
Yugoslav Journal of Operations Research
Vol 19 (2009), Number 1, 157-170
DOI:10.2298/YUJOR0901157G

A DUAL EXTERIOR POINT SIMPLEX TYPE ALGORITHM
FOR THE MINIMUM COST NETWORK FLOW PROBLEM

George GERANIS
Konstantinos PAPARIZZOS

Angelo SIFALERAS
Department of Applied Informatics, University of Macedonia,

geranis,paparriz,sifalera@uom.gr

Received: December 2007 / Accepted: May 2009

Abstract: A new dual simplex type algorithm for the Minimum Cost Network Flow
Problem (MCNFP) is presented. The proposed algorithm belongs to a special “exterior-
point simplex type” category. Similarly to the classical network dual simplex algorithm
(NDSA), this algorithm starts with a dual feasible tree-solution and reduces the primal
infeasibility, iteration by iteration. However, contrary to the NDSA, the new algorithm
does not always maintain a dual feasible solution. Instead, the new algorithm might reach
a basic point (tree-solution) outside the dual feasible area (exterior point - dual infeasible
tree).

Keywords: Operations research, combinatorial optimization, minimum cost network flow problem.

1. INTRODUCTION

The Minimum Cost Network Flow Problem (MCNFP) is the problem of finding
a minimum cost flow of product units, through a number of source nodes, sinks and
transshipment nodes. Other common problems, such as the shortest path problem, the
transportation problem, the transshipment problem, the assignment problem etc., are the
special cases of the MCNFP. Such problems appear very frequently in different
technology sectors, like the Information Technology, the Telecommunications, the
Transportation, the Resource Management, etc. Algorithms developed for the MCNFP
can offer good solutions for such problems. A number of different problems that can be
solved by the following MCNFP methods are described in [1] and [9].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/27208823?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 158

The MCNFP can be easily transformed into a Linear Programming Problem and
well known general linear programming techniques could be applied in order to find an
optimal solution. Such techniques do not take advantage of some special features met in
the MCNFP. So, other special Simplex-type algorithms have been developed, such as the
Primal Network Simplex Method and the Dual Network Simplex Method. There are also
other non Simplex-type algorithms that can be used for the solving of the same problem,
as presented in [7], [2] and [15]. An exterior-point primal simplex-type algorithm for
solving the MCNFP has also been presented in [13].

This paper comes to present for the first time an exterior point dual simplex-type
algorithm for the MCNFP. The algorithm is named Dual Network Exterior Point Simplex
Algorithm (DNEPSA) for the MCNFP. It starts with a dual feasible tree-solution and,
iteration by iteration, it produces new tree-solutions closer to an optimal solution,
reducing the problem’s infeasibility. Contrary to the Network Dual Simplex Algorithm,
the tree-solution at every iteration is not necessarily dual feasible but, after a number of
iterations, the algorithm reaches a tree-solution that is both primal feasible and dual
feasible and therefore it is optimal.

Section 2 gives the notation that will be used in this paper and a short
description of the MCNFP. In Section 3, the Dual Network Exterior Point Simplex
Algorithm (DNEPSA) is described and the steps that have to be followed are described in
detail. An illustrative example presenting the algorithm step by step is given in Section 4.
Finally, Section 5 gives some conclusions and plans for future work.

2. NOTATIONS AND PROBLEM STATEMENT

In this Section we shall give a short description of the MCNFP. Let G=(N,A) be
a directed network that consists of a finite set of nodes N and a finite set of directed arcs
A, that link together pairs of nodes. Let n and m be the number of nodes and arcs
respectively. For each node i N∈ , there is an associated variable bi representing the
available supply or demand at that node. A node i is a supply node (source), if it is

0ib > . On the other hand, it is a demand node (sink), if it is 0ib < . Finally, the node i is
a transshipment node in case it is 0ib = . The total supply has to be equal to the total
demand, i.e. it has to be 0i

i N
b

∈

=∑ (balanced network).

For every arc (i,j) we have an associated flow ijx that shows the amount of
product units transferred from node i to node j and an associated cost per unit value ijx .

Therefore, the total cost is equal to
(,)

ij ij
i j A

c x
∈
∑ and the MCNFP is the problem of finding

a flow that minimizes that total cost.
We can have, for the flow ijx on arc (i,j), a lower and an upper bound, ijl and

iju respectively. This gives an additional constraint ij ij ijl x u≤ ≤ for every arc (i,j). In our
case we consider it is 0ijl = and iju = +∞ . In other words, our algorithm is applied to the
uncapacitated MCNFP. For every node i it has to be

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 159

(,) (,)
ij ji i

i j A j i A

x x b
∈ ∈

− =∑ ∑

because the outgoing flow must be equal to the incoming flow plus the node’s supply.
Therefore, the MCNFP can be formulated as follows:

minimize
(,)

ij ij
i j A

c x
∈
∑ (2.1)

subject to

(,) (,)
ij ji i

i j A j i A

x x b i N
∈ ∈

− = ∀ ∈∑ ∑ (2.2)

0, ()ijx ij A≥ ∀ ∈ (2.3)

Since it is 0i
i N

b
∈

=∑ , by using formula (2.2), it comes out that

(,) (,)
() 0ij ji

i N i j A j i A

x x
∈ ∈ ∈

− =∑ ∑ ∑

That means that constraints (2.2) are linearly dependent and we could arbitrarily
drop out one of them. Of course, a problem like this could be solved using standard well-
known Linear Programming algorithms, but these algorithms do not take advantage of
some special features met in the MCNFP.

There is a set of dual variables iw , one for every node, and a number of reduced
cost variables ijw , one for every directed arc. These are the variables used for the
formulation of the dual problem. Network simplex-type algorithms start from a basic
tree-solution and compute vectors x , w , s consisting of variables ijx , w and ijw
respectively. If for a tree-solution T, it is 0ijx ≥ for every arc (,)i j T∈ , then that
solution is said to be primal feasible. If for a tree-solution T , it is 0ijs ≥ for every arc
(,)i j T∉ then it is said to be dual feasible. A solution being both primal feasible and
dual feasible represents an optimal solution. Primal network simplex-type algorithms
start from a primal feasible solution, while dual network simplex-type algorithms, like
the algorithm described here, start from a dual feasible solution.

3. ALGORITHM DESCRIPTION

The Dual Network Exterior Point Simplex Algorithm (DNEPSA for short),
starts from a dual feasible basic tree-solution T and, after a number of iterations, it comes
to a tree-solution that is both primal feasible and dual feasible and therefore, it is optimal.
In contrary to the existing dual network simplex-type algorithms, the tree-solutions
formed during the iterations are not necessarily always dual feasible but they can be both
primal infeasible and dual infeasible. So, DNEPSA is a simplex-type algorithm starting
from a dual solution that reaches an optimal solution by following a route consisting of
solutions that do not belong to the primal feasible area.

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 160

There are different techniques that can be used in order to find a starting dual
feasible tree-solution. An algorithm that can construct a dual feasible tree-solution for the
generalized network problem (and also for pure networks) is described in [8] and an
improved version of the algorithm is presented in [11], which gives a dual feasible
solution that is closer to an optimal solution.

Given the starting dual feasible tree-solution, it is easy, starting from the leaf
nodes, to compute the flows ijx for all the basic arcs (i,j) in that tree (step 1). It is also
very easy to compute values for the dual variables iw from the equations:

i i ijw w c− = , for every arc (,)i j T∈ (3.1)

In equations (3.1) we have n-1 equations and n variables, so, we can choose one
of the dual variables (e.g. iw) and set it equal to an arbitrary value (e.g. 0). Then, it is
easy to compute the values of the rest of the dual variables.

In order to calculate the reduced costs ijs for the non-basic arcs (i,j), we can use
the following equations:

ij ij i js c w w= + − , for every arc (,)i j T∉ (3.2)

while it is 0ijs = for all the basic arcs.
Next, the algorithm creates a set, named I_, that contains the basic arcs (i,j)

having negative flow, i.e. it is 0ijx < . It also creates set I+ containing the rest of the arcs.
If it is I_=∅, this means that the tree-solution is feasible and therefore it is optimal (step
2).

After this, the algorithm considers the non-basic arcs (,)i j T∉ . When such an
arc (i,j) is added to the basic tree-solution T, then a cycle C is created. That cycle may
contain arcs of I_ having the same orientation as (i,j) and others having the opposite
orientation. For every non-basic arc, let ijd be the difference between the number of arcs
in I_ having the same orientation in cycle as (i,j) minus the number of them having the
opposite orientation. J_ consists of those non-basic arcs (i,j) having 0ijd > (step 3).

After creating set J_, we have to choose amongst its arcs, the one that will be the
entering arc (g,h). This is the arc of J_ that gives the minimum ratio – /ij ijs d (step 4).

Next, the algorithm has to find the leaving arc (k,l). This is done by checking the
cycle C formed after adding the entering arc (g,h) to the tree T. For the arcs of I_ having
the same orientation in C as (g,h), we choose arc (k1,l1) that corresponds to the minimum
absolute flow. Similarly, for the arcs of I+ having orientation opposite to the entering arc
(g,h), we choose arc (k2,l2) that corresponds to the minimum absolute flow. If we denote

1θ and 2θ these two minimum values, we decide the leaving arc by comparing 1θ
against 2θ . If it is 1 2θ θ≤ , then the leaving arc is (k,l) = (k1,l1), otherwise it is (k,l) =
(k2,l2).

At this point, the algorithm has come to a new basic tree-solution T. The same
process has to be repeated until the algorithm reaches to an optimal solution.

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 161

The algorithm’s steps are described below. The symbols ↑↑ and ↑↓ used here,
denote arcs that have the same orientation or opposite orientation, respectively.

Algorithm DNEPSA

1. Start with a dual feasible tree T. Compute the flow variables ijx for all the

basic arcs, the dual variables iw and the reduced cost variables ijs , by
applying formulas (3.1) and (3.2).

2. Set { }_ (,) : 0ijI i j T x= ∈ < and { }(,) : 0ijI i j T x+ = ∈ ≥ If it is _I = ∅ ,
then the current tree-solution T is an optimal solution.

3. Set
{ }_ (,) : , , 0ij ij ijJ i j T if added to T in the cycle created it is d p n= ∉ = − >

where ijp is the number of arcs in _I having the same orientation as (i,j)
and ijn is the number of arcs in _I having the opposite orientation.

4. Choose arc (,) _g h J∈ , where it is

min{ : (,) J_}gh ij

gh ij

s s
i j

d d
− = − ∈

Arc (g,h) is the entering arc.

5. Compute values θ1 and θ2 where:

{ }1 11 min (,) _ (,) (,)k l i jx x i j I and i j g hθ = = − ∈ ↑↑

{ }2 22 min (,) (,) (,)k l i jx x i j I and i j g hθ += = − ∈ ↑↓

If 1 2θ θ≤ then the leaving arc is (,1) (1)k k= , otherwise the leaving arc is

2 2(,1) (,1)k k= .

6. For the new tree-solution T, compute the flows i jx and the dual problem
variables iw and ijs . Repeat the process from step 2.

The algorithm is presented in more detail in the next Section, where an

illustrative example is given.

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 162

4. AN ILLUSTRATIVE EXAMPLE

We’ll now give an illustrative, step by step, example where the algorithm
presented will be applied to a MCNFP. Figure 1 shows a network G = (N, A), consisting
of 6 nodes and 12 arcs. Next to each node there is a value showing the node’s supply
(negative values mean demands). For every arc in A, the cost per product unit flow is
also shown.

Figure 4.1: The graph G = (N,A) where DNEPSA is applied

We will apply below the algorithm’s steps to find a solution for the MCNFP as
applied to graph G. The algorithm finds an optimal solution after 3 iterations.

Iteration 1

Step-1. In order to start, the algorithm needs an initial dual feasible basic tree-solution.
Figure 2 below shows such a dual feasible tree. Such an initial solution can be obtained
by using existing techniques, as it was said in Section 2.

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 163

Figure 4.2: The initial dual feasible tree

The tree shown is a dual feasible tree, since it is 0ijs ≥ for every arc (i,j). This
can be easily verified by solving equations (3.1), which take the following form:

5 1 16w w− =

5 2 57w w− =

5 3 107w w− =

5 4 32w w− =

5 6 1w w− =

By setting 1w equal to 0, we have 5 16w = , 2 41w = − , 3 91w = − , 4 16w = − and

6 15w = . By applying equations (3.2) we have:

16 16 1 6 41 0 15 26s c w w= + − = + − =

26 26 2 6 104 (41) 15 48s c w w= + − = + − − =

36 36 3 6 130 (91) 15 24s c w w= + − = + − − =

46 46 4 6 84 (16) 15 53s c w w= + − = + − − =

53 53 5 3 71 16 (91) 178s c w w= + − = + − − =

 64 64 6 4 0 15 (16) 31s c w w= + − = + − − =

63 63 6 3 43 15 (91) 149s c w w= + − = + − − =

while, for all the basic arcs it is 0ijs = .

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 164

For every node i in the graph, it is

(,) (,)
ik ji i

i k N j i N

x x b
∈ ∈

− =∑ ∑

This happens because for every node the outgoing flow has to be equal to the
incoming flow plus the node’s supply. That is, the following equations have to be
satisfied:

151: 3node x =

252 : 5node x =

353 : 3node x =

454 : 3node x =

454 : 3node x =

15 25 35 45 655 : 6node x x x x x− − − − − = −

656 : 8node x = −

By solving the above equations we have 15 3x = , 25 5x = 45 3x = 65 8x = − . This
is not a feasible tree since we found some negative flows (it is 65 0x <)
Step-2 It is I_ = {(6,5)}, since it is 65 8 0x = − < and the remaining arcs form I+.
Step-3 If we add the non-basic arc (1,6) to the basic tree, a cycle C is created. In this
cycle, arc (1,6) has the same orientation as (6,5) which belongs to I_. So, (1,6) ∈ J_. By
checking in a similar way all the non-basic arcs, it comes out that J_ =
{(1,6),(2,6),(3,6),(4,6)} with 16 26 36 46 1d d d d= = = = .
Step-4 For the arcs in J_ it is 16 26s = , 26 48s = , 36 48s = , and 46 53s = . It is

36

36

24 26 48 24 53min{ , , , }
1 1 1 1 1

s
d

= =

So arc (g,h)=(3,6) is the entering arc.
Step-5 After adding the entering arc (3,6) to the basic tree, a cycle C is created, as shown
in Figure 3.

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 165

Figure 4.3: The cycle created after adding the entering arc

Arc (6,5) belongs to I_ and has the same orientation as the entering arc (3,6). So,
it is 1 65 8xθ = − = . Arc (3,5), on the other hand, belongs to I+ and does not have the same
orientation as the entering arc. So, it is 2 35 3xθ = = . We have 1 2θ θ> which means that
arc (3,5) is the leaving arc.
Step-6 The tree shown in Figure 4 is now the new basic tree.

Figure 4.4: The new basic tree-solution

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 166

For the new tree it is 15 3x = , 25 5x = , 36 3x = , x36 = 3, 45 3x = and 65 5x = − .
This is not a feasible tree, so the process has to be continued. By using formulas (3.1) and
(3.2), the same way as for the starting basic tree, we find that 16 26s = , 26 48s = ,

35 24s = − , 46 53s = , 53 202s = , 64 31s = and 63 173s = . This new basic tree is not a dual
feasible tree-solution.

Iteration 2

Step-2 It is I_ = {(6,5)}, since it is x65 = -5 < 0 and the remaining arcs form I+.
Step-3 By checking, as in the first iteration, what happens when the non-basic arcs are
added to the basic tree and their orientation, we find that it is J_={(1,6),(2,6),(4,6),(5,3)}
with 16 26 46 53 1d d d d= = = = .
Step-4 For the arcs in J_ it is 16 26 46 5326, 48, 53 202s s s and s= = = = . It is

16

16

26 26 48 53 202min{ , , , }
1 1 1 1 1

s
d

= =

So arc (g,h)=(1,6) is the entering arc.
Step-5 After adding the entering arc (1,6) to the tree, a cycle C is created as shown in
Figure 5.

Figure 4.5: The basic tree after adding the entering arc

Arc (6,5) belongs to I_ and has the same orientation as the entering arc (1,6). So,
it is 1 65 5xθ = − = . Arc (1,5), on the other hand, belongs to I+ and does not have the same
orientation as the entering arc. So, it is 2 15 3xθ = = . We have 1 2θ θ> so, arc (1,5) is the
leaving arc.
Step-6 The tree, shown in Figure 6, forms now the new basic tree-solution.

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 167

Figure 4.6: The new basic tree-solution

For the new tree, it is 16 25 36 45 653, 5, 3, 3 2x x x x and x= = = = = − i.e. it is not a
feasible tree. It is also:

15 26 35 46 53 64 6326, 48, 24, 53, 202, 31 173s s s s s s and s= − = = − = = = = .

Iteration 3

Step-2 It is I_ = {(6,5)}, since it is 65 2 0x = − < and I+ contains the remaining arcs.
Step-3 Similarly, as in the previous iterations, we find that J_={(2,6),(4,6),(5,3)} and

26 46 53 1d d d= = = .
Step-4 For the arcs in J_ it is 26 46 5348, 53 202s s and s= = = . It is

26

26

48 48 53 202min{ , , }
1 1 1 1

s
d

= =

So, arc (g,h)=(2,6) is the entering arc.
Step-5 If we add arc (2,6) to the tree, a cycle C is created, as shown in Figure 7.

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 168

Figure 4.7: The basic tree after adding the entering arc

Arc (6,5) belongs to I_ and has the same orientation as the entering arc (2,6). So,
it is 1 65 2xθ = − = . Arc (2,5), on the other hand, belongs to I+ and does not have the same
orientation as the entering arc. So it is 2 25 5xθ = = . It is 1 2θ θ≤ so arc (6,5) is the
leaving arc.
Step-6 Therefore, the new tree shown in Figure 8 is now the basic tree.

Figure 4.8: The new basic tree-solution

For this tree it is 16 36 45 26 253, 3, 3, 2 3x x x x and x= = = = = , i.e. it is a primal
feasible tree-solution and also a dual feasible tree since it is

15 35 46 53 64 65 6322, 24, 5, 154, 79, 48 173s s s s s s and s= = = = = = = . Therefore, we have

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 169

found an optimal solution. This is detected immediately by our algorithm since it is
_Ι = ∅ and the algorithm stops.

5. CONCLUSIONS AND FUTURE WORK

First of all, we plan to present all the necessary mathematical proof of
correctness of the proposed algorithm in a future work. DNEPSA is based on a set of
lemmas and theorems, which were omitted in this paper, due to paper length.
Furthermore, there are special improved data structures that could be used in order to
improve the performance of DNEPSA. Such data structures include dynamic trees and
Fibonacci heaps, as described in [10], [16] and [6]. There are also other useful data
structures and techniques, as presented in [3] and [5], which obtain very good
performance, by applying various operations on graphs and trees.

There are several state-of-the-art algorithm implementations that can be applied
to the MCNFP. For example, implementations like RELAX IV, NETFLO and MOSEK
demonstrate very good performance results. Some of these implementations are
described in [4] and [14]. At this point, DNEPSA has already been developed (in C
programming language) and tested thoroughly against a big variety of problems.
Therefore, it will be very interesting to compare DNEPSA against some of the well
known MCNF algorithms

Finally, DNEPSA will be incorporated into the Network Optimization suite
WebNetPro which is described in [13]. This way, WebNetPro’s capabilities will be
extended by adding new algorithms into this web suite.

REFERENCES

[1] Ahuja, R., Magnanti, T., Orlin, J., and Reddy, M., “Applications of network optimization”,
Handbooks of Operations Research and Management Science, (1995) 1-83.

[2] Ahuja, R., and Orlin, J., “Improved primal simplex algorithms for shortest path, assignment
and minimum cost flow problems”, Massachusetts Institute of Technology, Operations
Research Center, Massachusetts Institute of Technology, Operations Research Center,
Working Paper OR 189-88, (1988).

[3] Ali, A.I., Helgason, R.V., Kennington, J.L., and Lall, H.S., “Primal simplex network codes:
State-of-the-art implementation technology”, Networks, 8 (4) (1978) 315-339.

[4] Bertsekas, D. P., and Tseng, P., “RELAX-IV: A Faster version of the RELAX code for
solving minimum cost flow problems”, Technical Report, Massachusetts Institute of
Technology, Laboratory for Information and Decision Systems, 1994.

[5] Eppstein, D., “Clustering for faster network simplex pivots”, Proceedings of the 5th Annual
ACM-SIAM Symposium on Discrete Algorithms, 1994.

[6] Fredman, M., and Tarjan, R., “Fibonacci heaps and their uses in improved network
optimization algorithms”, Journal of the ACM, 34 (3) (1987) 596-615.

[7] Glover, F., Karney, D., and Klingman, D., “Implementation and computational comparisons
of primal, dual and primal-dual computer codes for minimum cost network flow problems”,
Networks, 4 (3) (1974) 191-212.

[8] Glover, F., Klingman, D., and Napier, A., “Basic dual feasible solutions for a class of
generalized networks”, Operations Research, 20 (1) (1972) 126-136.

[9] Glover, F., Klingman, D., and Phillips, N., Network Models in Optimization and Their
Applications in Practice, Wiley Publications, 1992.

G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 170

[10] Goldberg, A., Grigoriadis, M., and Tarjan, R., “Use of dynamic trees in a network simplex
algorithm for the maximum flow problem”, Mathematical Programming, 50 (3) (1991) 277-
290.

[11] Hultz, J., and Klingman, D., “An advanced dual basic feasible solution for a class of
capacitated generalized networks”, Operations Research, 24 (2) (1976).

[12] Karagiannis, P., Markelis, I., Paparrizos, K., Samaras, N., and Sifaleras, A., "E - learning
technologies: employing matlab web server to facilitate the education of mathematical
programming", International Journal of Mathematical Education in Science and Technology,
Taylor & Francis Publications, 37 (7) (2006) 765-782.

[13] Karagiannis, P., Paparrizos, K., Samaras, N., and Sifaleras, A., “A new simplex type
algorithm for the minimum cost network flow problem”, Proceedings of the 7th Balkan
Conference on Operational Research, 2005, 133-139.

[14] Kennington, J.L., and Helgason, R.V., Algorithms for Network Programming, Wiley
Publications, 1980.

[15] Orlin, J., “Genuinely polynomial simplex and non-simplex algorithms for the minimum cost
flow problem”, Sloan School of Management, M.I.T., Cambridge, MA, Technical Report No.
1615-84, 1984.

[16] Tarjan, R. E., “Dynamic trees as search trees via Euler tours, applied to the network simplex
algorithm”, Mathematical Programming, 78(2) (1997) 169-177.

