
WELL-CENTERED TRIANGULATION¶
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Abstract. Well-centered meshes (meshes composed of well-centered simplices) have the advan-
tage of having nice orthogonal dual meshes (the dual Voronoi diagram), which is useful for certain
numerical algorithms that require or prefer such primal-dual mesh pairs. We present a characteri-
zation of a well-centered n-simplex and introduce a cost function that quantifies well-centeredness
of a simplicial mesh. We investigate some properties of the cost function and describe an itera-
tive algorithm for optimizing the cost function. The algorithm can transform a given triangulation
into a well-centered one by moving the interior vertices while keeping the mesh connectivity and
boundary vertices fixed. We show the results of applying our algorithm to small, large, and graded
two-dimensional meshes as well as one tiny three-dimensional mesh and a small tetrahedralization of
the cube. Also, we prove for planar meshes that the optimal triangulation with respect to the cost
function is the minmax angle triangulation.
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1. Introduction. A completely well-centered mesh is a simplicial mesh in which
each simplex contains its circumcenter. A 3-dimensional example is a tetrahedral mesh
in which the circumcenter of each tetrahedron lies inside it, and the circumcenter of
each triangle face lies inside it. In two dimensions, a well-centered triangulation is that
same thing as an acute triangulation. In this paper we discuss well-centered triangula-
tions, with particular application to triangle and tetrahedral meshes. Typical meshing
algorithms do not guarantee well-centeredness. For example, a Delaunay triangula-
tion is not necessarily well-centered. We present an iterative energy minimization
approach in which a given mesh, after possible preprocessing, is made well-centered
by moving the internal vertices while keeping the boundary vertices and connectivity
fixed.

A well-centered (primal) mesh has a corresponding dual mesh assembled from a
circumcentric subdivision [16]. For an n-dimensional primal mesh, a k-simplex in the
primal corresponds to an (n − k)-cell in the dual. For example, in a well-centered
planar triangle mesh, the dual of a primal interior vertex is a convex polygon with
boundary edges that are orthogonal and dual to primal edges. This orthogonality
makes it possible to discretize the Hodge star operator of exterior calculus [1] as a
diagonal matrix which simplifies certain computational methods for solving partial
differential equations. Some numerical methods that mention well-centered meshes in
this context are the covolume method [21] and Discrete Exterior Calculus [8, 16].

¶Preliminary results for the 2-dimensional problem of well-centered planar triangulations ap-
peared previously in the Proceedings of the 16th International Meshing Roundtable, Seattle, WA,
October 14-17, 2007 [25].
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Well-centered meshes are not strictly required for these or other related methods.
However, some computations may be easier if such meshes were available. For exam-
ple, a stable mixed finite volume type method for Darcy flow has recently been derived
using Discrete Exterior Calculus [17] and applied to well-centered meshes generated
by our code. That numerical method passes patch tests in 2 and 3 dimensions, for
homogeneous and heterogeneous problems. Figure 1.1 (taken from [17] by permission
of authors) shows the velocities in a layered medium in the Darcy flow problem.
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Fig. 1.1. Darcy flow in a medium with 5 layers which is well-centered. The odd layers have a
permeability of 5 and even layers have permeability of 10. The velocities in the odd and even layers
should be different and should have no vertical component as shown. The mesh was generated using
our WCT code. Figure taken from [17], used by permission from authors.

Another example from scientific computing is space-time meshing. When tent-
pitching methods for space-time meshing were first introduced, the initial spatial mesh
was required to be acute, which for two-dimensional meshes, is the same thing as being
well-centered [24]. More recently, this requirement has been avoided, although at the
expense of some optimality in the construction [13].

2. Previous Results. We are primarily concerned with triangulations for which
the domain is specified by a polygonal or polyhedral boundary. In addition to the
triangulations being well-centered, we are interested in quality triangulations. In two
dimensions, a quality triangulation is one for which a lower bound on the triangle
angles is achieved. Relevant work can be divided into constructive and iterative
approaches.

Constructive approaches start with the specified input boundary/constraints and
generate additional points, called Steiner points, and a corresponding triangulation.
Normally a point is committed to a position and never moved afterwards. An al-
gorithm for nonobtuse planar triangulations based on circle packings is described in
[3], and more recent works describe improved constructions while also describing how
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to derive an acute triangulation from a nonobtuse one [19, 26]. In fact, these algo-
rithms aim to achieve a triangulation of size linear in the input size, so the smallest
angle can be arbitrarily close to zero. It is not straightforward to extend this class
of algorithms to well-centered quality triangulations. As recently as 2007, a variant
of the Delaunay refinement algorithm is proposed for generating acute triangulations
of planar domains [14]. This algorithm, which relocates Steiner points after they are
added, appears to work well. The authors do not, however, have a proof that the
algorithm will terminate [14], and the experiments suggest that the maximum angle
is often near π/2.

There are also constructive algorithms that achieve well-centered quality trian-
gulations for point sets [4], or nonobtuse quality triangulations [20]. Also relevant is
an algorithm that, given a constraint set of both points and segments in the plane,
finds a triangulation that minimizes the maximum angle [11], without adding points.
If an acute triangulation exists for the input constraints, the algorithm will find it,
otherwise it fails. The most promising of the constructive algorithms is probably
[14], but that algorithm as well as most other constructive approaches is specific to
two-dimensional planar domains.

On the other hand, there are iterative or optimization approaches which allow an
initial triangulation (possibly the canonical Delaunay) and then move the points while
possibly changing the connectivity. This is the class of algorithms in which we are pri-
marily interested: there are well-known algorithms to generate quality triangulations
[10, 22] for which reliable implementations exist. Such quality triangulations may be
good candidates as starting points for iterative approaches that seek well-centered
meshes. In this class there are optimization approaches like centroidal Voronoi dia-
grams [9] and variational triangulations [2]. Each approach has a global cost function
that it attempts to minimize through an iterative procedure that alternates between
updating the location of the mesh vertices and the triangulation of those vertices.
The cost functions optimized in these approaches are designed to optimize certain
qualities of the mesh elements, but they do not explicitly seek well-centered simplices.

Though these methods appear to produce nice experimental results, there is no
guarantee that they construct quality triangulations, much less well-centered ones. In
fact, in Section 6 we show two-dimensional examples in which the converging triangu-
lation is not acute. Also, only limited convergence results are known (there are indeed
local minima that can be reached). In addition to the optimization approaches that
work directly with a mesh, there are several algorithms that generate circle packings
or circle patterns by optimizing the radii of the circles. In particular the algorithms
for creating circle patterns that were proposed in [7] and [5] can be adapted to create
triangulations. These algorithms produce circle patterns that have specified combi-
natorics but they do not permit a complete specification of the domain boundary, so
they are not appropriate to our purpose.

Finally, concerning the 3-dimensional case, we point out that the problem of
generating a well-centered tetrahedralization in R3 is considerably harder than the
two-dimensional analogue. Similarly, the problem of generating a three-dimensional
acute triangulation—a tetrahedralization in which all the dihedral angles are acute—is
more difficult than generating a two-dimensional acute triangulation. For tetrahedra,
it is no longer true that well-centeredness and acuteness are equivalent. In addition,
acute tetrahedralizations are known only for very restricted domains (for example,
whole space and slabs [12]). In fact, it is not even known whether the cube has an
acute tetrahedralization. In Sec. 6 we show that the cube can be triangulated with
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3-well-centered tetrahedra.

3. Characterization of Well-Centeredness. It is possible for a simplex σn of
dimension n ≥ 3 to contain its circumcenter in its interior Int(σn), while some of its
proper faces σp ≺ σn do not contain their circumcenters. Similarly, it is possible for a
simplex σn that all of its proper faces σp ≺ σn do contain their circumcenters, while
the simplex σn itself does not contain its circumcenter. For this reason we introduce
the terminology of an n-simplex being (p1, . . . , pk)-well-centered, meaning that for pi,
i = 1, . . . , k, all faces of σn of dimension pi ≤ n contain their circumcenters. The
parentheses may be suppressed when referring to only one dimension.

In this section we give an alternate characterization for an n-simplex σn that
is n-well-centered; we give a way of determining whether the simplex σn contains its
circumcenter without explicitly computing its circumcenter and testing its orientation
with respect to the facets, i.e., the faces σn−1 ≺ σn. We use the fact that in Euclidean
space the intersection of two distinct n-spheres Sn

1 , Sn
2 is contained in a hyperplane of

dimension n, and that this hyperplane cuts the sphere Sn
1 into two pieces, one piece

inside Sn
2 , and the other piece outside Sn

2 . We also use the concept of an equatorial
ball. Given that the (n− 1)-dimensional simplex σn−1 = v0v1 . . . vn−1 is nondegener-
ate, the equatorial ball B(σn−1) = B(v0v1 . . . vn−1) is defined as follows. Since σn−1

is nondegenerate, it has a unique (n − 2)-dimensional circumsphere (embedded in a
copy of Rn−1), with center c = c(σn−1) and radius R = R(σn−1). We take B(σn−1)
to be the closed n-dimensional ball having center c(σn−1) and radius R(σn−1), where
the n-dimensional space containing B(σn−1) is the plane of a specified simplex σn

such that σn−1 ≺ σn.
Theorem 3.1. Let σn be an n-dimensional simplex with vertices v0, v1, . . . , vn.

The simplex σn is n-well-centered if and only if σn is nondegenerate and for each
i = 0, 1, . . . , n, vertex vi lies outside Bi = B(v0v1 . . . v̂i, . . . , vn), with Bi taken in the
plane of σn.

Proof. First we suppose that σn is n-well-centered. Since σn is n-well-centered,
its circumcenter is contained in its interior, and since a degenerate simplex has no
interior, σn must be nondegenerate. This implies that all the facets of σn are also
nondegenerate, so Bi is well-defined for each i.

Consider some vertex vi of σn. Let Sn = Sn(σn) be the circumsphere of σn.
Thinking of σn in its plane, and identifying that plane with Rn, σn is an intersection
of half-spaces, and one of the bounding hyperplanes of σn is the hyperplane that
contains σn−1

i , the simplex v0v1 . . . v̂i . . . vn. This hyperplane partitions Rn into two
half-spaces — an open half-space H1 that contains vi and a closed half-space H2 that
contains all the other vertices of σn (on its boundary).

Because σn is well-centered, c(σn) lies in its interior. It follows that c(σn) lies in
the same open half-space as vi. Consider, then, the line through c(σn) and c(σn−1

i ),
the center of Bi. In the open half-space that contains vi, this line intersects Sn at a
point p with d(c(σn), p) = R(σn). Moreover, d(c(σn−1

i ), p) > R(σn) > R(σn−1
i ). We

see that p lies outside Bi and conclude that Sn ∩ H1 lies outside Bi. In particular,
since vi ∈ Sn ∩ H1, we see that vi lies outside Bi. Since vi was chosen arbitrarily,
we conclude that vi lies outside Bi for each i = 0, 1, . . . , n, and one direction of the
theorem is proved.

For the other direction we suppose that σn is a nondegenerate simplex such that
vi lies outside Bi for each i = 0, 1, . . . , n. We will show that the circumcenter c(σn) lies
in the interior of σn by demonstrating that for each vertex vi, c(σn) lies in the same
open half-space as vi relative to the plane of σn−1

i . We know that this hyperplane
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Fig. 3.1. The circumsphere of the tetrahedron and the equatorial ball of one of its faces inter-
sect in the circumcircle of the face. For a well-centered tetrahedron, the fourth vertex lies on the
circumsphere in the region outside the equatorial ball.

divides Sn into a part inside Bi and a part outside Bi, and we have just established
that whichever (open) halfspace contains c(σn) is the halfspace where Sn lies outside
Bi. But since we are given that vi lies outside Bi, we know that it lies in the same
open halfspace that c(σn) lies in. This holds for every vi, so c(σn) is in the interior
of σn, and σn is, by definition, well-centered.

Figure 3.1 is an illustration of Thm 3.1 for the case of one vertex of a tetrahedron.
The fourth vertex lies outside the equatorial ball because the tetrahedron is 3-well-
centered.

When we say that a mesh is (p1, . . . , pk)-well-centered, we mean that the mesh
is a simplicial complex and for pi, i = 1, . . . , k, every simplex of dimension pi that
appears in the simplicial complex contains its circumcenter.

4. Iterative Energy Minimization. Given a simplicial mesh, we iteratively
modify the mesh guided by minimizing a cost function defined over the mesh. We’ll
refer to the cost function as energy. Our method is somewhat similar to the methods
of [9] and [2] in that it uses an iterative procedure to minimize an energy defined
on the mesh, but it differs in that the mesh topology and boundary vertices remain
fixed as the energy is minimized. More importantly, we minimize a different energy,
one that is designed to achieve the aim of well-centeredness. We next describe this
energy, which is the main component of our method. At times the mesh connectivity
or boundary vertices are defined in such a way that no well-centered mesh exists. For
such cases one can apply a preprocessing algorithm to update the mesh connectivity.
Section 5 outlines an approach to preprocessing that can change the mesh connectivity
throughout the entire mesh. The algorithm we actually use is an algorithm that makes
changes to the mesh locally in areas where problems exist. That algorithm is discussed
in [25].

In the proof of Theorem 3.1 we see the importance of the position of the circum-
center of a simplex with respect to its facets. When the circumcenter is well inside of
the simplex, it is far away from every facet, and when the circumcenter is near the
boundary of the simplex, it is close to at least one of the facets of the simplex. Given
a simplex σn, this concept is quantitatively measured for the facet of σn opposite
vertex v by h(v, σn), the height of the circumcenter above the plane of that facet. To
be more precise, h(v, σn) is the signed distance from the circumcenter of σn to the
circumcenter of the facet opposite vertex v, with positive distance when the circum-
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center lies on the same side of the plane of the facet as v and negative distance when
the plane of the facet lies between v and the circumcenter of σn. Observe that a mesh
is n-well-centered if and only if h(v, σn) > 0 for every vertex v of every n-simplex σn

of the mesh.
Generally speaking one likes to preserve properties of a given mesh even while

making whatever modifications are needed to achieve well-centeredness. In particular,
it is good to preserve the relative size of elements of the given mesh, i.e., the grading of
the initial mesh, where that is possible. For this reason we scale the measure h(v, σn)
by the circumradius of the simplex, denoted R(σn). We see that a mesh is n-well-
centered if and only if h(v, σn)/R(σn) > 0 for every vertex v of every n-simplex σn of
the mesh. Sazonov et. al. have also noticed that the quantity h/R may be useful for
measuring well-centeredness [23].

Note that−1 < h(v, σn)/R(σn) < 1 for finite nondegenerate σn, because R(σn)2 =
h(vi, σ

n)2 + R(σn−1
i )2. Instead of using the quantity h/R directly, we consider the

measure

fn(σn) = max
vertices v∈σn

∣∣∣∣h(v, σn)
R(σn)

− kn

∣∣∣∣ ,

where 0 < kn ≤ 1 is a constant that may depend on the dimension of the simplex. The
advantage of minimizing this measure as opposed to maximizing h/R is that if kn is
chosen properly, the measure penalizes simplex vertices where h/R approaches 1 (such
as small angles in triangles or needle tetrahedra) as well as vertices where h/R ≤ 0.
It seems wise to choose kn so that the expression is minimized by a regular simplex.
Initially, taking kn = 1/n may seem like a good choice because it is clear that the
regular simplex minimizes fn. (fn = 0 for the regular simplex if kn = 1/n). We show
in Lemma 4.1, however, that the regular simplex minimizes fn for any 1 ≥ kn ≥ 1/n.
Thus taking kn = 1/2 is probably the best choice, since kn = 1/2 is the minimal
kn such that every well-centered simplex is measured as better quality than every
simplex that is not well-centered. We used kn = 1/2 for all of the experiments we
show in Sec. 6.

Lemma 4.1. For kn ≥ 1/n, the measure fn(σn) is minimized when σn is a regular
simplex.

Proof. It suffices to show that for any simplex σn there exists a vertex v such
that h(v, σn) ≤ R(σn)/n, since at such a vertex we have∣∣∣∣h(v, σn)

R(σn)
− kn

∣∣∣∣ = kn −
h(v, σn)
R(σn)

≥ kn −
1
n

for any kn ≥ 1/n. We have seen that for a simplex that is not n-well-centered, there
exists a vertex v with h(v, σn) ≤ 0, so it remains to prove this for simplices that are
n-well-centered.

Suppose σn is n-well-centered. Let h = minv h(v, σn) > 0. Consider a sphere
Sn−1 with center c(σn) and radius h. We claim that σn contains the sphere Sn−1.
Indeed, for each facet σn−1

i of σn, since the radius of Sn−1 is h ≤ h(vi, σ
n) we have

that the sphere Sn−1 is contained in the same half space as c(σn). Thus the sphere is
contained in the intersection of half spaces that defines the simplex, i.e., is contained
in the simplex.

It follows, then, that h ≤ r where r is the inradius of the simplex. We know that
h/R ≤ r/R ≤ 1/n and that equality is achieved for only the regular simplex. (The
inequality r/R ≤ 1/n is proved in [18], among others.)
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Fig. 4.1. For a triangle, h/R = cos(θ).

For kn > 0 the objective of n-well-centeredness is achieved when |h/R− kn| < kn

at every vertex of every simplex σn. Our goal, then, is to minimize |h/R− kn|, driving
it below kn at every vertex. It could be effective to work directly with the measure
|h/R− kn|, but we choose instead to minimize the approximation

Ep (M) = Ep (V, T ) =
∑

simplices σn∈T
vertices v∈σn∩V

∣∣∣∣h(v, σn)
R(σn)

− kn

∣∣∣∣p , (4.1)

where p is a parameter. This is indeed an approximation, because

lim
p→∞

(Ep (M))1/p = E∞ (M) = max
σn∈T

v∈σn∩V

∣∣∣∣h(v, σn)
R(σn)

− kn

∣∣∣∣ .

The parameter p influences the relative importance of the worst vertex-simplex pair
compared to the other vertex-simplex pairs in computing the quality of the mesh as
a whole. It is convenient to choose p as a positive even integer, since the absolute
value need not be taken explicitly in those cases. M here stands for a mesh consisting
of vertices with particular coordinates V and a connectivity table T that describes
which groups of vertices form simplices.

As stated, the measure Ep(M) leaves some ambiguity in the case of degenerate
simplices. For several reasons, including a desire to maintain upper semicontinuity
of the cost function, we say that any degenerate simplex, even one with coincident
vertices, has its circumcenter at infinity and h/R = −1.

To help build intuition for the measure |h/R− kn|, Fig. 4.1 displays the quantities
h and R in a sample triangle. Elementary Euclidean geometry establishes that the
two angles marked θ in Fig. 4.1 are congruent, and from triangle trigonometry we
know that cos(θ) = h/R. This shows that the energy defined in equation (4.1) is a
generalization of the energy

Ep(M) = Ep (V, T ) =
∑
θ∈M

|cos(θ)− 1/2|p , (4.2)

which the authors proposed earlier for achieving well-centeredness of planar meshes
[25]. In three dimensions the quantity h/R is related to the cosine of the tetrahedron
vertex angle, as discussed in [23], and the relationship given there can be extended to
higher dimensions.
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Fig. 4.2. A cost function that accurately reflects the goal of well-centeredness cannot have a
unique minimum, because the set of points that make the mesh well-centered may be a symmetric
disconnected set.

The cost functions Ep and E∞ are not convex. When designing a cost function
for mesh optimization, one might hope to develop a function that is convex, or, if
not convex, at least one that has a unique minimum. It is, however, not possible to
define an energy that accurately reflects the goals of well-centered meshing and also
has a unique minimum. Consider the mesh shown on the left in Fig. 4.2. We suppose
that the boundary vertices are fixed, but the interior vertex is free to move. We want
to decide where to move the interior vertex in order to obtain a well-centered mesh.
The right side of Fig. 4.2 shows the constraints on where the vertex can be placed to
produce a well-centered mesh. The light gray regions are not allowed because placing
the interior vertex in those regions would make some boundary angle nonacute. (The
dotted lines indicate how the four most important boundary angles influence the
definition of this region.) The darker gray regions, shown overlaying the light gray
region, are not permitted because placing the interior vertex in those regions would
make some angle at the interior vertex nonacute.

If the interior vertex is placed in either of the two small white regions that remain,
the mesh will be well-centered. We see that the points permitted for well-centeredness
form a disconnected set in R2. Moreover, the mesh is radially symmetric, so there
is no way to create an energy that prefers one white region over the other unless we
violate the desired property that the energy be insensitive to a rotation of the entire
mesh. Any symmetric energy that has minima in only the white regions must have
at least two distinct global minima.

In most planar meshes there is an interior vertex v that has exactly six neighbors,
all of which are interior vertices. If all interior vertices are free to move, as we assume
in the method we propose, then the six neighbors could be moved into the arrangement
that the boundary vertices have in the mesh in Fig. 4.2. Moving v around when its
neighbors have such a configuration should exhibit nonconvexity in whatever cost
function we might define.

5. The Optimal Triangulation. A variety of our experimental results appears
in Section 6 below. The results suggest that, in the plane at least, where we have
performed most of our experiments, Ep is an appropriate cost function for quantifying
the well-centeredness of a mesh. In some cases, though, the mesh connectivity, the
fixed boundary vertices, or a combination of the two are specified in such a way that
no well-centered mesh exists with the given topology and boundary vertices. The
simplest example of this is a planar mesh with an interior vertex v that has fewer
than five neighbors. Since the angles around v sum to 2π, v has some adjacent angle
of at least π/2. The triangle containing that angle is not well-centered. Similarly,
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a boundary vertex with a boundary angle measuring at least π/2 must have enough
interior neighbors to divide the boundary angle into pieces strictly smaller than π/2.
We will refer to a vertex that does not have enough neighbors as a lonely vertex.
(In three dimensions, a vertex must have at least 7 neighboring edges to permit a
3-well-centered mesh, though having 7 neighbors is not sufficient to guarantee that a
3-well-centered neighborhood exists.)

One way to approach problems with mesh connectivity, such as the problem
of lonely vertices, is a global mesh connectivity update, i.e., to changing the mesh
connectivity over the entire mesh. The methods that use Voronoi diagrams [9] and
variational triangulations [2] both employ this approach, updating to a Delaunay mesh
each time the vertices are relocated. We discuss here what constitutes the optimal
triangulation with respect to E∞ and explain why we have chosen to update the
mesh connectivity as a preprocessing step, keeping the mesh connectivity fixed during
energy minimization. In this section we consider the vertices V to be fixed at their
initial locations, and given the fixed vertex locations we seek the mesh connectivity
T that minimizes E∞.

The discussion that follows is limited to planar meshes, so we use planar angles
θ and the cosine-based cost function defined in 4.2 in the discussion that follows. In
particular we consider the cost functions

Ecos (V, T ) = lim
p→∞

[ ∑
θ∈M

∣∣∣∣cos (θ)− 1
2

∣∣∣∣p
]1/p

= max
θ∈M

{∣∣∣∣cos(θ)− 1
2

∣∣∣∣}

Emin (V, T ) = min
θ∈M

{θ}

Emax (V, T ) = max
θ∈M

{θ} ,

where in the latter two cases we take θ ∈ [0, π]. It is known that the Delaunay
triangulation, which can be computed efficiently, maximizes the minimum angle of
a mesh. In other words, T = arg maxEmin is the Delaunay triangulation. There is
also an O(n2 log n) time algorithm for computing the minmax angle triangulation of
a fixed set of points [11], so we have a reasonable way to compute T = arg minEmax.

We claim that when all triangulations of a point set have a maximum angle that
is at least π/2, a triangulation minimizing Emax is also a triangulation that minimizes
Ecos. This claim is readily proved as a corollary of the following theorem.

Theorem 5.1. Let f be a strictly increasing function of θ and g a nondecreasing
function of θ for θ ∈ [0, π]. If Ef (T ) = max{f(θi)} and Eg(T ) = max{g(θi)}, then
arg min Ef ⊆ arg min Eg.

Proof. For each triangulation T , there exists some angle θT such that Ef (T ) =
max{f(θi)} = f(θT ). Thus for all other angles θ appearing in triangulation T , we
have that f(θT ) ≥ f(θ).

Now consider a specific T0 ∈ arg min Ef . We have Ef (T0) ≤ Ef (T ) for all admis-
sible triangulations T . It follows that f(θT0) ≤ f(θT ) for all admissible triangulations
T , since Ef (T ) = f(θT ). Moreover, since f is a strictly increasing function of θ, we
can conclude that θT0 ≤ θT for all admissible triangulations T . Then since g is a
nondecreasing function of θ, we have g(θT0) ≤ g(θT ) for all admissible T .

Now we claim that for arbitrary triangulation T we have that g(θT ) ≥ g(θ) for all
angles θ appearing in triangulation T . If this were not the case, then there would exist
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some angle θ̂ in T with g(θ̂) > g(θT ). Since g is nondecreasing, it would follow that
θ̂ > θT , and since f is strictly increasing, we would have f(θ̂) > f(θT ). This, however,
contradicts our definition of θT , which states that f(θT ) = max{f(θi)} ≥ f(θ̂). We
conclude that the claim is correct.

It follows, then, that g(θT ) = max{g(θi)} = Eg(T ) for each triangulation T .
In particular, the inequality g(θT0) ≤ g(θT ) implies that Eg(T0) ≤ Eg(T ) for all
admissible triangulations T . By definition, T0 is a member of the set arg minEg.

Corollary 5.2. If f is a strictly increasing function of θ for θ ∈ [0, π], then
arg min Ef = arg minEmax.

Proof. The function Emax is of the form Eg where g is the identity function
on [0, π]. Since g is a strictly increasing function, we may apply the theorem in
both directions to show that arg minEf ⊆ arg min Emax and that arg min Emax ⊆
arg min Ef . We conclude that arg minEmax = arg minEf .

Corollary 5.3. If all triangulations of a set V of vertices have maximum angle
at least π/2, then a triangulation minimizing Emax also minimizes Ecos and vice
versa.

Proof. We can restate the corollary as follows. If Emax ≥ π/2 for all admissible
triangulations T , then arg min Ecos = arg minEmax. This follows because Ecos is of
the form Ef where f = |cos(θ)− 1/2| is a strictly increasing function on the interval
[π/2, π], and f(θ) < f(π/2) for 0 < θ < π/2. For all practical purposes, we could
redefine f on [0, π/2] and make it a strictly increasing function on [0, π] because we
know that for all admissible T , the maximal f(θi) occurs for some θi ≥ π/2.

Some care must be taken for meshes that have an angle θ = 0, but we know that
a triangle with an angle of 0 has some angle measuring at least π/2, even if two of
the triangle vertices coincide. Since f(π/2) = f(0), we may say that on the triangle
f is maximized at the largest angle θ ≥ π/2.

It should be clear that if if a triangulation exists with Emax < π/2, this kind
of reasoning no longer applies. In that case, Ecos may be maximized at some angle
θ ≈ 0 rather than at the largest angle of the mesh. In the next theorem we establish
that there is an important relationship between arg minEmax and arg minEcos even
when a well-centered triangulation exists.

Theorem 5.4. If a well-centered triangulation of a point set exists, then that
well-centered triangulation is both the Delaunay triangulation of the point set and the
minmax triangulation of the point set.

Proof. When the Delaunay triangulation is not unique (i.e., the unique Delaunay
complex is not a triangulation), at least four points are cocircular. When the Delaunay
complex has a cell with four or more vertices, any triangulation of the cell must contain
an angle of at least π/2. This can be argued from considering triangulations of the cell
formed by inserting diagonals. An ear of the triangulation of the cell is a triangle for
which two of the triangle edges are also edges of the Delaunay cell. We know that for
any triangulation of the Delaunay cell, at least two of the resulting triangles will be
ears. Moreover, we can cover the Delaunay cell with a pair of closed semidiscs in such
a way that at least one semidisc completely contains an ear. For that ear, the angle
along the boundary of the Delaunay cell is at least π/2. We conclude that if there is
no unique Delaunay triangulation of a point set, then no Delaunay triangulation of
the point set is well-centered.

Suppose, then, that a point set permits a well-centered triangulation T0. T0 is a
Delaunay triangulation, because the characterization of well-centeredness in Thm. 3.1
is a stronger condition than the empty circle condition that defines a Delaunay trian-
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Fig. 5.1. The minmax triangulation may produce a triangulation in which interior vertices
have insufficient valence, even when there are triangulations that permit sufficient valence for all
interior vertices. The sequence of figures shows a point set, the minmax triangulation of the point
set, and alternate triangulation of the point set (in which all vertices have sufficient valence), and
a well-centered triangulation that is obtained by moving only one vertex starting from the alternate
triangulation of the point set.

gulation; the n-dimensional equatorial balls of Thm. 3.1 are a cover for the circumcircle
of an n-well-centered simplex, and in an n-well-centered mesh, the equatorial balls
are empty. The Delaunay triangulation is unique in this case (by the argument of
the preceding paragraph). Moreover, any other triangulation T of the point set has a
maximum angle that is at least as large as π/2; otherwise T would be well-centered,
and, therefore, Delaunay, contradicting the uniqueness of the Delaunay triangulation.
We conclude that the minmax triangulation in this case is T0 and is unique.

Combining Thm. 5.4 with Cor. 5.3 we see that arg minEcos = arg minEmax in
all cases. This is a nice result, and it suggests that using the minmax triangulation
is always a good idea. Unfortunately, the minmax triangulation and the Delaunay
triangulation both have the undesirable property that they may have interior vertices
with only four neighbors. Figure 5.1 shows a small point set for which the minmax
triangulation contains an interior vertex with only four neighbors. As we have already
noted, as long as we maintain the mesh connectivity, we cannot make this mesh well-
centered, regardless of what function we optimize.

This is one of the main reasons we keep the mesh connectivity the same after pre-
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processing the mesh. We want to avoid the possibility of a lonely vertex appearing in
the mesh during optimization. A reasonable alternative to the minmax triangulation
might be the minmax triangulation over the set of triangulations that have no lonely
vertices, but we do not know how to compute that triangulation efficiently.

There is also a question of the objective in obtaining a well-centered triangulation.
If we want the result mesh to be as similar to the input as possible, a global mesh con-
nectivity update might not be appropriate. The update could potentially change the
mesh significantly. It is probably better in that case to update the mesh connectivity
locally, leaving the mesh as similar as possible to the input mesh. This is the approach
we have taken in our preprocessing algorithm, which, for the two-dimensional case, is
not described in this paper, but is outlined in [25].

6. Experimental Results. In this section we give some experimental results
of applying our energy minimization to a variety of meshes. All of the initial meshes
shown here permit well-centered triangulations. In some cases the “initial mesh”
shown here is actually the output of our preprocessing algorithm. For the energy
minimization for planar triangulations we initially implemented the conjugate gradi-
ent method in MATLAB, using the Polak-Ribiere formula for modifying the search
direction [15]. For a problem with n free variables, we reset the search direction to the
negative gradient after every n iterations. We also implemented our own line search
in order to have greater control than MATLAB’s fminbnd function provides. Most of
the results that follow are from the MATLAB implementation, and where the phrase
number of iterations appears, it refers to the number of iterations of the conjugate
gradient method.

Recently we implemented the energy minimization using the Mesquite library de-
veloped at Sandia National Laboratories [6]. We implemented the cost function Ep

by developing a new element-based QualityMetric with a constructor accepting the
argument p and summing the QualityMetric values of each element with the standard
LPtoPTemplate objective function (with power 1). We continued to use the conjugate
gradient method for the optimization, but we did not provide an analytical gradient to
Mesquite, leaving Mesquite to numerically estimate the gradients. With the Mesquite
library it was much simpler to implement Ep for tetrahedral meshes, and the results we
show for three-dimensional meshes were obtained from the Mesquite-based implemen-
tation of the energy minimization. The results for our largest two-dimensional mesh
were also generated using Mesquite. The optimization was terminated with a Termi-
nationCriterion based on the number of iterations, so the phrase number of iterations
gives some indication of processing time for the Mesquite-based implementation as
well as the implementation in MATLAB.

Shading scheme: For all the meshes shown hereafter the shading indicates tri-
angle quality with regard to well-centeredness. The shade of a triangle is based on
the cosine of the largest angle of the triangle. Darker shade indicates greater largest
angle and there is a noticeable jump at 90° so that well-centered triangles can be
distinguished from those that are not. For example, the ten triangles that are not
well-centered in the initial mesh on the left in Fig. 6.1 should be easily identifiable.

6.1. Small Meshes. The top row of Fig. 6.1 shows a test involving a small mesh
of a regular pentagon and the well-centered mesh we obtained. Fourteen iterations
using the energy E4, results in the well-centered mesh shown. The final mesh on the
right in top row of Fig. 6.1 has some long, thin isosceles triangles and a rather abrupt
change from small triangles in the center to large triangles along the boundary. These
features may be unusual compared to an intuitive idea of a nice mesh, but they are
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Fig. 6.1. Regular pentagon on top left is not well-centered. On top right is the mesh obtained
by our method by applying 14 steps of conjugate gradient minimization of E4 and it is well-centered.
The second row shows the result of applying variational triangle meshing to the initial mesh. We
used a boundary-fixing variant of the 2D version of the variational tetrahedral meshing algorithm
[2]. The resulting mesh shown is not well-centered.

permitted in a well-centered planar triangulation, and are, in this case, essential to
getting a well-centered triangulation with the given boundary vertices and topology.

In Section 2 we mentioned variational triangulations. These are based on an
iterative energy minimization algorithm introduced in [2] for tetrahedral meshing. We
adapted it for comparison with our method. Our adaptation keeps boundary vertices
fixed, but is otherwise analogous to the algorithm given in [2]. The bottom row of
Fig. 6.1 shows the result of applying variational triangle meshing to the initial mesh on
top left. The result is shown after 10 iterations, which is quite near convergence. The
vertices are spread out, and the triangles in the middle of the mesh are nice, but the
boundary triangles are all obtuse. The energy used for variational triangle meshing
does not detect a benefit of clustering the interior vertices near the center of the
pentagon. We tried variational triangle meshing for several of our meshes, sometimes
obtaining good results and sometimes not. We did not see any clear pattern to the
cases for which it worked versus those for which it did not.

We also tried the method of Centroidal Voronoi Tessellation (CVT) [9] for several
of our meshes. For our implementation of CVT, we kept boundary vertices fixed,
along with any other vertices that had unbounded Voronoi cells. Vertices in the
interior of the mesh with bounded Voronoi cells were moved to the centroid of their
full Voronoi cells (not clipped by the domain). The algorithm worked in some cases
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but not in others, and we could see no good explanation for why it worked or did not
work. The mesh shown in top left of Fig. 6.2 is one of the cases for which centroidal
Voronoi tessellation did not work. The actual initial mesh is shown on the left in
middle row of Fig. 6.2, but CVT depends on only the vertex positions and uses the
Delaunay triangulation of the point set, so we show the Delaunay triangulation and
the bounded Voronoi cells in Fig. 6.2. We see that this mesh is, in fact, a fixed point
of our implementation of CVT while being far from well-centered. Note also that the
pattern of the mesh can be extended, and it will remain a fixed point of CVT.

There are other extensible patterns that are not well-centered but are fixed points
of the CVT variant that clips Voronoi cells to the domain and allows boundary ver-
tices to move within the boundary. Our method yields a well-centered mesh with 30
iterations of energy minimization using E4 (Fig. 6.2). That figure also shows how the
energy and the maximum angle evolve. The graphs show that the method is near-
ing convergence at 30 iterations and that decreases in the energy E4 do not always
correspond to decreases in the maximum angle of the mesh.

6.2. Larger Meshes. These first two examples shown in Figures 6.1 and 6.2
are for small toy meshes. We have also done experiments with larger meshes. An
experiment with the midsize mesh of the disc shown in Fig. 6.3 helps demonstrate
that the method applies to large meshes while the mesh is small enough that its
details can be visually inspected. The initial mesh is shown in the top row of Fig. 6.3.
In the bottom row, the well-centered mesh obtained by 30 iterations minimizing E4

appears. A histogram showing the distribution of the maximum angles of the triangles
is included beside each mesh. We see that the energy minimization removes all the
large angles of the mesh, finding a mesh with maximum angle less than 83° (actually
about 82.383°), and having a large majority of triangles with maximum angle in the
range [62, 76].

In Fig. 6.4 we show results for a much larger mesh, a mesh of a two-dimensional
slice of the Titan IV rocket. This mesh, which is based on a mesh that the third author
produced from his work for the Center for Simulation of Advanced Rockets, has 8966
triangles. The mesh is so large that it is impossible to see the details of the whole
mesh at the same time, so we deviate from the usual shading scheme for this mesh.
At the top of Fig. 6.4 we show an overview of the entire mesh, with the initial mesh
at the very top and the result (after optimizing E10 for 1000 iterations) just below it.
These meshes are drawn without showing element edges, because even the thinnest
possible edges would entirely obscure the regions where the mesh is most refined. The
interior of each element is displayed using a red color for nonacute triangles and gray
for acute triangles. We follow the usual convention of making the triangles darker as
the maximum angle of the triangle increases. The background color helps define the
boundary of the mesh by providing contrast with the gray elements.

Below the mesh overview is a zoomed view of the top center portion of the mesh,
which represents a portion of a joint slot of the titan IV rocket. The zoom for the initial
mesh is shown on the left, and the zoom for the result mesh is shown on the right. In
the initial mesh there are 1188 nonacute triangles (≈ 13.25% of the triangles), with a
maximum angle around 155.88°. The result mesh has a maximum angle of 89.89°, and
all but 141 triangles (≈ 1.57%) have maximum angle below 85°. Of the 141 triangles
that have angles above 85°, 14 have all three vertices on the boundary and are thus
completely specified by the boundary. One example of this is in the upper left corner
of the zoomed view, where there is a triangle that looks much like an isosceles right
triangle. Another 60 triangles are forced to have triangles larger than 85°because they
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Fig. 6.2. Mesh shown on top left is a fixed point of the Centroidal Voronoi Tessellation al-
gorithm [9] but it is far from being well-centered. Bounded Voronoi cells are shown on right, with
vertices denoted by empty circles and centroids of Voronoi cells by plus symbols. The middle row
shows results of our algorithm. Starting with initial mesh in middle left, 30 iterations of our energy
minimization using E4 yields the well-centered mesh in middle right. The evolution of energy and
maximum angle observed during energy minimization is shown in the bottom row.

are part of a pair of triangles along a low curvature curved boundary. There are four
such pairs along each curved boundary in the zoomed view in Fig. 6.4. In fact, all but
6 of the 141 “worst” triangles have at least one boundary vertex, and the remaining
6 triangles each have a vertex that is distance one from the boundary.

6.3. Meshes Requiring Retriangulation. Next, we show a mesh for which
our energy could not find a well-centered configuration. However, when we applied
our method after a retriangulation of the same set of vertices, we did obtain a well-
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Fig. 6.3. The initial mesh is shown in the top row. The well-centered mesh resulting from 30
iterations of E4 minimization is shown in the bottom row. A histogram of maximum angles of the
triangles is shown next to each mesh.

centered mesh. This experiment involved a mesh called the two holes mesh, which is
shown in its initial state on the top left in Fig. 6.5. The mesh has no lonely vertices, so
we apply the energy minimization directly. After 500 iterations using the energy E4,
we obtain the mesh shown on top right of Fig. 6.5. We can see from the shading that
the general quality is much improved, but there is a problem. In the top right corner
of the result mesh there are some inverted triangles. The region where triangles have
become inverted can be readily identified in middle row of Fig. 6.5, which is a zoom
on the top right portion of the mesh. Inversion of triangles is rare, since it requires
some angle of the mesh to reach 180°, but for the same reason, when inversion does
occur, the inverted triangles tend to stay inverted.

It is possible that by using a higher power p or some linear combination of different
powers p one could obtain a well-centered configuration directly from the initial two
holes mesh. There are other ways to get a well-centered mesh, however, as we shall
see. One way is to try a completely different mesh topology for the same vertex
set. The bottom row of Fig. 6.5 shows the Delaunay triangulation of the two holes
mesh (after preprocessing was applied, so the mesh is no longer Delaunay). After 500
iterations with energy E4, the result looks quite good, but there are still some obtuse
triangles, so we follow that with 500 iterations using the energy E8, which focuses
more on reducing the largest angles of the mesh and less on improving the general
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Fig. 6.4. Results of an experiment with a mesh of a 2-dimensional slice of the Titan IV rocket.
The initial mesh is displayed at the top. Below it is the result mesh, which was obtained by 1000
iterations minimizing E10 on the mesh. A zoomed in view on the joint slot (from the top center of
the original view) shows the level of mesh refinement in the regions of higher detail. For the zoomed
view, the original mesh is on the left, and the result mesh on the right. In all views, red is used
for nonacute triangles, and gray indicates acute triangles. Colors get darker as the maximum angle
increases.

quality of the triangles. The well-centered result appears on bottom right in Fig. 6.5.
Another way to get a well-centered mesh of the two holes domain is to change

the location of the boundary vertices. The mesh on the left in Fig. 6.6 has the
same topology as the initial two holes mesh from Fig. 6.5, but the vertices along the
boundary have moved. Instead of being equally spaced, the vertices on the outer
boundary are more concentrated at the north and south and more spread out along
the east and west. The vertices along the inner boundary have also moved slightly.
For this mesh we use the energy E6, reaching a well-centered configuration by 100
iterations. This mesh appears on the right in Fig. 6.6. The converged result with
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Fig. 6.5. Energy minimization applied to the two holes mesh on top left does not yield a well-
centered mesh. Result after 500 iterations of E4 minimization is shown on top right. This resulting
mesh has some inverted triangles which are shown in the close-up in middle row. With a different
connectivity for the same vertex set, our minimization does produce a well-centered mesh. This is
shown in bottom row. Bottom left shows a Delaunay triangulation of the original vertex set that has
been preprocessed. Using this mesh as the initial mesh and applying 500 iterations of E4 followed
by 500 iterations of E8 minimization yields the well-centered mesh shown in bottom right.

E6 actually has one slightly obtuse triangle (90.27°), but there are many iterations
during the minimization for which the mesh is well-centered.

Working from the well-centered mesh on the right in Fig. 6.6 one can obtain a
well-centered mesh that conforms to both the topology and the boundary vertices of
the initial mesh in Fig. 6.5. The boundary vertices are slowly adjusted back to their
original locations, taking about five steps of linear interpolation to move them back.
At each step several hundred iterations with power p as high as 12 are necessary. We
do not explain precise steps here, but a well-centered mesh obtained in this general
way is shown in Fig. 6.7

6.4. Graded Meshes. The two holes mesh of Fig. 6.5 is graded. However, the
gradation was controlled partly by the presence of the internal boundaries (of holes)
and the geometry of the mesh. As a final result we show a mesh obtained by applying
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Fig. 6.6. Two holes mesh, with a different boundary. The mesh on left has the same connectivity
as the initial mesh in top left of Fig. 6.5, but the vertices along the boundary have been moved. The
well-centered mesh on right was obtained with 100 iterations of E6 minimization.

Fig. 6.7. Well-Centered mesh of the two holes domain conforming to the mesh topology and
boundary vertices of the original two holes mesh. The mesh was obtained from the mesh on the right
of Fig. 6.6 by several steps of adjusting the boundary vertices back towards their original locations
and finding a well-centered mesh matching the adjusted boundary vertices.

energy minimization to a square mesh with an artificially induced gradation. The
initial mesh appears at left in Fig. 6.8. The nearly converged result of 50 iterations
minimizing E4 is displayed to its right. From the other experimental results that we
have shown, it is clear that the initial size of the triangles of a mesh is not always pre-
served well. We expect, however, that the energy will generally preserve the grading
of an input mesh if the initial mesh is relatively high quality. This hypothesis stems
from the observation that the energy is independent of triangle size, the idea that
the topology of the mesh combined with the property of well-centeredness somehow
controls the triangle size, and the supportive evidence of this particular experiment.

6.5. 3D Meshes. For tetrahedral meshes, the question of when the mesh con-
nectivity permits a 3-well-centered mesh is more difficult than its two-dimensional
analogue. In part because we do not yet have an effective preprocessing algorithm for
tetrahedral meshes, most of our experiments in three dimensions have been limited
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Fig. 6.8. A Graded Mesh of the Square

Fig. 6.9. A simple 3-dimensional mesh with one free vertex. The initial mesh appears on the
left. Optimizing E4 produces the mesh on the right in 10 iterations.

to very simple meshes such as the one shown in Fig. 6.9. Note that the shading in
that mesh and also in the mesh shown in Fig. 6.10 has nothing to do with the quality
of the tetrahedral elements of the mesh; it merely represents the shadows that would
result from viewing the object under a light source. The mesh shown in Fig. 6.9 has
only one free vertex, the vertex in the interior of the polyhedron. The initial mesh,
which has several poor quality tetrahedra, is shown on the left of Fig. 6.9. Using the
Mesquite software to optimize E4 on the mesh produces the completely well-centered
result (displayed on the right) in ten iterations.

In addition to running tests on small meshes for which we knew that a 3-well-
centered mesh existed with the same mesh connectivity as the initial mesh, we did
some experiments with a mesh of the cube. These experiments were partly motivated
by the desire to confirm that there is a 3-well-centered mesh of the cube, and the initial
mesh was carefully designed to have a nice surface mesh and a mesh connectivity for
which each vertex had at least 10 adjacent edges (16 adjacent tetrahedra). The
initial mesh, though nice, was not 3-well-centered. Optimizing E16 with the Mesquite
implementation found a 3-well-centered mesh of the cube in 20 iterations. Figure 6.10
shows a cutout view of the interior of that 3-well-centered mesh of the cube.
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Fig. 6.10. A cutout view of some of the tetrahedra in the interior of a 3-well-centered mesh of
the cube.
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Fig. 6.11. Histogram of minimum h/R for tetrahedra in the mesh of the cube, before (left) and
after (right) minimizing E16 with 20 iterations of the conjugate gradient method.

It is difficult to visually compare tetrahedral meshes, so we choose instead to
compare them with a histogram of the minimal h/R values. This histogram appears
in Fig. 6.11. As you study Fig. 6.11, keep in mind that having h/R > 0 at every
vertex of every tetrahedron is the condition for 3-well-centeredness. Also recall that
for the regular simplex, h/R = 1/3 for every vertex, and for any other tetrahedron,
there is some vertex for which h/R < 1/3 (by Lemma 4.1).
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7. Conclusions and Future Work. This paper characterizes the well-centeredness
of a simplex in arbitrary dimension and introduces a related cost function that quan-
tifies the well-centeredness of triangulations in any dimension, extending the function
introduced in [25]. Some properties of the cost function are discussed, and it is shown
that a cost function quantifying well-centeredness must be nonconvex. The authors
intend to do some additional theoretical analysis and proofs of when and how quickly
the optimization converges to a well-centered configuration. The nonconvexity of the
function makes the analysis difficult, and initial investigation suggests that it will be
hard to perform the analysis even in the context of a one-ring. Investigating other
options for performing the optimization would be worthwhile. In particular, we hope
to find good ways to localize the optimization so that it can be applied effectively in
the specific locations where it is needed, and also so that the algorithm will be easy to
parallelize. Collecting meaningful data about efficiency remains future work as well.

After introducing the cost function, the paper shows that the minmax angle tri-
angulation is the optimal triangulation with respect to the cost function, but discards
the minmax angle triangulation in favor of a local preprocessing algorithm introduced
in [25]. It would be nice to develop a similarly local preprocessing algorithm that
works in higher dimensions. Any characterization of the necessary conditions for the
mesh connectivity of a tetrahedral mesh in R3 to permit 3-well-centeredness would be
helpful in that regard. In addition, a complete characterization of the necessary and
sufficient conditions on mesh connectivity in two dimensions is still lacking.

The experiments of Sec. 6 show that the proposed cost function can be effective
in finding a well-centered triangulation for meshes that permit such triangulations.
It is possible, however, that the cost function could be improved. For example, the
authors are in the process of implementing an algorithm that minimizes Ep with a
constraint that prevents element inversions. Something as simple as taking a linear
combination of Ep for different powers of p also might improve the cost function.
A systematic study of the effects of this algorithm on the aspect ratio of elements
would be worthwhile as well. Although the finite element method is not a primary
motivation for the work on well-centered meshes, it is possible that the method could
be used effectively to improve finite element meshes in some cases.
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