
 

 

 

Polyhedral techniques in combinatorial optimization II:
applications and computations
Citation for published version (APA):

Aardal, K., & van Hoesel, C. P. M. (1999). Polyhedral techniques in combinatorial optimization II:
applications and computations. Statistica Neerlandica, 53(2), 131-177. https://doi.org/10.1111/1467-
9574.00104

Document status and date:
Published: 01/01/1999

DOI:
10.1111/1467-9574.00104

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 03 Nov. 2021

https://doi.org/10.1111/1467-9574.00104
https://doi.org/10.1111/1467-9574.00104
https://doi.org/10.1111/1467-9574.00104
https://cris.maastrichtuniversity.nl/en/publications/0efb621c-c744-47a5-b116-10ef1fd53619


Polyhedral techniques in combinatorial
optimization II: applications and

computations

K. Aardal*

Department of Computer Science, Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands

C. P. M. van Hoesel**

Department of Quantitative Economics, Limburg University,
P.O. Box 616, 6200 MD Maastricht, The Netherlands

The polyhedral approach is one of the most powerful techniques
available for solving hard combinatorial optimization problems. The
main idea behind the technique is to consider the linear relaxation of the
integer combinatorial optimization problem, and try to iteratively
strengthen the linear formulation by adding violated strong valid
inequalities, i.e., inequalities that are violated by the current fractional
solution but satis®ed by all feasible solutions, and that de®ne high-
dimensional faces, preferably facets, of the convex hull of feasible
solutions. If we have the complete description of the convex hull of
feasible solutions at hand all extreme points of this formulation are
integral, which means that we can solve the problem as a linear pro-
gramming problem. Linear programming problems are known to be
computationally easy. In Part 1 of this article we discuss theoretical
aspects of polyhedral techniques. Here we will mainly concentrate on
the computational aspects. In particular we discuss how polyhedral
results are used in cutting plane algorithms. We also consider a few
theoretical issues not treated in Part 1, such as techniques for proving
that a certain inequality is facet de®ning, and that a certain linear
formulation gives a complete description of the convex hull of feasible
solutions. We conclude the article by brie¯y mentioning some alter-
native techniques for solving combinatorial optimization problems.

Key Words and Phrases: strong valid inequalities, facets, convex hull,
cutting plane algorithm, branch-and-cut algorithm.

1 Introduction

A combinatorial optimization problem is an integer linear programming (ILP) problem

minfcx : Ax � b; x 2 Zng �1�

#VVS, 1999. Published by Blackwell Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA 02148, USA.

Statistica Neerlandica (1999) Vol. 53, nr. 2, pp. 131±177

131

* aardal@cs.uu.nl
** S.vanHoesel@KE.UniMaas.nl



having a combinatorial character. Awell-known combinatorial optimization problem

is the traveling salesman problem, i.e., the problem of ®nding the shortest tour through

a number of cities such that each city is visited precisely once. The only known

method for solving the traveling salesman problem is an enumerative method, such as

branch-and-bound. If the lower bound obtained by solving the linear relaxation of the

problem is not very close to the optimal value, then we can expect that the branch-

and-bound tree will grow too big to be manageable for any realistic instance. The idea

behind polyhedral combinatorics is to obtain a strong lower bound on the optimal

solution value by ®nding a good linear formulation of the set X � fx 2 Zn : Ax � bg
of feasible solutions. This is done by adding linear inequalities that are necessary in

the description of the convex hull of X to the original linear formulation Ax� b. The

convex hull of X is the smallest convex set containing all points in X. The advantage

with this approach is that if the convex hull of X is known, we can solve

min{cx :x 2 conv(X)} as a linear programming problem, which is computationally

easy, but gives the same solution as optimizing over X.

As discussed in Part I of this article (AARDAL and VAN HOESEL, 1996) it is hard in

general to describe the convex hull of X by concise families of inequalities even if we

allow for classes containing exponentially many inequalities. In a practical setting,

however, the complete description of the convex hull of X is not needed. What is

important is that we have a good description of the region close to the optimal

solution, which suggests an approach where we generate linear inequalities as they are

needed. Such an algorithm is usually called a cutting plane algorithm, and is typically

embedded in a branch-and-bound procedure to produce good lower bounds. To

make a cutting plane algorithm work we essentially need to consider three issues:

(i) develop families of strong valid inequalities, (ii) develop separations algorithms,

i.e., algorithms for identifying violated inequalities belonging to the various

families, and (iii) designing an e�cient implementation of the complete framework,

including a branch-and-bound algorithm, a preprocessor, primal heuristics for

®nding good feasible solutions, and a branching strategy for the branch-and-bound

phase.

In Part I we considered some important theoretical aspects of polyhedral com-

binatorics and cutting plane techniques. Questions that we were asking were for

instance: Is there an algorithmic way to generate all inequalities necessary to describe

the convex hull of feasible solutions? When can we expect to be able to describe the

convex hull of feasible solutions using concise families of valid inequalities? How

di�cult is it to identify a violated linear inequality? In this article we shall mainly

study computational aspects of polyhedral techniques, even though we study a few

techniques and theoretical issues that were not treated in Part I.

When developing families of valid inequalities for a certain problem P it is useful to

consider valid inequalities for relaxations of P, since an inequality that is valid for a

relaxation of P is also valid for P. Once we gain insight in the facial structure of the

simpler relaxation we can try to develop more problem speci®c inequalities. More-

over, we can include separation algorithms for valid inequalities for several common
#VVS, 1999

132 K. Aardal and C. P. M. van Hoesel



relaxations of integer and combinatorial optimization problems, and algorithms for

automatically detecting the structure of these relaxations, as a basic feature in our

cutting plane algorithm. In Part I we describe families of inequalities for a few generic

combinatorial structures. In Section 2 we will make a more extensive presentation,

and illustrate some useful techniques. One such technique is lifting, which is used if we

have a valid inequality for a set of solutions projected onto a subspace. By using

lifting on the inequality we obtain a valid inequality for the full space. We will also

discuss two ways of proving that an inequality is facet de®ning, and how to prove that

a given set of families of valid inequalities generates the convex hull of feasible

solutions. We conclude the section by giving a partial survey of polyhedral results for

combinatorial optimization problems.

Next to the theoretical work of developing good classes of valid inequalities and

algorithms for identifying violated inequalities, there is a whole range of imple-

mentation issues that have to be considered in order to make cutting plane techniques

work well. One such issue is preprocessing. Important elements of preprocessing are

to reduce the size of the initial formulation by deleting unnecessary variables and

constraints, and to reduce the size of the constraint coe�cients to make the instance

numerically more attractive. Due to logical implications it may also be possible to

delete some variables, which reduces the size of the problem formulation.

When applying a cutting plane algorithm we in general end up in the situation

where the current solution x* is not feasible and where we are unable to identify an

inequality violated by x*. We then have to start a branch-and-bound phase. In a

branch-and-bound algorithm we must decide precisely how to create new sub-

problems, or nodes, in the search tree, as well as a suitable search strategy. It is also

possible to add inequalities in every node of the tree, in which case we need to keep

track of where in the tree the various inequalities are valid. Preprocessing and other

implementation issues are discussed in Section 3. To illustrate the computational

possibilities of polyhedral techniques we present computational results for some

selected problem types in Section 4.

Even though polyhedral combinatorics has been the foremost tool for solving large

instances of a vast collection of combinatorial optimization problems it is not the only

technique available, and depending on the problem type it may be preferable to

choose a di�erent method. In Section 5, we brie¯y mention alternative approaches to

solving integer and combinatorial optimization problems.

For the reader that is interested in studying polyhedral combinatorics in more

detail, we recommend the following books and survey articles. The books by

SCHRIJVER (1986), and by NEMHAUSER and WOLSEY (1988) treat all aspects of

polyhedral combinatorics as well as its links to linear and integer programming. The

latter book also contains quite a number of problem speci®c results. The book by

GROÈ TSCHEL, LOVAÂ SZ and SCHRIJVER (1988) contains algorithmic results in polyhedral

combinatorics derived from the theory of geometry of numbers. The survey article by

JUÈ NGER, REINELT and THIENEL (1995) treats several issues regarding implementations

of cutting plane algorithms. AARDAL and WEISMANTEL (1997), and CAPRARA and
#VVS, 1999
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FISCHETTI (1997) provide annotated bibliographies of polyhedral combinatorics and

branch-and-cut algorithms respectively.

2 Polyhedral results for generic combinatorial structures

Some combinatorial structures occur as substructures in a large number of com-

binatorial optimization problems. The study of these generic structures has two

purposes. First, a valid inequality for a generic structure may form the theoretical

starting point for developing families of inequalities for more specialized problems.

Second, valid inequalities for generic structures are often e�ective for more special-

ized problems as well, as implementing separation algorithms for generic inequalities

is very useful in general-purpose cutting plane algorithms.

Here we present some well-known generic structures, extending our presentation in

Part I. When discussing various families of inequalities we also take the opportunity

to describe di�erent techniques, such as facet proving techniques, techniques for

proving that certain families of inequalities de®ne the convex hull of feasible

solutions, and lifting.

2.1 Preliminaries

Here we introduce basic de®nitions that are needed to understand the terminology

used in subsequent sections.

The set of linear combinations of a set of vectors x1 . . . xK � Rn is the linear space

LS � fSK
k�1akx

k : a 2 RKg. If x1 . . . xK form a minimal system, i.e., none of the

vectors is a linear combination of the others, then the vectors x1 . . . xK are called

linearly independent. Equivalently, the vectors x1 . . . xK are linearly independent if

ak � 0, for all k, is the unique solution to the system SK
k�1akx

k � 0. The dimension of

a linear space LS, denoted by dim(LS) is de®ned as the maximum number of linearly

independent points in the space.

The set of a�ne combinations of the K � 1 points x0, x1 . . . xK � Rn is called an

a�ne space AS � fSK
k�0akx

k : a 2 RK�1; SK
k�0ak � 1}. An a�ne space can be viewed

as a linear space translated over a vector x0 :AS � {x0 � SK
k�1bk�xk ÿ x0� : b 2 RK}.

If the set of points x0 . . . xK is a minimal system, i.e., none of the points is an a�ne

combination of the others, then the points x0 . . . xK are called a�nely independent.

Equivalently, the points x0 . . . xK are a�nely independent if ak � 0, for all k, is the

unique solution to the system SK
k�0akx

k � 0; SK
k�0ak � 0. The dimension of an a�ne

space, denoted by dim(AS), is the maximum number of a�nely independent points

minus 1. Thus, if the points x0 . . . xK are a�nely independent, the a�ne space de®ned

by these points has dimension K.

A polyhedron P is the set of points satisfying a system of ®nitely many linear

inequalities, i.e., P � fx 2 Rn : Ax � bg. The dimension of P, denoted dim(P), is the

dimension of a smallest (by inclusion) a�ne space containing P. A bounded

polyhedron is called a polytope.
#VVS, 1999
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An inequality px � p0 is called valid for a polyhedron P if each point in P satis®es

the inequality. The set F � fx 2 P : px � p0g is called a face of P and the valid

inequality px � p0 is said to de®ne the face F. A face is called proper if ; 6� F and

F 6� P. The dimension of a proper face F, dim(F), is strictly smaller than dim(P). If

dim(F) � dim(P)ÿ 1, i.e., if F is maximal, we call F a facet. The reason why we are

interested in the facet de®ning inequalities is that they are precisely the inequalities

that we need to describe the convex hull of feasible solutions, in addition to the set of

inequalities that are satis®ed with equality by every feasible point.

If px � p0 and gx � g0 are two valid inequalities for a certain polyhedron P 2 Rn
�,

then px � p0 dominates gx � g0 if there exists u4 0 such that p � ug and p0 � ug0,
and (p, p0� 6� �ug, ug0).

The convex hull of feasible solutions, denoted conv(X), is the set of points that can

be obtained by taking convex combinations of points in X, i.e.,

conv�X� �
XK
k�1

lkx
k

: X � fxkgKk�1;
XK
k�1

lk � 1; lk � 0; k � 1; . . . ;K

( )
�1�

Given a vector x*, the separation problem based on a family F of inequalities is the

problem of ®nding an inequality px � p0 belonging to F that is violated by x*, i.e.,

px*4 p0, or providing a proof that no such inequality in F exists. An algorithm for

solving the separation problem is called a separation algorithm.

2.2 The vertex packing problem

Here we describe two classes of valid inequalities for the vertex packing problem. We

also give an example of an easy facet proof and illustrate lifting techniques. Lifting is

an iterative technique where we start with an inequality that is valid under the

condition that a subset N of the variables are ®xed. At each iteration a subset M � N

of the ®xed variables are included in the inequality with coe�cients that guarantee

that the resulting inequality is valid. In sequential lifting the set M consists of one

variable at each iteration, whereas in simultaneous lifting there are no restrictions on

the choice of M. Typically we have M � N.

Consider an undirected graph G � (V, E) where V is the set of vertices and E the set

of edges, i.e., unordered pairs of vertices. A vertex packing in G is a subset V0 � V of

vertices such that no two vertices in V0 are adjacent. We de®ne variables xv for each

vertex v, and let xv � 1 if v 2 V0 and xv � 0 otherwise. The integer programming

formulation of the maximum cardinality vertex packing problem is given below

max
X
v2V

xv

s:t: xv � xw � 1 for all fv;wg 2 E �2�
xv 2 f0; 1g for all v 2 V �3�

#VVS, 1999
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The vertex packing problem is sometimes referred to as the independent set problem

or the stable set problem. Let XVPG be the set of incidence vectors corresponding to

feasible vertex packings in the graph G, and let a(G) be the maximum cardinality of a

vertex packing in G. An edge is called critical if its removal from G produces a graph

G0 with a�G0�4 a�G�. CHVAÂ TAL (1975) derived the following general su�cient

condition for an inequality to de®ne a facet of conv(XVPG).

THEOREM 1 CHVAÂ TAL (1975). Let E* be the set of critical edges of G. If the graph

G* � (V, E*) is connected, then the inequality Sj2Vxj � a�G� de®nes a facet of

conv(XVPG).

A clique in a graph G is a subgraph of G where each two vertices are connected by

an edge, see Figure 1a. A clique is maximal if it is not contained in any other clique.

Since no two vertices in V0 are allowed to be adjacent we could take any clique C in G

and require that at most one vertex belonging to C should belong to the vertex

packing V0 giving the valid inequalityX
j2C

xj � 1 �4�

THEOREM 2 PADBERG (1973). Let C be a clique in the graph G. The clique inequality (4)

de®nes a facet of conv(XVPG) if and only if C is maximal.

PROOF. Su�ciency: The dimension of the vertex packing polytope is jVj. Hence, to

prove that (4) de®nes a facet of conv(XVPG � we need to ®nd jVj a�nely independent

points that are tight for (4). Let C be a maximal clique. For every v 2 C we take the

vertex packing that contains only v. For v 62 C we ®rst choose a node w 2 C that is not

adjacent to v. Since C is maximal such a node exists. We then take the vertex packing

that contains both nodes v and w. The jVj points given above are feasible, satisfy the

clique inequality with equality, and are a�nely independent. Thus, the inequality is

facet-de®ning.

Necessity: If C is not maximal then there is a clique C0 such that C � C0. The clique
inequality de®ned by C0 dominates the inequality de®ned by C. j

Fig. 1. a) A clique. b) An odd hole.
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Another class of valid inequalities for the vertex packing problem is the family of

odd-hole inequalities. An odd hole H in a graph G is a chordless cycle consisting of an

odd number of vertices, i.e., there are no edges of G connecting any nonconsecutive

vertices in H, see Figure 1b. Since the number of vertices in H is odd, at most [jHj/
2] � (jHj ÿ 1)/2 vertices in H can belong to any vertex packing. Hence the following

odd-hole inequality is valid.X
j2H

xj �
jHj ÿ 1

2
�5�

PADBERG (1973) showed that (5) de®nes a facet of conv(XVPG \ fx 2 f0, 1}jVj : xj � 0

for all j 62 H}), i.e., in general (5) de®nes a face of conv(XVPG ) of dimension less than

dim(XVPG � ÿ 1. The question is whether it is possible to increase the dimension of (5)

such that (5) becomes a facet for conv(XVPG �. One way of increasing this dimension is

through sequential lifting (PADBERG, 1973, and WOLSEY, 1976a), which is illustrated in

the following example.

EXAMPLE 1 The graph in Figure 2 is an odd hole with a central vertex adjacent to all

vertices of the hole. This structure, called a wheel, is used to illustrate the sequential

lifting procedure. The inequality is x1 � x2 � x3 � x4 � x5� 2 de®nes a facet of

conv(XVPG \ fx 2 f0, 1}6 :x6 � 0}). The problem is to determine the maximum

nonnegative value of the constant a such that x1 � x2 � x3 � x4 � x5 � ax6� 2 is a

valid inequality of conv(XVPG). If x6 � 0, a can take any value, hence assume that

x6 � 1. If x6 � 1 we must have xj � 0, j � 1, . . . , 5, since x6 is adjacent to all other

vertices. Hence, the maximal value of a is a � 2. The following two theorems imply

that if the inequality is facet de®ning in the reduced space, and if we ``lift'' in all

variables sequentially with maximal coe�cients, then the resulting inequality de®nes

a facet in the full space. j

THEOREM 3 WOLSEY (1976a). Let S � f0, 1gn. SupposeXn
j�2

pjxj � p0 �6�

Fig. 2. A wheel.
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is valid for S0 � S \ fx 2 f0, 1gn : x1 � 0g. If S \ fx 2 f0, 1gn : x1 � 1g 6� ;, then

ax1 �
Xn
j�2

pjxj � p0 �7�

is valid for S for any a � p0 ÿ maxS\fx:x1�1gfS
n
j�2pjxjg. If (6) de®nes a face of conv(S0)

of dimension k, and if a is chosen maximal, then (7) de®nes a face of conv(S) of

dimension k � 1.

THEOREM 4 WOLSEY (1976a). Let S � f0, 1gn. SupposeXn
j�2

pjxj � p0 �8�

is valid for S1 � S \ fx 2 f0, 1gn : x1 � 1g. If S \ fx 2 f0, 1gn : x1 � 0g 6� ;, then

bx1 �
Xn
j�2

pjxj � p0 � b �9�

is valid for S for any b�maxS\fx:x1�0gS
n
j�2pjxj ÿ p0. If (8) de®nes a face of conv(S

1) of

dimension k, and if b is chosen minimal, then (9) de®nes a face of conv(S) of dimension

k � 1.

Sequential lifting is sequence dependent, such that di�erent lifting sequences give

rise to di�erent inequalities. ZEMEL (1978) proposed a more general lifting procedure,

called simultaneous lifting. As the name indicates, the coe�cients of several variables

are determined simultaneously, yielding inequalities that in general cannot be

obtained by sequential lifting. For notational ease we consider the case where a set of

variables that are all ®xed to zero are simultaneously lifted. Let S � f0, 1gn, and
suppose that the inequalityXn

j�k�1
pjxj � p0 �10�

is valid for S0 � S\fx 2 f0, 1gn : x1 � x2 � � � � � xk � 0}. If

S \ x 2 f0; 1gn :
Xk
j�1

xj � 1

( )
6� ;

then

Xk
j�1

ajxj �
Xn

j�k�1
pjxj � p0 �11�

is valid for S if for any �x01, . . . , x0k� 6� 0, we have that Sk
j�1ajx

0
j � p0ÿ

maxS\fx:x1�x01;...;xk�x0kgfS
n
j�k�1pjxjg. Hence, the feasible vectors a � (a1 , . . . , ak) de®ne

#VVS, 1999
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a polyhedral set. The extreme points of this set yield new facet de®ning inequalities in

general if the original inequality is facet de®ning. For more details, see ZEMEL (1978).

We will give an example of a vertex packing problem where simultaneous lifting of an

odd-hole inequality yields an inequality that cannot be obtained by sequential lifting.

EXAMPLE 2 The left part of Figure 3 shows the original underlying graph in dotted

lines, and the odd hole in solid lines. The odd-hole inequality is:

x1 � x6 � x10 � x5 � x30 � x29 � x4 � x24 � x23 � x3 � x18

� x17 � x2 � x12 � x11 � 7 �12�

The right ®gure illustrates the structure corresponding to the inequality that is

obtained by simultaneously lifting the variables corresponding to vertices 8, 14, 20, 21

and 27. These are the vertices surrounded by squares in the left ®gure. The coe�cients

of all lifted variables are equal to one half. The resulting inequality is facet de®ning

and cannot be obtained by sequential lifting.

x1 � x6 � x10 � x5 � x30 � x29 � x4 � x24 � x23 � x3 � x18 � x17

� x2 � x12 � x11 � 1
2�x8 � x14 � x20 � x21 � x27� � 7 �13�

If we apply sequential lifting to the same initial odd-hole inequality we obtain the

lifting illustrated in Figure 4 or any of the four liftings that can be obtained by

rotating the ®gure. The corresponding facet-de®ning inequality is:

x1 � x6 � x10 � x5 � x30 � x29 � x4 � x24 � x23 � x3 � x18

� x17 � x2 � x12 � x11 � �x8 � x21� � 7 �14�

j

For more details on lifting procedures, see NEMHAUSER and WOLSEY (1988).

Fig. 3. Simultaneous lifting of an odd-hole inequality.
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2.3 The knapsack problem

Let N � {1, . . . , n}. The knapsack problem is formulated as

max
X
j2N

cjxj

s:t:
X
j2N

ajxj � b �15�

xj 2 f0; 1g for all j 2 N �16�

The knapsack problem occurs as a substructure of several combinatorial optimization

problems having a capacity or budget constraint. Assume that the vectors c, a and the

right-hand side b are integral, and let XK be the set of incidence vectors corresponding

to the feasible solutions to the knapsack problem. Let C be a subset of N such that

Sj2Caj 4 b, and such that C is minimal with respect to this property, i.e., Sj62Saj � b

for all S � C. We call the set C a minimal cover with respect to N and b. In Part I we

described the family of knapsack cover inequalities (BALAS, 1975, HAMMER et al., 1975,

and WOLSEY, 1975)X
j2C

xj � jCj ÿ 1 �17�

The inequalities (17) are valid for XK since, if we include all items in C in the

knapsack, we exceed the right-hand side b, which means that we have to exclude at

least one of the elements in C.

In Part I we discussed the special case of a lifted cover inequality that is

obtained if we consider the extension E(C) of a minimal cover C, where

E�C� � C [ fk 2 N n C : ak � aj, for all j 2 Cg. The lifting coe�cients of the variables

in E(C) \C are all equal to one. The most general form of the knapsack cover

inequality is obtained by partitioning the set N into the sets (N0, N nN0). Let xj � 0

for all j 2 N nN0, and let C0 be a minimal cover with respect to N0 and b ÿ Sj2N0nC0aj.

Fig. 4. Sequential lifting of an odd-hole inequality.
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Moreover, let xj � 1 for all j 2 N0 n C0. By using the lifting results presented in

Theorems 3 and 4, we can conclude that conv(XK) has a facet of the following form

X
j2NnN0

ajxj �
X

j2N0nC0
bjxj �

X
j2C0

xj � jC0j ÿ 1 �
X

j2N0nC0
bj �18�

where aj � 0 for all j 2 N nN0 and bj � 0 for all j 2 N0 n C0. BALAS (1975)

characterized the lifting coe�cients aj in the case where N0 n C0 � ;.
The family of (1, k)-con®guration inequalities (PADBERG, 1980) is de®ned as follows.

Let �C � N, and t 2 N n �C be such that Sj2 �Caj � b and such that Q [ ftg is a minimal

cover for all Q � �C with jQj � k. Let T�r� � C vary over all subsets of cardinality r of
�C, where r is an integer satisfying k � r � j �Cj. The (1, k)-con®guration inequality

�r ÿ k � 1�xt �
X
j2T�r�

xj � r �19�

is valid for conv(XK). If k � j �Cj the knapsack cover inequality (17) is obtained. The

(1, k)-con®guration inequality (19) can be obtained by the following lifting procedure.

We start with the inequality

X
j2T�r�

xj � k ÿ 1 �20�

which is valid for XK \ fx 2 f0, 1}n : xt � 1g. The maximal lifting coe�cient of

variable xt is equal to r ÿ k � 1.

In the following example we demonstrate how a (1, k)-con®guration inequality is

obtained.

EXAMPLE 3 Let N � {1, . . . , 5} and consider the set of vectors fx 2 f0, 1}5 : 15x1 �
17x2 � 18x3 � 21x4 � 22x5� 52}. Let �C � f1, 2, 3}, and let t � 4. We see that

Sj2 �Caj � 52 and thatQ [ f4g de®nes a cover with respect toN and b for allQ � �Cwith

jQj � 2. First, let r � 2. We then obtain the valid inequalities x4 � x1 � x2� 2,

x4 � x1 � x3� 2 and x4 � x2 � x3� 2. By letting r � 3 we obtain

2x4 � x1 � x2 � x3� 3. j

2.4 The ®xed charge uncapacitated ¯ow problem

Here we consider a general class of valid inequalities for the uncapacitated ®xed-

charge ¯ow polytope. Consider a directed graph G � (V, A), and let xij denote the

¯ow on arc (i, j)2 A. If arc (i, j) is used we have to pay a ®xed cost. Therefore, let

yij � 1 if arc (i, j) is opened, and let yij � 0 otherwise. Each node i has a known

out¯ow di. If di is negative it means that node i has an in¯ow. We use d�i to denote
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max{0, dig. The polytope XUFC is de®ned as the set of vectors corresponding to the

solutions satisfying the following constraints.X
fk:�k;i�2Ag

xki ÿ
X
fj:�i;j�2Ag

xij � di for all i 2 V �21�

0 � xij �Myij for all �i; j� 2 A �22�
yij 2 f0; 1g for all �i; j� 2 A �23�

Constraints (21) are ¯ow conservation constraints, and in constraint (22) M is a large

enough positive number, which we need in order to enforce yij � 1 if xij 4 0.

Typically M � Si2Vd
�
i .

Let X � V, and let E(X) be the subset of arcs for which both endpoints belong to X,

i.e., E(X) � {(i, j)2 A : i, j 2 Xg. Moreover, let (X, �X� � �X, V n X� � f�i,
j� 2 A : i 2 X, j 2 V n Xg. Consider the subset C � � �X, X), and the subset R � E�X�,
and let H � {j : (i, j)2 Cg. Let VR

j � fjg [ fk 2 X: there exists a directed path from j to

k using only arcs of R} for j 2 H. The ¯ow model is illustrated in Figure 5.

The following family of valid inequalities for XUFC was developed by VAN ROY and

WOLSEY (1985).X
�i;j�2C

xij �
X
�i;j�2C

X
k2VR

j

d
�
k

 !
yij �

X
�i;j�2E�X�nR

xij �
X

�i;j�2�X; �X�
xij �24�

The intuition behind the inequalities is as follows. The ¯ow on the arcs in the subset

C � � �X, X) either ¯ows along arcs in R, or arcs in E�X� n R or arcs in (X, �X�. For j 2 X

and (i, j� 2 C, the part of the ¯ow xij that goes along arcs in R is limited by the out¯ow

Skd
�
k , since the set V

�
j is de®ned as the nodes of X that can be reached from j by using

arcs in R only. This explains the coe�cient of the yij-variables. A subclass of the

inequalities (24) is the family of (l, S)-inequalities for the economic lot-sizing problem

presented in Section 2.6.1.

The separation problem based on the network inequalities (24) is di�cult in general

as we need to simultaneously choose sets X, R and C. Van Roy and Wolsey treated

Fig. 5. The ®xed charge uncapacitated ¯ow model.
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three special cases where it is possible to generate a violated network inequality (24),

or a weakened version of it, in polynomial time. Let (x*, y*) denote a fractional

solution. The easiest case is when the sets X and R are known and we only need to

identify a set C. Here we only have to evaluate S�i;j�2� �X;X��x*ij ÿ �Sk2VR
j
d�k �y*ij�, and let

C � {(i, j� 2 � �X, X� : x*ij 4 �Sk2VR
j
d�k �y*ijg. In the second case the set C is ®xed and we

look for a set X assuming that R � E(X). The best choice of X can be found using a

maximum ¯ow algorithm The third case deals with a slight modi®cation of (24)

developed for the generalization of the ¯ow model (21)±(23) in which we have arcs

with an upper bound, i.e., 0 � xkl � mkl for (k, l� 2 �E�X� n R� [ �X, �X�. In the

modi®ed inequality we want to replace d�k with (dk � mkl�� for (k,

l� 2 �E�X� n R� [ �X, �X� and then remove the arc xkl from the inequality. Assume

we have replaced the arcs in the subset Q � �E�X� n R� [ �X, �X�. We then obtain the

following valid inequality:X
�i;j�2C

xij �
X
�i;j�2C

yij

X
k2VR

j

d
�
k

X
fl:�k;l�2Qg

mkl

� � !
�

X
�i;j�2E�X�n�R[Q�

xij �
X

�i;j�2�X; �X�nQ
xij �25�

If the sets X and R are ®xed, it is possible to ®nd the best choice of Q and C in

polynomial time.

2.5 The single-node capacitated ¯ow problem

Consider a single node in a directed graph, and let N be the set of arcs entering the

node. The out¯ow from the node is equal to b. Let xj be a continuous variable

denoting the ¯ow on arc j, and let mj be the capacity on arc j. If arc j is open, then

yj � 1, otherwise yj � 0. The following ®xed charge single-node ¯ow structure is a

relaxation of many combinatorial ¯ow models.X
j2N

xj � b �26�

0 � xj � mjyj for all j 2 N �27�
yj 2 f0; 1g for all j 2 N �28�

Let XFC denote the set of vectors corresponding to feasible solutions to (26)±(28). In

this section we will discuss the following topics. First, we will describe the basic ¯ow

cover inequality that is valid for XFC, and show that this inequality is facet de®ning.

We will use a di�erent proof technique compared to the one used to prove Theorem 2.

Next, we will discuss the separation problem based on the family of ¯ow cover

inequalities. Once we have a ¯ow cover inequality we can extend it. We describe the

result that if mj � m for all j 2 N, then the extended ¯ow cover inequalities, together

with the de®ning inequalities de®ne the convex hull of feasible solutions. Moreover, if

all capacities are equal, then the extended ¯ow cover inequalities can be separated

in polynomial time. An application of the ¯ow cover inequalities is shown in

Section 2.6.2.
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2.5.1 The ¯ow cover inequalities

A subset J � N is called a ¯ow cover with respect to N and b if Sj2Jmj � b � l with

l4 0. If we have a ¯ow cover J, and if all arcs j 2 J are open, i.e., yj � 1 for all j 2 J,

then Sj2Jxj � b since the total out¯ow is equal to b. If, however, we close one

arc k 2 J, then Sj2Jnfkgxj � minfb, Sj2Jmj ÿ mkg � minfb, b ÿ �mk ÿ l�g �
b ÿ �mk ÿ l��, yielding the valid inequality

X
j2J

xj � b ÿ
X
j2J
�mj ÿ l���1 ÿ yj� �29�

In Figure 6 we illustrate the single-node capacitated ¯ow model.

THEOREM 5 PADBERG, VAN ROY and WOLSEY (1985). Assume that Sj2Nmj ÿ mr 4 b for

all r 2 N, and that J � N. The ¯ow cover inequality (29) de®nes a facet of conv(XFC) if

and only if maxj2Jfmjg4 l.

PROOF. Su�ciency: To prove that inequality (29) de®nes facets under the given

conditions we will use a di�erent technique than the one we use to prove Theorem 2.

The method used here is often referred to as the indirect method, see NEMHAUSER and

WOLSEY (1988), Chapter I.4, Theorem 3.6.

To show that inequality (29) is facet de®ning we need to show that (29) does not

de®ne an improper face, i.e., that there exists a feasible point such that inequality (29)

is satis®ed with strict inequality at this point. We also need to prove that the only

inequality that is satis®ed with equality by all points (x, y� 2 XFC that lie on the

hyperplane Sj2Jxj � b ÿ Sj2J�mj ÿ l���1 ÿ yj�, is inequality (29) plus g�Sj2Nxj � b�,
where g is an arbitrarily chosen scalar. If there were more inequalities of this sort it

would mean that these inequalities all de®ne faces of lower dimension. Also, note that

the polytope conv(XFC� is not full-dimensional as all feasible points satisfy

Sj2Nxj � b. Therefore, each facet is uniquely represented up to a scalar multiple of

this equality constraint. This is the reason why we add g�Sj2Nxj � b� to inequality (29)

in the facet proof.

Fig. 6. The single-node capacitated ¯ow model with sets J and N n J.
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To see that inequality (29) does not de®ne an improper face, we consider any

feasible point for which the following holds.

yj � 1 for all j 2 NX
j2J

xj � b ÿ e

X
j2NnJ

xj � e

where e4 0 is a su�ciently small real number. Such a point is possible to construct

since J de®nes a cover, and since J is a proper subset of N. Since inequality (29) is

satis®ed with strict inequality at this point, we have shown that inequality (29) does

not de®ne an improper face.

Next, we need to show that if all points (x, y� 2 XFC that are tight for (29) satisfyX
j2N

ajxj �
X
j2N

bjyj � a0 �30�

then

(i) bj � 0 for all j 2 N n J
(ii) aj � g for all j 2 N n J
(iii) aj � �a � g for all j 2 J

(iv) bj � ÿ�a�mj ÿ l�� for all j 2 J

(v) a0 � �a�b ÿ Sj2J�mj ÿ l��� � gb:

To show that bj � 0 for all j 2 N n J, we consider any feasible solution in which

Sj2 Jxj � b, and yj � 1 for all j 2 J and all �N n J� n flg, where l is chosen arbitrarily.

First, let yl � 0, and then create a new solution where every variable takes the same

value as in the ®rst solution, except yl, which now takes value one. Evaluating (30) at

both solutions and comparing the two expressions gives bl � 0. Since arc l was

chosen arbitrarily in N n J, we can conclude that bj � 0 for all j 2 N n J.
Next, we show that aj � g for all j 2 N n J. Here we ®rst consider a solution in

which we close the arc k 2 J with largest capacity. Due to the assumptions of the

theorem we know that mk 4 l. Let yj � 1 for all j 2 N n fkg, Sj2 Jnkxj � bÿ (mkÿ l),
and let Sj2NnJxj � �mk ÿ l�. Furthermore, assume that e5 xj 5mj for all j 2 N n J,
and for e4 0 su�ciently small. The second solution we consider is constructed as

follows. Choose arbitrarily two arcs j0, j00 2 N n J. Let all variables take the same

values as in the ®rst point except that we increase the ¯ow by e on arc j0 and decrease

the ¯ow by e on arc j00. Comparing the expressions obtained by evaluating (30) at the

two solutions gives aj0 � aj00 . Since j
0 and j00 were arbitrarily chosen, we have aj � g for

all j 2 N n J.
To show that aj � �a � g for all j 2 J we consider a solution in which all arcs in N

are open, and in which Sj2Jxj � b and 05 xj 5mj for all j 2 J. Now we can choose
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any two arcs j0, j002 J and make an e-change of ¯ow as in the previous step of the

proof. This shows that aj0 � aj00 . Varying over all choices of j0, j00 gives aj � a1 for all
j 2 J. Assume that a1 � �a � g. If �a � 0, the conditions (i)±(v) would be satisifed

trivially. Hence, assume that �a 6� 0.

We have now reduced equality (30) to the following expression

��a � g�
X
j2J

xj � g
X
j2NnJ

xj �
X
j2J

bjyj � a0 �31�

By evaluating (31) at any feasible solution where yj � 1, for all j 2 N, that is tight for

(29), and any tight feasible solution where one arc k 2 J is closed and all other arcs are

open, we get ÿ�a�mk ÿ l�� ÿ bk � 0. Varying over all possible choices of k gives

bj � ÿ�a�mj ÿ l�� for all j 2 J �32�

Finally we need to determine the value of a0. By using the value (32) of bj for all
j 2 J in equation (31), and by evaluating (31) at any feasible point that is tight for (29)

we obtain

a0 � �a b ÿ
X
j2J
�mj ÿ l��

� �
� gb

which completes the ®rst part of our proof.

Necessity: Suppose that mj � l for all j 2 J. Then the ¯ow cover inequality (29)

reduces to Sj2Jxj � b. This inequality is dominated by the valid inequality Sj2Nxj � b

and can therefore not be facet de®ning. j

2.5.2 Separation based on the ¯ow cover inequalities

Let (x*, y*) denote a fractional solution to the LP-relaxation of the single-node

capacitated ¯ow problem (26)±(28). Moreover, let zj, j 2 N be a zero-one variable that

takes value one if j 2 J, and value zero otherwise. For a given value of l4 0, the

problem of ®nding the most violated ¯ow cover inequalities (29) is formulated as the

following knapsack type problem.

max
X
j2N
�x*j � �mj ÿ l���1 ÿ y*j��zj �33�

s:t:
X
j2N

mjzj � b � l �34�

zj 2 f0; 1g for all j 2 N �35�

CROWDER et al. (1983), and VAN ROY and WOLSEY (1987) discuss a heuristic for

problem (33)±(35).
#VVS, 1999

146 K. Aardal and C. P. M. van Hoesel



2.5.3 The extended ¯ow cover inequalities

Once we have a set J satisfying the conditions of Theorem 5 we can extend the ¯ow

cover inequality by including ¯ow from the arcs belonging to the set L � �N n J�, see
Figure 7.

Let �m � maxj2Jfmjg, and let �ml � maxf �m, mlg for all l 2 L. The following extended

¯ow cover inequality is valid for conv�XFC�.X
j2J[L

xj � b ÿ
X
j2J
�mj ÿ l���1 ÿ yj� �

X
j2L
� �mj ÿ l�yj �36�

It is only interesting to include arc l in the set L if ml 4 �m ÿ l, since we otherwise

obtain a stronger inequality by combining (36) with L n flg, with the de®ning

constraint xl � mlyl. PADBERG et al. (1985) showed that if 05 �m ÿ l5ml � �m for all

l 2 L, then the extended ¯ow cover inequality (36) de®nes a facet of conv�XFC�, and
obtained the following result in the equal capacity case. Let XC

FC denote the set of

vectors corresponding to feasible solutions to (26)±(28) if mj � m for all j 2 N.

THEOREM 6 PADBERG, VAN ROY, and WOLSEY (1985). Assume that mj � m for all j 2 N,

and that b is not an integer multiple of m. Let l � �b=m�, and l � ml ÿ b. Let S be any

¯ow cover with respect to N, i.e., jSj � l. The extended ¯ow cover inequalitiesX
j2S

xj � b �
X
j2S
�m ÿ l�yj ÿ �m ÿ l�l �37�

together with the de®ning inequalities (26), (27) with mj � m for all j 2 N, and the

inequalities 0 � yj � 1 for all j 2 N, de®ne the convex hull of XC
FC.

The idea behind the proof is as follows. First, the authors characterize the optimal

solution to the problem (26)±(28), with mj � m for all j 2 N, given an arbitrarily

chosen objective function. Call this solution (xÃ, yÃ). Next, they show that such an

optimal solution can be obtained by solving an assignment problem, which we shall

refer to as problem AP. The next step is to consider the linear formulation that we

assume de®nes the convex hull of feasible solutions, i.e., the formulation given in the

theorem, and its dual. Finally, they characterize a dual feasible solution, given the

same arbitrarily chosen primal objective function as above, and show that it has the

same value as the optimal solution to the dual of the assignment problem AP, and

Fig. 7. The single-node capacitated ¯ow model with sets J, L and N n �J [ L�.
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hence to AP, which implies that it also has the same value as the optimal solution

(xÃ, yÃ).

AARDAL et al. (1995) showed that the separation problem based on the family of

extended ¯ow cover inequalities can be solved in polynomial time if mj � m for all

j 2 N.

VAN ROY and WOLSEY (1986) also studied the single-node ¯ow model with both

®xed charge in¯ow and out¯ow arcs. Separation heurstics for these inequalities are

also discussed by VAN ROY and WOLSEY (1987).

2.6 Applications

2.6.1 The economic lot-sizing problem

As seen in the previous subsection it is sometimes possible to describe the convex hull

of feasible solutions by concise families of valid inequalities. For some problems, like

the bipartite matching problem, these families contain polynomially many inequal-

ities. In general, however, the families contain exponentially many inequalities as for

instance the class of extended ¯ow cover inequalities (37). The ®rst complete convex

hull descriptions are due to Edmonds, who characterized the matching polytope

(1965) and the polymatroid polytope (1970). In this subsection we brie¯y discuss such

proof techniques and give a proof of the complete characterization of the convex hull

of feasible solutions to the economic lot-sizing problem.

In the primal method we start by considering an arbitrary valid and facet de®ning

inequality ax � b. We then determine all relations between the coe�cients (a j b) of
this inequality that can be obtained under the assumptions that the inequality is valid

and facet de®ning. Finally, it is shown that all feasible combinations of a and b

precisely yield the facet de®ning inequalities that were assumed to de®ne the convex

hull. This technique usually involves a lot of technicalities, and is therefore used less

frequently.

In the dual proof techniquewe want to prove that a given linear description P de®nes

the convex hull of feasible solutions X. We take an arbitrary objective function c, and

solve the dual problem of min{cx :x2 P � conv(X)}. We then try to identify a primal

solution x 2 X that satis®es the complementary slackness conditions given c. Since

there is an objective function for each extreme point x of P, such that x is the unique

optimum, this proves that each extreme point of P is in X, which in turn proves that P

is the convex hull of X. LOVAÂ SZ (1983) uses this technique to characterize the convex

hull of the polymatroid polytope. The proof by PADBERG et al. (1985) that the

extended ¯ow cover inequalities (37) describe the convex hull of the single-node ¯ow

model with equal capacities is also of this type, see Section 2.5.3. An elegant variant of

the primal technique has been used by LOVAÂ SZ (1979) on the matching polytope. He

considers an arbitrary objective function c, and the set F of optimal solutions of X

with respect to c. It is then shown that F is contained in one of the faces de®ned by the

families of valid inequalities and the de®ning constraints that are assumed to describe

the convex hull. This shows that the assumed description is complete since if we
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choose an objective function parallel to a facet, then this facet is the only inequality

that is satis®ed at equality by all points in F.

We illustrate the technique of LOVAÂ SZ (1979) on the economic lot-sizing (ELS)

problem. In ELS we are given T time periods constituting the planning horizon. In

each period there is a nonnegative demand dt that has to be satis®ed with production

in one of the periods {1, . . . , t}. We have a per unit production cost ct in each period,

and a set-up cost, ft, that is incurred whenever there is positive production in period t.

Let di;j denote the cumulative demand of the periods {i,. . . , j}. The standard

formulation of ELS involves nonnegative production variables xt and binary set-up

variables yt.

min
XT
t�1
�ftyt � ctxt�

s:t:
XT
t�1

xt � d1;T �38�

Xt
t�1

xt � d1;t for all t � 1; . . . ;T ÿ 1 �39�

xt � dt;Tyt for all t � 1; . . . ;T �40�
yt � 1 for all t � 1; . . . ;T �41�
xt; yt � 0 for all t � 1; . . . ;T �42�
yt integral for all t � 1; . . . ;T �43�

Equation (38) models the restriction that there is no inventory at the beginning and

the end of the planning horizon. Constraints (39) ensure that the inventory at the end

of each period is nonnegative, and that all demand is met. Finally, inequalities (40)

force a set-up in each period that has positive production. We assume that d140,

which implies that the production in period 1 is positive, and thus the corresponding

set-up variable y1 � 1. We denote the vectors corresponding to the set of solutions

satisfying (38)±(43) by XELS. Due to the equations (38) and y1 � 1, the dimension of

conv(XELS) is at most 2Tÿ 2. In fact, dim(conv(XELS)) is precisely equal to 2Tÿ 2.

In Part I we described the following so-called (l, S)-inequalities introduced by

BAÂ RAÂ NY et al. (1984) for ELS.X
t2f1;...;lgnS

xt �
X
t2S

dt;lyt � d1;l for all l 2 f1; . . . ;Tg; and all S � f1; . . . ; lg �44�

The (l, S)-inequalities constitute a subfamily of the ®xed charge uncapacitated

network inequalities (24), cf. Figure 8. To see the similarity more clearly we rewrite

the (l, S)-inequalities in the following equivalent form:X
t2S

xt �
X
t2S

dt;lyt � sl for all l 2 f1; . . . ;Tg; and all S � f1; . . . ; lg �45�
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where s1 � x1ÿ d1 and st � stÿ1 � xt ÿ dt, for all t � 2, . . . , T. Let A � {(0, t�Tt�1, (t,
t � 1�Tÿ1t�1 g, and let xt denote the ¯ow along arcs (0, t), st de ¯ow along arcs (t, t � 1),

and dt the out¯ow from node t. Moreover, let X � {1, 2, . . . , l}, R � {E(X)} and

C � {(0, i1), . . . , (0, ir�g, with ij 2 f1, . . . , l} for j � 1, . . . , r, such that H � {i1 , . . . ,

irg � f1, . . . , l}. We also note that the inequalities (39) and (40) are special cases of the

(l, S)-inequalities. Inequalities (39) can be obtained by taking S � ;, and inequalities

(40) are obtained by taking S � {k}. BaÂ raÂ ny et al. proved that conv(XELS� is de®ned
by the (l, S)-inequalities together with the constraints y1 � 1, (38), (41), and (42). We

will prove this result by using LovaÂ sz's technique (see LOVAÂ SZ, 1979).

Let F be the set of optimal solutions of conv(XELS) with respect to the objective

function fy � cx. To simplify the analysis we adjust the objective function in the

following way. Let cmin � mint2f1;...;Tgfctg. We ®rst add the constant cmind1;T �
cminS

T
t�1xt to the objective function, and then subtract cmin from every per unit

production cost ct. This ensures that the minimum per unit production cost among all

periods is zero, and does not change the optimal solution since Stxt � d1;T. Similarly,

we add the value f1y1 � f1 to the objective function, and set f1 to zero.

Case 1. Suppose that ft 5 0 for some t 2 f2, . . . , T}.
Then all solutions in F satisfy yt � 1, since a solution with yt � 0 can be improved by

setting yt � 1. Hence, the face de®ned by yt � 1 contains F.

From now on we may assume that ft � 0 for all t 2 f1, . . . , T}. De®ne

l � max{t :ct 4 0 or ft 4 0 for all t � tg. Hence, if l5T, then fl�1 � cl�1 � 0.

Case 2. Suppose that there is a period t 2 f1 � 2, . . . , T} such that ft 4 0.

Then all solutions in F satisfy yt � 0, since a solution with yt � 1 can be improved by

setting yt � 0, and, if necessary, moving production in t to period l � 1 at a cost

reduction. Hence, the face de®ned by yt � 0 contains F.

We deal with periods t4 l � 1 for which ct 4 0 in a similar way by showing that the

face de®ned by xt � 0 contains F. From now on, we may assume that for all t4 l we

have ft � ct � 0. Moreover, we may assume that l � 1, otherwise the objective

function has zero coe�cients only and F is not a proper face of conv(X). De®ne

S � ft � l : ct � 0g.

Fig. 8. The economic lot-sizing problem represented as a network.
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If l � T then S is not empty, since the minimum unit production cost is zero.

Hence, the (l, S)-inequality based on l and S as de®ned above, is not implied by

equation (38). Moreover, if l � 1, then c14 0, which ensures that the (l, S)-inequality

is not implied by y1 � 1 either.

Case 3. We prove that all solutions of F satisfy the (l, S)-inequality at equality.

Suppose that there is a solution � �y, �x� in F for which this is not true, i.e.,X
t2f1;...;lgnS

�xt �
X
t2S

dt;l �yt 4 d1;l �46�

Let u be the smallest index in S with �yu � 1, if it exists, otherwise set u � l � 1.

Production that takes place in {u � 1, . . . , l} can be moved to u at a cost reduction,

since these periods have positive unit production costs, or positive set-up costs.

Therefore, all production in {u, . . . , l} takes place in u. It follows from (46) that there

must be overproduction in the periods {1, . . . , u ÿ 1g n S, which can be moved to u at

a further cost reduction. Hence, we can conclude that any solution satisfying (46) is

not cost optimal. This ®nishes the proof. j

In VAN HOESEL et al. (1994) a similar proof is given for the more general economic

lot-sizing problem with additional start-up costs.

2.6.2 The facility location problem

Here we shall discuss how odd-hole inequalities and ¯ow cover inequalities can be

used, and extended, when solving facility location problems. The facility location

problem is de®ned as follows. Let M � {1, . . . , m} be the set of facilities, and let

N � {1, . . . , n} be the set of clients. Facility j has capacitymj, and client k has demand

dk. The total demand of the clients in the set S � N is denoted by d(S). The ®xed cost

of opening facility j is equal to fj and the cost of transporting one unit of goods from

facility j to client k is equal to cjk. Let yj � 1 if facility j is open and let yj � 0

otherwise. The ¯ow from facility j to client k is denoted by vjk. We want to determine

which facility should be opened and how the ¯ow should be distributed between the

open facilities and the clients such that the sum of the ®xed costs of opening the

facilities, and the transportation costs is minimized, and such that all clients are

served, and all capacity restrictions are satis®ed. The mathematical formulation is

given below

min
X
j2M

fjyj �
X
j2M

X
k2N

cjkvjk

s:t:
X
j2M

vjk � dk for all k 2 N �47�X
k2N

vjk � mjyj for all j 2M �48�

0 � vjk � dkyj for all j 2M; k 2 N �49�
yj 2 f0; 1g for all j 2M �50�
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Inequalities (49) are redundant with respect to the integer formulation, but they do

strengthen the linear programming relaxation of the facility location problem quite

substantially.

The Uncapacitated Case

In the uncapacitated facility location (UFL) problem we have mj � d�N� for all

j 2M. It is convenient to scale the ¯ow by substituting the variables vjk by the

variables xjk � vjk=dk. The set of feasible solutions to UFL, XUFL, is given by the

following sets of constraints.X
j2M

xjk � 1 for all k 2 N �51�

0 � xjk � yj for all j 2M; k 2 N �52�
yj 2 f0; 1g for all j 2M �53�

It is possible to require explicitly that xjk 2 f0, 1} since there is at least one optimal

solution of UFL having this property. Moreover, we can change the equality sign in

constraint set (51) to a less-than-or-equal-to sign if we make an appropriate change in

the objective function ( for more details see CHO et al., 1983a). Finally, by

complementing the yj-variables, i.e., by introducing y0j � 1 ÿ yj, we obtain the

following vertex packing formulation of UFL.X
j2M

xjk � 1 for all k 2 N �54�

xjk � y
0
j � 1 for all j 2M; k 2 N �55�

y
0
j; xjk 2 f0; 1g for all j 2M; k 2 N �56�

Let XUFLVP be the set of feasible solutions to (54)±(56). Given a vertex packing

formulation of UFL, we can construct an associated undirected graph, called the

intersection graph by introducing a vertex for every variable, and an edge for every

pair of nonorthogonal columns, see Figure 9. To determine conv(XUFLVP) is equiva-

lent to determining the convex hull of vertex packings in the associated intersection

graph. Hence, we can use all results described in Section 2.2 to derive valid

inequalities for UFL. Due to the construction of the intersection graph all cliques in

this graph are described by inequalities (54) and (55), and all odd holes are cycles

where every third vertex is a y0j-vertex, see Figure 10. Both CORNUEÂ JOLS and THIZY

(1982) and CHO et al. (1983a,b) used the result by ChvataÂ l given in Theorem 1 to ®nd

more general inequalities than the odd-hole inequalities. All these inequalities have a

regular cyclic structure and all coe�cients are equal to one for all variables except one

example of a simultaneously lifted odd-hole inequality given by CornueÂ jols and

Thizy. This lifted odd-hole inequality is precisely the inequality illustrated in Figure 3

in Section 2.2. AARDAL and VAN HOESEL (1998) discuss further use of simultaneous

lifting to get new facets having di�erent coe�cients.
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The Capacitated Case

Here we show how ¯ow cover inequalities can be generated based on aggregate

information from the formulation.

Let vj � Sk2Nvjk, and consider the following valid, but redundant, constraints.

0 � vj � mjyj for all j 2M �57�X
j2M

vj � d�N� �58�

In Section 2.3 of Part I of this article, we described how we can combine constraints

(57) and (58) with constraints (50) to obtain the knapsack polytope XCFL
K � fy0 2 f0,

1gjMj : Sj2Mmjy
0
j � Sj2Mmj ÿ d�N�g, where y0j � 1 ÿ yj. Knowing that the knapsack

polytope XCFL
K forms a relaxation of the capacitated facility location (CFL) problem,

we can conclude that the knapsack cover inequalities generated from XCFL
K are valid

for CFL. If we again combine the aggregate constraints with constraint (50) we can

obtain the single-node ¯ow polytope {(v, y� 2 RjMj � f0, 1gjMj : Sj2Mvj � d�N�,

Fig. 9. The intersection graph for jMj � 3, and jNj � 4.

Fig. 10. An odd hole in the intersection graph.
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0 � vj � mjyj, j 2Mg, see Figure 11. Hence we can use the ¯ow cover inequalities

when solving CFL. The ®rst step in generalizing the ¯ow cover inequality is made by

considering inequalities based on subsets K � N of clients. One way of generalizing

the ¯ow cover inequalities further is by considering a subset of clients as well as

subsets of arcs yielding the family of e�ective capacity inequalities (AARDAL et al.,

1995). Let Kj � K for all j 2M and let �mj � minfmj, d�Kj�g. Let J de®ne a ¯ow cover

with respect to K, i.e., Sj2J �mj � d�K� � l with l4 0. The e�ective capacity (EC)

inequalityX
j2J

X
k2Kj

vjk � d�K� ÿ
X
j2J
� �mj ÿ l���1 ÿ yj� �59�

is valid for conv(XCFL). The facet de®ning EC inequalities were completely

characterized by AARDAL et al. (1995).

EXAMPLE 4 Consider the CFL structure given in Figure 12. Let J � {1, 2, 3}, K � {1,

2, 3, 4}, K1 � {3, 4}, K2 � {1}, and K3 � K. We have l � Sj2J �mj ÿ d�K� � 9.

Fig. 11. The single-node ¯ow relaxation of CFL.

Fig. 12. A CFL structure.
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The facet de®ning EC inequality based on this structure is

v13 � v14 � v21 � v31 � v32 � v33 � v34

� 39 ÿ 14�1 ÿ y1� ÿ �1 ÿ y2� ÿ 6�1 ÿ y3�:
j

A further generalization of the ¯ow cover inequalities, called the family of submodular

inequalities, was developed by WOLSEY (1989) and adapted to the capacitated facility

location problem by AARDAL et al. (1995). The separation problem based on the EC

inequalities and the submodular inequalities, as well as computational experience

from using these inequalities, are discussed by AARDAL (1998).

2.7 A list of polyhedral results for combinatorial problems

Here we provide a list of polyhedral results that are known for combinatorial

optimization problems. If a recent survey of results for a speci®c problem class is

known, we refer to the survey and not to the individual articles. Surveys are marked

with an asterisk. Due to the vast literature, we do not claim the list to be complete.

Airline ¯eet and crew scheduling: HOFFMAN and PADBERG (1993), HANE et al. (1995).

Boolean quadratic polytope: PADBERG (1989), LEE and LEUNG (1993a). Clique

problems: GROÈ TSCHEL and WAKABAYASHI (1989, 1990). Coloring: LEE and LEUNG

(1993b), NEMHAUSER and PARK (1991). Covering, packing and partition: BALAS and

PADBERG (1972), PADBERG (1973, 1977, 1980), NEMHAUSER and TROTTER (1974),

TROTTER (1975), WOLSEY (1976b), BALAS and ZEMEL (1977), BALAS and HO (1980),

BALAS and NG (1989a,b), CORNUEÂ JOLS and SASSANO (1989), LAURENT (1989), NOBILI

and SASSANO (1989), SASSANO (1989), CHOPRA and RAO (1993), FERREIRA et al. (1996,

1998), MUÈ LLER and SCHULZ (1996), CHENG and CUNNINGHAM (1997). Cut polytopes:

BARAHONA and MAHJOUB (1986), BARAHONA et al. (1988), CONFORTI et al. (1990/

91a,b), DE SOUSA and LAURENT (1995), DEZA et al. (1992), DEZA and LAURENT

(1992a,b), PULLEYBLANK and SHEPHERD (1993), BALAS et al. (1994b), BRUNETTA et al.

(1997). Frequency assignment: AARDAL et al. (1995). General integer and mixed 0-1

structures: WOLSEY (1976a), PELED (1977), ZEMEL (1978), CROWDER et al. (1983),

PADBERG et al. (1985), VAN ROY and WOLSEY (1985, 1986, 1987), GOEMANS (1989),

NEMHAUSER and WOLSEY (1990), CAPRARA and FISCHETTI (1996), BALAS et al.

(1996a,b), CERIA et al. (1998). Knapsack problems: BALAS (1975), HAMMER et al.

(1975), WOLSEY (1975), BALAS and ZEMEL (1978), PADBERG (1980), NEMHAUSER and

VANCE (1994), GU et al. (1995), WEISMANTEL (1997), POCHET and WEISMANTEL (1998).

Layout design: LEUNG (1994). Linear ordering: GROÈ TSCHEL et al. (1984, 1985b),

REINELT (1985), MITCHELL and BORCHERS (1992, 1993). Location: CORNUEÂ JOLS et al.

(1977), CORNUEÂ JOLS and THIZY (1982), CHO et al. (1983a,b), LEUNG and MAGNANTI

(1989), AARDAL et al. (1995, 1996), AARDAL (1998), AARDAL and VAN HOESEL (1998).

Lot sizing: POCHET and WOLSEY (1995)*, CONSTANTINO (1998). Matching: Edmonds

(1965), GROÈ TSCHEL and HOLLAND (1985). Network and VLSI design: POCHET and

WOLSEY (1992), GROÈ TSCHEL et al. (1992, 1993, 1995, 1997), BIENSTOCK and GUÈ NLUÈ K
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(1996), BIENSTOCK et al. (1998). Postman problems: GROÈ TSCHEL and WIN (1992).

Scheduling: QUEYRANNE and SCHULZ (1994)*. Subgraph polytopes: BALAS and

PULLEYBLANK (1983), BARAHONA et al. (1985), GROÈ TSCHEL et al. (1985a), JUÈ NGER

(1985), BARAHONA and MAHJOUB (1989, 1992), CHOPRA (1992), JUÈ NGER and MUTZEL

(1993), LEUNG and LEE (1994), GOEMANS and HALL (1996), BAUER (1997). Tenary

problems: CHOPRA (1989a). Traveling salesman problems: DANTZIG et al. (1954, 1959),

GROÈ TSCHEL and PADBERG (1979), CROWDER and PADBERG (1980), GROÈ TSCHEL (1980),

PADBERG and HONG (1980), CORNUEÂ JOLS and PULLEYBLANK (1982), GROÈ TSCHEL and

PULLEYBLANK (1986), PADBERG and RINALDI (1987, 1990, 1991), FISCHETTI (1991a,

1992), GROÈ TSCHEL and HOLLAND (1991), NADDEF and RINALDI (1991, 1992), REINELT

(1991), NADDEF (1992), CLOCHARD and NADDEF (1993), APPLEGATE et al. (1994),

BALAS et al. (1995), GOEMANS (1995), FLEISHER and TARDOS (1996), CARR (1997).

Trees, forests and arborescences: GAMBLE and PULLEYBLANK (1989), CHOPRA (1989b),

FISCHETTI (1991b), BALAS and FISCHETTI (1992), CHOPRA et al. (1992), GOEMANS

(1992), HALL and MAGNANTI (1992), CHOPRA and RAO (1994a,b), GROÈ TSCHEL et al.

(1996), HALL (1996). Vehicle routing: ARAQUE (1989, 1990), ARAQUE et al. (1990),

CORNUEÂ JOLS and HARCHE (1993).

3 Computational aspects

Once speci®c classes of valid inequalities for a certain version of ILP (1) have been

developed we can implement the separation algorithms for these inequalities in the

following cutting plane algorithm, see Figure 13.

Outline of the cutting plane algorithm.

1. Initialize the linear programming relaxation LP of ILP.

2. Solve LP and let x* be the optimal solution. If x* is integral, stop, otherwise go to

step 3.

3. Separation algorithms are run to identify inequalities violated by x*. If one or

more inequalities, or cuts, have been found add them to LP and go to step 2. If no

violated inequality is found, stop.

Fig. 13. Basic cutting plane algorithm.
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If the algorithm terminates by ®nding an integral solution x*, then x* is provably

optimal. Otherwise, the ®nal fractional solution provides a lower bound on the

optimal value, if we assume that ILP is a minimization problem. Contrary to

Gomory's cutting plane algorithm, (GOMORY, 1958, see Part I) we cannot guarantee

that the algorithm terminates with the optimal solution to ILP since we in general

consider only a subset of all classes of facet de®ning inequalities, and since the

separation problems are often solved heuristically. Nevertheless, the cutting plane

technique has proved very e�ective for ®nding at least very strong lower bounds. A

good lower bound decreases the expected size of a branch-and-bound tree if we need

to obtain the optimal solution. To illustrate how the lower bound develops if we add

valid inequalities sequentially, we consider a TSP instance of 120 cities from

GROÈ TSCHEL (1980), which was solved to optimality after adding cutting planes

only. The optimal solution was found after 13 calls to the LP-solver. The value of the

LP relaxation, zLP, and the number of added cuts at each iteration, are given in

Table 1.

In the remainder of this section we shall discuss how the basic cutting plane

algorithm can be extended and embedded in a branch-and-bound framework. We

also discuss several implementation issues. Each extension is illustrated by an example

or by computational results. In the tables we use the following notation: zLP denotes

the value of the LP-relaxation, and zIP and zMIP denote the optimal value of the

integer and the mixed-integer optimization problems respectively. By % gap we mean

the percentage duality gap, 100(zIP ÿ zLP�=zIP. The percentage duality gap closed,

denoted % gap closed is calculated as 100(zrootLP ÿ zLP�=�zIP ÿ zLP�, where zrootLP is

the value of the LP-relaxation after all violated inequalities that have been identi®ed

in the root node of the branch-and-bound tree have been added. The number of

branch-and-bound nodes needed to verify the optimum is given in the column B&B

nodes.

Table 1. A cutting plane algorithm applied to a 120-city TSP

Iteration zLP Inequalities

1 6662.5 13

2 6883.5 15

3 6912.5 7

4 6918.8 9

5 6928.0 6

6 6935.3 9

7 6937.2 8

8 6939.5 5

9 6940.4 4

10 6940.8 12

11 6941.2 5

12 6941.5 3

13 6942.0
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3.1 Extending the cutting plane algorithm

There are several ways to extend the basic cutting plane algorithm. We will describe

the major additional techniques in the order in which they appear in an extended

cutting plane algorithm.

3.1.1 Preprocessing

Preprocessing integer linear programs involves removing redundant constraints,

tightening the constraint coe�cients and right-hand sides of the constraints, and

®xing variables to certain values. This typically yields better lower bounds provided

by the linear relaxation, or a signi®cant reduction in the size of the formulation, both

with respect to the number of constraints and number of variables. An important

factor is also that the instance becomes numerically more tractable if large coe�cients

are reduced. There are many preprocessing techniques described in the literature. For

each technique, or combination of techniques, one needs to ®nd the right balance

between e�ectiveness and computing time. Here we shall present some simple

methods that strengthen a linear program quickly. These methods are described by

SAVELSBERGH (1994), and originally developed by CROWDER et al. (1983) and HOFFMAN

and PADBERG (1991).

Consider the following subset of constraints from a mixed integer program, where

N� is the subset of variables with positive coe�cients, Nÿ is the subset of variables

with negative coe�cients, and N � N� [Nÿ. Note that this implies that aj � 0 for all

j 2 N in inequality (60) below.X
j2N�

ajxj ÿ
X
j2Nÿ

ajxj � b �60�

lj � xj � uj for all j 2 N �61�

A lower bound on the left-hand side of (60) is LB � Sj2N�ajlj ÿ Sj2Nÿajuj. If LB4 b,

then the problem is infeasible. An upper bound on the left-hand side of (60) is

UB � Sj2N�ajuj ÿ Sj2Nÿajlj. If UB � b, then the constraint is redundant. It is also

possible to tighten the bounds (61) on the variables by considering one variable at

the time. Consider variable xk, k 2 N�, and let LBk � Sj2N�nfkgajlj ÿ Sj2Nÿajuj.
Clearly, every feasible solution satis®es xk � �b ÿ LBk�=ak. Hence, the upper

bound uk can be decreased if uk 4 �b ÿ LBk�=ak. Analogous results can be obtained

for the lower bound lk, and for the upper and lower bounds of variables xk where

k 2 Nÿ.
An elegant preprocessing technique is ``probing'' on the variables, which means

®xing variables temporarily. Probing techniques were introduced by GUIGNARD

and SPIELBERG (1981). By ®xing a variable we may detect logical relations

between variables that can be used to tighten, and reduce the size of the formula-

tion as is demonstrated in the following example. Consider the following set of
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constraints with two nonnegative real variables x1 and x2 and two binary variables y1
and y2 .

x1 � 3x2 � 12

2x1 � x2 � 15

x1 � 10y1
x2 � 20y2

We probe on y1 by setting y1 equal to zero. Then, by the third constraint, x1 has to be

equal to zero as well, which, due to the second and fourth constraints, implies that

x2� 15 and y2 � 1. If we consider the ®rst constraint we see that if y1 � 0, then we

can increase the right-hand side to 45. If however y1 � 1 then the right-hand side has

to be equal to 12. Hence, it is possible to add the term (45ÿ 12)(1ÿ y1) to the right-

hand side of the ®rst constraint that now becomes

x1 � 3x2 � 12 � 33�1 ÿ y1�
Implication inequalities derived from binary variables can also be used to obtain

clique constraints. In the previous example we saw that y1 � 0 implies y2 � 1. Thus,

we have y01 � y02 � 1, where y0i, i � 1,2 denotes the complement of the variable of yi.

To ®nd such clique inequalities we can construct an auxiliary graph that has one

vertex for every variable and its complement. Two vertices are connected by an edge if

the corresponding variables cannot both have value one. Consider the auxiliary graph

shown in Figure 14. From the structure of the graph we conclude that y02 has to be

equal to zero. To see that this is true note that y02 � 1 implies y2 � 0. If y2 � 0, then

either y3 � 0 or y3 � 1. If y3 � 0, then y03 � 1, which implies y01 � 0, which in turn

implies that y1 � 1. This is however not feasible since y1 is adjacent to y02. A similar

contradiction is obtained if we choose y3 � 1. This example shows that by

investigating logical implication we may be able to ®x variables and thereby reduce

the problem size. Moreover, the cliques in the auxiliary graph do in general induce

inequalities that are stronger than the inequalities in the original formulation.

Fig. 14. Auxiliary vertex packing graph.
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The e�ectiveness of the various preprocessing techniques has been tested by

SAVELSBERGH (1994) on a set of 10 mixed integer programming problems from the

literature. Table 2 shows the improvement of the lower bound after preprocessing as

well as the reduction in the number of branch-and-bound nodes needed to verify the

optimal solution. Observe that the linear programming bound increases substantially

for all problems, and that the size of the branch-and-bound tree decreases by a fair

amount for most instances. For two instances however, the number of branch-and-

bound nodes of the preprocessed problem is larger than for the original problem. This

phenomenon has to do with the relative lack of robustness of branch-and-bound, and

is not really well understood. For more details regarding preprocessing we refer to

CROWDER et al. (1983), HOFFMAN and PADBERG (1991) and DIETRICH and ESCUDERO

(1990).

3.1.2 Postprocessing the linear program

After the linear program is solved, either the optimal solution is found, or, more

usually, a fractional solution x* is obtained, which provides a lower bound zLP on the

optimal value zIP. Suppose we know a feasible solution with value zF. The value zF is

an upper bound on zIP, thus zIP is guaranteed to lie in the interval [zLP, zF]. Heuristics

that use the fractional solution x* to create a feasible solution are known as primal

rounding heuristics. Besides providing a worst case distance between the lower bound

and the optimal value, an upper bound can also be used to ®x variables by reduced

cost ®xing, or more involved, by parametric analysis on a single variable.

3.1.3 Generating generic inequalities

Besides the problem speci®c classes of valid inequalities, we can try to ®nd violated

generic inequalities. Many capacitated problems contain knapsack type constraints,

in which case we may try to ®nd violated lifted knapsack cover inequalities (18). Other

generic classes of valid inequalities are clique inequalities (4), obtained from the

auxiliary graph of the binary variables as shown in Figure 14, odd-hole inequalities

(5), network inequalities (24), and extended ¯ow cover inequalities (36). The

Table 2. E�ect of preprocessing technqiues

Problem

zLP without

prepr.

zLP with

prepr. zMIP

B&B nodes

without prepr.

B&B nodes

with prepr.

egout 149.5 562.1 568.1 553 3

®xnet3 40,717.0 50,414.2 51,973.0 131 5

®xnet4 4257.9 7703.4 8936.0 2561 1031

®xnet6 1200.8 3192.5 3983.0 4795 4305

khb05250 95,919,464.0 106,750,366.0 106,940,226.0 11,483 13

gen 112,130.0 112,271.0 112,313.0 11 15

att 125.9 149.1 160.2 6459 127

sample2 247.0 290.4 375.0 336 51

p0033 2520.8 2838.5 3089.0 15 7

lseu 834.6 947.9 1120.0 297 464
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capacitated facility location problem provides a good insight in what these generic

inequalities might o�er. Table 3 shows the improvement obtained by adding lifted

cover inequalities to the formulation given in Section 2.6.2. The ®rst ®ve instances

have 33 facilities and 50 clients, whereas the last ®ve instances have 75 facilities and

100 clients. For more details, see AARDAL (1988).

3.2 Embedding the cutting plane algorithm in a branch and bound framework

3.2.1 The algorithm

In the early days of polyhedral techniques problems were solved by applying a cutting

plane algorithm in the root node of the branch-and-bound tree only, since the LP-

solvers were not designed to handle row management in a practical way, which made

the implementation quite involved. In the mid-eighties GROÈ TSCHEL et al. (1984) used a

cutting plane algorithm in every node of the branch-and-bound tree to solve the linear

ordering problem. PADBERG and RINALDI (1987) called this idea branch-and-cut.

Outline of the branch-and-cut algorithm.

1. Initialize a list L of subproblems of the original problem. Repeat steps 2 and 3,

until L is empty.

2. Select a subproblem S from L.

3. Consider the linear relaxation of S and apply a cutting plane algorithm to the

relaxation. If S is not solved, create new subproblems by branching. Put the new

subproblems in L.

Every subproblem in L corresponds to a node in the branch-and-cut tree. The

subproblems that still need to be investigated are called active. In order to avoid

complete enumeration the search tree is pruned at subproblem j, i.e., no further

subproblems are created at node j, if one of the following conditions hold: (i) sub-

problem j is infeasible, (ii) the optimal solution to the linear relaxation of subproblem

j is integral, or (iii) zjLP � �z, where �z is the best known upper bound.

In the branch-and-cut algorithm we need to specify a search strategy and a branch-

ing strategy, i.e., how to select a subproblem from the list L, and how to create new

Table 3. Result of adding lifted knapsack cover inequalities to CFL

Problem % gap

B&B

nodes Time (s)

Cover

ineq.

% gap

closed

B&B

nodes Time (s)

50331 1.5 399 686 13 86.0 31 125

50332 1.2 691 1560 58 54.3 51 450

50333 1.5 259 556 122 54.1 89 769

50334 0.7 239 493 42 76.6 23 213

50335 1.3 685 1232 25 78.3 49 248

100751 0.7 4077 22,977 295 40.9 611 10,560

100752 0.6 15,419 74,351 648 55.4 1243 20,055

100753 0.1 183 761 48 12.5 59 844

100754 0.3 6687 40,604 228 9.1 537 11,076

100755 0.1 117 621 9 34.6 23 406
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subproblems. The most commonly used search strategies are depth-®rst search and

breadth-®rst search. In depth-®rst search one of the subproblems created at the

current node is investigated if the current node is not pruned, whereas in breadth-®rst

search all nodes at the current level of the tree are investigated before any node at the

level below. The most frequently used branching rules are to branch on a variable

according to one, or a mix, of the following four criteria. Here we assume that the

variables are binary.

1. Select the variable with value closest to 0.5.

2. Select the variable with value closest to 1.

3. Select the variable with highest objective coe�cient.

4. Select a set P of ``promising'' variables and compute for each variable in P the

lower bound that is obtained at the corresponding subproblem. Select the variable

that yields the smallest lower bound.

PADBERG and RINALDI (1991) suggest a combination of 1 and 3 for the traveling

salesman problem. Rule 2 is surprisingly e�ective in combination with a depth-®rst

strategy. Rule 4, introduced by APPLEGATE et al. (1994), has similarities with the

``steepest-edge'' idea used in the simplex method for linear programming when

choosing the variable to enter the basis. Other strategies have been proposed by BALAS

and TOTH (1985). JUÈ NGER et al. (1992) report on computational experience with

various combinations of these rules. When branching on a constraint, usually a clique

constraint, a new branch is created for each value that the left-hand side of the

constraint can obtain. CLOCHARD and NADDEF (1993) suggest such a rule for the

traveling salesman problem.

3.2.2 Implementation issues

The various components of the extended cutting plane algorithm may not be very

e�ective in each node of the branch-and-cut tree. Preprocessing for instance has much

e�ect in the root node of the tree since the original formulation of a problem is usually

weak at the same time as it contains a lot of redundancy. Similarly, it may be hard to

Fig. 15. Branch-and-cut algorithm.
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®nd e�ective cutting planes in the subproblems further down in the tree. Hence, the

major e�ort on separation is usually put in the root node. In an implementation of a

branch-and-cut algorithm we can therefore introduce selection mechanisms indicat-

ing where in the tree certain components should be performed. E�ectiveness versus

computational e�ort should then be weighed against each other.

As mentioned above, the search tree can be pruned at a certain node if the lower

bound obtained at that node exceeds the best known upper bound. In order to

decrease the expected size of the search tree it is therefore crucial to compute a good

upper bound by a primal heuristic before entering the branching phase.

Branch pausing, introduced by PADBERG and RINALDI (1991), is a strategy where

subproblems are temporarily ignored if the lower bounds are greater than a certain

threshold value. The threshold value is an estimate of the optimal value of the

problem. The advantage with branch pausing is that the expected size of the search

tree gets smaller. If we choose to consider subproblems in the order of increasing

value of the lower bounds the implementation however gets quite complicated since

subsequently chosen subproblems are not necessarily related.

Maintaining the cutting planes is a rather di�cult implementation issue. In early

versions of branch-and-cut packages, one was only allowed to generate globally valid

inequalities, i.e., inequalities that are valid for the original problem instance. These

inequalities were maintained in a central pool, from which one could select violated

inequalities for the current subproblem. The global cuts usually work well, but to use

the full power of the branch-and-cut algorithm, one should also be able to generate

inequalities that are locally valid. BALAS et al. (1996) report on good results using

branch-and-cut with locally valid Gomory cuts. When solving large instances it

becomes important to work with a formulation that is as small as possible. One

important feature is therefore to be able to delete inequalities from the active

formulation and store them in a pool. A detailed overview of general implementation

ideas can be found in JUÈ NGER et al. (1995). Data structures and other implementation

details speci®c for the traveling salesman problem can be found in APPLEGATE et al.

(1994). To conclude this section we show in Figure 16 the branch-and-cut tree of a

532-city traveling salesman problem solved by PADBERG and RINALDI (1987). This tree

gives an indication of the development of the lower bound at di�erent levels of the

tree. At the ®rst node we give the starting LP-value, and at the second node we give

the LP-value after all cuts generated in the root node have been added. Note that after

the second level of the tree all values are of the order 27,000, so we only give the digits

as of the hundreds.

4 Computational results for selected problems

To give an idea of how polyhedral techniques perform, and how large instances can

be solved, we have selected a number of problem types for which computational

results are reported in the literature. For a more extensive survey we refer to JUÈ NGER

et al. (1995).
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4.1 The vertex packing problem

NEMHAUSER and SIGISMONDI (1992) report on solving randomly generated instances of

the maximum cardinality vertex packing problem. The sizes of the instances vary

between 40 and 120 vertices, and for every size they consider di�erent densities by

changing the probability that an edge is in the graph between 0.1 and 0.9. The code

used by the authors was limited in the sense that the cutting plane algorithm was run

only in the root node, and that only primitive branching rules were available. In

Table 4 we report the results for the 0.2 density instances. In general the clique

inequalities closed most of the duality gap, but for low-density graphs lifted odd-holes

were also important. The test instances with medium density graphs were the most

Fig. 16. Branch-and-cut tree for the 532-city TSP.
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di�cult ones to solve. For instance, some of the medium-density 120-vertex problems

were not solved within 100,000 LP iterations. It seems from this study that random

vertex packing problems are di�cult to solve by the polyhedral approach. If we

consider structured vertex packing problems however, much larger instances can be

tackled as the following two applications show.

4.1.1 Frequency assignment

The frequency assignment problem is the problem of assigning frequencies to

transmission links such that no interference occurs and such that the number of used

frequencies is minimized. The frequency assigned to a speci®c link has to be chosen

from a set depending on the link. To avoid interference we have restrictions on every

pair (i, j) of links that the frequencies assigned to these links should di�er by at least a

certain prespeci®ed amount. The problem is modeled as a vertex packing problem

using a binary variable for each feasible combination of a link and a frequency. In

Table 5 we present computational results as reported by AARDAL et al. (1995). The

number of variables is approximately equal to forty times the number of links giving

instances of between approximately 4000 and 18,000 variables. By making heavily use

of preprocessing, the number of variables is reduced by at least ®fty percent. The

``lower bound by branch and bound'' reported in the table is obtained by partial

branching, and the time reported is the time needed to verify optimum, or, in the case

of the last instance, the time needed to ®nd the feasible solution of value 16. The

computations were carried out on a HP90000/720 workstation.

Table 4. Results for the vertex packing problem

Vertices % gap

Clique

ineq.

Odd-hole

ineq.

% gap

closed

B&B

nodes

LP-

iterations

0 1 41

60 13 203 36 92.3 16 1439

80 21 369 33 80.9 97 13,352

90 15 222 13 86.7 58 3649

100 29 181 19 93.1 108 6631

110 35 781 5 77.1 394 84,115

120 40 903 5 72.5 251 35,194

Table 5. Results for the frequency assignment problem

Links

Lower bound by

clique ineq.

Lower bound by

B&B

Best known feasible

value Time (s)

100 14 14 14 46

200 14 14 14 1925

340 20 22 22 6167

458 14 14 16 400

#VVS, 1999

Polyhedral techniques in combinatorial optimization 165



4.1.2 The set partitioning problem: airline crew scheduling

HOFFMAN and PADBERG (1993) report on solving huge set partitioning problems

arising in ariline crew scheduling problems. The cutting plane phase uses preprocess-

ing techniques, and clique and lifted odd-hole inequalities. In the branch-and-cut

phase a variable branching rule is used. From the reported results we have selected the

instances with the largest number of variables and constraints. These results are

presented in Table 6. In Table 6 zpreprLP denotes the LP-value after preprocessing. Of

the total time needed to solvle the various problems, by far the longest time is spent

on getting within the last percent of the optimal value. In Table 7 we show for three

instances how much time it takes to get within one and two percent of the optimal

value, as well as the time needed to verify optimality.

4.2 The traveling salesman problem

The literature on computational results for the traveling salesman problem is vast,

and some of the results have already been shown in Section 3. To make the progress

visual, we give in Table 8 a list of ``world records'' with respect to the size of the

instances. It should be noted that there are still some small instances unsolved, which

indicates that small does not necessarily imply easy, and that large is not synonymous

with di�cult. The instances we report on here are all Euclidean symmetric traveling

salesman problems, and they arise from applications such as ®nding routes through

actual cities, routing of drilling machines when manufacturing printed circuit boards,

and x-ray crystallography. The instances can be found in the library TSPLIB, see

ReEINELT (1991). Table 8 contains information on the number of ``cities'' n of the

instances. For all instances a complete graph is assumed which means that the number

of variables is equal to 1
2n�n ÿ 1�. The data is obtained from the original articles, so

Table 6. Results for the airline crew scheduling problem

Original Preprocessed Prepr.

zLP Ineq.

B&B

nodes zIPVariables Constr. Variables Constr.

5198 531 3846 360 30,494 0 1 30,494

7292 646 5862 488 26,977 74 1 27,040

8308 801 6235 521 53,736 345 5 53,839

8627 825 6694 537 49,616 37 1 49,649

148,633 139 138,951 139 1,181,590 0 1 1,181,590

288,507 71 202,603 71 132,878 0 1 132,878

1,053,137 145 370,642 90 9950 389 1 10,022

Table 7. Time needed to get within certain percentages of the optimal value

Variables Constraints Time 2% (s) Time 1% (s) Time opt (s)

87,482 36 225 298 2642

8904 823 375 375 14,441

7195 426 868 7443 139,337
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later techniques may perform di�erently. For instance, for the 532-city instance we

know of three di�erent numbers reported for the total number of branch-and-cut

nodes needed. To give an idea of the solution times, the 2392-city problem was solved

in approximately 6 hours on a CYBER. As can be seen from Table 8, the lower

bounds in the root node are very close to the optimal value which partly explains the

success of cutting plane algorithms for the symmetric traveling salesman problem.

When solving large instances a very advanced implementation is necessary, see

APPLEGATE et al. (1994).

4.3 General zero-one linear programs

CROWDER et al. (1983) present the ®rst computational results for large-scale zero-one

linear programs. The test problems are real life instances without any apparent

structure. On a set of 10 instances they show the e�ects of simple preprocessing

techniques, and knapsack cover and (1, k)-con®guration inequalities generated and

added in the root node of the branch-and-bound tree. In the other nodes they use only

reduced-cost ®xing to eliminate variables. Their computational results are shown in

Table 9.

Table 8. Computational results for the traveling salesman problem

Cities

Root

zLP zIP

B&B

nodes Application Year Reported by

49 12,345 12,345 1 map USA 1954 Dantzig et al.

120 6942 6942 1 map Germany 1980 GroÈ tschel

318 38,765 41,345 35 drilling 1980 Crowder & Padberg

532 27,628 27,686 85 map USA 1987 Padberg & Rinaldi

666 294,080 294,358 21 world map 1991 GroÈ tschel & Holland

1002 258,860 259,045 13 drilling 1990 Padberg & Rinaldi

2392 378,027 378,032 3 drilling 1990 Padberg & Rinaldi

3038 137,660 137,694 287 drilling 1992 Applegate et al.

4461 182,528 182,566 2092 map Germany 1994 Applegate et al.

7397 23,253,123 23,260,728 2247 programmable

logic arrays

1994 Applegate et al.

Table 9. Results for general zero-one problems

Original problem Preprocessing Cutting plane B&B

Vars. Constr. zLP Vars. Constr. zLP Ineq. zLP Nodes zIP

33 16 2520.6 33 16 2819.4 36 3065.3 113 3089.0

40 24 61,796.5 40 24 61,829.1 29 61,862.8 11 62,027.0

201 134 6875.0 195 134 7125.0 139 7125.0 1116 7615.0

282 242 176,867.5 282 222 176,867.5 462 255,033.1 1862 258,411.0

291 253 1705.1 290 206 1749.9 278 5022.7 87 5223.8

548 177 315.3 527 157 3125.9 296 8643.5 36 8691.0

1550 94 1706.5 1550 94 1706.5 94 1706.5 10 1708.0

1939 109 2051.1 1939 109 2051.1 110 2051.1 334 2066.0

2655 147 6532.1 2655 147 6532.1 149 6535.0 214 6548.0

2756 756 2688.7 2734 739 2701.1 1065 3115.3 2392 3124.0
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5 Alternative techniques

In the last two decades there has been a remarkable development in polyhedral

techniques leading to an increase in the size of many combinatorial problems that can

be solved by a factor hundred. Most of the computational successes have occurred for

zero-one combinatorial problems where the polytope is de®ned once the dimension is

given, such as the traveling salesman problem. For more complex combinatorial

optimization problems, and for general integer programming problems less progress

has been made. Here we shall give a brief overview of other available solution

techniques for solving zero-one and general integer programming problems.

If the number of variables is large compared to the number of constraints column

generation may in many cases be a good alternative. It can be viewed as a dual

approach to polyhedral techniques in the sense that one aims at generating the

extreme points of conv(S) rather than its facets. Instead of solving a separation

problem to generate a violated inequality we need to solve the problem of ®nding a

column, i.e., a feasible solution that can improve the objective function. Column

generation was introduced by GILMORE and GOMORY (1961) to solve the cutting stock

problem. Recent applications are presented by SAVELSBERGH (1993) and VANDERBECK

and WOLSEY (1994).

In Lagrangean relaxation we relax the problem by removing a subset of the

constraints, di�erent from the nonnegativity constraints. Violation of the relaxed

constraints is penalized by including these constraints, with a nonnegative multiplier,

in the objective function. Themultipliers are then updated iteratively so as tomaximize

the lower bound obtained from the relaxed problem. To update the Lagrangean

multipliers subgradient optimization is often used. Lagrangean relaxation was used

successfully by HELD andKARP (1970, 1971) to solve traveling salesman problems. For

further details we refer to GEOFFRION (1974), HELD et al. (1974) and FISHER (1981).

LOVAÂ SZ and SCHRIJVER (1991) considered 0-1 integer linear programming problems

and proposed a procedure of increasingÐor liftingÐthe dimension of the problem

by introducing more variables and then projecting the extended formulation back

onto the original space. From the projection step strong valid inequalities are

obtained for the original problem. They showed that by repeating this procedure a

number of times equal to the number of variables in the original space, the convex

hull of feasible solutions is obtained. At the lifting step the number of variables

involved are squared and the number of constraints is increased by a factor two times

the number of variables. BALAS et al. (1993) developed this technique further and

proved that it is su�cient to double the number of variables and constraints at the

lifting step. They also related this technique to a convexi®cation technique introduced

by BALAS (1979) and used this relation to develop a class of ®nitely converging cutting

plane algorithms, called lift-and-project algorithms, for mixed 0-1 linear program-

ming problems.

COOK et al. (1993) presented an implementation of the generalized basis reduction

algorithm by LOVAÂ SZ and SCARF (1992) for solving general integer programming
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problems. Basis reduction was ®rst introduced to integer programming by H. W.

LENSTRA, JR. (1983), who showed that the problem: ``does there exist a vector x 2 Zn

such that Ax � b?'' can be solved in polynomial time for ®xed n. The proof was

algorithmic. One important ingredient of this algorithm is the basis reduction

algorithm by LovaÂ sz as described in the article by LENSTRA, LENSTRA and LOVAÂ SZ

(1982). The generalized basis reduction algorithm by LovaÂ sz and Scarf generalizes the

algorithm by LovaÂ sz. Both the algorithm by H. W. Lenstra, Jr., and by LovaÂ sz and

Scarf are based on the same principle. It is shown that it is possible, in polynomial

time, to ®nd either an integral vector belonging to the bounded polyhedron

P � fx 2 Rn : Ax � bg, or an integral direction d 2 Zn n f0g such that

maxfdx : x 2 Pg ÿ minfdx : x 2 Pg � gn where gn depends on the dimension of P

only. A direction d as described above is called ¯at. Instead of branching on variables

as in conventional branch-and-bound technqiues, the ¯at directions are used to

branch on hyperplanes dx � t, x 2 P, where t is an integer varying between dminfdx :

x 2 Pge and bmaxfdx : x 2 Pgc. Since the direction d is ¯at the number of sub-

problems created at each level of the search tree is limited by a constant depending

only on n. Moreover, we have no more than n levels in the tree.

One of the main drawbacks of polyhedral techniques, as described in Section 2, is

that the separation problem based on several facet de®ning inequalities is hard to

solve, or sometimes even hard to formulate. BOYD (1994) developed a cutting plane

algorithm for general integer programming that is based on so-called Fenchel duality.

The basic idea of Boyd's method is to prove that a certain point �x belongs to conv(S)

or to ®nd a separating hyperplane, that is as far as possible from �x. Such a separating

hyperplane is referred to as a Fenchel cut. To ®nd a Fenchel cut one needs to maximize

a piecewise linear function on a nonlinear domain. Boyd suggests di�erent relaxations

of the nonlinear domain and reports on computational experience using these

relaxations to solve the test problems of CROWDER et al. (1983).

TAYUR et al. (1995) used the theory of GroÈbner bases to develop a solution method

to solve a di�cult scheduling problem. For a more general treatment of this technique

we refer to STURMFELS and THOMAS (1994), and THOMAS (1995). The idea behind the

approach by Tayur et al. is to walk from one integer solution to another in such a way

that the objective function improves at every step. The directions used in this walk are

speci®ed by the GroÈ bner basis associated with the problem. A GroÈ bner basis can be

viewed as a so-called test set of integral vectors x1, . . . , xN, depending on the

constraint matrix and the objective function only. These vectors have the property

that a feasible solution x* is optimal if and only if c(x* � xk� � cx* whenever

x* � xk, k � 1, . . . , N is a feasible solution.
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