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Abstract: A new dual simplex type algorithm for the Minimum Cost Network Flow 
Problem (MCNFP) is presented. The proposed algorithm belongs to a special “exterior-
point simplex type” category. Similarly to the classical network dual simplex algorithm 
(NDSA), this algorithm starts with a dual feasible tree-solution and reduces the primal 
infeasibility, iteration by iteration. However, contrary to the NDSA, the new algorithm 
does not always maintain a dual feasible solution. Instead, the new algorithm might reach 
a basic point (tree-solution) outside the dual feasible area (exterior point - dual infeasible 
tree). 
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1. INTRODUCTION 

The Minimum Cost Network Flow Problem (MCNFP) is the problem of finding 
a minimum cost flow of product units, through a number of source nodes, sinks and 
transshipment nodes. Other common problems, such as the shortest path problem, the 
transportation problem, the transshipment problem, the assignment problem etc., are the 
special cases of the MCNFP. Such problems appear very frequently in different 
technology sectors, like the Information Technology, the Telecommunications, the 
Transportation, the Resource Management, etc. Algorithms developed for the MCNFP 
can offer good solutions for such problems. A number of different problems that can be 
solved by the following MCNFP methods are described in [1] and [9].   
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The MCNFP can be easily transformed into a Linear Programming Problem and 
well known general linear programming techniques could be applied in order to find an 
optimal solution. Such techniques do not take advantage of some special features met in 
the MCNFP. So, other special Simplex-type algorithms have been developed, such as the 
Primal Network Simplex Method and the Dual Network Simplex Method. There are also 
other non Simplex-type algorithms that can be used for the solving of the same problem, 
as presented in [7], [2] and [15]. An exterior-point primal simplex-type algorithm for 
solving the MCNFP has also been presented in [13].  

This paper comes to present for the first time an exterior point dual simplex-type 
algorithm for the MCNFP. The algorithm is named Dual Network Exterior Point Simplex 
Algorithm (DNEPSA) for the MCNFP. It starts with a dual feasible tree-solution and, 
iteration by iteration, it produces new tree-solutions closer to an optimal solution, 
reducing the problem’s infeasibility. Contrary to the Network Dual Simplex Algorithm, 
the tree-solution at every iteration is not necessarily dual feasible but, after a number of 
iterations, the algorithm reaches a tree-solution that is both primal feasible and dual 
feasible and therefore it is optimal. 

Section 2 gives the notation that will be used in this paper and a short 
description of the MCNFP. In Section 3, the Dual Network Exterior Point Simplex 
Algorithm (DNEPSA) is described and the steps that have to be followed are described in 
detail. An illustrative example presenting the algorithm step by step is given in Section 4. 
Finally, Section 5 gives some conclusions and plans for future work. 

 
2. NOTATIONS AND PROBLEM STATEMENT 

In this Section we shall give a short description of the MCNFP. Let G=(N,A) be 
a directed network that consists of a finite set of nodes N and a finite set of directed arcs 
A, that link together pairs of nodes. Let n and m be the number of nodes and arcs 
respectively. For each node i N∈ , there is an associated variable bi representing the 
available supply or demand at that node. A node i is a supply node (source), if it is 

0ib > . On the other hand, it is a demand node (sink), if it is 0ib <  . Finally, the node i is 
a transshipment node in case it is 0ib = . The total supply has to be equal to the total 
demand, i.e. it has to be 0i

i N
b

∈

=∑  (balanced network). 

For every arc (i,j) we have an associated flow ijx  that shows the amount of 
product units transferred from node i  to node j and an associated cost per unit value ijx . 

Therefore, the total cost is equal to 
( , )

ij ij
i j A

c x
∈
∑  and the MCNFP is the problem of finding 

a flow that minimizes that total cost.  
We can have, for the flow ijx  on arc (i,j), a lower and an upper bound, ijl  and 

iju  respectively. This gives an additional constraint ij ij ijl x u≤ ≤  for every arc (i,j). In our 
case we consider it is 0ijl =  and iju = +∞ . In other words, our algorithm is applied to the 
uncapacitated MCNFP. For every node i  it has to be  
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( , ) ( , )
ij ji i

i j A j i A

x x b
∈ ∈

− =∑ ∑  

because the outgoing flow must be equal to the incoming flow plus the node’s supply. 
Therefore, the MCNFP can be formulated as follows:  

minimize
( , )

ij ij
i j A

c x
∈
∑  (2.1) 

subject to 

( , ) ( , )
ij ji i

i j A j i A

x x b i N
∈ ∈

− = ∀ ∈∑ ∑   (2.2) 

0, ( )ijx ij A≥ ∀ ∈  (2.3) 

Since it is 0i
i N

b
∈

=∑ , by using formula (2.2), it comes out that  

( , ) ( , )
( ) 0ij ji

i N i j A j i A

x x
∈ ∈ ∈

− =∑ ∑ ∑  

That means that constraints (2.2) are linearly dependent and we could arbitrarily 
drop out one of them. Of course, a problem like this could be solved using standard well-
known Linear Programming algorithms, but these algorithms do not take advantage of 
some special features met in the MCNFP. 

There is a set of dual variables iw , one for every node, and a number of reduced 
cost variables ijw , one for every directed arc. These are the variables used for the 
formulation of the dual problem. Network simplex-type algorithms start from a basic 
tree-solution and compute vectors x , w , s  consisting of variables ijx , w  and ijw  
respectively. If for a tree-solution T, it is 0ijx ≥  for every arc ( , )i j T∈ , then that 
solution is said to be primal feasible. If for a tree-solution T , it is 0ijs ≥  for every arc 
( , )i j T∉  then it is said to be dual feasible. A solution being both primal feasible and 
dual feasible represents an optimal solution. Primal network simplex-type algorithms 
start from a primal feasible solution, while dual network simplex-type algorithms, like 
the algorithm described here, start from a dual feasible solution.  

 
3. ALGORITHM DESCRIPTION 

The Dual Network Exterior Point Simplex Algorithm (DNEPSA for short), 
starts from a dual feasible basic tree-solution T and, after a number of iterations, it comes 
to a tree-solution that is both primal feasible and dual feasible and therefore, it is optimal. 
In contrary to the existing dual network simplex-type algorithms, the tree-solutions 
formed during the iterations are not necessarily always dual feasible but they can be both 
primal infeasible and dual infeasible. So, DNEPSA is a simplex-type algorithm starting 
from a dual solution that reaches an optimal solution by following a route consisting of 
solutions that do not belong to the primal feasible area.  
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There are different techniques that can be used in order to find a starting dual 
feasible tree-solution. An algorithm that can construct a dual feasible tree-solution for the 
generalized network problem (and also for pure networks) is described in [8] and an 
improved version of the algorithm is presented in [11], which gives a dual feasible 
solution that is closer to an optimal solution.  

Given the starting dual feasible tree-solution, it is easy, starting from the leaf 
nodes, to compute the flows ijx  for all the basic arcs (i,j) in that tree (step 1). It is also 
very easy to compute values for the dual variables iw  from the equations:  

i i ijw w c− = , for every arc ( , )i j T∈  (3.1) 

In equations (3.1) we have n-1 equations and n variables, so, we can choose one 
of the dual variables (e.g. iw ) and set it equal to an arbitrary value (e.g. 0). Then, it is 
easy to compute the values of the rest of the dual variables.  

In order to calculate the reduced costs ijs  for the non-basic arcs (i,j), we can use 
the following equations: 

ij ij i js c w w= + − , for every arc ( , )i j T∉   (3.2) 

while it is 0ijs =  for all the basic arcs. 
Next, the algorithm creates a set, named I_, that contains the basic arcs (i,j) 

having negative flow, i.e. it is 0ijx < . It also creates set I+ containing the rest of the arcs. 
If it is I_=∅, this means that the tree-solution is feasible and therefore it is optimal (step 
2). 

After this, the algorithm considers the non-basic arcs ( , )i j T∉  . When such an 
arc (i,j) is added to the basic tree-solution T, then a cycle C is created. That cycle may 
contain arcs of I_ having the same orientation as (i,j) and others having the opposite 
orientation. For every non-basic arc, let ijd  be the difference between the number of arcs 
in I_ having the same orientation in cycle as (i,j) minus the number of them having the 
opposite orientation. J_ consists of those non-basic arcs (i,j) having 0ijd >  (step 3).  

After creating set J_, we have to choose amongst its arcs, the one that will be the 
entering arc (g,h). This is the arc of J_ that gives the minimum ratio – /ij ijs d  (step 4). 

Next, the algorithm has to find the leaving arc (k,l). This is done by checking the 
cycle C formed after adding the entering arc (g,h) to the tree T. For the arcs of I_ having 
the same orientation in C as (g,h), we choose arc (k1,l1) that corresponds to the minimum 
absolute flow. Similarly, for the arcs of I+ having orientation opposite to the entering arc 
(g,h), we choose arc (k2,l2) that corresponds to the minimum absolute flow. If we denote 

1θ  and 2θ  these two minimum values, we decide the leaving arc by comparing 1θ  
against 2θ . If it is 1 2θ θ≤ , then the leaving arc is (k,l) = (k1,l1), otherwise it is (k,l) = 
(k2,l2).  

At this point, the algorithm has come to a new basic tree-solution T. The same 
process has to be repeated until the algorithm reaches to an optimal solution.  
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The algorithm’s steps are described below. The symbols ↑↑ and ↑↓ used here, 
denote arcs that have the same orientation or opposite orientation, respectively. 

 
Algorithm DNEPSA 

 
1. Start with a dual feasible tree T. Compute the flow variables ijx  for all the 

basic arcs, the dual variables iw  and the reduced cost variables ijs , by 
applying formulas (3.1) and (3.2).  

2. Set { }_ ( , ) : 0ijI i j T x= ∈ <  and { }( , ) : 0ijI i j T x+ = ∈ ≥  If it is _I = ∅ , 
then the current tree-solution T is an optimal solution.  

3. Set 
{ }_ ( , ) : , , 0ij ij ijJ i j T if added to T in the cycle created it is d p n= ∉ = − >

where ijp  is the number of arcs in _I  having the same orientation as (i,j) 
and ijn  is the number of arcs in _I  having the opposite orientation.   

4. Choose arc ( , ) _g h J∈ , where it is  

min{ : ( , ) J_}gh ij

gh ij

s s
i j

d d
− = − ∈  

Arc (g,h) is the entering arc. 

5. Compute values θ1 and θ2 where:  

{ }1 11 min ( , ) _ ( , ) ( , )k l i jx x i j I and i j g hθ = = − ∈ ↑↑  

{ }2 22 min ( , ) ( , ) ( , )k l i jx x i j I and i j g hθ += = − ∈ ↑↓  

If 1 2θ θ≤  then the leaving arc is ( ,1) ( 1)k k= , otherwise the leaving arc is 

2 2( ,1) ( ,1 )k k= . 

6. For the new tree-solution T, compute the flows i jx  and the dual problem 
variables iw  and ijs . Repeat the process from step 2.  

 
The algorithm is presented in more detail in the next Section, where an 

illustrative example is given. 
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4. AN ILLUSTRATIVE EXAMPLE 

We’ll now give an illustrative, step by step, example where the algorithm 
presented will be applied to a MCNFP. Figure 1 shows a network G = (N, A), consisting 
of 6 nodes and 12 arcs.  Next to each node there is a value showing the node’s supply 
(negative values mean demands). For every arc in A, the cost per product unit flow is 
also shown. 
 

 

Figure 4.1: The graph G = (N,A) where DNEPSA is applied 

We will apply below the algorithm’s steps to find a solution for the MCNFP as 
applied to graph G. The algorithm finds an optimal solution after 3 iterations. 

 
Iteration 1 

Step-1. In order to start, the algorithm needs an initial dual feasible basic tree-solution. 
Figure 2 below shows such a dual feasible tree. Such an initial solution can be obtained 
by using existing techniques, as it was said in Section 2. 
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Figure 4.2: The initial dual feasible tree 

The tree shown is a dual feasible tree, since it is 0ijs ≥  for every arc (i,j). This 
can be easily verified by solving equations (3.1), which take the following form:  

5 1 16w w− =  

5 2 57w w− =  

5 3 107w w− =  

5 4 32w w− =  

5 6 1w w− =  

By setting 1w  equal to 0, we have 5 16w = , 2 41w = − , 3 91w = − , 4 16w = −  and 

6 15w = . By applying equations (3.2) we have:  

16 16 1 6 41 0 15 26s c w w= + − = + − =  

26 26 2 6 104 ( 41) 15 48s c w w= + − = + − − =  

36 36 3 6 130 ( 91) 15 24s c w w= + − = + − − =  

46 46 4 6 84 ( 16) 15 53s c w w= + − = + − − =  

53 53 5 3 71 16 ( 91) 178s c w w= + − = + − − =  

 64 64 6 4 0 15 ( 16) 31s c w w= + − = + − − =  

63 63 6 3 43 15 ( 91) 149s c w w= + − = + − − =  

while, for all the basic arcs it is 0ijs = .  
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For every node i  in the graph, it is  

( , ) ( , )
ik ji i

i k N j i N

x x b
∈ ∈

− =∑ ∑  

This happens because for every node the outgoing flow has to be equal to the 
incoming flow plus the node’s supply. That is, the following equations have to be 
satisfied: 

151: 3node x =  

252 : 5node x =  

353 : 3node x =  

454 : 3node x =  

454 : 3node x =  

15 25 35 45 655 : 6node x x x x x− − − − − = −   

656 : 8node x = −  

By solving the above equations we have 15 3x = , 25 5x = 45 3x = 65 8x = − . This 
is not a feasible tree since we found some negative flows (it is 65 0x < )  
Step-2 It is I_ = {(6,5)}, since it is 65 8 0x = − <  and the remaining arcs form I+. 
Step-3 If we add the non-basic arc (1,6) to the basic tree, a cycle C is created. In this 
cycle, arc (1,6) has the same orientation as (6,5) which belongs to I_. So, (1,6) ∈ J_. By 
checking in a similar way all the non-basic arcs, it comes out that  J_ = 
{(1,6),(2,6),(3,6),(4,6)} with 16 26 36 46 1d d d d= = = = .  
Step-4 For the arcs in J_ it is 16 26s = , 26 48s = , 36 48s = ,  and 46 53s = . It is  

36

36

24 26 48 24 53min{ , , , }
1 1 1 1 1

s
d

= =  

So arc (g,h)=(3,6) is the entering arc.  
Step-5 After adding the entering arc (3,6) to the basic tree, a cycle C is created, as shown 
in Figure 3. 
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Figure 4.3: The cycle created after adding the entering arc 

Arc (6,5) belongs to I_ and has the same orientation as the entering arc (3,6). So, 
it is 1 65 8xθ = − = . Arc (3,5), on the other hand, belongs to I+ and does not have the same 
orientation as the entering arc. So, it is 2 35 3xθ = = . We have 1 2θ θ>  which means that 
arc (3,5) is the leaving arc.  
Step-6 The tree shown in Figure 4 is now the new basic tree. 

 

 
Figure 4.4: The new basic tree-solution 
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For the new tree it is 15 3x = , 25 5x = , 36 3x = , x36 = 3, 45 3x =  and 65 5x = − . 
This is not a feasible tree, so the process has to be continued. By using formulas (3.1) and 
(3.2), the same way as for the starting basic tree, we find that 16 26s = , 26 48s = , 

35 24s = − , 46 53s = , 53 202s = , 64 31s =  and 63 173s = . This new basic tree is not a dual 
feasible tree-solution. 

 
Iteration 2 

Step-2 It is I_ = {(6,5)}, since it is x65 = -5 < 0 and the remaining arcs form I+. 
Step-3 By checking, as in the first iteration, what happens when the non-basic arcs are 
added to the basic tree and their orientation, we find that it is J_={(1,6),(2,6),(4,6),(5,3)} 
with 16 26 46 53 1d d d d= = = = .  
Step-4 For the arcs in J_ it is 16 26 46 5326, 48, 53 202s s s and s= = = = . It is  

16

16

26 26 48 53 202min{ , , , }
1 1 1 1 1

s
d

= =  

So arc (g,h)=(1,6) is the entering arc.  
Step-5 After adding the entering arc (1,6) to the tree, a cycle C is created as shown in 
Figure 5. 
 

 
Figure 4.5: The basic tree after adding the entering arc 

Arc (6,5) belongs to I_ and has the same orientation as the entering arc (1,6). So, 
it is 1 65 5xθ = − = . Arc (1,5), on the other hand, belongs to I+ and does not have the same 
orientation as the entering arc. So, it is 2 15 3xθ = = . We have 1 2θ θ>  so, arc (1,5) is the 
leaving arc.  
Step-6 The tree, shown in Figure 6, forms now the new basic tree-solution. 
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Figure 4.6: The new basic tree-solution 

For the new tree, it is 16 25 36 45 653, 5, 3, 3 2x x x x and x= = = = = −  i.e. it is not a 
feasible tree. It is also: 

15 26 35 46 53 64 6326, 48, 24, 53, 202, 31 173s s s s s s and s= − = = − = = = = . 

 
Iteration 3 

Step-2 It is I_ = {(6,5)}, since it is 65 2 0x = − <  and I+ contains the remaining arcs. 
Step-3 Similarly, as in the previous iterations, we find that J_={(2,6),(4,6),(5,3)} and 

26 46 53 1d d d= = = .  
Step-4 For the arcs in J_ it is 26 46 5348, 53 202s s and s= = = . It is  

26

26

48 48 53 202min{ , , }
1 1 1 1

s
d

= =  

So, arc (g,h)=(2,6) is the entering arc.  
Step-5 If we add arc (2,6) to the tree, a cycle C is created, as shown in Figure 7. 



G. Geranis, K. Paparrizos, A.Sifaleras / Minimum Cost Network 168 

 

Figure 4.7: The basic tree after adding the entering arc 

Arc (6,5) belongs to I_ and has the same orientation as the entering arc (2,6). So, 
it is 1 65 2xθ = − = . Arc (2,5), on the other hand, belongs to I+ and does not have the same 
orientation as the entering arc. So it is 2 25 5xθ = = . It is 1 2θ θ≤  so arc (6,5) is the 
leaving arc.  
Step-6 Therefore, the new tree shown in Figure 8 is now the basic tree. 

 

Figure 4.8: The new basic tree-solution 

For this tree it is 16 36 45 26 253, 3, 3, 2 3x x x x and x= = = = = , i.e. it is a primal 
feasible tree-solution and also a dual feasible tree since it is 

15 35 46 53 64 65 6322, 24, 5, 154, 79, 48 173s s s s s s and s= = = = = = = . Therefore, we have 
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found an optimal solution. This is detected immediately by our algorithm since it is 
_Ι = ∅  and the algorithm stops.  

 
5. CONCLUSIONS AND FUTURE WORK 

First of all, we plan to present all the necessary mathematical proof of 
correctness of the proposed algorithm in a future work. DNEPSA is based on a set of 
lemmas and theorems, which were omitted in this paper, due to paper length. 
Furthermore, there are special improved data structures that could be used in order to 
improve the performance of DNEPSA. Such data structures include dynamic trees and 
Fibonacci heaps, as described in [10], [16] and [6]. There are also other useful data 
structures and techniques, as presented in [3] and [5], which obtain very good 
performance, by applying various operations on graphs and trees. 

There are several state-of-the-art algorithm implementations that can be applied 
to the MCNFP. For example, implementations like RELAX IV, NETFLO and MOSEK 
demonstrate very good performance results. Some of these implementations are 
described in [4] and [14]. At this point, DNEPSA has already been developed (in C 
programming language) and tested thoroughly against a big variety of problems. 
Therefore, it will be very interesting to compare DNEPSA against some of the well 
known MCNF algorithms 

Finally, DNEPSA will be incorporated into the Network Optimization suite 
WebNetPro which is described in [13]. This way, WebNetPro’s capabilities will be 
extended by adding new algorithms into this web suite. 
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