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Abstract. The vehicle routing problem (VRP) is famous as a nondeterministic
polynomial-time hard problem. This study proposes a centroid-based heuristic al-
gorithm to solve the capacitated VRP in polynomial time. The proposed algorithm
consists of three phases: cluster construction, cluster adjustment, and route estab-
lishment. At the cluster construction phase, the farthest node (customer) among
un-clustered nodes is selected as a seed to form a cluster. The notion of the geo-
metrical centre of a cluster is introduced in this study to be utilized at the cluster
construction and the cluster adjustment phases. The proposed algorithm has a poly-
nomial time complexity of O(n2.2). Experimental results on Augerat benchmark
dataset show that the proposed 3-phase approach can result in smaller distances

than the Sweep algorithm in more cases.

Keywords: Vehicle routing problem, heuristics, cluster-first route-second

∗ corresponding author



722 K. Shin, S. Han

1 INTRODUCTION

The vehicle routing problem (VRP) is famous as a NP-hard problem. The VRP can
be stated as follows: Generate a sequence of deliveries for each vehicle in a homoge-
neous fleet based at a single depot so that all customers are serviced and the total
distance travelled by the fleet is minimized. Each vehicle has a fixed capacity and
must leave from and return to the depot. Each customer has a known demand and is
serviced by exactly one visit of a single vehicle. The capacitated VRP is like a VRP
with an additional constraint that every vehicle must have a uniform capacity for
a single commodity. The VRP and CVRP are addressed by many researchers. Their
research efforts can be sorted as exact approaches and heuristic methods. Since ex-
act approaches try to find the optimal solution, they take much time that cannot be
applied in the real world. Heuristic or meta-heuristic methods trying to find optimal
or near optimal routes in modest time are more actively researched recently.

In this work, a novel heuristic method is propsed to solve the CVRP with a poly-
nomial time complexity of O(n2.2). The proposed algorithm consists of three phases:
first, nodes (customers) are clustered into a feasible solution by selecting the far-
thest node as a seed of a cluster. Second, nodes are moved into the closest cluster
by utilizing the notion of the centre of a cluster. Finally, the actual routes are estab-
lished by applying a travelling salesman problem (TSP) algorithm on the clusters
produced in phases one and two.

This study is organized as follows: previous works are reviewed in Section 2,
and in Section 3, the CVRP, the objective function of this study, and the notion of
the geometrical centre of a cluser are explained. The proposed 3-phase algorithm
is explained in Section 4. In Section 5, the experimental results are illustrated and
conclusions are made with the directions for future works in Section 6.

2 LITERATURE REVIEW

To solve the VRP, there were two types of research. One involved exact methods
of finding the optimal solution by computing all possible solutions and the other
was heuristic or meta-heuristic approaches, which performed a relatively limited
exploration of the search space and typically produced good quality solutions with
modest computing times.

Exact methods can be classified into the following categories: dynamic program-
ming, set partitioning, branch-and-bound, and branch-and-cut. Until recently, exact
methods for the CVRP have been dominated by branch-and-cut. One of the best
branch-and-cut algorithms was developed by Lysgaard et al. [1]. Recent research
results indicated that branch-and-cut-and-price algorithms were more promising ap-
proaches for the CVRP as Fukasawa et al. [2] showed.

Heuristic methods can be broadly classified into two main classes: classical
heuristics developed mostly between 1960 and 1990, and meta-heuristics actively
researched from the 1990’s. The Clarke and Wright saving algorithm [3] was a re-
presentative classical heuristic approach applied to problems where the number of
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vehicles was not fixed. Several enhancements to the Clarke and Wright algorithm
were proposed [4, 5], which aimed at reducing computation time and memory re-
quirements. Insertion heuristic was another well known classical method; Mole
and Jameson [6] expanded one route at a time and Christofides et al. [7] applied, in
turn, a sequential and a parallel route construction procedure. A cluster-first, route-
second heuristic was introduced by the Sweep algorithm [8, 9] where feasible clusters
were initially formed by rotating a ray centered at the depot and a vehicle route
was then obtained for each cluster by solving a travelling salesman problem (TSP).
Fisher and Jaikumar [10] also tried to solve the VRP by a cluster-first, route-second
algorithm. They solved a Generalized Assignment Problem (GAP), instead of using
a geometric method to form the clusters. Bramel and Simchi-Levi [11] described
a two-phase heuristic where the seeds were determined by solving capacitated loca-
tion problems and the remaining vertices were gradually included into their allotted
route in a second stage.

In meta-heuristics, the emphasis was on performing a deep exploration of the
most promising regions of the solution space. Lin [12] introduced λ-opt mecha-
nism to describe the improvement procedure. Here, λ edges were removed from the
tour and the λ remaining segments were reconnected in all possible ways. Lin and
Kernighan [13] modified λ dynamically throughout the search and Or [14] proposed
the Or-opt method consisting of displacing strings of three, two, or one consecutive
vertices to another location. Bullnheimer et al. [15] suggested the first ant system for
the CVRP. They improved their ant system by using two basic ant system phases:
the construction of vehicle routes and the trail update [16]. Baker and Ayechew [17]
considered the application of a genetic algorithm (GA) to the basic vehicle rout-
ing problem, where customers having a known demand were supplied from a single
depot. The basic concept of a Tabu Search (TS), as described by Glover [18], was
a meta-heuristics superimposed on another heuristics. The TS explored the solu-
tion space by moving at each iteration from a solution S to the best solution in
a subset of its neighborhood. Generally the quality of solutions produced by these
meta-heuristics is much higher than that obtained by classical heuristics but it is
important to provide the good initial solution found by classical heuristic to meta-
heuristic algorithm. In this paper, a cluster-first, route-second heuristic algorithm to
find solutions minimizing travelling distances with an unfixed number of vehicles is
proposed. The proposed algorithm consists of three phases which utilize the notion
of geometrical centre of a cluster. The result of the proposed algorithm can be used
as an initial solution for meta-heuristic algorithms.

3 DEFINITION

In this section, the capacitated VRP and the objective function that this study tries
to solve are defined and the notion of the geometrical centre of a cluster introduced
in this study is explained.
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3.1 CVRP and Objective Function

The capacitated vehicle routing problem (CVRP) is defined as follows: An undi-
rected graph G = (V, E) is given where V = {0, 1, · · · , n} is the set of n + 1 nodes
and E is the set of edges. Node 0 represents the depot and the remaining node
set V ′ = V − {0} corresponds to n customers. Every edge {i, j} ∈ E is assigned
a nonnegative cost ci,j . i ∈ V ′ is used to refer both to a customer and to its node
location. Each customer i ∈ V ′ requires a supply of qi units from the depot. A set
of M identical vehicles of capacity Q is stationed at the depot. A feasible solution of
the CVRP is composed of: a partition S = {r1, r2, · · · , rm} of V and a permutation
σi of ri specifying the order of the customers on route with the restriction that the
total demand of all customers supplied on a route ri does not exceed the vehicle
capacity Q. The cost of a given route ri = {v0, v1, · · · , vk+1} where vi ∈ V and
v0 = vk+1 = 0 (0 denotes depot), is given:

C(ri) =
k
∑

i=0

ci,i+1.

The total cost of solution S is:

TC(S) =
m
∑

i=0

C(ri).

The objective function can be described as designing routes so that all customers are
visited exactly once with the minimun cost of the solution regardless of the number
of vehicles being used.

3.2 Geometrical Centre of a Cluster

The notion of the geometrical centre (GC) of a cluster used in the proposed algorithm
can be defined as follows:

Let li = {v0, v1, · · · , vk} be cluster i, where vj is a member of cluster i.

GC(li) =





k
∑

j=0

vxj /k,
k
∑

j=0

vyj /k



 ,where vxj and vyj are x and y coordinates of vj (1)

Figure 1 shows the notion of GCs of clusters. (Circles and diamonds represent
seperately the nodes of the same cluster.)

4 PROPOSED 3-PHASE ROUTING ALGORITHM

The proposed algorithm is composed of three parts: cluster construction, cluster
adjustment, and route establishment. In this section, these three parts are explained
in detail.
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depot 

GC(l0) 

GC(l1) 

Fig. 1. The geometrical centre of a cluster

4.1 Cluster Construction

First, clusters are constructed by selecting the farthest node from the depot as
a cluster seed. The reason of choosing the farthest node as a seed is based on our
intuition that the farthest node is the critical point where other nodes can be served
along with the route visiting the node.

Once the farthest node, vi, from the depot is found, the first cluster l0 is formed
with vi and then the geometrical centre of the cluster, GC(l0), is calculated by using
formula (1). To add nodes to l0, the cluster construction algorithm finds vj among
un-clustered nodes, which is located closest from GC(l0), and includes vj to l0 only
if the demand of vj does not exceed the available truck capacity of l0. If vj is added
to cluster l0, the truck capacity of l0 is reduced by the demand of vj and GC(l0)
is recalculated. The same processes above are conducted until the available truck
capacity of l0 becomes smaller than the demand of the closest node from GC(l0).
If the demand of vj exceeds the available truck capacity of l0, the algorithm stops
to expand l0, and finds the farthest node, vk, from the depot among un-clustered
nodes again in order to generate another cluster, l1, with vk. These processes are
repeated until no unvisited node exists. Table 1 shows pseudo code of the cluster
construction phase. The time complexity of this phase is O(n2).

4.2 Cluster Adjustment

Once clusters are constructed, the cluster adjustment algorithm is applied to op-
timize the clusters. Cluster adjustment means that if node vk, which belongs to
cluster li, is closer to GC(lj) than GC(li), and the demand of vk does not exceed the
available capacity of lj, then move vk from li to cluster lj . If a node moves from li
to lj , GC(li) and GC(lj) are also recalculated. Figures 2 and 3 show the cluster
adjustment processes. In Figure 2, vk is a member of l0 but it is closer to GC(l1)
than GC(l0). If the available capacity of l1 is equal to or bigger than the demand of
vk, vk moves from l0 to l1 and GC(l0) and GC(l1) are recalculated. Table 2 shows
the pseudo code of the cluster adjustment phase. The time complexity of this phase
is also O(n2).
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Set i = 0 and Q = truck capacity
While (unvisited node exist)

vj = the farthest node among un-clustered nodes from the depot
Generate cluster li with vj
Set capacity of li = Q

While (demand of vj does not exceed available capacity of li)
Add vj to li
Reduce available capacity of li by demand of vj
Calculate GC(li)
vj = the closest node among un-clustered nodes from GC(li)

End while
i = i+1

End while

Table 1. Pseudo code for the cluster construction

depot 

GC(l1) vk 

GC(l0) 

Fig. 2. Before cluster adjustment

4.3 Route Establishment

After the clusters are adjusted in the second phase, finally the route establishment
algorithm is applied. Since route establishment means finding the shortest path of vi-
siting every node once in a cluster, an algorithm for the travelling salesman problem
(TSP) can be applied in this phase. The Lin-Kernighan heuristic [13] is used in this
work to find the shortest path because even though the algorithm is approximate,
optimal solutions are very quickly produced with the time complexity of O(n2.2).

depot 

GC(l0) 

GC(l1) vk 

Fig. 3. After cluster adjustment (GC of each cluster is moved)
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Set cluster group = {l0, l1, · · · , lm}
For i = 0 to m repeat

For every node vk in li
For every lj in cluster group

If (i 6= j and vk is closer to GC(lj) than GC(li) and available

capacity of lj is equal to or bigger than demand of vk)
Move vk from li to lj
Recalculate GC(li) and GC(lj)

End if
End for

End for
End for

Table 2. Pseudo code for the cluster adjustment

4.4 Combined Proposed Algorithm and Its Time Complexity

Table 3 shows the combined whole algorithm. The route establishment algorithm is
applied after the cluster construction and the cluster adjustment algorithms. Depot
is added to all clusters just before the route establishment since a vehicle should
leave from and return to depot. The result at each iteration is recorded in oder to
find the best one at the end of the algorithm.

The combined algorithm has polynomial time complexity of O(n2.2) since, as
shown in Tables 1 and 2, cluster construction and cluster adjustment phases have
O(n2) each and route establisment phase (Lin-Kernighan heuristic) has O(n2.2).

Cluster Construction Phase()
Add depot to the clusters
Get result by applying TSP(clusters)
Remove depot from the clusters
Do

If (no node move in Cluster Adjustment Phase())
Break while-loop

Else
Add depot to the clusters

Get result by applying TSP(clusters)
Remove depot from the clusters

End if
While (TRUE)
Print the smallest result as final among results

Table 3. Pseudo code for the whole algorithm
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Instance Best known
Centroid-based 3-phase Sweep + cluster adjustment
Distance Routes Distance Routes

A-n32-k5 784 881 5 872 5

A-n33-k5 661 728 5 788 5
A-n33-k6 742 770 6 829 7
A-n34-k5 778 812 5 852 6
A-n36-k5 799 814 5 884 5
A-n37-k5 669 756 5 734 5
A-n37-k6 949 1 027 7 1 050 7
A-n38-k5 730 819 6 874 6
A-n39-k5 822 864 5 971 6
A-n39-k6 831 881 6 966 6
A-n44-k6 937 1 037 7 1 092 7
A-n45-k6 944 1 040 7 1 043 7
A-n45-k7 1 146 1 288 7 1 281 7
A-n46-k7 914 992 7 1 013 7
A-n48-k7 1 073 1 145 7 1 143 7
A-n53-k7 1 010 1 117 8 1 116 8
A-n54-k7 1 167 1 209 8 1 320 8
A-n55-k9 1 073 1 155 10 1 192 9
A-n60-k9 1 354 1 430 9 1 574 10

A-n61-k9 1 034 1 201 11 1 184 11
A-n62-k8 1 288 1 470 9 1 559 9
A-n63-k9 1 616 1 766 10 1 823 10
A-n63-k10 1 314 1 405 11 1 523 11
A-n64-k9 1 401 1 587 10 1 597 10
A-n65-k9 1 174 1 276 10 1 351 10
A-n69-k9 1 159 1 283 10 1 254 10
A-n80-k10 1 763 1 883 11 2 014 11

Average 1 041.93 1 134.67 7.67 1 181.44 7.78

Table 4. Experimental results of the Augerat benchmark set A

5 EXPERIMENTAL RESULTS

The proposed 3-phase algorithm is tested on Augerat A, B, and P benchmark
dataset [19]: The instances in class A, both customer locations and demands are ran-
dom and the instances in class B are clustered instances and the instances in class P
are modified versions of instances from the literature. The file name contains infor-
mation about the number of nodes in the data and the minimum number of vehicles
needed to solve the problem. For example, A-n32-k5 indicates that this problem is
of class A, the number of nodes including the depot is 32, and the minimum number
of vehicles needed is 5.

Experiments are conducted on the WindowsR© XP operating system with a Pen-
tium R© Dual Processor 3.40GHz and 896MB RAM. The first and second phase
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Instance Best known
Centroid-based 3-phase Sweep + cluster adjustment
Distance Routes Distance Routes

B-n31-k5 672 700 5 713 5

B-n34-k5 788 851 6 845 6
B-n35-k5 955 969 5 1 002 5
B-n38-k6 805 834 6 863 6
B-n39-k5 549 620 5 560 5
B-n41-k6 829 862 7 881 6
B-n43-k6 742 857 6 812 6
B-n44-k7 909 963 7 1 097 8
B-n45-k5 751 807 6 803 6
B-n45-k6 678 743 7 756 7
B-n50-k7 741 772 7 763 7
B-n50-k8 1 312 1 431 9 1 446 8
B-n51-k7 1 032 1 028 8 1 029 8
B-n52-k7 747 754 7 765 7
B-n56-k7 707 741 7 832 7
B-n57-k7 1 153 1 163 8 1 208 8
B-n57-k9 1 598 1 673 9 1 807 9
B-n63-k10 1 496 1 664 10 1 720 11
B-n64-k9 861 910 10 1 023 10

B-n66-k9 1 316 1 468 10 1 483 10
B-n67-k10 1 032 1 108 10 1 134 11
B-n68-k9 1 272 1 338 9 1 362 9
B-n78-k10 1 221 1 276 10 1 479 11

Average 963.74 1 023.13 7.57 1 060.13 7.65

Table 5. Experimental results of the Augerat benchmark set B

algorithms are implemented using Java and the implemented code of Lin-Kernighan,
found in the work of Helsgaun [20], is used in the third phase. For comparison, the
Sweep heuristic algorithm [8, 9] is implemented since in the same way as the proposed
algorithm, the Sweep is categorized as a cluster-first and route-second algorithm
and also targets minimizing the travelling distances with an unfixed number of
vehicles.

Tables 4 to 6 show the results. The first column of the tables shows the name of
benchmark data and the second column shows the best known (shortest) distance
until now. The column named ‘Centroid-based 3-phase’ is for the results of the
proposed algorithm. The column labelled ‘Sweep + cluser adjustement’ is for the
results of the Sweep algorithm with applying the cluster adjustment of this study.
Both cases apply the same Lin-Kernighan heuristic algorithm [13] for route estab-
lishments. The column named ‘Routes’ means the number of vehicles used to solve
the problem in each algorithm.

As the tables show, on Augerat class A, the proposed algorithm finds shorter
distances in the 20 cases among 27 than the Sweep algorithm with the cluster ad-
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Instance Best known
Centroid-based 3-phase Sweep + cluster adjustment
Distance Routes Distance Routes

P-n16-k8 450 497 9 568 10

P-n19-k2 212 256 3 236 2
P-n20-k2 216 240 2 238 2
P-n21-k2 211 240 2 238 2
P-n22-k2 216 245 2 237 2
P-n22-k8 603 672 10 687 10
P-n23-k8 529 703 12 645 11
P-n40-k5 458 505 5 499 5
P-n45-k5 510 533 5 525 5
P-n50-k7 554 583 7 585 7
P-n50-k8 631 669 9 675 9
P-n50-k10 696 740 11 779 11
P-n51-k10 741 779 11 806 11
P-n55-k7 568 610 7 611 7
P-n55-k8 588 654 8 601 7
P-n55-k10 694 749 10 763 10
P-n55-k15 989 1 022 17 1 056 18
P-n60-k10 744 786 11 823 11
P-n60-k15 968 1 006 16 1 086 16

P-n65-k10 792 836 10 856 11
P-n70-k10 827 891 11 902 11
P-n76-k4 593 685 4 603 4
P-n76-k5 627 737 5 647 5
P-n101-k4 681 698 4 702 4

Average 587.42 639.00 7.96 640.33 7.96

Table 6. Experimental results of the Augerat benchmark set P

justment; on class B, 18 cases among 23; and on class P, 14 cases among 24 cases.
One thing should be noticed, namely that in the case of B-n51-k7, the proposed al-
gorithm finds a shorter distance than the best known one by using one more vehicle.
Each of these experiments are executed within a hundred of milliseconds.

6 CONCLUSIONS

The vehicle routing problem (VRP) is a nondeteministic polynomial-time (NP) hard
problem which cannot be solved in polynomial time and capacitated vehicle routing
prolem (CVRP) is a subset of the VRP and also falls into NP hard. In this study,
a 3-phase centroid-based heuristic routing algorithm for the CVRP is proposed.
With the experiments on well known Auguerat benchmark dataset, the proposed
algorithm gives better results in more cases compared to the Sweep heuristic algo-
rithm. The result of the proposed algorithm can be used as an initial solution for
meta-heuristic algorithms. For future study, we plan to extend the algorithm to
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solve other VRP related problems by utilizing the notion of the geometrical centre
of a cluster.

Acknowledgement

This research was supported in parts by the MKE (The Ministry of Knowledge
and Economy), Korea, under the Chung-Ang University HNRC (Home Network
Research Center)-ITRC (Information Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2009-
C1090-0902-0035) and also partially supported by National Research Foundation of
Korea Grant funded by the Korean Government (2009-0076290).

REFERENCES

[1] Lysgaard, J.—Letchford, A.N.—Eglese, R.W.: A New Branch-And-Cut Al-
gorithm for the Capacitated Vehicle Routing Problem. Math Program, Vol. 100, 2004,
pp. 423–445.

[2] Fukasawa, R.—Lysgaard, J.—de Aragão, M.P.—Reis, M.—Uchoa, E.—

Werneck, R. F.: Robust Branch-and-Cut-and-Price for the Capacitated Vehicle
Routing Problem. Math Program, Vol. 106, 2006, pp. 491–511.

[3] Clarke, G.—Wright, J.: Scheduling of Vehicles from a Central Depot to a Num-
ber of Delivery Points. Opns. Res., Vol. 12, 1964, pp. 568–581.

[4] Yellow, P.: A Computational Modification to the Savings Method of Vehicle
Scheduling. Op. Res. Quart., Vol. 21, 1970, pp. 281–283.

[5] Paessens, H.: The Savings Algorithm for the Vehicle Routing Problem. Eur. J. Opl.
Res., Vol. 34, 1988, pp. 336–344.

[6] Mole, R.H.—Jameson, S.R.: A Sequential Route-Building Algorithm Employing
a Generalized Saving Criterion. Op. Res. Quart., Vol. 27, 1976, pp. 503–511.

[7] Christofides, N.—Mingozzi, A.—Toth, P.: The Vehicle Routing Problem. In:
N. Christofides, A. Mingozzi, P. Toth and C. Sandi (Eds.): Combinatorial Optimiza-
tion. John Wiley&Sons, New York, NY 1979.

[8] Gillet, B. E.—Miller, L.R.: A Heuristic Algorithm for the Vehicle Dispatch
Problem. Opns. Res., Vol. 22, 1974, pp. 340–349.

[9] Wren, A.—Holliday, A.: Computer Scheduling of Vehicles from One or More
Depots to a Number of Delivery Points. Op. Res. Quart., Vol. 23, 1972, pp. 333–344.

[10] Fisher, M. L.—Jaikumar, R.: A Generalized Assignment Heuristic for Vehicle
Routing. Networks, Vol. 11, 1981, pp. 109–214.

[11] Bramel, J. B.—Simchi-Levi, D.: A Location Based Heuristic for General Routing
Problems. Opns. Res., Vol. 43, 1995, pp. 649–660.

[12] Lin, S.: Computer Solutions of the Traveling Salesman Problem. Bell. Syst. Tech.
J., Vol. 44, 1965, pp. 2245–2269.

[13] Lin, S.—Kernighan, B.: An Effective Heuristic Algorithm for the Traveling Sales-
man Problem. Opns. Res., Vol. 21, 1973, pp. 498–516.



732 K. Shin, S. Han

[14] Or, I.: Traveling Salesman-Type Combinatorial Optimization Problems and Their

Relation to the Logistics of Regional Blood Banking. Ph.D. thesis, Northwestern
University, 1976.

[15] Bullnheimer, B.—Hartl, R. F.—Strauss, C.: Applying the Ant System to the

Vehicle Routing Problem. In: S. Voβ, S. Martello, I. H. Osman and C. Roucairol
(Eds).: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Opti-
mization, Kluwer, Boston, MA, 1998.

[16] Bullnheimer, B.—Hartl, R. F.—Strauss, C.: An Improved Ant System Algo-
rithm for the Vehicle Routing Problem. Ann. Op. Res., Vol. 89, 1999, pp. 319–328.

[17] Baker, B.M.—Ayechew, M.A.: A Genetic Algorithm for the Vehicle Routing
Problem. Comput. Opns. Res., Vol. 30, 2003, pp. 787–800.

[18] Glover, F.: Future Paths for Integer Programming and Links to Artificial Intelli-
gence. Comput. Op. Res., Vol. 13, 1986, pp. 533–549.
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