1,063 research outputs found

    A Centroid-based Heuristic Algorithm for the Capacitated Vehicle Routing Problem

    Get PDF
    The vehicle routing problem (VRP) is famous as a nondeterministic polynomial-time hard problem. This study proposes a centroid-based heuristic algorithm to solve the capacitated VRP in polynomial time. The proposed algorithm consists of three phases: cluster construction, cluster adjustment, and route establishment. At the cluster construction phase, the farthest node (customer) among un-clustered nodes is selected as a seed to form a cluster. The notion of the geometrical centre of a cluster is introduced in this study to be utilized at the cluster construction and the cluster adjustment phases. The proposed algorithm has a polynomial time complexity of O(n2.2). Experimental results on Augerat benchmark dataset show that the proposed 3-phase approach can result in smaller distances than the Sweep algorithm in more cases

    Matheuristics: using mathematics for heuristic design

    Get PDF
    Matheuristics are heuristic algorithms based on mathematical tools such as the ones provided by mathematical programming, that are structurally general enough to be applied to different problems with little adaptations to their abstract structure. The result can be metaheuristic hybrids having components derived from the mathematical model of the problems of interest, but the mathematical techniques themselves can define general heuristic solution frameworks. In this paper, we focus our attention on mathematical programming and its contributions to developing effective heuristics. We briefly describe the mathematical tools available and then some matheuristic approaches, reporting some representative examples from the literature. We also take the opportunity to provide some ideas for possible future development

    Improvement to an existing multi-level capacitated lot sizing problem considering setup carryover, backlogging, and emission control

    Get PDF
    This paper presents a multi-level, multi-item, multi-period capacitated lot-sizing problem. The lot-sizing problem studies can obtain production quantities, setup decisions and inventory levels in each period fulfilling the demand requirements with limited capacity resources, considering the Bill of Material (BOM) structure while simultaneously minimizing the production, inventory, and machine setup costs. The paper proposes an exact solution to Chowdhury et al. (2018)\u27s[1] developed model, which considers the backlogging cost, setup carryover & greenhouse gas emission control to its model complexity. The problem contemplates the Dantzig-Wolfe (D.W.) decomposition to decompose the multi-level capacitated problem into a single-item uncapacitated lot-sizing sub-problem. To avoid the infeasibilities of the weighted problem (WP), an artificial variable is introduced, and the Big-M method is employed in the D.W. decomposition to produce an always feasible master problem. In addition, Wagner & Whitin\u27s[2] forward recursion algorithm is also incorporated in the solution approach for both end and component items to provide the minimum cost production plan. Introducing artificial variables in the D.W. decomposition method is a novel approach to solving the MLCLSP model. A better performance was achieved regarding reduced computational time (reduced by 50%) and optimality gap (reduced by 97.3%) in comparison to Chowdhury et al. (2018)\u27s[1] developed model

    The Vehicle Routing Problem with Service Level Constraints

    Full text link
    We consider a vehicle routing problem which seeks to minimize cost subject to service level constraints on several groups of deliveries. This problem captures some essential challenges faced by a logistics provider which operates transportation services for a limited number of partners and should respect contractual obligations on service levels. The problem also generalizes several important classes of vehicle routing problems with profits. To solve it, we propose a compact mathematical formulation, a branch-and-price algorithm, and a hybrid genetic algorithm with population management, which relies on problem-tailored solution representation, crossover and local search operators, as well as an adaptive penalization mechanism establishing a good balance between service levels and costs. Our computational experiments show that the proposed heuristic returns very high-quality solutions for this difficult problem, matches all optimal solutions found for small and medium-scale benchmark instances, and improves upon existing algorithms for two important special cases: the vehicle routing problem with private fleet and common carrier, and the capacitated profitable tour problem. The branch-and-price algorithm also produces new optimal solutions for all three problems

    A Branch-and-Cut based Pricer for the Capacitated Vehicle Routing Problem

    Get PDF
    openIl Capacitated Vehicle Routing Problem, abbreviato come CVRP, è un problema di ottimizzazione combinatoria d'instradamento nel quale, un insieme geograficamente sparso di clienti con richieste note deve essere servito da una flotta di veicoli stazionati in una struttura centrale. Negli ultimi due decenni, tecniche di Column generation incorporate all'interno di frameworks branch-price-and-cut sono state infatti l'approccio stato dell'arte dominante per la costruzione di algoritmi esatti per il CVRP. Il pricer, un componente critico nella column generation, deve risolvere il Pricing Problem (PP) che richiede la risoluzione di un Elementary Shortest Path Problem with Resource Constraints (ESPPRC) in una rete di costo ridotto. Pochi sforzi scientifici sono stati dedicati allo studio di approcci branch-and-cut per affrontare il PP. L'ESPPRC è stato tradizionalmente rilassato e risolto attraverso algoritmi di programmazione dinamica. Questo approccio, tuttavia, ha due principali svantaggi. Per cominciare, peggiora i dual bounds ottenuti. Inoltre, il tempo di esecuzione diminuisce all'aumentare della lunghezza dei percorsi generati. Per valutare la performance dei loro contributi, la comunità di ricerca operativa ha tradizionalmente utilizzato una serie d'istanze di test storiche e artificiali. Tuttavia, queste istanze di benchmark non catturano le caratteristiche chiave dei moderni problemi di distribuzione del mondo reale, che sono tipicamente caratterizzati da lunghi percorsi. In questa tesi sviluppiamo uno schema basato su un approccio branch-and-cut per risolvere il pricing problem. Studiamo il comportamento e l'efficacia della nostra implementazione nel produrre percorsi più lunghi comparandola con soluzioni all'avanguardia basate su programmazione dinamica. I nostri risultati suggeriscono che gli approcci branch-and-cut possono supplementare il tradizionale algoritmo di etichettatura, indicando che ulteriore ricerca in quest'area possa portare benefici ai risolutori CVRP.The Capacitated Vehicle Routing Problem, CVRP for short, is a combinatorial optimization routing problem in which, a geographically dispersed set of customers with known demands must be served by a fleet of vehicles stationed at a central facility. Column generation techniques embedded within branch-price-and-cut frameworks have been the de facto state-of-the-art dominant approach for building exact algorithms for the CVRP over the last two decades. The pricer, a critical component in column generation, must solve the Pricing Problem (PP), which asks for an Elementary Shortest Path Problem with Resource Constraints (ESPPRC) in a reduced-cost network. Little scientific efforts have been dedicated to studying branch-and-cut based approaches for tackling the PP. The ESPPRC has been traditionally relaxed and solved through dynamic programming algorithms. This approach, however, has two major drawbacks. For starters, it worsens the obtained dual bounds. Furthermore, the running time degrades as the length of the generated routes increases. To evaluate the performance of their contributions, the operations research community has traditionally used a set of historical and artificial test instances. However, these benchmark instances do not capture the key characteristics of modern real-world distribution problems, which are usually characterized by longer routes. In this thesis, we develop a scheme based on a branch-and-cut approach for solving the pricing problem. We study the behavior and effectiveness of our implementation in producing longer routes by comparing it with state-of-the-art solutions based on dynamic programming. Our results suggest that branch-and-cut approaches may supplement the traditional labeling algorithm, indicating that further research in this area may bring benefits to CVRP solvers

    A dual exterior point simplex type algorithm for the minimum cost network flow problem

    Get PDF
    A new dual simplex type algorithm for the Minimum Cost Network Flow Problem (MCNFP) is presented. The proposed algorithm belongs to a special 'exterior- point simplex type' category. Similarly to the classical network dual simplex algorithm (NDSA), this algorithm starts with a dual feasible tree-solution and reduces the primal infeasibility, iteration by iteration. However, contrary to the NDSA, the new algorithm does not always maintain a dual feasible solution. Instead, the new algorithm might reach a basic point (tree-solution) outside the dual feasible area (exterior point - dual infeasible tree)

    Polyhedral techniques in combinatorial optimization II: applications and computations

    Get PDF
    The polyhedral approach is one of the most powerful techniques available for solving hard combinatorial optimization problems. The main idea behind the technique is to consider the linear relaxation of the integer combinatorial optimization problem, and try to iteratively strengthen the linear formulation by adding violated strong valid inequalities, i.e., inequalities that are violated by the current fractional solution but satisfied by all feasible solutions, and that define high-dimensional faces, preferably facets, of the convex hull of feasible solutions. If we have the complete description of the convex hull of feasible solutions at hand all extreme points of this formulation are integral, which means that we can solve the problem as a linear programming problem. Linear programming problems are known to be computationally easy. In Part 1 of this article we discuss theoretical aspects of polyhedral techniques. Here we will mainly concentrate on the computational aspects. In particular we discuss how polyhedral results are used in cutting plane algorithms. We also consider a few theoretical issues not treated in Part 1, such as techniques for proving that a certain inequality is facet defining, and that a certain linear formulation gives a complete description of the convex hull of feasible solutions. We conclude the article by briefly mentioning some alternative techniques for solving combinatorial optimization problems
    corecore