. The edges of
the tree represent our search paths. In particular, the directed edge from level l to l + 1 represents
either a flip23 or a flipnm, and the reversed edge represents the inverse operation. The tree
depth is given by the parameter level.

At level > 0, in order to to decide if an adjacent face [a, b, pi] should be flipped, we check if
[a, b, pi] is flippable and make sure that this flip improves the local mesh quality. Note that we need to
check only two of the three new tetrahedra: [a, pi−1, pi, pi+1] and [b, pi−1, pi, pi+1]. The tetrahedron
[a, b, pi−1, pi+1] will be involved in the later flips, and will be flipped if the edge [a, b] is flipped.

Once an improvement is found, the algorithm moves on to the next edge without exploring other
possibilities.

4 Radial basis functions to handle curved boundaries

We describe in this section how to project the mesh on a smooth surface in order to deal with curved
boundaries. We achieve this with the help of radial basis functions (RBFs), see [13, 29, 40].

4.1 Basic concepts and examples

Let Pm(Rd) denote the space of d variate polynomials with absolute degree at most m and dimension
q := dimPm(Rd) =

(
m−1+d

d

)
. For a basis p1, . . . , pq of this space, define the N × q polynomial

matrix PX through its ijth entry,
pij = pi(xj) ,

where xj ∈ X and X = {x1, . . . ,xN} ⊆ Rd denotes a data set. The function Φ is called
conditionally positive definite of order m if the quadratic form

cTAΦ,Xc

for the distance matrix AΦ,X with its ijth entry defined by

(AΦ,X)ij = Φ(xi − xj) ,

is positive for all data sets X and for all c ∈ RN \ {0} which additionally satisfy the constraint
P T
Xc = 0.

Conditionally positive functions of order m are also conditionally positive definite for any order higher
than m. Hence, the order shall denote the smallest positive integer m. A conditionally positive definite
function of order m = 0 is called positive definite.

One speaks of radial basis functions if one additionally assumes that Φ is a radial function, i.e., there
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exists a function φ : R≥0 → R such that Φ(x) = φ(‖x‖). Common examples of RBFs include:

Gaussian: e−‖x‖
2

,

Multiquadric:
√

1 + ‖x‖2,

Inverse Multiquadric: 1/
√

1 + ‖x‖2,

Polyharmarmonic Spline: ‖x‖3.

For the numerical examples in this paper, we exclusively use the polyharmonic spline ‖x‖3 (Fig. 3)
which is conditionally positive of order 2.

Figure 3: The polyharmonic spline ‖x‖3.

We assume now that the interpolant s : Rd → R is given by a linear combination of translated radial
basis function, augmented by a polynomial part, i. e.

s(x) =
N∑
j=1

αjΦ(x− xj) +

q∑
k=1

βkpk(x). (7)

The interpolation conditions will then determine the linear system one needs to solve. For positive
definite functions, the linear system is positive definite by construction. Hence the coefficients can be
determined uniquely. It is also not difficult to verify that the interpolation conditions for conditionally
positive definite functions lead to a uniquely solvable system, see [40, Theorem 8.21] for details. In
the case of conditionally positive definite functions, it is known that at least N − q eigenvalues of the
matrix AΦ,X are positive [40, Section 8.1].

4.2 Surface reconstruction with RBFs

We will assume that the surface Γ is given implicitly by the zero level set of some function F : Ω ⊆
R3 → R, i. e.

Γ =
{

(x, y, z)T ∈ Ω | F (x, y, z) = 0
}
, (8)

for some bounded domain Ω.

We cannot simply assume that the target function (which we wish to interpolate) is the zero level set of
the function F since the right-hand side of the linear system one needs to solve would vanish which in
turn implies that the coefficients vanish as well. Carr et al. [3] therefore made the additional assumption
that the normal vectors are known. Then one can also prescribe on-surface and off-surface points.
Assume that the points on the surface are denoted with X = {x1, . . . ,xN} and the corresponding
normal vectors with M = {n1, . . . ,nN}. We define the surface interpolation problem

s(xi) = F (xi) = 0, 1 ≤ i ≤ N

s(xi + εni) = F (xi + εni) = ε, N + 1 ≤ i ≤ 2N
(9)
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for some parameter ε > 0. Since the right-hand side of the linear system does not vanish anymore, we
find a nontrivial solution. Recently, this surface interpolation technique was combined with the higher
dimensional embedding technique [6, 5] to construct curvature-aligned anisotropic surface meshes. In
this context the data set X corresponds to the vertices of the mesh.

4.3 Projection onto the reconstructed surface

In order to project a point onto the smooth surface reconstruction. We follow an idea by Hartmann [19]
who provided a robust algorithm to project a point onto a surface defined via the zero level set of a
function. This procedure is a combination of orthogonal projections on tangent planes as well as tangent
parabolas. It requires only first order derivatives and uses a steepest descent method. The combination
of this projection method with RBF surface reconstruction (Fig. 4) has also been discussed in [6, 5].

Figure 4: Projection onto a smooth surface for the example of edge splitting: the introduced edge
midpoint is projected onto the RBF surface reconstruction of the mesh via a steepest descent method.

5 Mesh improvement strategy

The goal of the proposed algorithm is to obtain a new isotropic mesh whose elements come “as close as
possible” to the equilateral one. To achieve this goal, we combine the local and global mesh operations
described in Sections 2 and 3.

5.1 Mesh quality

To say “as close as possible to an equilateral tetrahedron” is somewhat vague from a mathematical
point of view. To have a more precise criterion, the majority of the mesh improvement algorithms define
a computable quantity q(K) which quantifies how far a tetrahedron K is from being equilateral [31, 8,
18, 20, 37, 12]. Here, we take into account the following two:

Aspect Ratio: This is one of the most classical ways to evaluate the quality of a tetrahedron. It is
defined as

qar(K) :=

√
2

3

L

h
, (10)

where L is the longest edge and h is the shortest altitude of the tetrahedron K . By construction,
qar(K) ≥ 1 and an equilateral tetrahedron is characterized by qar(K) = 1.

Min-max Dihedral Angle: For each tetrahedron K we consider both the minimal and the maxi-
mal dihedral angles θmin,K and θmax,K . An equilateral tetrahedron has θmin,K = θmax,K =
arccos (1/3) ≈ 70.56◦. Applying an operation that increases θmin,K or decreases θmax,K of a
given tetrahedron K makes K “closer” to the equilateral shape. Note that this is not a classical
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Algorithm 1 The proposed mesh improvement scheme.

IMPROVE(T ini
h , θlim)

1: repeat
2: repeat
3: repeat
4: repeat
5: repeat
6: MMPDE-based smoothing
7: RBF surface reconstruction
8: lazy flips
9: until no point is moved or no flip is done or Q(Th) ≥

θlim

→ smooth and

flip
10: remove the edges le < 0.5 lave

11: lazy flips
12: until no edge is contracted or Q(Th) ≥ θlim

13: split the edges le > 1.5 lave

14: RBF surface reconstruction
15: lazy flips
16: until no edge is split or Q(Th) > θlim

17: split the tetrahedra K such that θmin,K < θlim

18: lazy flips
19: until no tetrahedron is removed or Q(Th) > θlim

→ main loop

20: change the flip criterion for the lazy flips
21: until no operation is done in the main loop or Q(Th) > θlim

quality measure since we associate two quantities with each tetrahedron, which is one of the
novel aspects of the proposed mesh improvement procedure.

These two quality measures refer to a single tetrahedron K of the mesh. However, the design of our
mesh improvement scheme requires a quality measure for the whole mesh as a stopping criterion. To
estimate the quality of the whole mesh, we define the global parameter

Q(Th) := min
K∈Th

(θmin,K) . (11)

If we consider a target dihedral angle θlim and obtain a mesh Th with Q(Th) > θlim, then all dihedral
angles are guaranteed to be greater than θlim.

5.2 The scheme

The inputs for the mesh improvement algorithm are a tetrahedral mesh T ini
h of a PLC and a target

minimum angle θlim. The output is a mesh T fin
h where each element has a minimum dihedral angle

greater than θlim.

The scheme is presented in Algorithm 1 and consists of five nested “repeat . . . until” loops, whose
stopping criterion depends on the operations done inside the loop and Q(Th). We apply the MMPDE
smoothing and the lazy flip in the most internal loop (lines 5 to 9). The lazy flip is also exploited in the
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outer loops both on the whole mesh (lines 11, 15 and 18) and on the tetrahedra involved in the local
operations (lines 10, 13 and 17).

It is possible to consider several flipping criteria for the lazy flip, which makes the design of the scheme
flexible. We exploit this feature by using two objective functionals and changing the flipping criterion in
each iteration of the outer loop (line 20) by

1 maximizing θmin,K and minimizing θmax,K (simultaneously),

2 minimizing the aspect ratio.

The stopping criterion is always based on the minimal dihedral angle, Q(Th), and the number of
operations done.

After a number of iterations both the flipping and the smoothing procedure can stagnate, i.e., the mesh
Th converges to a fixed configuration where neither flips nor smoothing can improve the quality of the
mesh. Unfortunately, it is not a priori guaranteed that such a mesh satisfies the constraint on the target
minimum dihedral angle θlim. To overcome this difficulty, we apply edge splitting, edge contraction, and
point insertion when this stagnation occurs (lines 10, 13 and 17 in Algorithm 1).

For the edge contraction and splitting, we use the standard edge length criterion: we compute the
average edge length lave of the actual mesh, contract the edges shorter than 0.5 lave (line 10), and split
(halve) the ones longer than 1.5 lave (line 13). In line 17, we split a tetrahedron K with θmin,K < θlim

via a standard 1-to-4 flip by placing the newly added point at the barycenter of K [10]. In this way, the
algorithm constructs via flipping and smoothing a mesh satisfying Q(Th) > θlim. At the moment, we
are not interested in optimizing these operations, we exploit them only to overcome the stagnation of
the algorithm.

The MMPDE smoothing can be easily parallelized because the computation of nodal velocities (Eqs. (5)
and (6)) requires local, element-wise computations which are independent from each other; we
parallelize it with OpenMP [4] in order to accelerate the mesh improvement scheme. On the other hand,
the lazy flip may propagate to neighbors and neighbors of neighbors, thus, it is complex and difficult to
parallelize; in our tests we use a sequential implementation.

6 Numerical examples

We test the proposed mesh improvement algorithm and compare it with the mesh improvement
algorithm of Stellar [31], the remeshing procedure of CGAL [39], and mmg3d [8]. We compare
the histograms of the dihedral angles of final meshes, the minimal and the maximal dihedral angles
θmin,Th and θmax,Th , the mean dihedral angle µTh , and its standard deviation σTh .

6.1 Piecewise linear complexes (PLCs)

To analyze the effectiveness of the proposed mesh improvement scheme in case of a piecewise linear
complex domain, we consider the following three examples (for more PLC examples, see [7]):

� RAND1 tetrahedral meshes of a cube generated by inserting randomly located vertices inside
and on the boundary [31] (Fig. 6),
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Lazy Flip

θmin,Th = 16◦

θmax,Th = 144◦

µTh = 69.71◦

σTh = 21.93

#Th = 3795

Stellar flipping

θmin,Th = 20◦

θmax,Th = 142◦

µTh = 69.83◦

σTh = 21.86

#Th = 3751

MMPDE smoothing

θmin,Th = 17◦

θmax,Th = 149◦

µTh = 69.01◦

σTh = 26.37

#Th = 4072

Stellar smoothing

θmin,Th = 14◦

θmax,Th = 159◦

µTh = 69.01◦

σTh = 28.01

#Th = 4072

(a) LSHAPE.

Lazy Flip

θmin,Th = 14◦

θmax,Th = 146◦

µTh = 69.77◦

σTh = 22.74

#Th = 3043

Stellar flipping

θmin,Th = 16◦

θmax,Th = 151◦

µTh = 69.89◦

σTh = 25.98

#Th = 3332

MMPDE smoothing

θmin,Th = 20◦

θmax,Th = 144◦

µTh = 69.71◦

σTh = 21.93

#Th = 3795

Stellar smoothing

θmin,Th = 16◦

θmax,Th = 152◦

µTh = 69.27◦

σTh = 28.97

#Th = 3545

(b) TETGENEXAMPLE.

Figure 5: Comparison of flipping only (first row) and smoothing only (second row) for the initial meshes
LSHAPE and TETGENEXAMPLE.

� LSHAPE is a tetrahedral mesh of an L-shaped PLC generated by TetGen [38] without optimizing
the minimal dihedral angle (switches -pa0.019, Fig. 7),

� TETGENEXAMPLE is a tetrahedral example mesh of a non-convex PLC with a hole provided by
TetGen (Fig. 8).

Smoothing and flipping by themselves. Before testing the full mesh improvement scheme, we test
the effectiveness of the MMPDE smoothing and the lazy flip by themselves and employ smoothing
and flipping separately, i.e., we improve a tetrahedral mesh exploiting only the flipping operation or
the vertex smoothing. We compare our results with the ones provided by Stellar for the examples
LSHAPE and TETGENEXAMPLE.

The results of the lazy flip are comparable to the Stellar flips (Fig. 5, first row). However, the
MMPDE smoothing is better than its counterpart in Stellar (Fig. 5, second row): in both examples
it achieves larger θmin,Th , noticeably smaller θmax,Th , and a smaller standard deviation of the mean
dihedral angle.

Full scheme. We compare the whole scheme with the mesh improvement algorithm of Stellar [31],
the remeshing procedure of CGAL [39], and mmg3d [8] (Figs 6 to 8).

Although all methods provide good results, the new scheme is better: θmin,Th is larger than the value
obtained by CGAL or mmg3d and comparable to the value obtained by Stellar. Moreover, θmax,Th
is smaller than the values obtained by Stellar, CGAL, or mmg3d in all examples but one in Fig. 8a.
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Initial Mesh New Method

New Method
θmin,Th = 40◦

θmax,Th = 130◦

µTh = 69.70◦

σTh = 15.74

#Th = 3528

Stellar
θmin,Th = 32◦

θmax,Th = 137◦

µTh = 71.70◦

σTh = 24.42

#Th = 3218

CGAL
θmin,Th = 12◦

θmax,Th = 156◦

µTh = 69.25◦

σTh = 23.40

#Th = 3897

mmg3d

θmin,Th = 8◦

θmax,Th = 165◦

µTh = 69.98◦

σTh = 25.60

#Th = 5733

Figure 6: RAND1. The initial mesh with #Th = 5104, the final (optimized) mesh, and statistics of
dihedral angles for the final meshes.

Initial Mesh New Method

New Method
θmin,Th = 40◦

θmax,Th = 119◦

µTh = 69.67◦

σTh = 15.89

#Th = 3102

Stellar
θmin,Th = 39◦

θmax,Th = 138◦

µTh = 70.17◦

σTh = 20.04

#Th = 2910

CGAL
θmin,Th = 13◦

θmax,Th = 159◦

µTh = 69.23◦

σTh = 23.69

#Th = 4264

mmg3d

θmin,Th = 18◦

θmax,Th = 142◦

µTh = 69.54◦

σTh = 22.21

#Th = 3859

Figure 7: LSHAPE. The initial mesh with #Th = 4072, the final (optimized) mesh, and statistics of
dihedral angles for the final meshes.
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Initial Mesh New Method

(a) The initial mesh with #Th = 3545 and the final optimized mesh.

New Method
θmin,Th = 38◦

θmax,Th = 125◦

µTh = 69.67◦

σTh = 16.33

#Th = 4563

Stellar
θmin,Th = 38◦

θmax,Th = 123◦

µTh = 70.23◦

σTh = 20.10

#Th = 2509

CGAL
θmin,Th = 7◦

θmax,Th = 164◦

µTh = 69.22◦

σTh = 28.52

#Th = 2187

MMG3
θmin,Th = 4◦

θmax,Th = 170◦

µTh = 69.52◦

σTh = 22.42

#Th = 15 713

(b) Dihedral angle comparison for the final meshes.

New Method Stellar

CGAL mmg3d

(c) Aspect ratio comparison for the final meshes.

Figure 8: TETGENEXAMPLE. The initial mesh with #Th = 3545, the final (optimized) mesh, and
statistics of the dihedral angles and the aspect ratio.
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Our method provides mean dihedral angles µTh around 69.6◦, which is close to the optimal value of
arccos (1/3) ≈ 70.56◦. Moreover, standard deviations σTh are always smaller than the ones of other
methods. Indeed, we get a distribution of dihedral angles close to the mean value. This quantitative
consideration becomes clearer from the shape of the histograms in Figs 6 to 8.

For the TETGENEXAMPLE (Fig. 8) we also provide aspect ratio histograms (the results for the other
examples are very similar and we omit them). The aspect ratio of an equilateral tetrahedron is equal to 1
and the more a tetrahedron is distorted and stretched the greater its aspect ratio becomes. Our method
and Stellar clearly provide the best aspect ratio distribution. For our method, the vast majority of
tetrahedra have an aspect ratio smaller than 1.8. The Stellar mesh is slightly worse with most of
its tetrahedra having aspect ratios below 2.6.

6.2 Curved boundary domains

In the last part of this section, we experimentally demonstrate some examples with curved domains.
We study two types of examples: one academic example for using the RBF surface reconstruction
to project the boundary vertices on the smooth approximation of the discrete surface and two more
complex examples with fixed boundary vertices.

First, we consider the discrete ellipsoid mesh (Fig. 9). Though it has a simple geometry, it requires
some effort since the boundary is curved and no longer a PLC. The main challenge is to project the
boundary vertices back onto the smooth surface if they leave it after a mesh improvement step. For
this reason, we reconstruct the surface via RBFs (see Section 4.2) to assist the mesh optimization and
project the moved (smoothed) boundary vertices to the reconstructed surface. Figure 9 shows that
RBF reconstruction smoothes the initially rough surface approximation. The obtained tetrahedral mesh
has high quality: the mean dihedral angle is close to the optimal value (≈ 70.69◦) and the standard
deviation of the dihedral angles is small (≈ 18.16◦).

However, it has to be pointed out that complicated boundaries cannot be handled as easily as an
ellipsoid and require more sophisticated methods.

In our next examples, we restrict ourselves to the case of fixed boundary vertices since Stellar
does not handle curved surfaces described via an implicit function, start with a good isotropic triangular
mesh as input, and keep the boundary vertices fixed for each of the algorithms.

Fixed boundary. The next two examples are meshes of a spinal bone and of an elephant (figs. 10
and 11). The initial surface meshes in both examples are constructed by means of the higher di-
mensional embedding approach for surface mesh reconstruction [5] and their minimal face angles
are approximately 33◦. The initial volume meshes are constructed by TetGen using the -Y flag to
preserve the fixed boundary.

Figures 10 and 11 present the histograms of the dihedral angles of the resulting optimized meshes.
In comparison to the PLC examples, where the geometry is simpler and the boundary vertices are
allowed to move, the smallest dihedral angles for the spinal bone and the elephant examples are worse
(smaller) than for the PLC examples. In comparison to Stellar, our algorithm achieves better values
for θmin,Th and θmax,Th , as well as a smaller mean deviation from the mean value.

These examples, too, show the “aggressive” nature of the Stellar mesh improvement algorithm,
which aggressively removes vertices during the mesh improvement. In contrast, our mesh improvement
scheme is able to produce a high-quality mesh while keeping the number of vertices close to the original
input.
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Initial Final Cross section θmin,Th = 31◦

θmax,Th = 138◦

µTh = 70.69◦

σTh = 18.16

#Th = 17 999

Figure 9: Example of tetrahedral mesh improvement with a curved (reconstructed) surface.

Surface mesh Cross section
New Method
θmin,Th = 31◦

θmax,Th = 138◦

µTh = 70.51◦

σTh = 17.84

#Th = 640 993

Stellar
θmin,Th = 26◦

θmax,Th = 148◦

µTh = 70.78◦

σTh = 27.50

#Th = 442 838

Figure 10: Spine example: the initial mesh with #Th = 688 420 and the final optimized mesh.

Surface mesh Cross section New Method
θmin,Th = 16◦

θmax,Th = 162◦

µTh = 71.02◦

σTh = 20.10

#Th = 246 203

Stellar
θmin,Th = 13◦

θmax,Th = 163◦

µTh = 71.46◦

σTh = 24.99

#Th = 196 450

Figure 11: Elephant example: the initial mesh with #Th = 260 401 and the final optimized mesh.
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7 Conclusions

Mesh improvement is a challenging problem and we tackled it by combining several recently developed
techniques, namely, moving mesh smoothing, lazy flipping, and RBF surface reconstruction. In compari-
son to the mesh improvement algorithm Stellar and the re-meshing procedures provided by CGAL
and mmg3d, we obtain better results in terms of the distributions of dihedral angles for all considered
examples. However, there are several directions in which this work could be extended.

First, for smooth and relatively simple boundaries, our approach works excellently but complicated
curved boundaries pose a challenging problem. One possible solution could be the direct incorporation
of the boundary description into the MMPDE smoothing scheme (parametrization) so that the boundary
vertices will always stay on the surface. This will avoid the sometimes troublesome projection of vertices
and velocities back onto the surface after a smoothing step.

Second, we need to find a more sophisticated method for edge contraction and splitting in order to
improve the performance of both the MMPDE smoothing and the lazy flip.

Third, the MMPDE smoothing is based on the moving mesh method [23] which allows the definition of
a metric field. Hence, the moving mesh smoothing can be extended to the adaptive and anisotropic
setting.
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