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Abstract

The Capacitated Vehicle Routing Problem, CVRP for short, is a com-

binatorial optimization routing problem in which, a geographically dis-

persed set of customers with known demands must be served by a fleet of

vehicles stationed at a central facility. Column generation techniques em-

bedded within branch-price-and-cut frameworks have been the de facto

state-of-the-art dominant approach for building exact algorithms for the

CVRP over the last two decades. The pricer, a critical component in col-

umn generation, must solve the Pricing Problem (PP), which asks for an

Elementary Shortest Path Problem with Resource Constraints (ESPPRC)

in a reduced-cost network. Little scientific efforts have been dedicated to

studying branch-and-cut based approaches for tackling the PP.

The ESPPRC has been traditionally relaxed and solved through dynamic

programming algorithms. This approach, however, has two major draw-

backs. For starters, it worsens the obtained dual bounds. Furthermore,

the running time degrades as the length of the generated routes increases.

To evaluate the performance of their contributions, the operations research

community has traditionally used a set of historical and artificial test in-

stances. However, these benchmark instances do not capture the key char-

acteristics of modern real-world distribution problems, which are usually

characterized by longer routes.

In this thesis, we develop a scheme based on a branch-and-cut approach for

solving the pricing problem. We study the behavior and effectiveness of

our implementation in producing longer routes by comparing it with state-

of-the-art solutions based on dynamic programming. Our results suggest

that branch-and-cut approaches may supplement the traditional labeling

algorithm, indicating that further research in this area may bring benefits

to CVRP solvers.
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Sommario

Il Capacitated Vehicle Routing Problem, abbreviato come CVRP, è un

problema di ottimizzazione combinatoria d’instradamento nel quale, un

insieme geograficamente sparso di clienti con richieste note deve essere

servito da una flotta di veicoli stazionati in una struttura centrale. Negli

ultimi due decenni, tecniche di Column generation incorporate all’inter-

no di frameworks branch-price-and-cut sono state infatti l’approccio stato

dell’arte dominante per la costruzione di algoritmi esatti per il CVRP. Il

pricer, un componente critico nella column generation, deve risolvere il

Pricing Problem (PP) che richiede la risoluzione di un Elementary Shorte-

st Path Problem with Resource Constraints (ESPPRC) in una rete di costo

ridotto. Pochi sforzi scientifici sono stati dedicati allo studio di approcci

branch-and-cut per affrontare il PP.

L’ESPPRC è stato tradizionalmente rilassato e risolto attraverso algoritmi

di programmazione dinamica. Questo approccio, tuttavia, ha due principali

svantaggi. Per cominciare, peggiora i dual bounds ottenuti. Inoltre, il

tempo di esecuzione diminuisce all’aumentare della lunghezza dei percorsi

generati. Per valutare la performance dei loro contributi, la comunità di

ricerca operativa ha tradizionalmente utilizzato una serie d’istanze di test

storiche e artificiali. Tuttavia, queste istanze di benchmark non catturano

le caratteristiche chiave dei moderni problemi di distribuzione del mondo

reale, che sono tipicamente caratterizzati da lunghi percorsi.

In questa tesi sviluppiamo uno schema basato su un approccio branch-and-

cut per risolvere il pricing problem. Studiamo il comportamento e l’effica-

cia della nostra implementazione nel produrre percorsi più lunghi compa-

randola con soluzioni all’avanguardia basate su programmazione dinami-

ca. I nostri risultati suggeriscono che gli approcci branch-and-cut posso-

no supplementare il tradizionale algoritmo di etichettatura, indicando che

ulteriore ricerca in quest’area possa portare benefici ai risolutori CVRP.
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CHAPTER 1
Introduction

1.1 The Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP), first presented in Dantzig et

al. (1959) under the name of "truck dispatching problem", is one of the most

studied combinatorial optimization routing problems. The CVRP is an NP-

hard (in the strong sense) problem that can be considered a generalization of

the well-known Travelling Salesman Problem (TSP). The TSP (Flood, 1956) is

an NP-hard (Garey et al., 1976) ubiquitous combinatorial optimization problem

in the operations research field, that asks for the determination of a Hamilto-

nian circuit of minimum cost (Croes, 1958; Laporte, 1992; Johnson et al., 1997;

Applegate et al., 2006; Gutin et al., 2006; Hoffman et al., 2013). The CVRP

can be defined verbally as finding an optimal route for a transportation/distri-

bution/delivery problem starting from a common point called the depot, where

a homogeneous fleet composed of a fixed number of trucks, subject to capacity

constraints, need to serve customer demands of a single good (e.g. delivery of

gasoline to gas stations). Given as input a weighted graph representing the road

network, the customer demands and the vehicle capacity, the problem consists

in determining a set of non-oriented routes, one for each vehicle, of minimal

overall travel distance starting and ending at the depot. The set of routes needs

to serve all the customers in the road network exactly once while satisfying the

vehicle capacity bound (Toth et al., 2014). A diagram showing an example of a

1
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Route 1
Route 2
Route 3
Route 4
Route 5

Figure 1.1: An illustration of an optimal CVRP solution (instance named P-n40-k5).
There are 39 customers to serve and 5 trucks with a capacity of 140 units
each. Each color in the picture represents a different route that each truck
has taken. Instead, the colored dots represent the customers served by each
truck on its route. The customer demands are not depicted for the sake of
clarity. The larger black dot in the center represents the depot where each
route must begin and end. Credits: http://vrp.galgos.inf.puc-rio.
br/index.php/en/plotted-instances?data=P-n40-k5.

CVRP problem along with its optimal solution is provided in fig. 1.1.

Investigating effective CVRP solution methods may result in significant real-

world economic savings for the management of the provision of goods or ser-

vices in a distribution system. Optimal delivery planning can reduce the over-

all transportation, goods costs, and waiting time experienced by the customers.

As a result, researching efficient exact algorithms and mathematical models for

solving and describing real-world distribution problems becomes critical for the

operational management of a cost-effective planning process (Toth et al., 2002;

Toth et al., 2014).

The CVRP is part of a larger class of problems known as the Vehicle Routing

Problems (VRPs). There are many variations of VRPs proposed in the literature,

including the Vehicle Routing Problem with Time Windows (VRPTW) (Schrage,

1981) and many others. The vehicles in the VRPTW are subject to capacity

http://vrp.galgos.inf.puc-rio.br/index.php/en/plotted-instances?data=P-n40-k5
http://vrp.galgos.inf.puc-rio.br/index.php/en/plotted-instances?data=P-n40-k5
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constraints and must serve each customer within an allocated time window slot.

Nonetheless, CVRP is the simplest VRP variant to describe, and to this day,

it remains the most central and studied routing problem. For a comprehensive

taxonomy of the many VRP variants, refer to Eksioglu et al. (2009) and Braekers

et al. (2016).

While effective (meta-)heuristic algorithms have been proposed and applied

successfully to many VRP variants to obtain good-enough solutions in reduced

computation time, the focus of this thesis is on exact algorithms for solving the

CVRP.

We can find major contributions employing heuristics for the VRP, among

others, in Clarke et al. (1964), Desrochers et al. (1989), Paessens (1988), and

Foster et al. (1976). Meta-heuristics approaches for the VRP can be found in

Gendreau et al. (1994), Cordeau et al. (2012), Toth et al. (2003), Li et al. (2005),

Pisinger et al. (2007), Kytöjoki et al. (2007), Nagata et al. (2009), Vidal et al.

(2012), and Subramanian et al. (2013), just to name a few.

For a more comprehensive survey on (meta-)heuristics for the VRP, refer to

Golden et al. (1998), Gendreau et al. (2002), Gendreau et al. (2008), Laporte

et al. (2014), and Elshaer et al. (2020).

Exact algorithms are typically slower than (meta-)heuristics, but given

enough computation time, they can produce a proven optimal solution. They

accomplish this by closing the objective function’s primal-dual bound gap.

We strongly recommend the book "Vehicle Routing: Problems, Methods, and

Applications" of Toth et al. (2014) for a comprehensive overview/survey on the

CVRP and VRPTW problems, as well as other common VRP variants. This

book served as a good reference and was instrumental in laying the groundwork

for the first chapters of this thesis. We also gathered additional information from

other VRP surveys in the works of Cordeau et al. (2007), Baldacci et al. (2012),

Caceres-Cruz et al. (2015), and Costa et al. (2019).
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1.2 Thesis Contributions

Modern CVRP solvers are typically developed and tested on test sets comprised

of historical benchmark instances. The principal historical test instances used to

evaluate the performance of the scientific contributions have been divided into

families. Each family is represented by a single upper case letter. The major

CVRP test sets proposed by the operations research community over the years

are summarized here:

• The set E is proposed in Dantzig et al. (1959), Christofides et al. (1969),

Gaskell (1967), and Gillett et al. (1974). The majority of the E test in-

stances were generated at random, while the remainder lack description

on their origin.

• The set M was proposed in Christofides (1979) and was obtained by aggre-

gating instances from E set.

• The set F was presented in Fisher (1994) and was obtained from an actual

distribution problem of groceries in the city of Ontario.

• The sets A, B and P were all proposed in Augerat et al. (1995). The sets A,

B were generated at random, while the set P was generated from sets A, B
and E by changing the capacities.

These historical benchmark instances bear little resemblance to real-world dis-

tribution problems. They are either too homogeneous or too artificial while not

covering the key characteristics found in contemporary real-world distribution

problems. The historical instances presented in the literature are typically char-

acterized by stringent vehicle capacities, which give rise to optimal solutions

characterized by short routes each visiting few customers. Instead, real-world

contemporary distribution problems are characterized by much longer routes

since the vehicle capacity is rarely the bottleneck in practice. Despite Uchoa

et al. (2017) proposing the X test-set, a broader and trendier common denomi-

nator of diverse instances for the CVRP, the historical test instances were (and

continue to be) the primary central test-bed for comparing and assessing the per-

formance of CVRP contributions.
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The labeling algorithm is a dynamic programming-based algorithm used to

solve the pricing sub-problem induced from Column Generation (CG) schemes

applied to the VRP. We will delve into these topics in greater detail in chapter 4.

The labeling algorithm is a crucial component of the contemporary state-of-the-

art CVRP solvers (Gutiérrez-Jarpa et al., 2010; Archetti et al., 2011; Bettinelli et

al., 2011; Contardo et al., 2014; Contardo et al., 2015; Pecin et al., 2017a; Pecin

et al., 2017b; Pessoa et al., 2020a). As we shall discuss later, the performance of

the labeling algorithm degrades as the vehicle capacity increases, see discussion

in section 4.3.

In this thesis, we investigate the feasibility and competitiveness of a branch-

and-cut algorithm implemented through a commercial MIP software package for

solving the pricing problem. The goal is to empirically compare the performance

of the proposed branch-and-cut framework against the state-of-the-art labeling

algorithm while empirically measuring how the two frameworks behave as the

lengths of the route they need to generate increases.

Jepsen et al. (2014) proposed a branch-and-cut framework for the CPTP and

tested it in the context of pricing for the CVRP. Jepsen et al. (2014) demonstrated

that, while the labeling algorithm was much faster in many instances, the BAC

framework exhibited better performance for some bulkier cases. See later dis-

cussion in section 5.1. They demonstrated that further research on BAC-pricers

could yield approaches that could supplement the traditional pricing labeling al-

gorithm. We revisit the work of Jepsen et al. in this thesis. We test whether

recent advancements in MIP optimizers have made them competitive at solving

the pricing problem or whether modern dynamic programming algorithms have

rendered BAC approaches completely obsolete.

1.3 Outline

This section provides an overview of the work’s contents. The thesis’ contents

can be divided into three major portions, which we will list here.

The first portion provides introductory technical material regarding the CVRP

and contemporary resolution methods for this problem. Chapter 2 formalizes the
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CVRP through multiple mathematically rigorous integer programming models.

Chapter 3 summarizes the notable contributions of the operations research prac-

titioners regarding CVRP’s exact approaches. The branch-and-price (BPC) al-

gorithm, column generation, and the pricing sub-problem are presented in chap-

ter 4. The most recent exact algorithms for solving routing problems are all

BPC-based. Recent research has empirically demonstrated that BPC algorithms

perform admirably in the routing problem domain.

In the second part of the thesis, we will go over the pricing sub-problem in

greater detail, as well as our branch-and-cut (BAC) pricer implementation. The

pricing sub-problem is a combinatorial optimization problem that arises when a

CVRP is solved using a BPC approach. Chapter 5 introduces and discusses the

pricing sub-problem through multiple mathematically rigorous integer program-

ming models. The implementation details of our proposed branch-and-cut pricer

are presented in chapter 6.

The third part of the thesis evaluates the competitiveness of the proposed BAC

framework in solving the pricing sub-problem. We evaluate its performance and

compare it to modern cutting-edge solutions. In chapter 7 we present the eval-

uation setup, we list the instances employed, and finally, we show the empirical

results along with a discussion. Finally, in chapter 8 we summarize the work, re-

view the results and offer helpful tips while discussing potential implementation

improvements.



CHAPTER 2
Mathematical formulations

for the CVRP

Integer Programming (IP) is a mathematical optimization tool that can describe

combinatorial optimization problems using constraints, typically defined

through linear inequalities. The constraints limit the optimization problem’s

solution space. IP-based formulations also include a list of decision variables

and a linear objective function to be optimized.

While we have already described the CVRP verbally in chapter 1, the CVRP

is traditionally defined more rigorously through (Mixed) Integer Programming

(MIP, IP) formulations, sometimes also known simply as models. We present

three commonly used CVRP mathematical models:

1. The two-index arc flow (2F) formulation (Laporte et al., 1983; Laporte

et al., 1985; Laporte et al., 1986) is presented in section 2.2.

2. The three-index arc flow (3F) formulation (Golden et al., 1977) is pre-

sented in section 2.3.

3. The Set Partitioning (SP) formulation (Balinski et al., 1964) is presented

in section 2.4.

The first two formulations, traditionally designed for branch-and-cut (BAC)

algorithms, employ a polynomial number of variables but use an exponential

7
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number of constraints. Instead, the latter formulation employs an exponential

number of decision variables. Despite its age, the SP formulation has become

the de facto state-of-the-art core ingredient for solving CVRP problems in recent

years, thanks to algorithmic advances and the development of efficient branch-

and-price (BAP) frameworks (see Pessoa et al., 2020b). Baldacci et al. (2004)

contains another less ordinary formulation based on a two-commodity flow de-

scription.

While the first two formulations will not be the primary focus of this thesis,

they are necessary for understanding some crucial details. We will predomi-

nantly focus our efforts on the SP formulation. See chapter 4.

We begin by defining some basic notation and mathematical quantities in sec-

tion 2.1 that will be used throughout the rest of the thesis.

2.1 Mathematical notation

The CVRP is traditionally described as a node routing problem modeled through

a symmetric and complete graph, where: (i) the vertices of the network represent

the customers and the depot, (ii) the edges represent road interconnections. Let

G=(V,E) denote a complete undirected network where: V = {0,1, . . . ,N−1}
denotes the set of nodes, E = {e = {i, j}= { j, i} | i, j ∈V, i ̸= j} the set of undi-

rected edges, and N the total number of nodes in the network. The value 0 ∈ V

is used to denote the depot node. The edge set E has size |E|, which can be

computed through combinatorial enumeration: |E| = N(N+1)
2 . For convenience,

we define V0 =V \{0} to express the set of customers, and N0 = N−1 to denote

the total number of customers. Let δ (S) with S ⊆ V denote the edges crossing

the set S and its complement S = V \ S. More formally we can express δ (S) as

δ (S) =
{︁

e = {i, j}= { j, i} ∈ E | i ∈ (S∩V ), j ∈
(︁
S∩V

)︁}︁
. For brevity, we also

define δ (i) = δ ({i}) to denote the set of edges incident to node i ∈ V . We also

define E(S) = {e = {i, j}= { j, i} ∈ E | i, j ∈ S} to denote the set of edges hav-

ing both end points in set S⊆V .

Let qi ∈ R, qi ≥ 0 ∀i ∈V denote the demand function, which represent the

required demand that need to be served for vertex i ∈ V . For convenience, we
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use a fictitious demand for the depot: q0 = 0. Given a set S ⊆ V , we define

q(S) = ∑i∈S qi as the total demand of the set S ⊆ V . Let ci j ∈ R,ci j > 0 denote

the distance function between a pair of nodes i, j ∈V . The loop arcs {i, i} /∈ E in

CVRP are traditionally not allowed, thus we fix cii = ∞. We assume a Euclidean

CVRP problem, i.e. the distance function is symmetric ce = ci j = c ji and satisfies

the triangle inequality ci j ≤ cih + ch j. We are also given the total number of

identical trucks K ∈ N+ and an upper bound Q ∈ R+ representing the capacity

of each truck. For convenience of notation, we also define K = {1, . . . ,K} to

denote the set of trucks. Given a set S ⊆V0, we denote by r(S) as the minimum

number of vehicles required to serve all customers i ∈ S. The value of r(S) can

be obtained by solving an NP-hard Bin Packing Problem (BPP) associated with

the CVRP and set S. As we will see later, it is often simpler to link r(S) to the

trivial lower bound of the BPP (Martello et al., 1990a; Martello et al., 1990b):

r(S)≥
⌈︃

q(S)
Q

⌉︃
. (2.1)

A route p is a loop-back sequence p = (p0, p1, . . . , pu, pu+1), with

p0 = pu+1 = 0 in which {p1, . . . , pu} ⊆ V0 customers are visited. The

route p has a travel cost of cp = c(p) = ∑
u
i=0 cpi,pi+1 with resource consumption

qp = q(p) = ∑
u
i=0 qi. A feasible solution to a CVRP problem consists of exactly

K routes (or circuits) pk associated with each vehicle k ∈ K starting and

ending at the depot node, where: (i) each customer is visited once (elementarity

condition) and (ii) the demand covered by each route pk does not exceed the

vehicle capacity q(pk) ≤ Q ∀k ∈ K . An optimal solution to the CVRP

minimizes the sum of the overall edge weights across all tours. The traditional

definition of CVRP requires that all vehicles be fully utilized. In other words,

each pk route must serve at least one customer. However, we note that using

fewer vehicles may sometimes yield better solutions.

The TSP can be considered a special case of CVRP where Q ≥ q(V ) and

K = 1. Therefore, all the relaxations and many results obtained for the TSP are

valid, or at least extendable, to the CVRP.

Some variants of the basic version of the CVRP, not considered in this thesis,

allow using only a subset of the total available vehicles, or consider a hetero-
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geneous fleet characterized by different capacities Q1, . . . ,Qk. The remainder of

this section introduces the two most common IP mathematical formulations for

the CVRP’s classical version.

2.2 The two-index arc flow (2F) formulation

The two-index arc flow (2F) formulation was first presented in Laporte et al.

(1983) and Laporte et al. (1985) for the symmetric case, and later generalized to

the undirected case in Laporte et al. (1986).

We define a set of integer decision variables xe ∈ {0,1,2} to indicate the

number of times a vehicle traverses each edge e ∈ E in the optimal solution. The

model contains O(N2) integer variables. The two-index arc flow (2F) formula-

tion can be described as an Integer Program (IP):

min
x

z2F(x) = ∑
e∈E

cexe (2.2)

∑
e∈δ (i)

xe = 2 ∀i ∈V0 (2.3)

∑
e∈δ (0)

xe = 2K (2.4)

∑
e∈δ (S)

xe ≥ 2r(S) ∀S⊆V0, |S| ≥ 1 (2.5)

xe ∈ {0,1,2} ∀e ∈ δ (0) (2.6)

xe ∈ {0,1} ∀e ∈ E \δ (0) (2.7)

where z2F(x), as defined in (2.2), is the objective function meant to minimize the

overall routing cost (travel time). Constraint (2.3) is the degree constraint which

imposes flow conservation: exactly two incident edges must be picked for each

customer. Constraint (2.4) is the degree constraint at the depot, it forces that

exactly 2K incident edges at the depot are picked, thus forcing exactly K routes

to be constructed. Constraints (2.6) and (2.7) forces each edge to be traversed at

most once, except for all edges incident at the depot. The edge-case modeled in

constraint (2.6) is necessary to allow single-customer routes. Constraint (2.5),

are the so-called Capacity Cut Constraints (CCC), also called Rounded Capacity
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Constraints (RCC), they function both: (i) as Subtour Elimination Constraints

(SECs), by imposing connectivity of the solution by avoiding the formation of

spurious unconnected subtours and (ii) as a capacity constraint, by imposing

that any customer set S is crossed by a number of edges not smaller than r(S).

Remember that r(S) represents the minimum number of vehicles required to

serve all customers in a given S; additionally, r(S) always satisfies r(S) ≥ 1 for

non-trivial CVRP instances where q(S)> 0.

It was shown in Martello et al. (1990b) and Cornuejols et al. (1993), that it

is possible to replace r(S) in constraint (2.5), with the much simpler BPP lower

bound ⌈q(S)/Q⌉ thus obtaining the following inequality:

∑
e∈δ (S)

xe ≥ 2
⌈︃

q(S)
Q

⌉︃
∀S⊆V0, |S| ≥ 1. (2.8)

The looser inequality of eq. (2.8) is sufficient to solve the 2F formulation opti-

mally. However, a better lower bound for the BPP can improve the linear relax-

ation, reducing the number of branching occurrences.

The CCC constraints in eq. (2.5), may be transformed in the so called Gener-

alized Subtour Elimination Constraints (GSEC) (Laporte et al., 1985), by means

of the degree constraints (2.3) and (2.4):

∑
e∈E(S)

xi j ≤ |S|− r(S) ∀S⊆V0, |S| ≥ 1, (2.9)

where, again, r(S) may be replaced by the trivial BPP’s lower bound ⌈q(S)/Q⌉.
The GSECs avoid the formation of spurious unconnected subtours and impose

that at least r(S) edges leave set S. The number of GSEC (or CCC) inequalities

appear in exponential number in the two-index formulation model, thus making

a direct solution of the linear relaxation impractical. To overcome this issue, it is

possible to avoid adding the GSEC inequalities statically in the model. Instead,

an appropriate cutting-plane algorithm and separation procedure may be em-

ployed to generate dynamically only the necessary (violated) GSEC constraints

during the running time of the branch-and-cut algorithm.

The so-called compact models (Miller et al., 1960; Christofides, 1979;

Desrochers et al., 1991) make use of a polynomial number of constraints.
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Unfortunately, the linear relaxations produced by these compact formulations

are significantly weaker. The SECs are mathematically proven to be "strong" for

the TSP: they are facet-defining for the TSP polytope by uniquely characterizing

its convex-hull (Grötschel et al., 1975). Similar arguments, however, cannot

be applied to the CVRP due to its more complicated structure. Studying the

polyhedral properties of even the standard variation of the VRP has yielded few

satisfactory results, see Campos et al. (1991) and Cornuejols et al. (1993).

Unfortunately, as Augerat et al. (1995) demonstrated, the separation prob-

lem for the CCCs is NP-complete, limiting the applicability of the 2F formu-

lation for solving the CVRP. As a result, several authors (Augerat et al., 1995;

Augerat et al., 1998; Ralphs et al., 2003) developed fractional separation heuris-

tics for the CCC. However, an exact CCC separation is still required for re-

jecting non-feasible integral solutions and ensuring the correctness of the ap-

proach. Lysgaard (2003) implements efficient heuristics for separating the CCC

of eq. (2.5).

2.3 The three-index arc flow (3F) formulation

When it comes to modeling more "colorful" CVRP variants, the two-index arc

flow (2F) model lacks sufficient descriptive power. For example, the simple

CVRP variant where the fleet of trucks is heterogeneous and characterized by

capacities Q1, . . . ,QK cannot be described with the 2F formulation, since there’s

no definite one-to-one mapping on which truck crosses an edge e ∈ E.

The three-index arc flow (3F) formulation, first presented in Golden et al.

(1977), fixes this issue. The 3F formulation makes use O(N2K +NK) integer

decision variables. A set of integer variables xek ∈ {0,1,2}, e ∈ E, k ∈K is

used to encode the number of times a truck k traverses an edge e ∈ E. A new set

of binary variables yik ∈ {0,1}, i ∈ V, k ∈K is used to model whether truck k

covers a node i ∈V .

The three-index arc flow (3F) formulation can be described as an Integer Pro-

gram (IP):

min
x,y

z3F(x,y) = ∑
k∈K

∑
e∈E

cexek (2.10)
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∑
k∈K

yik = 1 ∀i ∈V0 (2.11)

∑
k∈K

y0k = K (2.12)

∑
e∈δ (i)

xek = 2yik ∀i ∈V, ∀k ∈K (2.13)

∑
i∈V

qiyik ≤ Q ∀k ∈K (2.14)

∑
e∈δ (S)

xek ≥ 2yhk ∀h ∈ S, ∀S⊆V0, |S| ≥ 2, ∀k ∈K (2.15)

xek ∈ {0,1,2} ∀e ∈ δ (0), ∀k ∈K (2.16)

xek ∈ {0,1} ∀e ∈ E \δ (0), ∀k ∈K (2.17)

yik ∈ {0,1} ∀i ∈V, ∀k ∈K (2.18)

where z3F(x,y), as defined in (2.10), is the objective function to be minimized

(i.e. the overall travel distance). Constraint (2.11) forces all customers to be

served exactly once. Constraint (2.12) forces all the truck tours to start at the

depot and end at the same spot. Constraint (2.13) binds the yik variables to the

corresponding xi jk variables, by ensuring that if a truck’s route passes through a

vertex, then the corresponding node is marked as visited. Constraint (2.14) is the

capacity upper bound constraint and it ensures that the demand served by each

truck does not exceed the truck capacity. Constraints (2.15) are the Generalized

Subtour Elimination Constraints (GSECs), they impose the connectivity of the

route and are used to avoid the formation of spurious unconnected subtours.

Constraints (2.16) and (2.17) forces each edge to be traversed at most once,

except for all edges incident at the depot. The edge-case modeled in constraint

(2.16) is necessary to allow single-customer routes. Finally, constraint (2.18)

bounds and forces integrality for the yik binary variables.

Constraint (2.15) may be replaced in an equivalent form with traditional (non

generalized) TSP subtour elimination constraints (see Fisher et al., 1981):

∑
e∈E(S)

xek ≤ |S|−1 ∀S⊆V0, |S| ≥ 2, ∀k ∈K . (2.19)

Since (2.15), or equivalently (2.19), are exponential in the number of nodes N,

they are usually not inserted statically in the model but are instead generated
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lazily within the running time of the resolution process.

The three-index arc flow (3F) model generalizes the two-index (2F) version.

The 2F formulation may be viewed as a special case of the 3F formulation by

aggregating all xek into a single variable xe:

xe = ∑
k∈K

xek ∀e ∈ E. (2.20)

However, the three-index arc flow formulation suffers a major downside com-

pared to the two-index version. When modeling homogeneous fleets CVRPs,

the 3F model suffers from a multiplicity of the solution space. In fact, since all

the vehicles share the same capacity, distinct feasible solutions can be obtained

through symmetry by simply permuting the identity k ∈K of each truck.

2.4 The Set Partitioning (SP) formulation

The Set Partitioning (SP) formulation, also known as Path Flow formulation, is

an extended formulation originally presented in Balinski et al. (1964). It oper-

ates differently from the two/three-index arc flow formulation or many further

commonly encountered IP models. The SP formulation uses a tiny number of

constraints while offloading much of the search-space complexity into an expo-

nential number of binary variables.

The SP formulation can be viewed as a Dantzig-Wolfe decomposition

(Dantzig et al., 1960) and commodity aggregation (Desaulniers et al., 1998)

of the three-index arc flow formulation. The Dantzig-Wolfe reformulation

approach is an application of a decomposition principle in which one addresses

numerous smaller structured sub-problems rather than being confronted with

the original problem. This approach is helpful, especially when the original

problem’s resolution complexity exceeds what can be solved in a reasonable

amount of time (Vanderbeck, 2005).

Let P = {p | p is a single-truck elementary feasible route} be the set of all

feasible routes. Let λp ∈ {0,1} be a binary variable indicating whether route

p is selected. Let aip,aep ∈ Z be "static encodings" (integer coefficients) for a

route p ∈ P that respectively count the number of times vertex i ∈V or an edge
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e∈E is covered. Any p∈P is feasible if it satisfies the following two conditions:

aip ∈ {0,1} ∀i ∈V and q(p)≤ Q.

We recall that cp = c(p) represents the cost of a feasible route p ∈ P, which

can be trivially computed in O(N). The SP model forces K routes (p1, . . . , pK)∈
PK to be included in the optimal solution.

The SP formulation is described through an Integer Program (IP):

min
λ

zSP(λ ) = ∑
p∈P

cpλp (2.21)

∑
p∈P

λp = K (2.22)

∑
p∈P

aipλp = 1 ∀i ∈V0 (2.23)

λp ∈ {0,1} ∀p ∈ P (2.24)

where, zSP(λ ), as defined in (2.21) is the objective function to be minimized

(i.e. the overall travel distance). Constraint (2.23) forces each customer to be

covered by exactly one route. Constraint (2.22) enforces that exactly K routes

are selected. Finally, constraint (2.24) is the bounding and integrality constraints

for binary variables λp ∀p ∈ P.

The set of feasible routes P may also be extended to include non-elementary

routes without affecting the correctness of the approach. Thanks to (2.23) any

route p ∈ P which does not satisfy aip ∈ {0,1} ∀i ∈ V will not belong to any

optimal solution regardless of whether the extension is applied or not.

As one might expect, the SP formulation cannot be instantiated or directly

solved because of the exponential number of binary variables. A variant of

the SP formulation, on the other hand, can be efficiently addressed by Column

Generation (CG) approaches embedded within a branch-and-price (BAP) frame-

work. Branch-and-price frameworks and column generation have been applied

with notable success to vehicle routing problems. Refer to chapter 4 for a dis-

cussion on column generation and BAP frameworks applied to the CVRP.

As Toth et al. (2002) point out if the distance matrix satisfies the triangle

inequality, then it is possible to rewrite the SP formulation into an equivalent

Set Covering (SC) formulation by substituting (2.23) in favor of the simpler
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inequality:

∑
p∈P

aipλp ≥ 1 ∀i ∈V0, (2.25)

therefore the SC formulation may be expressed as an Integer Program (IP):

min
λ

zSC(λ ) = ∑
p∈P

cpλp (2.26)

∑
p∈P

λp = K (2.27)

∑
p∈P

aipλp ≥ 1 ∀i ∈V0 (2.28)

λp ∈ {0,1} ∀p ∈ P. (2.29)

Under the triangle inequality assumption, any feasible solution for the SC for-

mulation (2.26)–(2.29) is also feasible for the SP formulation (4.1)–(4.4). Trans-

forming the SP to the SC formulation vastly shrinks (halves) the size of the dual

solution space.

The SP and SC formulation have two main advantages compared to the for-

mulations presented in previous sections. First, their linear relaxation provides

excellent lower bounds (Bramel et al., 1997), compared to the 2F and 3F for-

mulations. Second, they can handle many VRP variants (and more) even de-

scribed through very complex constraints, since their characterizations are cap-

tured within the definition of the set P itself.



CHAPTER 3
Literature Review

This chapter lists some significant contributions regarding exact approaches in

the CVRP and VRPTW domains.

Dantzig et al. (1959) were the pioneers of the contemporary vehicle routing

problem who introduced the CVRP problem to the masses. A few years later,

Clarke et al. (1964) proposes an effective greedy heuristic algorithm for tackling

the CVRP. The presentation of this new problem led to a whole new branch

of scientific research within the operations research community. In the last 60

years, a huge number of contributors in the operations research field have studied

and proposed many mathematical models and algorithms, both exact and meta-

heuristic, for solving the VRP.

Until roughly the late 1980s, exact approaches to the CVRP were based on

tree-search algorithms employing branch-and-bound schemes (see Pierce, 1969;

Christofides et al., 1969; Christofides et al., 1981; Laporte et al., 1986), oc-

casionally employing Lagrangian duality relaxation (see Fisher, 1994; Miller,

1995), or additive bounding procedures (see Fischetti et al., 1994; Hadjicon-

stantinou et al., 1995).

Some authors applied branch-and-cut (BAC) algorithms to the VRP from the

1980s to the early 2000s. Laporte et al. (1983) and Laporte et al. (1985) pro-

posed the two-index arc flow formulation and a branch-and-cut algorithm for

optimally solving the CVRP. Augerat (1995), later proposed a branch-and-cut

scheme integrating additional valid inequalities. A few years later, Lysgaard et

17
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al. (2004) proposed a branch-and-cut framework and a set of improved separa-

tion procedures for the valid CVRP inequalities that were known at the time.

Other notable BAC-based contributions can be found in Araque G et al. (1994),

Augerat et al. (1995), Achuthan et al. (1996), Blasum et al. (2000), Ralphs et al.

(2003), Achuthan et al. (2003), and Baldacci et al. (2004). Baldacci et al. was

able to solve a 135 customers-sized routing problem from the F test-set (Fisher,

1994) for the first time.

Despite the promising results, nonetheless, the branch-and-cut contributions

of the time demonstrated that CVRP instances with even a few customers (less

than 100) proved exceedingly challenging to solve exactly.

Desrosiers et al. (1984) and Agarwal et al. (1989) are a few very early at-

tempts at applying the Set Partitioning (SP) formulation and a column gener-

ation scheme to routing problems. The Set Partitioning formulation and the

column generation will be presented in more details in sections 2.4 and 4.1

respectively. These authors demonstrated that the column generation scheme

proved very satisfactory for solving the VRPTW under tight constraints but did

not achieve remarkable results for the CVRP at the time. As a result, until the

early 2000s, branch-and-cut approaches were deemed the best approach for solv-

ing the CVRP.

Desrochers et al. (1992) proposed a dynamic programming-based label-

correcting algorithm for the SPPRC, and devised it within a branch-and-price

(BAP) scheme to tackle the VRPTW. This labeling algorithm is still a key

component of modern BPC schemes for efficiently solving the pricing problem.

Branch-and-price schemes and the pricing-problem will be both discussed in

the dedicated chapter 4. The 2-paths inequalities were introduced Kohl et al.

(1999), which were later generalized in Desaulniers et al. (2008). Kohl et al.

(1999) was one of the first works to attempt to integrate cutting planes within a

BAP framework for solving the CVRP.

Fukasawa et al. (2006) achieved one of the outstanding breakthroughs in col-

umn generation and VRP research. Fukasawa et al. were the first authors to

propose a BPC algorithm that incorporated a powerful robust-cuts-based cutting-

plane approach normally found in BAC algorithms. Fukasawa et al. integrated

the cutting-planes proposed in Lysgaard et al., 2004, and the column genera-
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tion considered only q-routes with k-cycles elimination. See chapter 4 and sec-

tion 4.3 for a thorough introduction. Fukasawa et al. (2006) was able to solve

many CVRP instances for up to 100 customers approximately. From the work

of Fukasawa et al. until now, the column generation and the label-correcting

algorithm have stood as the de facto procedures of modern and efficient VRP

solvers.

Baldacci et al. (2008) later proposed a slightly different approach compared

to Fukasawa et al. (2006). They employ a column generation scheme consider-

ing elementary routes with additional cutting planes. Furthermore, they used a

bounding procedure to improve the dual bound and reduce the number of routes

to consider. They turned off branching and used route enumeration at the root

node to generate a comprehensive MIP model to be solved directly. Refer to sec-

tion 4.2 for additional details regarding route enumeration. Pessoa et al. (2008)

improves over the work of Fukasawa et al. (2006) by integrating the works of

Fukasawa et al. (2006) and Baldacci et al. (2008) through hybridization between

traditional branching and enumeration. Instead, Contardo et al. (2011) takes a

different approach. It considers q-routes with 2-cycle eliminations and employs

non-robust k-CECs cuts to enforce elementarity.

The ng-routes, first proposed in Baldacci et al. (2011), are a very effective

partial (soft) elementarity relaxation commonly found in contemporary efficient

BPCs for the VRP. The ng-routes relaxation significantly reduces the pricing

problem’s complexity while producing reasonable dual-bounds. Røpke (2012)

revisits the work Fukasawa et al. (2006) and applies the ng-routes relaxation and

strong branching schemes. Refer to section 4.3 for a thorough introduction to

the ng-routes relaxation.

Contardo et al. (2014) outperforms Contardo et al. (2011) by proposing: an

effective enumeration scheme with q-routes with 2-cycle elimination, ng-routes

relaxation with ng-sets of size 8, non-robust k-CECs cuts to avoid larger cycles

and the decremental state-space relaxation technique. They were able to solve

CVRP instances made up of 151 customers using this approach. The decre-

mental state-space relaxation is extended to handle ng-sets in Martinelli et al.

(2014), where the size of the ng-sets size is dynamically enlarged to seek better

dual bounds. For more information on the decremental state-space relaxation,
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see section 4.3.

Pecin et al. (2017b) proposed another modern BCP algorithm for solving

the CVRP. They solved 200-customers-CVRP instances and with successes in

solving some 360-customers instances. Their work featured the following mod-

ern components: (i) bidirectional label-setting algorithm for solving the pricing

problem, (ii) ng-routes relaxation, (iii) non-robust lm-SRCs cuts, (iv) modern

dual smoothing and (v) route enumeration. Pecin et al. (2017a) extends the

work of Pecin et al. (2017b) to the VRPTW. On the day of writing, Pessoa et al.

(2018a) and Pessoa et al. (2020a) are the current state-of-the-art BCP framework

for solving the CVRP based on column generation with ng-routes relaxation.

Pessoa et al. (2020a) was able to optimally solve six opened CVRP instances

from the X test-set (Uchoa et al., 2017) of up to 548 customers.

Due to significant advances in exact BPC algorithms over the last decades,

today, we are able to optimally solve CVRPs with more than 300 customers

with ease (Costa et al., 2019).

Once we introduce the pricing sub-problem induced by BAP/BPC frame-

works in chapter 4, we will discuss additional contributions regarding this prob-

lem domain, see section 4.3. For a literature review on branch-and-cut ap-

proaches for pricing, see later discussion in section 5.1.



CHAPTER 4
Branch and Price

In this chapter, we will discuss the branch-and-price (BAP) framework and the

Column Generation (CG) approach, which are two fundamental components

used by modern CVRP solvers. The focus of our presentation will be on these

two critical components in the context of the CVRP. For a review of CG ap-

proaches to solving arbitrary MIP problems, see Vanderbeck (2005), Lübbecke

et al. (2005), and Desrosiers et al. (2011). Moreover, see Barnhart et al. (1998)

and Desrosiers et al. (2005) for a primer introduction to branch-and-price

schemes. We refer the reader to Feillet (2010)’s work, which includes a helpful

tutorial on CG and BAP algorithms specific to VRPs.

Branch-and-price (BAP) frameworks are in essence a branch-and-bound

(BAB) scheme (Land et al., 2010) that originates when solving the SP/SC for-

mulation for VRPs (see section 2.4). To seek the optimal solution, BAB-based

schemes use a search tree and a pruning strategy by bounding the objective

function. As opposed to widerspread branch-and-cut (BAC) frameworks,

their primary focus is the usage of a Column Generation (CG) technique for

improving the dual bound, see Righini et al. (2008). BAP frameworks were first

applied successfully to the Cutting Stock problem in Gilmore et al. (1961). The

so-called branch-price-and-cut (BPC) extends the traditional BAP framework.

Additional cutting planes are added in the BPC framework to strengthen the

linear relaxations associated with each node, further improving the dual bounds.

According to Sadykov (2019), BAC approaches struggle to solve problems

21
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for which the linear relaxations are not sufficiently tight, even when adding cut-

ting planes. This is especially true for problems with complex combinatorial

structures, such as routing. Substantially increasing the number of decision vari-

ables is understood to improve the linear relaxations. Unfortunately, the large

number of decision variables necessitates a method for dynamically generating

them. Branch-and-price extends traditional BAC frameworks by dynamically

generating the required decision variables via Column Generation.

In the following section 4.1 we will illustrate the column generation algorithm

and the pricing problem, two vital pieces in branch-and-price frameworks.

4.1 Column generation and the Pricing Problem

Consider the Master Problem (MP) defined as the linear relaxation of the SP

formulation (2.21)–(2.24) obtained by relaxing the integrality constraints:

min
λ

zMP(λ ) = ∑
p∈P

cpλp (4.1)

∑
p∈P

λp = K (4.2)

∑
p∈P

aipλp = 1 ∀i ∈V0 (4.3)

0≤ λp ≤ 1 ∀p ∈ P. (4.4)

The constraint λp ≤ 1 in (4.4) is implied from (4.3) and can thus be removed.

An optimal solution to the MP provides a valid dual bound at the root node of

the search tree. The MP can be extended by adding additional cuts or branching

constraints with the aim of improving the dual bounds.

The dual problem associated with (4.1)–(4.4) is:

max
π

zDMP(π) = Kπ0 + ∑
i∈V0

πi (4.5)

π0 + ∑
i∈V0

aipπi ≤ cp ∀p ∈ P (4.6)

π0 ∈ R (4.7)

πi ∈ R ∀i ∈V0, (4.8)
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where π0 ∈ R,πi ∈ R ∀i ∈ V0 represents the dual variables associated respec-

tively with constraints (4.2) and (4.3). In case the SC formulation (2.26)–(2.29)

is used to define the MP, eq. (4.8) in (4.5)–(4.8) can be replaced in favor of

πi ≥ 0 ∀i ∈V0, thus slimming the dual space.

When solving the MP, at each iteration of the simplex algorithm (Dantzig

et al., 1955) we seek a non-basic variable known as column, to price out and

enter the basis through evaluation of the dual variables π ∈ RN . Due to the

enormous size of the set of routes P, evaluating the dual variables π ∈ RN is

computationally intractable.

As a result, in BAP frameworks we consider only a small subset of columns

P ⊆ P, yielding the following linear program:

min
λ

zRMP(λ ) = ∑
p∈P

cpλp (4.9)

∑
p∈P

λp = K (4.10)

∑
p∈P

aipλp = 1 ∀i ∈V0 (4.11)

λp ≥ 0 ∀p ∈P, (4.12)

which takes the name of Restricted Master Problem (RMP).

We look for a column to enter the basis, which in turn necessitates the reso-

lution of the following sub-problem:

c⋆p = min
p∈P

{︄
c̄p = ∑

e={i, j}∈E

(︃
ce−

πi +π j

2

)︃
aep

}︄
, (4.13)

which takes the name of Pricing Problem (PP). In (4.13), c̄p denotes the reduced

cost of a route p ∈ P and c⋆p is the reduced cost of the optimal route p⋆ ∈ P that

leads to the best dual bound improvement. Notice that c̄p can also be expressed

as c̄p = cp− π0−∑i∈V0 πiaip. For convenience, we define c̄e = ce−
πi+π j

2 as

the reduced cost of an edge e ∈ E. The purpose of the RMP is to provide dual

variables to be transferred to the pricing sub-problem (Lübbecke et al., 2005).

Any p ∈ P which satisfies c̄p < 0 is a valid column which can enter the basis

of the RMP. The BAP solver must intelligently manage the set P ⊆ P that it
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stores within a pool. During the resolution process, the BAP framework manages

which routes to keep or drop from P . Because the set P is generally sparse,

any p ∈P | λp = 0 is a valid candidate to be dropped from the pool. A BAP

framework must be appropriately engineered to maintain the size of the pool

P ⊆ P manageable.

In the literature, the resolution method, or algorithm, used to solve the PP is

known as oracle or pricer. The oracle needs to solve the pricing sub-problem

which, due to the definition of the set P, coincides with solving an Elemen-

tary Shortest Path Problem with Resource Constraints (ESPPRC) over a new
directed symmetric network with weights c̄i j = ci j− 1

2πi− 1
2π j. Resources are

monotonically increasing quantities, such as capacity or time, which restrict the

feasibility of a route. The ESPPRC asks for an elementary route connecting a

source vertex and a sink vertex that satisfies the resource consumption bounds.

Because of the elementarity condition, the route can only visit each vertex at

most once. In the ESPPRC, the depot node is split into two vertices (one source,

one sink) and the newly obtained network is characterized by N + 1 vertices.

Chapter 5 will go over the PP and the ESPPRC in more details.

The Column Generation (CG) is an iterative algorithm, successfully applied

to a wide variety of problems (Desrosiers et al., 2005), which alternates between

two phases (Desaulniers, 2018):

1. The simplex algorithm for solving the RMP, which is characterized by one

or more pivot operations.

2. One or several iterations of the Pricing Problem (PP) solved by invoking

the pricer algorithm. The simplex algorithm invokes the pricer to verify

whether other pivot operations can be performed for improving the dual

bound. The pricer algorithm usually lives in a separate external code mod-

ule from the branch-and-price code.

The column generation may also be interpreted as a cutting-plane strategy

for the dual problem. The column generation procedure stops mainly under

two scenarios: (i) when no more negative reduced cost routes exist, i.e. the PP

outputs a p⋆ ∈ P achieving c⋆p ≥ 0 or (ii) the CG procedure tails off, i.e. the
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gained dual bound improvements compared to the running time to generate a

column become suboptimal (optional).

If after the column generation procedure the candidate solution to the RMP λ ∗

satisfies the integrality constraints, λ ⋆
p ∈ {0,1} ∀p ∈P , no branching or cut-

ting planes are required and the candidate solution λ ∗ can update the incumbent.

If, instead, ∃p∈P | λ ⋆
p /∈ {0,1} then a branching strategy is usually necessary to

seek the best integral solution. When all the nodes of the branch-and-bound tree

have been explored or pruned, then the CVRP problem is solved to optimality

and the incumbent solution becomes the optimal solution (p1, . . . , pK) | λ ⋆
pi
= 1.

It’s also worth noting that the CG doesn’t have to solve the PP optimally every

time the simplex algorithm advances. Finding any p ∈ P that achieves c̄p < 0 is

usually enough to improve the dual bound. Except for proving the optimality at

the last CG iteration, there is commonly no need to solve the pricing problem

exactly. Therefore, fast and efficient heuristic algorithms may be employed to

tackle the pricing problem, especially during the very first few pricing iterations,

where finding reduced cost columns is effortless.

4.2 Branching, Route Enumeration and Cut
Generation

Solving the RMP at the root node rarely suffices to satisfy the integrality con-

straints for the SP formulation (2.21)–(2.24). The CG algorithm may conclude

with a non-zero duality gap. As a result, a search tree and a branching scheme

are used to find the best integral solution λ ⋆
p ∈ {0,1} ∀p ∈ P. Modern BAP

frameworks employ additional cutting planes to improve the dual bounds and the

overall convergence speed. The so-called branch-price-and-cut (BPC) combines

common elements from BAP and BAC frameworks. Fukasawa et al. (2006) and

Røpke (2012) are two notable works that integrate cutting planes and propose a

BCP approach for the VRP. See Sadykov (2019) for a discussion of the cutting-

edge components that comprise modern BAP/BPC frameworks.

However, it’s important to note that branching isn’t a rigidly required oper-
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ation. Route enumeration (RE), first proposed for the CVRP in Baldacci et al.

(2008), is a technique complementary to branching. In RE, all elementary routes

that may be part of the VRP optimal solution are identified and later incorpo-

rated into an exhaustive SP formulation. The SP formulation is then solved us-

ing a standard MIP optimizer. Enumeration is accomplished through a dynamic

programming labeling algorithm similar to the one employed for the PP (see

the subsequent discussion in section 4.3). The issue with RE is the potentially

large number of routes that needs enumeration. This number is directly propor-

tional to the tightness of the duality gap and the average length of a tour N/K

(Toth et al., 2014). Route enumeration is an operation that requires exponential

space complexity, but it can drastically improve the performance of the BPC in

some circumstances. Baldacci et al. (2008) and Baldacci et al. (2011) are two

considerable BAP contributions replacing branching entirely in favor of RE.

Modern BPC frameworks instead take a hybrid approach by combining

branching and route enumeration (RE) (see Pessoa et al., 2008; Pessoa et al.,

2009; Contardo et al., 2014; Pecin et al., 2017b; Pecin et al., 2017a; Pessoa

et al., 2020b). Route enumeration is attempted after the column generation has

converged. If the number of enumerated routes exceeds a predefined limit, the

RE is preemptively aborted, and traditional branching is applied instead. Once

the primal-dual bound gap z̄−
¯
z eventually reaches reasonable levels, the RE

strategy will enumerate all routes under the maximum limit. The associated

RMP formulation can now be solved efficiently using a standard MIP optimizer.

We will not go into detail about route enumeration in this thesis because its

presence has no impact on the pricing problem. Nonetheless, acknowledging its

existence and role within a branch-and-price framework is essential.

Due to the PP’s existence, branching and cut generation in BCP frameworks

are more delicate operations than in traditional BAC frameworks. According

to de Aragao et al. (2003), there are two types of inequalities that can occur

depending on the branching and cut generation schemes utilized: robust and

non-robust inequalities.

A robust inequality is an inequality which can be safely added to the RMP

without altering the structure of the set of feasible paths P (Fukasawa et al.,
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2006). That is, robust inequalities do not require explicit modeling in the PP

formulation and instead manifest their contribution directly in the reduced cost

edges c̄e. An oracle, therefore, after the introduction of a robust inequality in

the RMP, needs to solve the same ESPPRC problem but with slightly different

weights associated with each edge.

A non-robust inequality, on the other hand, is significantly harder to cope

with because it influences the structure of the set of possible paths P. In general,

non-robust inequalities have an enriched potential to lower the integrality gap,

but they require explicit modeling and oracle support. These inequalities can

significantly complicate the PP by exchanging better dual-bound improvements

for longer column generation times. As a result, their inclusion should be eval-

uated on an individual basis (Desaulniers et al., 2011). Non-robust inequalities

can arise during both the branching and cut-generation phases.

These work’s contributions will predominantly focus on robust inequalities
exclusively.

4.2.1 Branching

In this section, we will introduce branching for the SP formulation, under the

assumption that a branch-and-price scheme is employed for solving the CVRP.

At first glance, it might seem reasonable to branch directly on the λp vari-

ables of the SP formulation. Unfortunately, such branching has two significant

drawbacks (Vanderbeck et al., 2010). For starters, it is not robust and leads to a

harder PP: an ESPPRC with forbidden paths (Villeneuve et al., 2005). Second,

it results in an utterly unbalanced search tree.

A vast bulk of CVRP branching approaches investigated in the literature are

merely extensions of TSP branching schemes. Branching on edge, first applied

to the CVRP in Christofides et al. (1969), is one of the most basic branching

schemes, but it is also one of the most effective. The branching on edges scheme

was refined in diverse forms in Fisher (1994) and Miller (1995). The edge flow

decision variables can be calculated from the MP by noting that:

xe = ∑
p∈P

aepλp ∀e ∈ E, (4.14)
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where aep represents the number of times route p ∈ P crosses an edge e ∈ E.

Given a candidate fractional solution 0≤ λ ⋆
p ≤ 1 ∀p ∈P and a valid edge

e∈E | xe /∈ {0,1,2} to branch on, it is possible to generate two descendant nodes

in the search tree to continue scanning for integral solutions:

xe ≤

⌊︄
∑

p∈P
aepλ

⋆
p

⌋︄
, xe ≥

⌈︄
∑

p∈P
aepλ

⋆
p

⌉︄
. (4.15)

Branching on edges is an approach that is both extremely simple and robust.

Let ωe ∈ R denote the dual variable associated with edge e ∈ E and one of the

branching polarities in eq. (4.15), then the new reduced cost c̄e for an edge e ∈ E

after branching is:

c̄e = ce−
πi +π j

2
−ωe, (4.16)

where π ∈ RN represents the dual variables associated with eqs. (4.2) and (4.3).

Branching on edges has the disadvantage of achieving only local changes

to the fractional solution. For this reason, Augerat et al. (1998) propose an

approach to obtain larger perturbations. They achieve this by branching on

Rounded Capacity Constraints (RCCs) defined over an arbitrary set S⊆V0 with

two descendant nodes:

∑
e∈δ (S)

xe ≤ 2r(S), ∑
e∈δ (S)

xe ≥ 2r(S)+2 (4.17)

Pecin et al. (2017b) apply a similar branching approach.

Ryan and Foster branching (Ryan et al., 1981) is another viable branching

rule which is unfortunately non-robust. Ryan and Foster branching complicates

the pricing subproblem, but it has the primary benefit of resulting in more bal-

anced search trees. Branching over the accumulated resource consumption, pro-

posed in Gélinas et al. (1995), is another viable branching rule that, unlike the

previous one, it does not raise the pricing difficulty.

Strong branching is a commonly employed strategy, which evaluates individ-

ually potential branching candidates by measuring their impact based on some

scoring function. The goal is to choose either the branching candidate that

heuristically leads to the best dual bound improvement or the branching can-

didate that heuristically leads to a more balanced search tree. Strong branching
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can reduce the size of the search tree at the expense of a slower branching can-

didate evaluation. Fukasawa et al. (2006), Pecin et al. (2017c), and Pecin et

al. (2017a) are all approaches that opted for the strong branching technique for

solving the VRP.

Reduction rules can remove edges verified to not belong to an optimal solu-

tion. Variable fixing can be used as a reduction rule by utilizing a dual bound

z̄ and primal bound
¯
z to eliminate some edges e ∈ E | ĉe ≥ z̄−

¯
z (Hadjar et al.,

2006; Irnich et al., 2010). Reduction rules are a peculiar form of branching

where only single descendant nodes are generated. Reduction rules may crop a

good portion of the search space.

4.2.2 Cutting Planes

In this section, we will introduce numerous families of inequalities which can be

used for cut generation for the 2F (2.2)–(2.7) and the SP (2.21)–(2.24) formula-

tions. See Desaulniers et al. (2011) for a general framework on cutting planes

for CG algorithms for arbitrary integer programs.

While the 2F formulation is not the primary focus of this thesis, presenting

and studying valid inequalities for such a formulation will be useful for the PP

induced during the CG phase. Many 2F valid inequalities can be applied to the

ESPPRC if properly rewritten. The early attempts to propose valid inequalities to

improve the linear relaxation for the 2F problem were obtained by generalizing

the constraints for the traditional TSP problem, see Naddef et al. (1993). Naddef

et al. demonstrated that by putting any valid inequality obtained for the TSP

into a proper tight triangular form, it is possible to re-adapt it to the CVRP. As

an example, the comb inequalities readjusted from the original TSP (Chvátal,

1973; Grötschel et al., 1979; Augerat, 1995).

Valid inequalities for the 2F CVRP formulation can be classified into several

groups (Toth et al., 2014). We concentrate on the following groups: capacity

constraints and multistar inequalities.

The capacity constraints are inequalities which can be expressed in the form

∑e∈δ (S) xe ≥ 2r(S) ∀S⊆V0, |S| ≥ 2. This set of constraints may have different

names depending on how r(S) is defined. If r(S) = ∑i∈S qi/Q, we obtain the
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so-called Fractional Capacity Constraints (FCC). Instead, if we use the typical

Bin Packing Problem (BPP) lower bound, r(S) = ⌈∑i∈S qi/Q⌉, we obtain the so-

called Rounded Capacity Constraints (RCC). The RCC were first presented in

Laporte et al. (1983) for the CVRP 2F formulation.

The multistar inequalities were initially proposed in Araque et al. (1990)

for the CVRP with unit demands, then extended to the generic CVRP in Gouveia

(1995) and Achuthan et al. (1998), and finally generalized in the so called Gen-

eralized Large Multistart (GLM) for the CVRP in Letchford et al. (2002) and

Letchford et al. (2006). Given two disjoint sets of customers A,B⊆V0 | A∩B =

/0, and α,β ,γ ∈R, a multistar inequality is described in the 2F formulation using

the following template:

α ∑
e∈E(A)

xe +β ∑
e∈(δ (A)∩δ (B))

xe ≤ γ. (4.18)

Araque G et al. (1994) were the first to successfully apply multistar inequalities

within a branch-and-cut framework. Letchford et al. (2006) demonstrates that

GLMs are implied by the SP model, even if the set of feasible paths P is relaxed

to contain non-elementary routes.

We will terminate the remainder of this section by introducing some families

of inequalities serviceable to improve the linear relaxation for the SP formu-

lation (2.21)–(2.24). Despite the SP formulation generally delivers better dual

bounds compared to other CVRP formulations (see discussion in section 2.4),

these bounds may still be too weak to obtain an efficient algorithm. Thus, it is

common practice to introduce cutting-plane approaches in modern BAP-based

VRP solvers.

Cutting planes that only involve edge-flow variables are by nature robust.

Because the RCC inequalities only involve the edges e ∈ E crossing a set S ⊆
V0, |S| ≥ 2, they trivially can be extended to a robust inequality for the SP for-

mulation:

∑
p∈P

∑
e∈δ (S)

aepλp ≥ r(S), (4.19)

where ∑e∈δ (S) aep counts the number of times a route p ∈ P enters or leaves a

set S and r(S) represents the number of trucks needed to serve each customer
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i ∈ S. Lysgaard (2003) proposes a heuristic algorithm for efficiently separating

the RCC inequalities.

Robust cuts are moderately effective at closing the integrality gap, but they

may not be sufficient for some complicated VRP instances. Consequently, some

researchers attempted to apply non-robust cuts to the CVRP with promising suc-

cess. Non-robust cuts must be separated carefully to use them effectively. Taking

into account the aggravation of the pricing problem during the separation of non-

robust cuts is of vital importance for the overall performance of the BAP scheme.

While we will mostly avoid non-robust cuts in this thesis, it is noteworthy to ac-

knowledge their significance within a BAP framework.

Traditionally, these types of cutting planes have been handled by extending

the dynamic programming labeling algorithm through the addition of fictitious

resources and modifications to the dominance rules. See discussion in section 4.3

for more details.

Major contributions in the non-robust cutting planes domain for the VRP are:

1. Strengthened Capacity Cuts (SCCs), sometimes also called Strong Ca-

pacity Cuts were first proposed in Baldacci et al. (2008),. These cutting

planes can be considered a non-robust tighter version of the RCCs. Com-

pared to RCCs, they are not affected by routes entering set S ⊆ V0 more

than once.

2. Extended Capacity Cuts (ECCs) proposed in Pessoa et al. (2008) and

Pessoa et al. (2009) are another pertinent generalization of the RCCs.

3. Subset Row Cuts (SRCs) proposed in Jepsen et al. (2008a), are non-

robust inequalities obtained as a subset of the Chvátal-Gomory rank-1 cuts

(Chvátal, 1973) applied to a subset C ⊆V0 of customers. Their separation

is NP-hard. Therefore, the subset C is typically separated through enumer-

ation and for computational tractability the evaluation is restricted solely

to ∀C ⊆ V0 that satisfy |C| ≤ 5. 3-SRCs, namely SRCs where |C| = 3,

were applied successfully in many works (Desaulniers et al., 2008; Jepsen,

2011; Baldacci et al., 2011; Contardo et al., 2014; Pecin et al., 2017b). The

SRCs were later generalized to a more general Chvátal-Gomory Rank-1

cuts (R1Cs) in Petersen et al. (2008). R1Cs have the potential to be ex-
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tremely powerful, but they make pricing subproblems significantly more

difficult. Baldacci et al. (2011) propose a weakened variant of the 3-SRCs

inequalities.

4. Limited Memory Subset Row Cuts (lm-SRCs) proposed in Pecin et al.

(2017b), are a dynamically controlled weakening of the SRCs that has far

less computational impact on the PP. Later, Pecin et al. (2017c) extend

this reasoning and develop the so-called Limited Memory Rank-1 Cuts

(lm-R1Cs).

5. Strong Degree Cuts (SDCs) proposed in Contardo et al. (2011) and Con-

tardo et al. (2014), are cutting planes which can be considered a special-

ized version of the SCCs. They can enforce partial route elementarity in

the RMP formulation and are redundant when the pricer always outputs

elementary paths. SDCs can be used to achieve the elementarity bound in

the case the pricer produces non-elementary routes (Contardo et al., 2014).

6. k-Cycle Elimination Cuts (k-CECs), proposed in Contardo et al. (2014),

are a weakened form of the SDCs, which forbids routes that have cycles of

length smaller or equal to k over a customer i ∈V0. SDCs may be viewed

as a special case of k-CECs with k = ∞. The k-CECs have less impact in

the pricing problem compared to SDCs.

7. Clique inequalities readjusted for the VRPTW problem domain in

Spoorendonk et al. (2010).

For a more complete survey on the various non-robust cutting planes proposed

over the years for the CVRP refer to Costa et al. (2019).

4.3 Solving the Pricing Problem

The Pricing Problem (PP) asks for the determination of an elementary shortest

path, subject to resource constraints, over a directed network formulation where

the cost of each edge is dualized. In the ESPPRC problem, the elementarity

condition imposes that the optimal route may visit the same vertex at most once.

For convenience we define as Shortest Path Problem with Resource Constraints

(SPPRC) as the non-elementary version of the ESPPRC and the abbreviation
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RCSP to denote a resource constrained shortest path. Sometimes SPPRC is also

abbreviated as RCSPP: Resource Constrained Shortest Path Problem. As it was

claimed in Dror (1994), since the underlying network may contain negative cost

cycles, the ESPPRC is an NP-hard problem.

The q-routes (Christofides et al., 1981) are routes p with total resource con-

sumption q(p)≤Q that do not necessarily satisfy the elementarity condition and

may thus contain cycles. In the q-routes relaxation, each additional visit to al-

ready covered customers counts toward the total resource consumption. In the

original definition of q-routes cycles of two vertices are prohibited. The q-routes

with k-cycle elimination are a natural extension of the q-routes in which multiple

visits to the same vertex are allowed only if at least k other vertices are covered

in between.

It was discovered that broadening the set of feasible paths P in the SP for-

mulation to include q-routes could result in a more tractable pricing problem

by making it weakly NP-hard and thus solvable via a pseudo-polynomial al-

gorithm (Desrochers et al., 1988; Irnich et al., 2005). Notice that the q-routes

violates the SP constraints (2.23), thus, they won’t be part of a CVRP optimal

solution. Many efficient algorithms for the VRP rely on the solution of SPPRC

subproblems which make use of q-routes (Desrochers et al., 1992; Fukasawa

et al., 2006; Contardo et al., 2011). While this expansion of the set of feasible

paths P is still valid, it has the unfortunate side effect of yielding significantly

worse dual bounds for the linear relaxations (Feillet et al., 2004). As a result, the

definition of the set of feasible paths P is critical in balancing efficiency at the

pricing stage with the overall quality of the dual bounds.

The label-correcting algorithm was first proposed in Desrochers et al. (1992)

for solving an SPPRC pricing sub-problem induced from the Set Covering (SC)

formulation of the VRPTW. The label-correcting algorithm, which could only

generate q-routes at the time, is a dynamic programming algorithm that works

through label construction, propagation, and correction from node to node. Each

partial path is tracked by the algorithm using labels. Each label encodes the cur-

rent partial resource consumption, among other things. The algorithm’s domi-

nance rules allow it to efficiently prune the search space by ignoring dominated
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labels, thus vastly speeding up the resolution process. The label-correcting al-

gorithm is a natural extension of the traditional Bellman-Ford algorithm (Bell-

man, 1958; Ford Jr, 1956), but it takes additional path constraints into account.

The Bellman-Ford algorithm is commonly known by all operations research

practitioners and it is used to compute resource-unconstrained shortest paths

on a negative-cycles-free network. The running time complexity of the label-

correcting algorithm for pricing q-routes is O(N2Q) operations. The number of

processed labels scales with the vehicle capacity. By nature of the approach,

the applicability of the labeling algorithm is limited to VRPs having stringent

vehicle capacity and characterized by routes visiting a mediocre amount of cus-

tomers each (Jepsen et al., 2008b). On top of that, due to its inherent nature, the

labeling algorithm is limited by single-threaded performance and cannot scale to

multiple machine cores.

Feillet et al. (2004) extends the label-correcting algorithm to handle elemen-

tary paths by introducing additional fictitious resources for each node. As the

authors point out, this new algorithm has two advantages. First, the linear relax-

ation produces a significantly smaller duality gap than treating q-routes. Second,

it may allow for the resolution of certain problem classes where relying on col-

umn generation schemes based on q-routes is hardly an option. The extended

algorithm of Feillet et al. for pricing elementary routes has a running time com-

plexity of O(2NQ) operations, limiting its applicability to larger problems. Righ-

ini et al. (2006) later improve the dynamic programming algorithm of Feillet et

al.

Nonetheless, some improvements have been made to the overall running time

of the label-correcting algorithm for pricing elementary routes. Some significant

contributions in this domain can be attributed to: (i) bidirectional search pro-

posed in Righini et al. (2006) and (ii) decremental state-space relaxation (DSSR)

proposed independently in Boland et al. (2006) and Righini et al. (2008) under

different names. The decremental state-space relaxation (DSSR) is an approach

where elementarity impositions are included lazily during the running time of the

column generation phase. In DSSR, the label-correcting algorithm is first asked

to generate q-routes, then for each vertex that is visited twice or more, elemen-

tarity is enforced at the pricer stage and the procedure is repeated. The first BCP



4.3. SOLVING THE PRICING PROBLEM 35

algorithm based on full elementarity routes was proposed in Chabrier, 2006, but

unfortunately, applying arbitrary k-cycle elimination to the pricing problem has

not been thoroughly researched since. Despite arbitrary k-cycle elimination can

also be enforced by using non-robust cuts (see discussion in section 4.2.2), Feil-

let et al. demonstrated that avoiding such cycles within the column generation

procedure supplied substantially better dual bounds at the cost of increasing the

running time of the pricing problem.

Given the complexity of the ESPPRC, many authors inspired by these works

have investigated using some form of controlled partial elementarity condi-

tion. The idea behind partial elementarity is to obtain dual bounds as close to

the elementary route bound as possible while still keeping the pricing problem

manageable (Contardo et al., 2015).

Irnich et al. (2006) and Fukasawa et al. (2006) have investigated the usage

of q-routes with k-cycle elimination with k ≥ 3 within the labeling algorithm.

Fukasawa et al. (2006) tests the q-routes with 4-cycle elimination and shows

that such an approach leads to a substantially slower pricing problem with dual

bounds that are extremely far from the elementary bound. Instead, Desaulniers

et al. (2008) takes a totally different approach. They introduce a new concept of

"partial elementarity" obtained by enforcing the elementarity condition only on

a small predetermined subset of customers.

The ng-routes relaxation developed in Baldacci et al. (2011) is credited as

one of the radical innovations in modern pricing efficiency. Baldacci et al. ob-

served that in most cases, q-routes cycles emerged to use only low-cost edges

and were confined to comparatively small clusters of the graph. They define the

concept of ng-set Ni for a vertex i which encodes the |Ni| closest neighbors of the

vertex i ∈ V . The quantities |Ni| can be increased on-demand to achieve better

dual bounds, but doing so leads to an exponential increase in pricing complex-

ity. The ng-sets can be determined a priori or dynamically, as shown in Roberti

et al. (2014). The ng-routes permits cycles over a vertex i ∈ V only if the route

passes through a vertex j ∈ V | i /∈ N j. The new novel relaxation of Baldacci

et al. is simple to incorporate into the dynamic programming labeling algorithm.

Dominance is verified through a limited-memory set that changes as the route
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get extended. The limited memory, by its nature, "forgets" old covered vertices,

which can then be subsequently revisited as the generated path gets longer. The

ng-routes relaxation can be considered a more versatile and dynamic version

of q-routes with k-cycle elimination. They use a different definition of cycle

length. This definition provides a better measure of a cycle’s impact and may be

regarded as the primary cause of this relaxation’s efficiency. The ng-routes re-

laxation measures cycle lengths in terms of travel or time distances. In contrast,

in classical k-cycle relaxation, they are measured in terms of customers visited

(Contardo et al., 2014). This new novel relaxation achieves a bound that is very

close to the elementary bound while not being detrimental to the pricing prob-

lem. Furthermore, depending on the circumstances, the amount of elementarity

can be controlled by selecting the appropriate neighborhood set size |Ni|.

We conclude this section by mentioning a few final contributions that are

related to the pricing problem.

Fukasawa et al. (2006) modifies the label-correcting algorithm to employ it as

a fast pricing heuristic. Heuristics can significantly speed up the column gener-

ation process. The invocation of the exact pricer occurs solely when the pricing

heuristic fails to determine a valid reduced-cost route. Desaulniers et al. (2008)

and Archetti et al. (2011) propose a meta-heuristic based on tabu search to gen-

erate routes with a negative reduced cost.

Lozano et al. (2013) propose the pulse algorithm to solve the SPPRC. Lozano

et al. (2016) extend the pulse algorithm to handle elementary paths.

Desaulniers et al. (2019) propose a new paradigm called selective pricing

for the ng-SPPRC. The column generation procedure is preemptively aborted

in selective pricing if there is proof that no reduced-cost elementary routes ex-

ist, regardless of whether the ng-SPPRC admits reduced-cost ng-routes. This

method allows for rejecting some non-elementary routes even when they are not

dominated.

The dual variables π ∈ RN tend to oscillate from one CG iteration to the next

as the average number of customers per route N/K increases, slowing the con-

vergence speed of the column generation algorithm (Toth et al., 2014). As a

result, some dual variable stabilization techniques were proposed to address this
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issue and reduce the number of pricing iterations required by the column gener-

ation algorithm (see Du Merle et al., 1999; Rousseau et al., 2007; Pessoa et al.,

2013; Pessoa et al., 2018b). For a general introductory discussion on column

generation stabilization techniques, see Vanderbeck (2005). When the SC for-

mulation is used instead of the SP formulation, the dual variables are typically

more stable (Rousseau et al., 2007; Feillet, 2010).

We conclude the section by mentioning additional surveys discussing labeling

algorithm for tackling the non-elementary SPPRC: Irnich et al. (2005), Pugliese

et al. (2010), and Pugliese et al. (2013).





CHAPTER 5
The Pricing Problem

The Elementary Shortest Path Problem with Resource Constraints (ESPPRC)

appears as the pricing sub-problem in column generation schemes for vehicle

routing problems, as previously discussed in chapter 4. As a result, compre-

hending it is crucial for developing efficient branch-and-price frameworks. For

a literature review on the importance and methodologies for solving the pricing

problem, we refer the reader to section 4.3.

While the ESPPRC can be studied independently, we are primarily interested

in it in this work from the perspective of pricing for the VRP. The ESPPRC re-

quests the shortest path (or route) between a starting and destination vertex on a

directed weighted network, subject to additional resource constraints. The stan-

dard version of the ESPPRC allows for the definition of multiple resource s with

different semantics, such as time, capacity, gasoline, and more. The resources

are typically monotonically increasing quantities that increase as the route passes

through new edges or vertices (Irnich et al., 2005; Irnich, 2007). Resource con-

sumption can be bounded at various levels of scope, such as global scope, vertex

scope, or arc scope.

The Elementary Shortest Path Problem with Capacity Constraints (ESPPCC)

is a subset of the ESPPRC characterized by a single resource: the number of

goods. A global-scoped threshold Q ∈ R+, the vehicle capacity, limits the num-

ber of goods served during a route. The ESPPCC can be used to model the pric-

ing sub-problem in the column generation schemes for the Capacitated Vehicle

39
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Routing Problem (CVRP).

We will concentrate on the ESPPCC pricing sub-problem in this work. How-

ever, it is crucial to acknowledge that the more general ESPPRC is required to

model more complex scenarios, such as the pricing sub-problem induced by the

Vehicle Routing Problem with Time Windows (VRPTW).

The Capacitated Profitable Tour Problem (CPTP) is a combinatorial opti-

mization problem that, like the ESPPCC, can effectively model the CVRP pric-

ing sub-problem. The CPTP asks for a minimum cost circuit subject to capacity

constraints and can be regarded as a specific case of ESPPCC where the starting

and destination vertices coincide.

In section 5.2 we will formally introduce, discuss, and provide an IP formula-

tion for the ESPPCC. Similarly, in section 5.3, we will introduce the CPTP and

provide an IP formulation and extra valid inequalities. We will study the basic

version of these two problems, which means that we will not consider non-robust

inequalities that can change the structure of these problems. However, before

delving into the discussion of these two problems, we will first devote the fol-

lowing section 5.1 to a review of the few previous contributions regarding the

use of branch-and-cut approaches for pricing.

5.1 Literature Review on Branch-and-Cut
approaches applied to the Pricing Problem

Label-correcting dynamic programming approaches dominate as the primary ap-

proach to solve the (E)SPPRC in the context of pricing, see Desrochers et al.,

1992; Feillet et al., 2004; Righini et al., 2004; Righini et al., 2006; Boland et al.,

2006; Righini et al., 2008; Pugliese et al., 2010; Baldacci et al., 2011; Lozano

et al., 2013; Lozano et al., 2016; Sadykov et al., 2021a. For a more complete

discussion, see section 4.3.

To our knowledge, branch-and-cut approaches for tackling the (E)SPPRC

have received little attention. The few branch-and-cut contributions that we are

aware of are: (i) Jepsen et al. (2008b) for the ESPPCC, (ii) Jepsen (2011) and

Jepsen et al. (2014) to the CPTP, (iii) Taccari (2016) and Drexl et al. (2014) for
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the related non-resource constrained ESPP and (iv) Horváth et al. (2016) for the

non-elementary RCSP.

To the best of our knowledge, no branch-and-cut contributions exist for the

general ESPPRC version in the literature. This situation is most likely due to the

inherent challenges of modeling resource constraints with non-global bounds,

such as time window constraints (Jepsen et al., 2008b). First, non-global re-

source bounds necessitate the usage of directed network-based IP models, which

are twice as large as an undirected equivalent solution. Second, non-globally

bounded resource constraints can only be modeled as big-M constraints, which

are known to be inherently computationally unstable (Jepsen et al., 2008b).

Jepsen et al. (2008b) provide an IP mathematical model for the ESPPCC over

an undirected network, along with additional valid inequalities. In their work,

they empirically evaluate the effectiveness of their branch-and-cut framework in

the context of pricing for the CVRP.

Jepsen et al. (2014) investigates the CPTP problem in the context of pricing

for the CVRP. Their work stems from the initial efforts of Jepsen et al. (2008b).

Jepsen et al. provide a first tutorial/survey/framework and foundational theory

for further development of the CPTP as a standalone problem or in the context of

pricing. In addition to discussing valid inequalities and their efficient separation,

they propose a model and a branch-and-cut algorithm for solving the CPTP.

Jepsen et al. (2014) conduct a computational study to assess the competitive-

ness of their approach and the usefulness of the employed cutting planes. Their

findings showed that the CPTP-based branch-and-cut framework was not com-

petitive in solving the CVRP’s PP. Overall, the dynamic programming algorithm

appeared to perform vastly better. Nonetheless, their findings revealed that the

branch-and-cut algorithm solved some larger problem instances in which the la-

beling algorithm failed to provide a solution. More specifically, their results

showed that:

1. The branch-and-cut (BAC) algorithm appeared to solve some standalone

CPTP instances characterized by 800 customers. Whereas the labeling

algorithm ran out of available computation time when solving instances

characterized by more than 200 customers.
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2. When the weights of the associated ESPPCC/CPTP network were highly

negative, the branch-and-cut algorithm outperformed the labeling algo-

rithm significantly.

3. When the optimal objective value of the problem was very close to the

zero threshold, the branch-and-cut framework performed worse.

Item 1 relates to standalone CPTP instances and may thus be irrelevant in the

pricing context. With regard to pricing, item 2 is of little interest because highly

negative weights networks are usually solved through heuristics anyway. Item 3

is probably due to the fact that labeling algorithms are usually optimized to cut

off extensive portions of the solution space when the optimal value resides very

close to the zero threshold.

Despite their contribution needs to be revisited in light of recent advances

on both sides, their findings demonstrated that a branch-and-cut approach could

supplement the dynamic programming algorithm for pricing.

5.2 The Elementary Shortest Path Problem with
Capacity Constraints

This section will go over the Elementary Shortest Path Problem with Capacity

Constraints (ESPPCC) in the context of pricing for the CVRP. We’ve already

seen the general ESPPRC case of this problem in sections 4.1 and 4.3 but we’ve

never provided a formal description of the mathematical model. In this section,

we consider the basic version of the ESPPCC, not considering non-robust in-

equalities at the RMP level. When non-robust inequalities are used, ESPPCC is

insufficient for modeling the pricing problem. To ensure the correctness of the

column generation approach, a slight variation of the ESPPCC with additional

constraints is required.

The ESPPCC asks for the determination of the shortest path on a weighted

network between two vertices s, t subject to a single global resource restriction

characterized by the number of goods available for serving Q ∈ R+. The ele-

mentarity condition in the ESPPCC problem requires that no optimal path pass



5.2. THE ELEMENTARY SHORTEST PATH PROBLEM WITH CAPACITY
CONSTRAINTS 43

through the same vertices two or more times. In general, the ESPPCC’s un-

derlying network may contain negative cost cycles. The presence of negative

cost cycles makes solving such a problem NP-hard (Dror, 1994). A dynamic

programming algorithm to tackle the elementary version of the problem was

proposed in Feillet et al. (2004). In the context of pricing, however, the problem

has traditionally been resolved through an SPPRC. Unlike its elementarity ver-

sion, the SPPRC can be solved in pseudo-polynomial time using a much faster

dynamic programming algorithm, see Desrochers et al. (1992). Unfortunately,

relaxing the elementarity condition slows down column generation and worsens

dual bounds, as discussed previously in section 4.3.

If the weighted network of the ESPPCC contains no negative-cost cycles,

we can safely ignore the elementarity restriction without affecting correctness

(Beasley et al., 1989). A sufficient but not-necessary condition is when the re-

duced cost variables are all positive: c̄i j ≥ 0 ∀i, j ∈ V0 ∪{s, t}. In this case,

an optimal solution to the associated non-elementary SPPRC is an optimal so-

lution to the original elementary version of the problem (Beasley et al., 1989).

The associated SPPRC can then be solved trivially in pseudo-polynomial time.

Initial contributions for tackling the ESPPCC exploited such property. The re-

source consumptions were relaxed through a Lagrangian method. They obtained

feasible dual solutions over strictly positive weighted networks using a branch-

and-bound scheme and an off-the-shelf standard shortest path algorithm, such

as Dijkstra (Sniedovich, 2006). To name a few, see the contributions of Beasley

et al. (1989), Dumitrescu et al. (2003), Carlyle et al. (2008), and Muhandiramge

et al. (2009).

However, as noted in Righini et al. (2004), Lagrangian relaxation is only ef-

fective when the dualized variables are positive for a significant portion of the

Lagrange multipliers search space, limiting the effectiveness of these approaches

in the context of pricing.

5.2.1 Integer Programming Formulation

While Jepsen et al. (2008b) provides an undirected symmetric network-based

formulation for the ESPPCC, in our presentation, we chose to re-adjust the more-
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general directed symmetric network-based ESPPRC formulation provided in

the works of Beasley et al. (1989), Toth et al. (2002), and Toth et al. (2014).

As a result, we must readjust/extend the mathematical notation provided for the

undirected CVRP in section 2.1.

The ESPPCC is defined over a directed symmetric network G′ = (V ′,A′),

where V ′ = V0 ∪ {s, t} denotes the set of vertices and A′ the set of arcs. The

vertex set V ′ has size |V ′|=N′=N0+2, where N0 represents the total customers

in the original CVRP problem. The vertices s= 0, t =N′−1 denote respectively

the source and sink versions of the depot node. The arc set A′ can be expressed

as:

A′ = {(i, j) | i, j ∈V0, i ̸= j}

∪{(s, i) | i ∈V0}

∪{(i, t) | i ∈V0}.

(5.1)

The arc set A′ has size |A′| = N′(N′− 1) + 2(N′− 1). Following the CVRP,

we associate a resource consumption or vertex demand, to each node of the

network: qi ∀i ∈ V ′. The resource consumption semantics associated with

each customer i ∈ V0 remains unaltered from the CVRP, while for the source

and sink vertices we respectively fix qs = qt = 0. We formally define δ+(S) =

{(i, j) ∈ A′ | i ∈ S, j /∈ S} to denote the out-arcs crossing the set S ⊂ V ′. Like-

wise, we define δ−(S) = {(i, j) ∈ A′ | i /∈ S, j ∈ S} to denote the in-arcs crossing

the set S ⊂ V ′. For brevity’s sake, we also define δ+(i) = δ+({i}), δ−(i) =

δ−({i}) to denote respectively the singleton version of the in and out arcs for

vertices i ∈ V ′. Note that the following conditions hold: δ+(s) = V0, δ−(t) =

V0, δ−(s) = /0, δ+(t) = /0. We also define A′(S) = {(i, j) ∈ A′ | i, j ∈ S} to de-

note the set of arcs having both end points in set S⊆V ′.

As it was done in section 4.1, for each directed arc we associate a weight c̄i j ∈
R ∀(i, j) ∈ A′. The weight c̄i j represents the reduced cost of an arc (i, j) ∈ A′.

Its definition is linked to the dual variables π ∈ RN associated to the RMP’s
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constraints of eqs. (4.2) and (4.3) through the following relationship:

c̄i j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ci j−
πi+π j

2 ∀i, j ∈V0

csi−
π0+π j

2 ∀ j ∈V0

cit− πi+π0
2 ∀i ∈V0

∞ otherwise

(5.2)

Additional robust inequalities (cuts or branching) induce supplementary negative

term contributions, through further dual variables, directly to the reduced arc cost

c̄i j. See previous discussion in section 4.2.

A feasible path solution to the ESPPCC is a sequence p=(p0, p1, . . . , pu, pu+1)

with p0 = s, pu+1 = t in which {p1, . . . , pu}⊆V0 customers are visited. Observe

that there’s no restriction in which customers need to be necessarily covered

by the path p. Due to the elementarity condition, the path p can cover a vertex

at most once. The path’s resource consumption qp = q(p) = ∑
u
j=0 qp j satisfies

q(p) ≤ Q. The optimal path p⋆ minimizes the overall path’s reduced cost

c̄(p) = ∑
u
i=0 c̄pi,pi+1 across all possible feasible choices for p.

We are now ready to provide a ESPPCC formal description through an Inte-

ger Program (IP). Let xi j ∈ {0,1} (i, j) ∈ A′ be a new set of binary decision

variables: xi j = 1 if arc (i, j) ∈ A′ is picked by the optimal path. The model

reads:

min
x

zESPPCC(x) = ∑
(i, j)∈A′

c̄i jxi j (5.3)

∑
i∈V0

qi

2

(︄
∑

( j,i)∈δ−(i)
x ji + ∑

(i, j)∈δ+(i)
xi j

)︄
≤ Q (5.4)

∑
( j,i)∈δ−(i)

x ji = ∑
(i, j)∈δ+(i)

xi j ∀i ∈V0 (5.5)

∑
(s,i)∈δ+(s)

xsi = 1 (5.6)

∑
(i,t)∈δ−(t)

xit = 1 (5.7)

∑
(i, j)∈A′(S)

xi j ≤ |S|−1 ∀S⊆V0∪{s, t}, |S| ≥ 2 (5.8)
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xi j ∈ {0,1} ∀(i, j) ∈ A′, (5.9)

where (5.3) is the objective function to be minimized, i.e. the overall reduced

cost of the path. Constraint (5.4) is the resource consumption upper bound. Con-

straint (5.5) imposes a flow conservation for all vertices except for the source and

the sink. Observe that eq. (5.5) does not impose restriction on whether customer

i ∈V0 needs to be necessarily covered by the path p. Constraints (5.6) and (5.7)

respectively impose an out-flow and in-flow of 1 for the source and sink ver-

tices. Constraints (5.8) are the Subtour Elimination Constraints (SEC) and have

a two-fold effect. First, they avoid the formation of spurious tours in uncon-

nected regions of the network, such as the situation depicted in fig. 5.1. Second,

they impose the elementarity condition, restricting paths from visiting multiple

times the same vertices, such as the situation depicted in fig. 5.2. Constraint

(5.9) imposes integrality and forces each arc (i, j) ∈ A′ to be traversed at most

once. Despite the dual variables π ∈ RN contributions in eq. (5.2) are grouped

by two and averaged over each arc, thanks to eqs. (5.5)–(5.7) the path reduced

cost still sums to c̄(p) = ∑
u
i=0 cpi,pi+1 −∑

u
i=0 πpi = c(p)−∑

u
i=0 πpi . Therefore,

πi ∈ R, i ∈ V0 can be interpreted as the gained profit obtained in serving cus-

tomer i ∈V0. Similarly, π0 ∈ R can be interpreted as an additional constant term

biasing the reduced cost of a feasible route p.

Notice that, due to the flow conservation constraint and to the bounds on the

binary variables of (5.5) and (5.9), we have that the following equality holds:

∑
( j,i)∈δ−(i)

x ji + ∑
(i, j)∈δ+(i)

xi j =

⎧⎨⎩2 if i ∈ p

0 otherwise
∀i ∈V0. (5.10)

Regardless of a constant factor of 2, the quantity ∑( j,i)∈δ−(i) x ji +∑(i, j)∈δ+(i) xi j

can be used to determine the number of times a customer i ∈V0 is visited.

The resource consumption constraint of eq. (5.4) is expressed at the vertex

level. Equivalently, it is possible to express the same constraint by considering

the resource consumption at the arc level:

∑
(i, j)∈A′

qi +q j

2
xi j ≤ Q. (5.11)
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Due to the structure of the optimal path p⋆ the total resource consumption will

not change regardless of whether (5.4) or (5.11) is used.

0

1
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2

3

4

5

Figure 5.1: An example of a path containing spurious unconnected subtours, over a
network with V ′= {0, . . . ,7}, s= 0, t = 7. The SEC inequalities of eq. (5.8)
prohibit the depicted situation from occurring.
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Figure 5.2: An example of a path not satisfying the elementarity constraints, over a
network with V ′= {0, . . . ,7}, s= 0, t = 7. The SEC inequalities of eq. (5.8)
prohibit the depicted situation from occurring.

As it is done in Beasley et al. (1989), if one wishes to avoid the formation of

spurious unconnected subtours while relaxing the elementarity condition, it can

achieve so by substituting eq. (5.8) in favor of a big-M constraint of the form:

∑
(i, j)∈A′(S)

xi j ≤M ∑
(i, j)∈δ+(S)

xi j ∀S⊆V0∪{s}, (5.12)

where M ∈ R+ denotes an arbitrary large positive constant. Equation (5.12)

avoids the situation depicted in fig. 5.1 while permitting the situation depicted

in fig. 5.2. Modeling the pricing as an SPPCC can significantly reduce column

generation running time but at the expense of significantly weaker dual-bound

improvements. For more information, refer to the discussion in section 4.3.

Valid inequalities and a branch-and-cut framework for the ESPPCC are dis-

cussed in the work of Jepsen et al. (2008b). The CPTP in the context of pricing

is the primary focus of this thesis. As a result, we will not spend any more time

discussing the ESPPCC.
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5.3 The Capacitated Profitable Tour Problem

The Capacitated Profitable Tour Problem, abbreviated as CPTP, belongs to the

group of the so-called Travelling Salesman Problems with Profits (TSPP) (see

Feillet et al., 2005) and thus share many similarities with other studied optimiza-

tion problems such as: (i) the Orienteering Problem (OP) (Golden et al., 1987;

Laporte et al., 1990) (ii) the Profitable Tour Problem (PTP) (Dell’Amico et al.,

1995), (iii) the Prize Collecting Traveling Salesman Problem (PCTSP) (Balas,

1989; Balas, 1995), (iv) the Capacitated m-Ring-Star Problem (CmRSP) (Bal-

dacci et al., 2007). Refer to Letchford et al. (2013) for the Steiner extension of

these problems.

The OP, an NP-hard problem (Laporte et al., 1990), asks for a route serving

a subset of customers with associated profits. In the OP, the route length is

limited by the number of vertices visited, whereas, in CPTP, the route length is

constrained by the accumulated demand served. We can conclude that CPTP

is NP-hard by applying the same reasoning to prove that the OP is NP-hard

in Laporte et al. (1990). The OP is equivalent to an edge-capacitated CPTP

with unit demands. For contributions introducing BAC frameworks and valid

inequalities for the OP, see Fischetti et al. (1998) and Gendreau et al. (1998).

Many of these inequalities (but not all) extend to the CPTP as shown in Jepsen

et al. (2014).

The CPTP is a special case of ESPPCC where the source and sink vertices

coincide. The CPTP, like the ESPPCC, can model the pricing sub-problem for

the CVRP. In contrast to the more general ESPPRC formulation, the CPTP is

much easier to describe. However, because of its narrower scope, it is a problem

that receives far less attention in the literature. To our knowledge, the few con-

tributions to studying the CPTP in the context of pricing for the CVRP are Bixby

(1999), Jepsen (2011), and Jepsen et al. (2014). not considering non-robust in-

equalities at the RMP level.

In more detail, the CPTP is a combinatorial optimization delivery problem, in

which, given as input a fully connected undirected network where vertices repre-

sent the customers, the goal resides in finding a resource-constrained elementary

tour (or circuit) starting from a common point called the depot, that minimizes
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the overall travel distance while maximizing the profits associated with serving

only a subset of the customers. Each customer’s profit lowers the tour cost only

if the corresponding node is visited. Because of the elementarity constraint,

vertices cannot be visited multiple times, implying that the earnable profit per

customer is only available once. The profit is encoded at the node level in the

traditional CPTP formulation (Jepsen et al., 2014) rather than being included di-

rectly in the definition of the reduced cost variable c̄i j ∀i, j ∈ V0∪{0} as it is

in the ESPPCC.

The presentation of this section, as well as the implementation discussed in

chapter 6, owes a lot to the original efforts of Jepsen et al. (2014).

5.3.1 Integer Programming formulation

We present a CPTP formulation that closely resembles the formulation provided

in Jepsen et al. (2014). In terms of mathematical notation, we will use and extend

the original mathematical constructs introduced for the CVRP in section 2.1.

Let pi ∈ R denote the profit associated in visiting a vertex i ∈ V . The profit

function is directly related to the dual variables π ∈RN associated to the RMP’s

constraints of eqs. (4.2) and (4.3). Namely, pi = πi ∀i ∈V .

Let xe, yi ∈ {0,1} be two sets of binary decision variables which respectively

model whether an undirected edge e∈E or vertex i∈V is covered by the optimal

CPTP route. We can provide a formal mathematical description of the CPTP

through an Integer Program (IP) formulation:

min
x,y

zCPTP(x,y) = ∑
i∈E

cexe−∑
i∈V

piyi (5.13)

y0 = 1 (5.14)

∑
i∈V

qiyi ≤ Q (5.15)

∑
e∈δ (i)

xe = 2yi ∀i ∈V (5.16)

∑
e∈δ (S)

xe ≥ 2yi ∀i ∈ S, ∀S⊆V0, |S| ≥ 2 (5.17)

xe ∈ {0,1} ∀e ∈ E (5.18)
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yi ∈ {0,1} ∀i ∈V, (5.19)

where (5.13) is the objective function to be minimized, i.e. the cost accounting

for the total travel distance and the profit in serving a subset of the vertices.

Constraint (5.14) ensures that the depot is always covered by the optimal route.

Constraint (5.15) is the resource consumption upper bound. Constraint (5.16)

has a twofold effect. First, it functions as a form of directed flow conservation.

Second, it links the x, y sets of variables together; namely, it ensures that the

if a vertex i ∈ V is covered by an optimal route (yi = 1) then the number of

incident edges in that node sums to 2, otherwise to 0. Constraint (5.17) are the

so-called Generalized Subtour Elimination Constraints (GSECs), which avoid

the formation of spurious tours in unconnected regions of the network. Because

there are an exponential number of GSECs, these constraints cannot be inserted

statically in a MIP solver and must instead be separated exactly, at least for

integral solutions. Constraints (5.18) and (5.19) respectively impose bounds and

integrality conditions on the number of traversal for edges e ∈ E and vertices i ∈
V . The IP model consists of N2+N

2 number of binary variables and an exponential

number of constraints. If we ignore the GSECs and variable bounds, the IP

model owns a total of N +2 constraints. Constraints (5.17) can also be rewritten

in a different form (Wolsey, 2020):

∑
e∈E(S)

xe ≤ ∑
i∈S\{ j}

yi ∀ j ∈ S, ∀S⊆V0, |S| ≥ 2. (5.20)

Depending on the size of the subset S ⊆ V0,S ≥ 2, (5.20) may be sparser than

(5.17). Equivalently, the constraint of eq. (5.15) can be defined at the edge level:

∑
e={i, j}∈E

qi +q j

2
xe ≤ Q. (5.21)

Note that model (5.13)–(5.19) does not permit for single-customer routes. In-

stead of modifying the formulation to allow for this edge case, it may be simpler

to leave the model unchanged. By employing a brute-force algorithm in Θ(N)

time, we scan for improving single-customer solutions. After the resolution of

the IP model, we check for improving single-customer solutions and, if any exist,

we update the incumbent as appropriate.
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5.3.2 Additional Valid Inequalities

We present additional valid inequalities for the CPTP problem in this section.

While these additional inequalities are not strictly required to ensure the correct-

ness of the solution approach, they can massively strengthen the linear relaxation

and thus speed up the resolution process when embedded within an efficient

branch-and-cut framework. However, devising efficient separation algorithms is

critical to make such inequalities efficacious.

The inequalities presented here closely follow the presentation provided in

Jepsen et al. (2014). For a complete list of CPTP valid inequalities compared

to what we could give, see Jepsen et al. (2014). We will focus primarily on two

valid inequalities in this thesis: the Rounded Capacity Constraints (RCC) dis-

cussed in section 5.3.2.1 and the Generalized Large Multistars (GLM) discussed

in section 5.3.2.2. We have focused solely on these two sets of inequalities for

two reasons. First, Jepsen et al. (2014) found that these two inequalities are the

most frequently separated, implying that including them would likely speed up

the resolution process. Second, they can be reasonably separated utilizing the

same separation procedure employed for the GSEC inequalities. See implemen-

tation details later in section 6.4.

5.3.2.1 Rounded Capacity Constraints (RCC)

The Rounded Capacity Constraints, or RCC for short, were introduced for the

CVRP in Laporte et al. (1983) and were previously introduced in section 2.2.

Recall that q(S) = ∑i∈S qi represents the total demand in serving all vertices

in set S ⊆V . The RCC constraints act as a capacity constraint by requiring that

any customer set S ⊆ V0 be crossed by a number of edges that is not less than

the required trucks amount to serve all customers in S⊆V0. Jepsen et al. (2014)

extend the RCC inequalities to the CPTP:

∑
e∈δ (S)

xe ≥ 2

⎡⎢⎢⎢
∑

i∈S
qiyi

Q

⎤⎥⎥⎥ ∀S⊆V0, |S| ≥ 1. (5.22)

Equation (5.22) is very similar to the CVRP’s RCC of eq. (2.8), except that the

right-hand side is composed of model’s variables instead of constants. Notice
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that such approach is correct since ∑e∈δ (S) xe ∈ Z+. Unfortunately, because the

ceil function is a non-linear operation, such a constraint cannot be reported to

most MIP solvers.

Fortunately, Baldacci et al. (2007) provides a way to combat this undesir-

able aspect at the cost of obtaining a looser bound of the RCC. Namely, given

α,β ,γ ∈ Z+, with α > γ and mod(α,γ) ̸= 0, the following result holds:⌈︃
α−β

γ

⌉︃
≥
⌈︃

α

γ

⌉︃
− β

mod(α,γ)
. (5.23)

Jepsen et al. (2014) claim that eq. (5.23) holds even when α > γ is not satisfied

(unfortunately the authors don’t provide further explanations on why this is the

case).

By picking α = q(S) = ∑i∈S qi, β = ∑i∈S qi(1− yi), γ = Q, we obtain the

following linear, but weaker, RCC:

∑
e∈δ (S)

xe ≥ 2

⎛⎝⌈︃q(S)
Q

⌉︃
−

∑
i∈S

qi(1− yi)

QR(S)

⎞⎠ ∀S⊆V0, |S| ≥ 1, (5.24)

where QR(S)=mod(q(S),Q) is the remainder capacity associated to an arbitrary

set S ⊆ V . Notice, that eq. (5.23) guarantees correctness of the eq. (5.24) only

if qi ∈ Z+ ∀i ∈ V0 holds. Fortunately, this is true for the vast majority of the

routing problems considered in the literature.

As Jepsen et al. (2014) points out, no exact separation procedure is currently

known for the RCC inequalities, for this reason, they suggest using the charac-

terizing sets identified by the separation of the multistar inequalities, such as the

GLM separation procedure. See the next section 5.3.2.2.

5.3.2.2 Generalized Large Multistar (GLM)

The Generalized Large Multistar inequalities, or GLMs for short, were first pro-

posed in Gouveia (1995) for the CVRP. The GLMs were further generalized to

the so-called Knapsack Large Multistar (KLM) inequalities in Letchford et al.

(2002). Letchford et al. (2006) investigates the effectiveness of the multistar

family of cuts when applied to vehicle routing problems. The multistar cuts are



5.3. THE CAPACITATED PROFITABLE TOUR PROBLEM 53

a collection of inequalities related to the intersection of the 0–1 knapsack and

the CPTP polytopes.

Consider the capacity inequality:

∑
e∈δ (S)

xe ≥
2
Q ∑

i∈S
diyi ∀S⊆V0, |S| ≥ 2, (5.25)

which is a weaker version of the RCC in eq. (5.22), where the ceiling is not

applied. Equation (5.25) can be improved to obtain the GLM inequalities by

noting that nodes j /∈ S are also visited when the crossing edges δ (S) are used.

The GLM inequalities can be expressed as (Jepsen et al., 2014):

∑
e∈δ (S)

xe ≥
2
Q

⎛⎜⎜⎝∑
i∈S

qiyi + ∑
e={i, j}∈δ (S)

i∈S, j/∈S

q jxe

⎞⎟⎟⎠ ∀S⊆V0, |S| ≥ 2. (5.26)

The general idea behind multistar inequalities is the following. The vehicle

must have sufficient capacity to serve all of the customers covered by S and all

other customers outside S who are connected to nodes in S through a crossing

edge e = {i, j}, i ∈ S, j /∈ S. The "capacity" in GLM is measured in terms of the

number of vehicles, which is found by dividing by Q the corresponding demand.

GLM inequalities are efficiently separable with an exact polynomial-time proce-

dure by finding minimum (u,v)-cuts ∀u ∈ V0, v = 0 in a directed flow network

with capacities that depend on the vertex u (Letchford et al., 2006; Jepsen et al.,

2014). A simpler approach is to use a heuristic approach by minimizing only

the term ∑e∈δ (S) xe as to stress the violation. This can be achieved by computing

(u,v)-cuts ∀u ∈V0, v = 0 in a directed flow network where capacities are given

exclusively from the fractional solution x⋆{i, j} ∀i, j ∈ V . See implementation

details later in section 6.4.





CHAPTER 6
Implementation

This chapter introduces the proposed branch-and-cut algorithm (BAC). The BAC

algorithm was implemented using the recent CPLEX 22.1 C callable library.

The proposed branch-and-cut uses the CPTP formulation as the foundational

static IP model. Refer to the previous discussion on the CPTP in section 5.3

for more information. By appropriately defining the profit function associated

with each vertex pi ∀i ∈ V , our framework can be utilized as a pricer inside

a column generation approach for the standard CVRP. The BAC’s source code

was developed in C. The source code is freely available under a permissive MIT
license at the following Github repository: https://github.com/dparo/
master-thesis.

IBM ILOG CPLEX Optimizer1, CPLEX for short, is a commercial optimiza-

tion software package for solving problems expressed as either: linear programs,

mixed-integer programs, quadratic programs, or quadratically constrained pro-

grams. For an introduction to CPLEX refer to appendix A.

Our branch-and-cut implementation heavily relies on the CPLEX optimizer

to solve the associated CPTP MIP model. The cutting planes separation was

implemented using the CPLEX generic callback functions, which has the advan-

tage of not disabling the Dynamic Search algorithm. The Dynamic Search is the

CPLEX’s internal advanced proprietary branch-and-cut algorithm, as discussed

1IBM ILOG CPLEX Optimizer: https://www.ibm.com/analytics/
cplex-optimizer
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in appendix A.

Using a modern MIP solver, such as CPLEX, may provide at least two advan-

tages over tailored pricer algorithms, such as the labeling algorithm (Desrochers

et al., 1992; Feillet et al., 2004): (i) parallelization and efficient use of the ma-

chine’s multiple cores basically for free and (ii) take advantage of all the en-

gineering effort that went into creating an efficient MIP solver (preprocessing,

diving, fixing, primal heuristics, and more). However, there are also drawbacks

to such an approach. Complicated relaxations or constraints, such as the ng-sets

(Baldacci et al., 2011), may be impractical to implement efficiently within a BAC

algorithm. On top of that, BAC-based approaches tend to require high amounts

of memory for harder problems, leading to tremendous performance losses when

the MIP optimizer or the host operating system decide to swap memory to disk.

The chapter’s outline is quickly summarized. The implemented static IP

model is presented in section 6.1. Section 6.2 describes the implemented pri-

mal heuristics for warm starting the MIP optimizer. Section 6.3 discusses the

implemented branching scheme. Finally, section 6.4 describes the cutting plane

strategies employed, as well as a discussion of the separation techniques used.

6.1 Full static model

Our static IP model is based on a minor modification of the CPTP formulation

(5.13)–(5.19) by disregarding the GSECs inequalities (5.17). Upon violation,

the GSECs will be separated lazily through an exact procedure to ensure the

approach’s correctness.

In more detail, we’ve implemented the following static Integer Program (IP)

model:

min
x,y

zCPTP(x,y) = ∑
i∈E

cexe−∑
i∈V

piyi (6.1)

y0 = 1 (6.2)

B≤ ∑
i∈V

qiyi ≤ Q (6.3)

∑
e∈δ (i)

xe = 2yi ∀i ∈V (6.4)
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xe ∈ {0,1} ∀e ∈ E (6.5)

yi ∈ {0,1} ∀i ∈V, (6.6)

where B ∈ R+ is an additional lower bound on the resource consumption that

may slightly improve the linear relaxation. The value of B is computed as B =

qu + qv, where u,v ∈ V0, u ̸= v represent the least two demanding customers in

the network: qu ≤ qv ≤ qi ∀i ∈V0, i ̸= u,v.

6.1.1 Upper cutoff value

In the context of CVRP pricing, we’re only interested in routes achieving a

strictly negative cost function. A MIP optimizer can use the upper cutoff value

to reduce the number of evaluated branch-and-bound nodes. The upper cutoff

value acts as a direct constraint on the objective function:

zCPTP(x,y)< 0− εct, (6.7)

where εct ∈ R+ denotes the upper cutoff tolerance. Most MIP solvers, includ-

ing CPLEX, has internal support for specifying cutoff values. However, fixing

the cutoff value is not the same as specifying an explicit constraint in the static

model. Only when the branch-and-bound procedure is invoked, do cutoff val-

ues contribute. An explicit constraint, on the other hand, contributes even at

the linear relaxation level. The upper cutoff tolerance εct biases the threshold

at which a produced route can be considered a valid reduced cost column. A

non-zero value for εct avoids numerical stability problems caused by the usage

of floating-point arithmetic employed in BPC implementations.

To ensure correctness, the value of εct must match the value used by the BPC

algorithm. In our case, we chose εct = 10−6 because it is the value used by the

modern BPC framework described in Sadykov et al. (2021b).

6.2 Warm Starting

Warm starting is a technique that involves feeding a MIP optimizer with (good)

feasible solutions before beginning the resolution process. Having a set of (good)
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initial feasible solutions can significantly reduce the primal-dual bound gap and,

as a result, the amount of time required to achieve optimality. Warm starting can

be applied to a wide range of IP problem domains, and it is usually supported by

the market’s leading MIP optimizers, such as CPLEX.

Primal heuristics offer a quick and practical approach to warm starting. A

CPTP problem is very similar to a TSP problem. As a result, TSP’s heuristics

are fine-tunable to work successfully even with the CPTP. Many contributions

were dedicated to researching good heuristics for the TSP, see Rosenkrantz et

al., 1977; Johnson et al., 1997; Laporte, 1992; Johnson et al., 2007; Hoffman

et al., 2013.

The warm starting procedure that we’ve implemented is explained in the re-

mainder of this section. The procedure is divided into two stages: a construc-

tive insertion heuristic stage (see section 6.2.1) followed by a 2-OPT refinement

stage (see section 6.2.2),

6.2.1 Insertion heuristic

Rosenkrantz et al., 1977 do an excellent job of describing the TSP’s insertion

heuristic algorithm and various facets in which it can be implemented. In Θ(N2)

time, the insertion heuristic algorithm can generate a new feasible primal solu-

tion. In this section, we modify the TSP insertion heuristic to make it work with

the CPTP.

Start by selecting two distinct nodes u,v ∈ V, qu + qv ≤ Q to form an initial

route back-to-back p = (u,v).

The insertion heuristic algorithm is an iterative approach in which an almost-

feasible CPTP tour is available at each iteration. If the CPTP admits feasible

solutions, the final available tour will undoubtedly be feasible when all itera-

tions of the insertion heuristic are exhausted. Let’s define q(p) ≤ Q as the total

demand served by the partial route in this iteration. Choose a vertex a ∈ p and a

vertex h /∈ p for each iteration. Let’s define b as the successor of node a in the

current tour. The goal is to insert h in the tour by deleting edge (a,b) and insert-

ing edges (a,h), (h,b). Only perform the insertion operation if the h insertion

is required to restore feasibility or if its insertion lowers the route cost. Let us
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define the extra mileage more formally as follows:

∆m(h,a) =

⎧⎨⎩cah + chb− cab− ph, if q(p)+qh ≤ Q

∞, otherwise,
(6.8)

which represents the route’s delta cost in inserting h as the successor of node a.

A vertex h ∈ V is a good candidate for insertion if at least one of the following

conditions is met:

1. ∆m(h,a)< 0, i.e. inserting h improves over the current route.

2. h= 0, i.e. h is the depot node. When the insertion candidate coincides with

the depot, regardless of whether its insertion is convenient, it must occur

sooner or later. Because we have fixed q0 = 0 by definition, q(p)+q0 ≤Q

is always satisfied for the depot node.

3. The number of visited nodes in the current tour is 2 and q(p)+qh ≤ Q.

Prior to insertion the partial route has the form p = (. . . ,a,b, . . .); whereas

after the insertion operation completes: p = (. . . ,a,h,b, . . .). In our implementa-

tion we employed the cheapest insertion scheme, which means that the pair (h,a)

is chosen to minimize the extra mileage ∆m(h,a) across all possible choices for

a ∈ p, h /∈ p. When no more h candidate vertices can be found, the algorithm

terminates. At the end of the insertion heuristic, p is a valid route that visits the

depot node. The depot node may not necessarily be the first element of the tour

p0 ̸= 0. A simple circular rotation is all that is required to restore the condition

p0 = 0. If no valid h candidate can be found while the tour length is 2, we can

conclude that the CPTP formulation does not admit any feasible solution before

even solving the IP formulation.

In our implementation we chose u = 0 and v ∈ V0 satisfying qu + qv ≤ Q.

This approach allows us to generate O(N) acceptable primal (feasible) solutions

in O(N3) time.

6.2.2 2-OPT refinement

Each solution produced from the insertion heuristic can be further optimized

using a 2-OPT refinement procedure. The 2-OPT algorithm is a heuristic local-
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search hill-climbing procedure proposed originally for the TSP in Flood (1956)

and Croes (1958) independently.

The 2-OPT algorithm works iteratively in Ω(N2) number of iterations. Un-

fortunately, as Chandra et al. (1999) points out, the 2-OPT procedure may take

an exponential number of iterations when fed with purposefully artificially con-

structed instances. Although this is unfortunate, it is also worth noting that in

practice, the probabilistic average number of iterations required for 2-OPT is at

most polynomial.

Each iteration of the 2-OPT procedure looks for an existing edge crossing

and, if found, performs a 2-OPT exchange to undo it. A 2-OPT exchange is a

primal operation, which means that its use preserves route feasibility. Because

2-OPT exchange does not add nor remove vertices from the current route p, the

route’s gained profit does not change during the 2-OPT procedure’s execution

time. As a result, adapting the original TSP’s 2-OPT procedure to the CPTP

problem becomes trivial.

Let a,b ∈ p represent two vertices visited along the current route p. Let

a′,b′ ∈ p denote respectively the successor of a and b in the current route p.

A 2-OPT exchange replaces edges (a,a′), (b,b′) with (a,b), (a′,b′) but only if

the delta distance, defined as:

∆(a,b) = cab + ca′b′− caa′− cbb′, (6.9)

satisfies ∆(a,b)< 0. In this case, a 2-OPT exchange over vertices (a,b) reduces

the route cost. Following a 2-OPT exchange, the portion of the route [as, . . . ,b]

denoted by head as and tail b must be reversed.

In our implementation we look for vertices a,b achieving the cheapest ex-

change, that is, the delta distance ∆(a,b) is minimized across all possible valid

choices of a,b ∈ p. The local search algorithms terminates when ∄(a,b) | a,b ∈
p, ∆(a,b)< 0.

6.3 Branching

We don’t implement any specific branching schemes. We rely on the branching

schemes already provided by the CPLEX optimizer.
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6.4 Cutting planes and Inequalities separation

Although CPLEX already implements the separation of some families of gen-

eral cutting planes internally (see appendix A), generating additional inequali-

ties, which aren’t deducible from the static model, can significantly improve the

running time of the resolution process. Cutting plane separation is a problem

that involves finding (strong) violated inequalities and embedding them inside

a branch-and-cut framework. Cutting planes improve the linear relaxation by

"cutting" fractional points from the convex hull of integer solutions. An efficient

cutting planes separation strategy is probably the most important and delicate

aspect of any branch-and-cut algorithm (Ralphs et al., 2003). When evaluating

the inclusion of a set of inequalities, it’s critical to consider the trade-off between

the separation cost and the improvements in the linear relaxation. Separation of

integral inequalities, on the other hand, can be viewed as a procedure for dy-

namically generating mandatory constraints that would otherwise be impossible

to insert statically into a MIP model.

Additional valid inequalities that are not strictly required to ensure the algo-

rithm’s correctness but are computationally expensive to separate exactly, may

get included using a heuristic separation procedure.

The parametrization settings of the violated inequalities are another critical

aspect when implementing efficient cutting planes procedures. The genera-

tion and number of cutting planes alone (without considering separation run-

ning time), may significantly impact the BAC algorithm’s computation time and

memory consumption. Sparse/compact inequalities are usually preferred when-

ever possible to reduce memory usage. When reporting violated inequalities to

the MIP optimizer, it is common practice to set a violation tolerance threshold

to limit the number of violated inequalities considered. Inequalities that are not

"sufficiently violated" aren’t generated nor reported to the MIP optimizer. A

low violation threshold results in better dual bounds and fewer branch nodes but

slows down the convergence in each node. On the other hand, a high violation

threshold results in more branch nodes but faster convergence speed in each node

(Jepsen et al., 2008b).

Modern MIP optimizers, such as CPLEX, can filter each user-provided cut by
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scoring them, regardless of the violation threshold used by the separation proce-

dure. If CPLEX deems these cuts ineffective, branching may occur prematurely

regardless of the presence of violated inequalities (tailing off condition). The

process of scoring cuts necessitates even more computation time; as a result,

user-cuts filtering can be disabled if so desired. However, if an effective tailing

condition is required, the user must implement it within the separation procedure

of each cut.

In our implementation, all cutting planes reported to CPLEX are filtered. The

MIP optimizer itself makes the final decision on their inclusion.

We are majorly interested in separating only the GSECs (5.17), RCC (5.24)

and GLM (5.26) families of inequalities in our branch-and-cut algorithm. All

these inequalities have one thing in common: they all require the determination

of a subset S ⊆V0. A subset S ⊆V0 can be determined using a suitable labeling

algorithm, which partitions the network by assigning labels (integer) to each

vertex.

The GSECs are the only constraints in our model that must be obligatorily in-

cluded by using an exact separation procedure. Their inclusion must be devised

at the very least for integral solutions of the IP model of eqs. (6.1)–(6.6). GSECs

can be precisely separated by tracing the major connected components induced

by the model’s integral solution.

Tracing the connected components can be used to determine subsets T ⊆
V |∑e∈δ (T ) xe = 0, which constitutes a valid labeling of the network. However,

the exact separation of fractional solutions is more complicated. Let x⋆ ∈ R|E|

denote the value of a fractional solution of the linear relaxation in eqs. (6.1)–

(6.4), the GSECs can be separated (exactly) by solving (u,v)-min-cuts on a flow

network where capacities are given from the fractional solutions’ value x⋆. The

(u,v)-min-cuts outputs a subset T ⊆ V induced from (u,v) by minimizing the

term ∑e∈δ (T ) x⋆e . The subset T ⊆ V constitutes a valid labeling of the network

for each u,v ∈V, u ̸= v.

Instead, the exact separation of the RCC and GLM inequalities is a separate

concern; for more info see in sections 5.3.2.1 and 5.3.2.2. There is currently no

exact separation procedure for the RCC inequalities (Jepsen et al., 2014). On the
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other hand, GLM inequalities can be separated by solving (u,v = 0)-min-cuts on

a flow network with u-dependent capacities (Letchford et al., 2006; Jepsen et al.,

2014).

In our implementation, we chose a different approach for the RCC and GLM

inequalities than the one proposed in Jepsen et al. (2014). We reuse the same la-

beling algorithm employed for the exact fractional and integral separation of the

GSECs inequalities. Because the same labeling procedures feed the separation

of three different families of inequalities, we can limit the programming effort

required to create custom separation procedures while substantially reducing the

computational impact. The labeling algorithms and the cutting-plane separa-

tion procedures were implemented in user-provided callbacks using the CPLEX

generic callback API.

We will describe the labeling algorithm used for integral and fractional so-

lutions in the following two sections sections 6.4.1 and 6.4.2. However, note

that these two labeling algorithms are only optimal for separating the GSECs in-

equalities, and they behave suboptimally (heuristically) for separating the RCC

and GLM inequalities. In the remaining sections, instead, we will be detailing

the separation of each implemented inequality.

6.4.1 Labeling from Integral Solutions

Our integral labeling algorithm is devised to be optimal for detecting violated

integral GSECs inequalities of eqs. (6.1)–(6.6), but the same procedure is shared

to feed a suboptimal integral separation also for the GLM and RCC inequalities,

as shown in the block diagram in fig. 6.1.

Let x⋆ ∈ {0,1}|E|, y ∈ {0,1}|V | denote the current integral solution of

eqs. (6.1)–(6.6). If x⋆,y⋆ violates a GSEC constraint, it is simple to show

that the solution contains at least a spurious unconnected subtour. Subtours

do not satisfy the original CPTP model of eqs. (5.13)–(5.19) and should thus

be removed. Unconnected subtours can be detected by computing the major

connected components via a Depth-First Search (DFS) traversal of the network

induced from the integral solution’s covered edges {e ∈ E | x⋆e = 1}.
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More formally, let C = {−1,0, . . . ,nc−1} denote the set of connected com-

ponents resulting from the integral solution x⋆ ∈ {0,1}|E|, y ∈ {0,1}|V |. A ver-

tex i ∈V is said to belong to a singleton connected component, if the connected

component contains only i itself, namely y⋆i = 0. We are only interested in mod-

eling major connected components, which have at least two vertices. We ignore

singleton connected components and use the sentinel value −1 to encode all the

vertices i∈V belonging to singletons. As a result, the number nc ∈Z frankly rep-

resents the number of major connected components and satisfies nc ≥ 1. Equiv-

alently, nc represents the number of subtours formed in the current integral so-

lution. Let cc(i) ∈ C be an array that encodes in which connected component

each vertex i ∈ V belongs. Because the depot node always belongs to a con-

nected component, we fix cc(0) = 0 by definition. Instead, for singletons we fix

cc(i) =−1 ∀i ∈V0 | y⋆i = 0. The connected components can be computed by a

simple DFS traversal which pseudocode is provided in algorithm 1.

Consider the sets Tk = {i ∈V | cc(i) = k} with k = 0, . . . ,nc computed from

the recently devised labeling algorithm 1. Due to the construction of such sets,

by letting k = 0, . . . ,nc, it holds that |Tk| ≥ 2, ∑e∈δ (Tk) x⋆e = 0 and ∃i∈ Tk | y⋆i = 1.

Thus ensuring the correctness of the entire branch-and-cut procedure.

Major Connected
Components

GSEC
integral

separation

GLM
integral

separation

RCC
integral

separation

Figure 6.1: A block diagram illustrating the structure of the employed separation for
integral solutions along with the shared labeling algorithm.
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Algorithm 1: An algorithm for computing the major connected compo-
nents through a Depth-First Search (DFS) traversal

Data: x⋆ ∈ {0,1}|E|, y⋆ ∈ {0,1}|V |: current integral solution of
eqs. (6.1)–(6.6)

Result: nc: number of subtours formed
Result: cc[i] ∈C: connected component of ∀i ∈V

1 proc cc_dfs(x⋆, y⋆)
2 let cc[i]←−1 ∀i ∈V ;
3 let nc← 0;
4 for i← 0 to N do
5 if cc[i]< 0,y∗i = 1 then

/* Found a non visited subtour */
6 cc[i]← nc;
7 let u←−1;

/* Traverse the subtour */
8 do
9 let v←−1;

10 for j ∈V | e = {u, j} ∈ E, cc[ j]< 0, x⋆e = 1 do
/* The body of this loop will execute only

once */
11 cc[ j] = nc;
12 v← j;
13 end
14 u← v
15 while u≥ 0;
16 nc← nc +1;
17 end
18 end

/* Validate some invariants */
19 assert nc ≥ 0;
20 assert c[0] = 0;
21 assert c[i] =−1 ∀i ∈V0 | y∗i = 0;
22 assert c[i]≥ 0 ∀i ∈V0 | y∗i = 1;

/* Done: terminate */
23 return nc,cc
24 end



66 CHAPTER 6. IMPLEMENTATION

6.4.2 Labeling from Fractional Solutions

Our fractional labeling algorithm is devised to be optimal for detecting vio-

lated fractional GSECs inequalities of eqs. (6.1)–(6.4), but the same procedure

is shared to feed a suboptimal fractional separation also for the GLM and RCC

inequalities, as shown in the block diagram in fig. 6.2. This algorithm is in-

herently more difficult, and computationally expensive than the integral labeling

algorithm.

A valid set T ⊆ V can be separated for a fractional x⋆ ∈ R|E|, y⋆ ∈ R|V |,
by solving a maxflow problem between two arbitrary source and sink vertices

u,v ∈ V, u ̸= v on a fully connected directed graph. The maxflow problem is

represented by a directed symmetric flow network, where the capacities wi j ∈
R ∀i, j ∈V are derived from the current fractional solution wi j = x⋆{i, j} ∀i, j ∈
V .

A solution to the maxflow problem produces a maxflow fmax(u,v) and a bi-

partition, also known as "binary coloring", of the set V , namely two comple-

mentary sets F1(u,v), F2(u,v) such that F1(u,v)∪F2(u,v) =V , F1∩F2 = /0 and

u ∈ F1(u,v), t ∈ F2(u,v). The quantity δ+(F1(u,v)) constitutes the min-cut in-

duced from solving the maxflow problem over (u,v). It is well understood that

solving a maxflow problem assures the following two properties:

1. Arcs {(i, j) | i ∈ F1(u,v), j ∈ F2(u,v)} are saturated

2. Arcs {( j, i) | i ∈ F1(u,v), j ∈ F2(u,v)} are drained.

As a result, the following statements hold:

∑
(i, j)∈δ+(F1(u,v))

fi j = ∑
(i, j)∈δ+(F1(u,v))

x⋆{i, j} = fmax(u,v) (6.10)

∑
(i, j)∈δ−(F1(u,v))

fi j = ∑
(i, j)∈δ+(F2(u,v))

fi j = 0, (6.11)

where fi j denotes the flow in the corresponding arc (i, j), i, j ∈ V of the flow

network.

Because we are dealing with a symmetrical flow network, solving the

maxflow problem between pairs (u,v) and pair (v,u) will yield the same

maxflow value, i.e. fmax(u,v) = fmax(v,u). However, the induced bipartitions



6.4. CUTTING PLANES AND INEQUALITIES SEPARATION 67

are not guaranteed to be symmetric in the general case. In general, we have

that F1(u,v) ̸= F2(v,u) and F2(u,v) ̸= F1(v,u). To demonstrate this, consider the

following simple flow network:

0 1 2 3 40 10 10 0
,

produces the same maxflow value when solving for (0,4) and (4,0) pairs and

produces F1(0,4) = {0}, F2(0,4) = {1,2,3,4}, F1(4,0) = {4}, F2(4,0) =

{0,1,2,3}, clearly indicating a nonsymmetric coloring. This behavior is a direct

consequence of the fact that flow networks do not guarantee unique min-cuts.

We used the push relabel max flow algorithm first developed in Goldberg,

1997 in this thesis. The push relabel algorithm, takes O(N4) time to complete

and, in practice, is typically faster than commoner approaches like the Ford-

Fulkerson algorithm. When combined with an exhaustive enumeration of all

possible u,v ∈V, u ̸= v choices, the Goldberg’s algorithm can take up to O(N6)

time.

The Gomory-Hu tree, first presented in Gomory et al., 1961, allows us to

compute all pairs of (u,v) max flows with only N main maxflow computations.

A Gomory-Hu tree, in essence, is a data structure that represents a simpler re-

duced flow network in which maxflow computations become trivially solvable

with a single iteration of the Ford-Fulkerson algorithm in Θ(N2). An exhaustive

enumeration of all possible (u,v) pairs using the Gomory-Hu tree and the Gold-

berg’s algorithm takes up to O(N5) time to build the tree and further Θ(N4) to

query for all the possible F1(u,v),F2(u,v) bipartitions.

We used the Gomory-Hu tree in our implementation to thoroughly enumerate

all possible (u,v) max flows. For the sake of brevity, we will not include the

pseudocode for the maxflow and Gomory-Hu tree algorithms. For their respec-

tive implementations, please see the Github repository2.

We conclude the section with a suggestion for implementing reliable maxflow

algorithms. Because of the accumulation of accuracy errors, implementing fast

and correct maxflow algorithms that operate directly with floating-point arith-

metic can be very problematic. Any trivial implementation can "get stuck" in
2Github repository: https://github.com/dparo/master-thesis

https://github.com/dparo/master-thesis
https://github.com/dparo/master-thesis
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massively long loops pushing atomically small amounts of flows. Special care

must be taken when developing this kind of algorithm. Unit testing and other

solid software engineering practices can aid in identifying problematic imple-

mentations.

A cleaner approach is to implement a maxflow algorithm that uses integer

arithmetic. Because x⋆ is bounded in the [0,1] range, we can multiply the frac-

tional solution value x⋆ by a big-constant M ∈R+ (e.g. M = 106) and truncate its

value when defining the flow network’s capacities. Truncation may however hurt

the BAC algorithm’s precision if done recklessly. After that, the value fmax(u,v)

must be remapped on the original scale by dividing it by M.

Our maxflow implementation follows the latter approach: it uses integer arith-

metic for simplicity and stability.

Maxflow, mincut

GSEC
fractional

separation

GLM
fractional

separation

RCC
fractional

separation

Figure 6.2: A block diagram illustrating the structure of the employed separation for
fractional solutions along with the shared labeling algorithm.

6.4.3 GSEC Separation

6.4.3.1 GSEC Integral Separation

The GSEC integral separation procedure is the most important separation proce-

dure in our implementation, since it is mandatory to ensure the correctness of the

branch-and-cut algorithm. When an integral solution violates a GSEC inequal-
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ity, the latter must be separated exactly and reported to the MIP optimizer as is

(without employing violation thresholds).

The GSEC inequalities require for the identification of a subset S⊆V0, |S| ≥
2. Let Tk = {i ∈V | cc(i) = k}, |Tk| ≥ 2 ∀k ∈ {1, . . . ,nc} represent the labeling

outputted from the major connected components as discussed in section 6.4.1.

By construction nc ≥ 1, 0 ∈ T0. Then a valid subset S ⊆ V0 can be picked as

S = Tk ∀k ∈ {1, . . . ,nc}. This means that any major connected component (i.e.

subtour) that does not include the depot node, can be used as a valid set S ⊆
V0 for separating GSEC inequalities from integral solutions. If nc = 1 then no

S⊆V0 can be separated, implying that the current integral solution represents an

optimal solution for the entire CPTP formulation (5.13)–(5.19).

Let x⋆ ∈ {0,1}|E|, y ∈ {0,1}|V | denote the current integral solution of

eqs. (6.1)–(6.6). Remembering the GSEC inequality definition in eq. (5.17), it

is simple to verify that ∑e∈δ (S) x⋆e = 0, yi = 1 ∀i ∈ S, implying that eq. (5.17)

cannot be satisfied by any i ∈ S.

We can thus separate ∑
nc
k=1|{i | cc(i) = k ∀i ∈V}| violated GSEC inequal-

ities in a single integral separation iteration. The violated inequalities can be

promptly reported to the MIP optimizer to reject the candidate integral solution.

Algorithm 2 contains the complete pseudocode for the GSEC integral separation

procedure.

6.4.3.2 GSEC Fractional Separation

While it is not strictly necessary for our implementation, separating GSEC in-

equalities for fractional solutions can significantly reduce the number of branch

nodes.

Let fmax(u,v), F1(u,v), F2(u,v) represent the maxflow value and biparti-

tions produced by the labeling algorithm described in section 6.4.2. A valid

S⊆V0, |S| ≥ 2 for separating GSEC inequalities from fractional solutions is:

S⊆V0 =

⎧⎨⎩F1(u,v), if 0 /∈ F1(u,v)

F2(u,v), otherwise
, |S| ≥ 2. (6.12)



70 CHAPTER 6. IMPLEMENTATION

Algorithm 2: An algorithm for separating GSEC integral inequalities
for the CPTP

Result: nc: number of major connected components
Data: cc[i] ∈C: connected component ∀i ∈V , see section 6.4.1
Data: x⋆ ∈ {0,1}|E|, y⋆ ∈ {0,1}|V |: current integral solution of

eqs. (6.1)–(6.6)
1 proc gsec_integral_sep(nc, cc, x⋆, y⋆)
2 const sense← ’≥’;
3 const rhs← 0;
4 for k← 1 to nc do
5 let S←{i | cc[i] = k};
6 assert |S| ≥ 2;

/* Build the cut */
7 let nnz← 0, index← [], value← [];
8 for e = {i, j} ∈ E | i ∈ S, j /∈ S do
9 index[nnz]← x_mip_var_idx(e);

10 value[nnz]← 1;
11 nnz← nnz + 1;
12 end
13 for i ∈ S do
14 index[nnz]← y_mip_var_idx(i);
15 value[nnz]←−2.0;

/* Reject and report cut to MIP */
16 mip_add_user_cut(sense, rhs, nnz, index, value);
17 end
18 end
19 end

This approach can feed up to N2−N distinct sets S ⊆ V0, one for each possible

pair (u,v) ∈V 2, u ̸= v

Let x⋆ ∈ R|E|, y ∈ R|V | denote the current fractional solution of eqs. (6.1)–

(6.4). Remembering the GSEC inequality definition in eq. (5.17), it is simple

to verify that ∑e∈δ (S) x⋆i j = fmax(u,v) holds due to the symmetry property of the

flow network.

Any i ∈ S violating fmax(u,v) ≥ 2yi can thus be used to separate a violated

GSEC inequality. We can separate O(N3) GSECs per fractional solution by

using this method. A quick empirical evaluation revealed that generating and
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reporting all violated GSEC inequalities significantly slowed down the MIP op-

timizer.

We took a different approach in our implementation by relaxing the condi-

tions under which these cuts are reported. We report only the single most vio-

lated GSEC associated with the customer i ∈V0 that maximizes the fmax(u,v)−
2yi violation for each subset S ⊆ V0, |S| ≥ 2. Furthermore, to limit the number

of weak GSEC inequalities that are reported to the MIP optimizer, we define a

violation threshold εGSEC and report the associated cut only if:

fmax(u,v)≥ 2yi− εGSEC (6.13)

is violated. We chose εGSEC = 0.01 in our implementation.

Algorithm 3 contains the complete pseudocode for the GSEC fractional sep-

aration procedure.

6.4.4 RCC separation

The RCC inequalities, defined in eq. (5.24), necessitate for the identification of

a subset S⊆V0, |S| ≥ 1. Such inequalities can be rewritten as follows:

∑
e∈δ (S)

xe−∑
i∈S

yi
2qi

QR(S)
≥ 2

(︃⌈︃
q(S)

Q

⌉︃
− q(S)

QR(S)

)︃
∀S⊆V0, |S| ≥ 1. (6.14)

We begin by discussing the separation of RCC inequalities for inte-

gral solutions. This procedure follows roughly the same reasoning as the

GSEC integral separation discussed in section 6.4.3.1. Specifically, let

Tk = {i ∈V | cc(i) = k}, |Tk| ≥ 2 ∀k ∈ {1, . . . ,nc} be the network labeling

output by the major connected components as discussed in section 6.4.1. Then

a valid subset S ⊆ V0, |S| ≥ 1 can be picked as S = Tk ∀k ∈ {1, . . . ,nc}.
We test for inequality violation after selecting the appropriate subset S. Only

when the associated RCC inequality is violated is the MIP optimizer notified.

Algorithm 4 contains a complete pseudocode.

Following that, we describe the separation of the RCC inequalities for

fractional solutions. This separation procedure follows roughly the same

reasoning as the GSEC fractional separation discussed in section 6.4.3.2.
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Algorithm 3: An algorithm for separating GSEC fractional inequalities
for the CPTP

Data: fmax(u,v),F1(u,v),F2(u,v): maxflow and bipartitions induced
from (u, t)-min-cut, see section 6.4.2

Data: x⋆ ∈ R|E|, y⋆ ∈ R|V |: current fractional solution of eqs. (6.1)–(6.4)
1 proc gsec_frac_sep( fmax(u,v), F1(u,v), F2(u,v), x⋆, y⋆)
2 const sense← ’≥’;
3 const rhs← 0;
4 const εGSEC← 0.01;
5 let S;
6 if 0 /∈ F1(u,v) then
7 S← F1(u,v);
8 else
9 S← F2(u,v);

10 end
/* Scan for the most violated customer */

11 let c←−1, m← ∞;
12 for i ∈V | i ∈ S do
13 let v← fmax(u,v)−2y∗i ;
14 if ( fmax(u,v)< 2y∗i − εGSEC) and v < m then
15 c← i;
16 m← v;
17 end
18 end
19 if c≥ 0 and |S| ≥ 2 then

/* Build the cut */
20 let nnz← 0, index← [], value← [];
21 for e = {i, j} ∈ E | i ∈ S, j /∈ S do
22 index[nnz]← x_mip_var_idx(e);
23 value[nnz]← 1.0;
24 nnz← nnz + 1;
25 end
26 index[nnz]← y_mip_var_idx(c);
27 value[nnz]←−2.0;
28 nnz← nnz + 1;

/* Reject and report cut to MIP */
29 mip_add_user_cut(sense, rhs, nnz, index, value);
30 end
31 end
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Let fmax(u,v), F1(u,v), F2(u,v) denote the maxflow value and bipartitions

produced by the network labeling algorithm described in section 6.4.2. A

suitable S⊆V0, |S| ≥ 2 for separating RCC inequalities from fractional solutions

can be chosen as:

S⊆V0 =

⎧⎨⎩F1(u,v), if 0 /∈ F1(u,v)

F2(u,v), otherwise.
(6.15)

After selecting the appropriate subset S we test for inequality violation, but, as

with fractional separation, we employ a non-zero violation threshold εRCC. We

set εRCC = 0.01 in our implementation. Using this method, we can separate

O(N2) RCCs per fractional solution. Algorithm 5 contains the complete pseu-

docode.

6.4.5 GLM separation

The GLM inequalities, defined in eq. (5.26), require for the identification of a

subset S⊆V0, |S| ≥ 2. Such inequalities can be rewritten as follows:

∑
e={i, j}∈δ (S)

i∈S, j/∈S

xe

(︃
1−2

q j

Q

)︃
−∑

i∈S

2qi

Q
yi ≥ 0 ∀S⊆V0, |S| ≥ 2. (6.16)

We begin by discussing the separation of the GLM inequalities for in-

tegral solutions. This procedure follows roughly the same reasoning as

the GSEC integral separation discussed in section 6.4.3.1. Specifically, let

Tk = {i ∈V | cc(i) = k}, |Tk| ≥ 2 ∀k ∈ {1, . . . ,nc} be the network labeling

output by the major connected components as discussed in section 6.4.1. Then

a valid subset S ⊆ V0, |S| ≥ 2 can be picked as S = Tk ∀k ∈ {1, . . . ,nc}.
We test for inequality violation after selecting the appropriate subset S. Only

when the associated GLM inequality is violated is the MIP optimizer notified.

Algorithm 6 contains a complete pseudocode.

Following that, we describe the separation of the GLM inequalities for

fractional solutions. This separation procedure follows roughly the same

reasoning as the GSEC fractional separation discussed in section 6.4.3.2.

Let fmax(u,v), F1(u,v), F2(u,v) denote the maxflow value and bipartitions
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Algorithm 4: An algorithm for separating RCC integral inequalities for
the CPTP

Result: nc: number of major connected components
Data: cc[i] ∈C: connected component ∀i ∈V , see section 6.4.1
Data: x⋆ ∈ {0,1}|E|, y⋆ ∈ {0,1}|V |: current integral solution of

eqs. (6.1)–(6.6)
1 proc rcc_integral_sep(nc, cc, x⋆, y⋆)
2 const sense← ’≥’;
3 for k← 1 to nc do
4 const S←{i | cc[i] = k};
5 const QS ← ∑

i∈S
qi;

6 const QR← mod (QS,Q);

7 const rhs← 2
(︂⌈︂

QS
Q

⌉︂
− QS

QR

)︂
;

8 if QR > 0 and |S| ≥ 1 then
9 if −2 ∑

i∈S

qi
QR

y∗i < rhs then

/* Build the cut */
10 let nnz← 0, index← [], value← [];
11 for e = {i, j} ∈ E | i ∈ S, j /∈ S do
12 index[nnz]← x_mip_var_idx(e);
13 value[nnz]← 1;
14 nnz← nnz + 1;
15 end
16 for i ∈ S do
17 index[nnz]← y_mip_var_idx(i);
18 value[nnz]←−2qi/QR;
19 nnz← nnz + 1;
20 end

/* Reject and report cut to MIP */
21 mip_add_user_cut(sense, rhs, nnz, index, value);
22 end
23 end
24 end
25 end
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Algorithm 5: An algorithm for separating RCC fractional inequalities
for the CPTP

Data: fmax(u,v),F1(u,v),F2(u,v): maxflow and bipartitions induced
from (u, t)-min-cut, see section 6.4.2

Data: x⋆ ∈ R|E|, y⋆ ∈ R|V |: current fractional solution of eqs. (6.1)–(6.4)
1 proc rcc_frac_sep( fmax(u,v), F1(u,v), F2(u,v), x⋆, y⋆)
2 const sense← ’≥’;
3 const εRCC← 0.01;
4 let S;
5 if 0 /∈ F1(u,v) then
6 S← F1(u,v);
7 else
8 S← F2(u,v);
9 end

10 const QS ← ∑
i∈S

qi;

11 const QR← mod (QS,Q);

12 const rhs← 2
(︂⌈︂

QS
Q

⌉︂
− QS

QR

)︂
;

13 if QR > 0 and |S| ≥ 1 then
14 if fmax(u,v)−2 ∑

i∈S

qi
QR

y∗i < rhs - εRCC then

/* Build the cut */
15 let nnz← 0, index← [], value← [];
16 for e = {i, j} ∈ E | i ∈ S, j /∈ S do
17 index[nnz]← x_mip_var_idx(e);
18 value[nnz]← 1;
19 nnz← nnz + 1;
20 end
21 for i ∈ S do
22 index[nnz]← y_mip_var_idx(i);
23 value[nnz]←−2qi/QR;
24 nnz← nnz + 1;
25 end

/* Reject and report cut to MIP */
26 mip_add_user_cut(sense, rhs, nnz, index, value);
27 end
28 end
29 end
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produced by the network labeling algorithm described in section 6.4.2. A

suitable S⊆V0, |S| ≥ 2 for separating GLM inequalities from fractional solution

can be chosen as:

S⊆V0 =

⎧⎨⎩F1(u,v), if 0 /∈ F1(u,v)

F2(u,v), otherwise
, |S| ≥ 2. (6.17)

After selecting the appropriate subset S we test for inequality violation, but, as

with fractional separation, we employ a non-zero violation threshold εGLM. We

set εGLM = 0.01 in our implementation. Using this method, we can separate

O(N2) GLMs per fractional solution. Algorithm 7 contains the complete pseu-

docode.
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Algorithm 6: An algorithm for separating GLM integral inequalities for
the CPTP

Result: nc: number of major connected components
Data: cc[i] ∈C: connected component ∀i ∈V , see section 6.4.1
Data: x⋆ ∈ {0,1}|E|, y⋆ ∈ {0,1}|V |: current integral solution of

eqs. (6.1)–(6.6)
1 proc glm_integral_sep(nc, cc, x⋆, y⋆)
2 const sense← ’≥’;
3 const rhs← 0;
4 for k← 1 to nc do
5 let S←{i | cc[i] = k};
6 assert |S| ≥ 2;

/* Build the cut */
7 let lhs← 0;
8 let nnz← 0, index← [], value← [];
9 for e = {i, j} ∈ E | i ∈ S, j /∈ S do

10 index[nnz]← x_mip_var_idx(e);
11 value[nnz]← 1−2q j/Q;
12 lhs← lhs + x⋆i j · (1−2q j/Q);
13 nnz← nnz + 1;
14 end
15 for i ∈ S do
16 index[nnz]← y_mip_var_idx(i);
17 value[nnz]←−2qi/Q;
18 lhs← lhs + y∗i · (2qi/Q);
19 nnz← nnz + 1;
20 end
21 if not lhs ≥ rhs −εGLM then

/* Reject and report cut to MIP */
22 mip_add_user_cut(sense, rhs, nnz, index, value);
23 end
24 end
25 end



78 CHAPTER 6. IMPLEMENTATION

Algorithm 7: An algorithm for separating GLM fractional inequalities
for the CPTP

Data: fmax(u,v),F1(u,v),F2(u,v): maxflow and bipartitions induced
from an arbitrary s ̸= t,s ∈V, t ∈V pair

Data: x⋆ ∈ R|E|, y⋆ ∈ R|V |: current fractional solution of eqs. (6.1)–(6.4)
1 proc glm_frac_sep( fmax(u,v), F1(u,v), F2(u,v), x⋆, y⋆)
2 const sense← ’≥’;
3 const rhs← 0;
4 const εGLM← 0.01;
5 let S;
6 if 0 /∈ F1(u,v) then
7 S← F1(u,v);
8 else
9 S← F2(u,v);

10 end
11 if |S| ≥ 2 then

/* Build the cut */
12 let lhs← 0;
13 let nnz← 0, index← [], value← [];
14 for e = {i, j} ∈ E | i ∈ S, j /∈ S do
15 index[nnz]← x_mip_var_idx(e);
16 value[nnz]← 1−2q j/Q;
17 lhs← lhs + x⋆i j · (1−2q j/Q);
18 nnz← nnz + 1;
19 end
20 for i ∈ S do
21 index[nnz]← y_mip_var_idx(i);
22 value[nnz]←−2qi/Q;
23 lhs← lhs + y∗i · (2qi/Q);
24 nnz← nnz + 1;
25 end
26 if not lhs ≥ rhs −εGLM then

/* Reject and report cut to MIP */
27 mip_add_user_cut(sense, rhs, nnz, index, value);
28 end
29 end
30 end



CHAPTER 7
Results

This chapter will present the empirical results of the branch-and-cut algorithm,

which implementation was discussed in chapter 6. We will evaluate its perfor-

mance as a pricer for the CVRP by comparing it with the state-of-the-art labeling

algorithm based on dynamic programming discussed in the works of Pessoa et

al. (2020a) and Sadykov et al. (2021a).

7.1 CVRP Benchmark Instances

Several CVRP benchmark instances are used to measure the competitiveness of

our branch-an-cut pricer in an accurate manner. The CVRPLIB website1 is an

online database for the vehicle routing problem that includes several download-

able test instances for free, among other things. It is a valuable resource for all

practitioners interested in the VRP. It includes interactive plots of various rout-

ing problem instances and the optimal (or best known) solution discovered by

the best scholars over time. Each CVRP test instance is stored in a file with the

following filename template:

<F>-n<N>-k<K>.vrp

where .vrp is the file extension, <N> is the number of vertices in the instance,

and <K> is the number of (maximum or exact) available vehicles. Finally, <F>
1CVRPLIB website: http://vrp.galgos.inf.puc-rio.br/index.php/en/
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represents the set instance family. <F> is a single letter that uniquely identifies

the instance set and the authors who published such a set. P-n40-k5.vrp, for

example, denotes a test instance made up of 40 nodes (39 customers) and 5

vehicles. The P in the name refers to the instance set family, which was published

in Augerat et al. (1995).

Each CVRP instance file’s contents adhere to the TSPLIB95 file format

(Reinelt, 1995). Distances between pairs of nodes are computed using the

2D Euclidean distance function rounded to the nearest integer, as became

standard for the TSP in Reinelt (1991). Rounding is performed to stabilize the

optimal values, allowing for an accurate comparison of different contributions.

However, rounding introduces issues when comparing heuristic contributions;

for more information, see Uchoa et al. (2017).

We used some of the most historic and well-known CVRP instances to evalu-

ate the performance of our pricer: set A, B, P (Augerat et al., 1995), set E (Dantzig

et al., 1959; Christofides et al., 1969; Gaskell, 1967; Gillett et al., 1974), and fi-

nally set F (Fisher, 1994). If the reader is wondering how these test sets were

generated in the first place, they can consult the CVRPLIB website or the work

of Uchoa et al. (2017).

The employed test instances are summarized in tables 7.1–7.5.

Instance K Q Optimal Value

E-n51-k5 5 160 521
E-n76-k7 7 220 682
E-n76-k8 8 180 735
E-n76-k10 10 140 830
E-n76-k14 14 100 1021
E-n101-k8 8 200 815
E-n101-k14 14 112 1067

Table 7.1: Table listing the employed instances of the set E (in total 7) for the empirical
evaluation. The set E was proposed in Dantzig et al. (1959), Christofides et
al. (1969), Gaskell (1967), and Gillett et al. (1974). The node locations were
chosen at random from a uniform distribution (Uchoa et al., 2017).
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Instance K Q Optimal Value

F-n45-k4 4 2010 724
F-n72-k4 4 30000 237
F-n135-k7 7 2210 1162

Table 7.2: Table listing the employed instances of the set F (in total 3) for the empirical
evaluation. The set F was proposed in Fisher (1994). The instances come
from an actual distribution problem involving grocery deliveries in Ontario
(Uchoa et al., 2017).

7.1.1 Inflation of the CVRP Test Instances

We created new artificial instances based on the presented sets in tables 7.1–

7.5. The idea is to generate new CVRP instances characterized by longer routes

so that we can evaluate the behavior of the proposed branch-and-cut pricer and

labeling algorithm as the routes they need to produce grow longer (see previous

discussions in sections 1.2 and 4.3). The new artificial instances were created as

follows. Let Q ∈ R+, K ∈ Z+ respectively denote the vehicle capacity and the

number of trucks of the unmodified CVRP instance. Define a scale factor s ∈
R+. For each unmodified CVRP instance, we generate a new artificial instance

characterized by the vehicle capacity Q′ ∈ R+ and by the number of vehicles

K′ ∈ Z+. We’ve inflated the total number of available CVRP instances by using

the following relationship:

Q′ = Q× s, K′ =
⌈︃

K
s

⌉︃
Each unmodified CVRP instance is inflated through multiple values for the scale

factor s ∈ R+. As s ∈ R+ grows, the inflated CVRP instances will look more and

more like a conventional TSP. If K′ = 1, the CVRP decades to a TSP. As a result,

the BAP frameworks may become a suboptimal approach for dealing with such

a problem.

7.2 BaPCod

BaPCod (Sadykov et al., 2021b) is a software package developed in France at the

Bordeaux University and Bordeaux Research Center that embeds a sophisticated
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Instance K Q Optimal Value

A-n37-k5 5 100 669
A-n37-k6 6 100 949
A-n38-k5 5 100 730
A-n39-k5 5 100 822
A-n39-k6 6 100 831
A-n44-k6 6 100 937
A-n45-k6 6 100 944
A-n45-k7 7 100 1146
A-n46-k7 7 100 914
A-n48-k7 7 100 1073
A-n53-k7 7 100 1010
A-n54-k7 7 100 1167
A-n55-k9 9 100 1073
A-n60-k9 9 100 1354
A-n61-k9 9 100 1034
A-n62-k8 8 100 1288
A-n63-k9 9 100 1616
A-n64-k9 9 100 1401
A-n65-k9 9 100 1174
A-n69-k9 9 100 1159
A-n80-k10 10 100 1763

Table 7.3: Table listing the employed instances of the set A (in total 21) for the empir-
ical evaluation. The set A was proposed in Augerat et al. (1995). The node
locations were randomly chosen from a square grid (Uchoa et al., 2017).

column generation approach embedded in a generic and modern branch-price-

and-cut (BPC) algorithm. BaPCod takes a compact mixed-integer programming

model as input and solves it using a Dantzig-Wolfe reformulation (Dantzig et al.,

1960). See the previous discussion on section 2.4 and chapter 4. This modern

BPC solver automatically applies the Dantzig-Wolfe reformulation. In this case,

a default generic pricer based on a MIP optimizer is employed during the column

generation phase. BaPCod uses an automatic dual price smoothing stabiliza-

tion, as discussed in Pessoa et al. (2018b), to improve the convergence speed

of the column generation. BaPCod supports direct branching on the master

formulation’s arc-flow variables as well as Vanderbeck branching (Vanderbeck,
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Instance K Q Optimal Value

B-n38-k6 6 100 805
B-n39-k5 5 100 549
B-n41-k6 6 100 829
B-n43-k6 6 100 742
B-n44-k7 7 100 909
B-n45-k6 6 100 678
B-n50-k7 7 100 741
B-n50-k8 8 100 1312
B-n51-k7 7 100 1032
B-n52-k7 7 100 747
B-n56-k7 7 100 707
B-n57-k7 7 100 1153
B-n57-k9 9 100 1598
B-n63-k10 10 100 1496
B-n64-k9 9 100 861
B-n66-k9 9 100 1316
B-n67-k10 10 100 1032
B-n68-k9 9 100 1272
B-n78-k10 10 100 1221

Table 7.4: Table listing the employed instances of the set B (in total 19) for the empir-
ical evaluation. The set B was proposed in Augerat et al. (1995) The node
locations were randomly chosen from a square grid (Uchoa et al., 2017).

2011). The latter is a non-robust branching scheme imposing bounds modifi-

cations on the sub-problem variables. Because BaPCod is generic, it supports

user-developed extensions which can alter the BPC algorithm’s behaviour. These

extensions can provide the BPC framework with custom-defined cutting planes

(robust and non-robust), custom branching decisions (robust and non-robust), or

even ad-hoc pricer implementations.

The VRPSolver extension (Pessoa et al., 2020a), is a BaPCod extension dis-

tributed by the same authors. This extension includes an advanced implementa-

tion of a bidirectional dynamic programming labeling algorithm (Sadykov et al.,

2021a) for solving the pricing problem. The included labeling algorithm can be

used as an exact or heuristic pricer. The labeling algorithm contains two suc-

cessively lighter heuristic implementations; for more information, see Sadykov
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Instance K Q Optimal Value

P-n16-k8 8 35 450
P-n19-k2 2 160 212
P-n20-k2 2 160 216
P-n21-k2 2 160 211
P-n22-k2 2 160 216
P-n22-k8 8 3000 603
P-n23-k8 8 40 529
P-n40-k5 5 140 458
P-n45-k5 5 150 510
P-n50-k7 7 150 554
P-n50-k8 8 120 631
P-n50-k10 10 100 696
P-n51-k10 10 80 741
P-n55-k7 7 170 568
P-n55-k8 8 160 588
P-n55-k10 10 115 694
P-n55-k15 15 70 989
P-n60-k10 10 120 744
P-n60-k15 15 80 968
P-n65-k10 10 130 792
P-n70-k10 10 135 827
P-n76-k4 4 350 593
P-n76-k5 5 280 627
P-n101-k4 4 400 681

Table 7.5: Table listing the employed instances of the set P (in total 24) for the empirical
evaluation. The set P was proposed in Augerat et al. (1995). The instances
were created by changing the capacities of a few occurrences of the A, B and
E sets (Uchoa et al., 2017).

et al. (2021a). The labeling algorithm makes use of a generalized ng-sets defi-

nition (Baldacci et al., 2011) defined through the packing and elementarity sets,

as described in Pessoa et al. (2020a). When the solution obtained after the CG

convergence is fractional, the ng-sets are dynamically augmented, see Pessoa

et al. (2020a) for more details. The VRPSolver extension, also, includes the im-

plementation of some specific cutting planes and branching decisions aimed at

efficiently solving routing-like problems (or problems that exhibit similar struc-
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tures) such as the CVRP, VRPTW, and also others (see Pessoa et al., 2020a).

The VRPSolver implements the robust RCC cuts of Laporte et al. (1983), and the

non-robust limited-memory rank-1 cuts of Pecin et al. (2017b). The VRPSolver

also implements the non-robust Ryan&Foster branching (Ryan et al., 1981). The

VRPSolver extension was also used successfully in Pessoa et al. (2020b) to solve

the Bin Packing Problem (BPP).

Currently, BaPCod and its VRPSolver extension are the leading cutting-edge

technologies for solving vehicle routing problems (Pessoa et al., 2020a). The

BaPCod source code is available for free, for academic purposes only, by issuing

a form request to this URL: https://bapcod.math.u-bordeaux.fr/. The

VRPSolver extension, on the other hand, is only available in compiled form, and

must be explicitly requested via email by contacting one of the original authors:

mailto:ruslan.sadykov@inria.fr. The official technical report presented in

Sadykov et al. (2021b) contains instructions for building, configuring, and using

BaPCod and its VRPSolver extension. To round things out, a Julia language

interface to the VRPSolver extension can be found at this Github repo2.

For a comprehensive technical discussion of the components of modern and

advanced BPC frameworks, see Sadykov (2019).

7.3 Evaluation Setup

The goal of this thesis, as previously stated, is to determine whether a branch-

and-cut framework can be competitive in solving the pricing problem, partic-

ularly as the routes grow in length. We hypothesized that, since the labeling

algorithm’s performance degrades as the vehicle capacity increases, a branch-

and-cut framework could aid in solving the more demanding pricing problems.

Refer back to the discussion in sections 1.2 and 4.3 for additional details.

However, the two frameworks operate in very different ways. Our branch-

and-cut framework does not support non-robust inequalities or variable fixing

but produces stronger dual bounds. Similarly, the labeling algorithm instead

generates weaker dual bounds but allows for multiple column generation per

2Github repo: https://github.com/inria-UFF/BaPCodVRPSolver.jl

https://bapcod.math.u-bordeaux.fr/
mailto:ruslan.sadykov@inria.fr
https://github.com/inria-UFF/BaPCodVRPSolver.jl
https://github.com/inria-UFF/BaPCodVRPSolver.jl
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pricing invocation, non-robust cut generations and branching. As a result, com-

paring the performance of the two schemes is not an easy task. So a natural

question arises. What is the best approach to compare the performance of the

two frameworks?

When it came to developing our branch-and-cut pricer, we had two options:

(i) developing our pricer in tight integration with the BPC framework, by coding

it as a BaPCod plugin, or (ii) developing the pricer in a standalone executable,

separate from the BPC framework.

The first option has two primary benefits. For starters, it enables our branch-

and-cut pricer to influence the BPC algorithm’s execution flow. Second, it em-

powers more diversified ways of measuring the pricers’ effectiveness. We can

decide to compare the running time required for solving the root node, the run-

ning time for solving the entire CVRP instance or the running time of each single

pricing iteration. The disadvantage of the first approach is its implementation

complexity and constraint in tooling or programming languages employed. Pro-

gramming the BAC pricer as plugin requires heavy knowledge of the BaPCod

framework’s intricacies.

The second option, on the other hand, has one significant advantage: it al-

lows for greater implementation flexibility, simplifying development efforts. We

can develop the BAC pricer in complete isolation, using whatever programming

language or external library we want. However, the branch-and-cut pricer can-

not change the BPC algorithm’s execution flow. As a result, the branch-and-cut

pricer follows the same execution flow as the BPC algorithm using the labeling

algorithm. This scenario led to two primary downsides. For starters, improved

dual-bounds from the BAC algorithm will not affect the number of pricing itera-

tions. As a result, the BAC algorithm’s solution to the more difficult elementary

SPPRC has no practical way to pay off its high computation times. Secondly, the

time required to solve each pricing iteration is the only viable metric to measure

the pricers’ competitiveness.

In the end, we decided on the second option. We chose simplicity over com-

plexity and built our pricer as a standalone executable. Measuring the running

time of each pricing iteration is neither an appropriate nor a poor approach.
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There are both benefits and downsides to this approach. First BaPCod must be

configured to operate in the same domain as our pricer, thereby disabling many

features that could potentially result in high efficiency in the broader scheme.

Second, our branch-and-cut pricer generates elementary bounds, naturally solv-

ing a harder problem. While solving a single pricing iteration may take longer,

stronger dual-bounds may skip some pricing iterations in the long run, thus re-

sulting in an overall faster CVRP resolution. On the other hand, measuring the

pricers’ efficiency per each single pricing iteration, it is straightforward to assess

compared to the alternative approaches described.

Summing up, it is clear that the performance comparison that we’ve settled

on is just a mere indicator of the genuine efficiency of the two approaches and

must therefore be taken cautiously. We believe, however, there is still value in

performing such a comparison as it provides a first proof-of-concept/direction

regarding the feasibility of the effectiveness of a branch-and-cut scheme for ad-

dressing the pricing problem.

We conclude this section by introducing the BaPCod parametrization, which

we used to bend the labeling algorithm to operate in a compatible environment

with the BAC algorithm.

The configuration parameters are specified separately in an appropriately

placed configuration file. The BPC framework’s branching and cut-generation

schemes have been disabled, thus asking the algorithm to halt at the root node

of the branch-and-bound tree. We enabled the ng-sets’ augmentation and set the

maximum ng-set threshold as high as possible, therefore putting pressure on the

labeling algorithm to generate dual bounds as close to the elementary bound as

possible at the end of each CG iteration. The pricer’s tailing-off condition was

disabled. We’ve also asked the labeling algorithm to generate a single column

per pricing invocation. Refer to appendix B for a complete list of the employed

configuration parameters.
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7.4 Evaluation Process

We employed BaPCod version 0.66 (released in November 2021) and the li-
bRCSP v0.5.12. The latter library contains the VRPSolver extension’s imple-

mentation. The goal is to use BaPCod to solve many CVRP instances while

simultaneously measuring the labeling algorithm’s running time at each pricing

invocation.

We re-adapted one of the VRPTW examples (included in the distribution) to

model a Capacitated Vehicle Routing Problem by following the BaPCod tech-

nical document of Sadykov et al. (2021b). The master formulation that we’ve

implemented follows the two-index arc flow model presented in eqs. (2.2)–(2.7),

excluding the Rounded Capacity Constraints (RCC) of eq. (2.5).

To use the VRPSolver extension’s labeling algorithm, the associated Resource

Constrained Shortest Path (RCSP) sub-problem must be defined. The RCSP sub-

problem is formulated on a complete directed network by linking the new RCSP

modeling variables to the master problem formulation. The RCSP sub-problem

necessitates the correct definition of the following: the source/sink vertices, as

well as the so-called packing and elementarity sets (see Pessoa et al., 2020a for

more details). The correct definition of these generalized sets is required for

specific components of the VRPSolver extension to function properly (ng-sets,

RCC separation, etc). For each customer, a unique packing set and elementarity

set are created. The VRPSolver extension also necessitates the explicit definition

of an additional distance matrix encoding the distance between pairs of elemen-

tarity sets. The elementarity sets and the distance matrix specified by the user let

BaPCod compute the ng-sets automatically.

Due to internal implementation details of BaPCod, the RCSP sub-problem

requires the user to specify the consumptions (or demand) for each network’s

arc. Resource consumptions aren’t definable at the vertex level. Therefore, as

suggested in Pessoa et al. (2020a), we have defined the resource consumption on

the arcs as qi j =
qi+q j

2 ∀i, j ∈V . This definition is valid and it leads to a sym-

metric resource consumption (qi j = q ji). The symmetric resource consumption

property improves the efficiency in pricing by eliminating the need for backward

labeling (Pessoa et al., 2020a).
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We implemented a custom pricing functor to extract the information required

for the performance evaluation. The pricing functor is essentially a glorified call-

back that can be used to solve the pricing problem through user-defined custom

code. Our pricing functor is a simple stubbed implementation that ultimately

invokes the pricing functor of the standard VRPSolver extension. However, be-

fore calling the labeling algorithm, we first do the following. First, we assess

the labeling algorithm’s performance by measuring its running time. Second, at

each pricing invocation, we record the dual variables π ∈ RN of the RMP to be

later dumped into a dedicated file.

Because of the implementation details of BaPCod, the reduced cost of an

edge does not follow the simple relationship c̄i j = ci j−
πi+π j

2 ∀i, j ∈ V, i ̸= j.

By accessing an appropriate field on the MP formulation structure, the user can

retrieve the dual variable π0 ∈ R. The remaining dual variables πi ∀i ∈V0 must

be calculated from the reduced cost of each edge c̄i j. Internally, BaPCod encodes

the reduced cost of an edge using the following relationship:

c̄i j =

⎧⎨⎩ci j−
π j
2 if i = 0, j ∈V0

ci j−
πi+π j

2 if i, j ∈V0, i ̸= j.
(7.1)

By exploiting eq. (7.1), we’ve implemented a trivial recursive algorithm to ex-

tract all the necessary dual variables π ∈ RN .

In conclusion, we save two files to the hard drive for each pricing invocation

of the labeling algorithm. The first file is a JSON file that contains metadata in-

formation about the labeling algorithm, such as the instance name, the instance

size, the total running time for the labeling, the reduced cost of the generated

route and the column generation iteration. The second file, instead, encodes a

CPTP instance including: the dual variables (the vertices’ profit), the original de-

mands, the original node positions, and the vehicle capacity. The CPTP instance

is encoded in a slightly modified TSPLIB95 file format. In the file format, we’ve

added a new dedicated section, called PROFIT_SECTION, to hold the extracted

dual variables.

Only the last 10 of all the pricing problems dumped to disk are kept for em-

pirical evaluation. As a result, for a fixed inflation scale factor s, we totaled 70
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pricing instances from the E test set, 30 from the F test set, 210 from the A test

set, 190 from the B test set and 240 from the P test set.

7.4.1 Performance profiles

Performance profiles, first introduced in Dolan et al. (2002), are a plot represen-

tation used to benchmark optimization software. These novel plot representa-

tions are easy to interpret and less susceptible to personal interpretation. In a

nutshell, performance profiles represent the cumulative distribution function of

a performance metric. We put H algorithms to the test by running them through

M problem instances. The metric under consideration in performance profiles

is typically the overall running time of an algorithm. When the metric under

measurement is the running time, we obtain the so-called time profiles.

In time profiles, the time ratio relative to a baseline is plotted on the X-axis.

The baseline is calculated as the best performance obtained from all the algo-

rithms under consideration. Instead, the Y-axis depicts the likelihood of being

within an X ratio of the baseline. In time profiles, the ideal solver appears as a

straight vertical line on the entire left of the plot. An example of a time profile is

provided in fig. 7.1.

In our case, we also employ the so-called cost profiles to plot either the op-

timal value or the best dual-bound found from each algorithm. Instead of com-

puting its ratio w.r.t. a baseline, the raw value of the metric is plotted directly.

Recording the dual bounds inside a cost profile allows us to select the best al-

gorithm based on its convergence speed over a limited time frame (time-limit).

When plotting the optimal value in the cost profiles, on the other hand, we can

validate the pricer that would feed the BPC framework with tighter dual bounds.

Because the optimal value z always satisfies z≤ 0, we used two sentinel values to

accentuate some specific circumstances. When a pricer successfully determines

that no reduced cost route exists (z ≥ 0− εct), we output z = 1.0 in the associ-

ated cost profile. Instead, if the pricer fails to solve the PP optimally within the

timelimit, we output z = 2.0. For additional output clarity, in cost profiles we

tint the plot’s background color in green and red for z < 0− εct and z ≥ 0− εct

respectively.
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Figure 7.1: This time profile example depicts the running time analysis of two exact
algorithms for the TSP. A vertical straight line on the entire left side of the
plot would represent the best scenario. In the situation depicted in the figure,
the algorithm named FLOW-1|EXT_CONST=1, the orange line, outperforms
the other algorithm in the vast majority of cases.

In this thesis, we evaluated the efficiency of our proposed BAC-based pricer

using both the cost and time profiles. Our pricer’s efficiency is compared to the

RCSP dynamic programming algorithm included in the VRPSolver extension

(Pessoa et al., 2020a) of BaPCod.

7.4.2 Performance Variability

Performance variability (Lodi et al., 2013) can be defined as an unexpected

change in performance that is not the result of a genuine improvement. There

are numerous cases of variability, but one of the most common is randomness,
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specifically the initial state of random generators. Resolution methods that rely

on randomness may perform well by chance, and the effect is magnified for the

so-called chaotic systems. A slight perturbation to the initial conditions has a

tremendous impact on the evolution of a chaotic system.

Branch-and-cut algorithms are chaotic systems by nature. Unlucky branching

decisions, appearing at high levels of the branching tree, have an exponential

impact on the size of the tree itself.

Performance profiles should filter out the noise and measure the genuine al-

gorithmic improvements of a resolution method. To avoid performance vari-

abilities, we can upsample each test-set instance using a different initial random

seed each time. The greater the number of seeds considered, the more likely

the performance profile captures a genuine algorithmic improvement rather than

variability.

Although using multiple seeds is generally good practice when testing chaotic

systems, we used a single seed per pricing instance to substantially decrease the

computation time required for the empirical evaluation.

7.5 Empirical Results

The empirical results are presented in this section. The results were obtained on a

desktop computer equipped with an AMD Ryzen 7 1700X 3.4GHz with 8 cores

(16 virtual cores), 2x8 GBs of memory @ 3200 MHz, running a GNU/Linux

operating system with kernel v5.18.3 and Glibc v2.35. For our BAC pricer’s

implementation, we used CPLEX version 22.1.

We divide the empirical results into two groups.

The first group is committed to testing various versions of the implemented

BAC algorithm based on the aggressiveness used for the fractional labeling dis-

cussed in section 6.4.2. In the first version of the algorithm, we perform cutting-

plane separation aggressively on each possible occasion. We call this version of

the algorithm BAC EFL, where EFL stands for Exhaustive Fractional Labeling.

BAC EFL computes the Gomory-Hu tree on each fractional solution. The second

version of the algorithm is known as BAC AFL (Amortized Fractional Label-
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ing). BAC AFL amortizes the cost of fractional labeling over multiple iterations.

Namely, fractional separations iterations that are not multiple of N become a

no-op, no min-cuts computations are performed, and thus no cutting-planes are

separated. In the last version of the algorithm, which we call BAC NFL, we per-

form no fractional labeling (NFL stands for No Fractional Labeling). The cost

of computing Gomory-Hu trees becomes zero, but cutting planes will never be

separated for fractional solutions.

The computational evaluation of the first group is provided in fig. 7.2, which

contain solely cost profiles depicting the obtained dual bounds. The results in

fig. 7.2 were obtained using a single core and a time limit of 60 seconds. The

winner will be the BAC-pricer version that produces tighter dual bounds within

the time limit. According to fig. 7.2, the BAC AFL version produces tighter dual

bounds in the majority of cases. As a result, we will only compare the pricing

efficiency of the BAC AFL version to the labeling algorithm in the second group

of empirical results.

The second group, on the other hand, compares our BAC AFL algorithm to

the VRPSolver’s labeling algorithm (Pessoa et al., 2020a). The computational

evaluation of the second group is provided in figs. 7.3–7.12. The BAC-pricer

was run on 16 threads (corresponding to the virtual cores of the host machine)

with a time limit of 20 minutes. The empirical results of figs. 7.3–7.12 will be

discussed in the next dedicated section 7.5.1.

7.5.1 Discussion of the Empirical Results

In this section we discuss the empirical results depicted in figs. 7.3–7.12. The

VRPSolver’s labeling algorithm in the empirical results is denoted as libRCSP
DP pricer, while our implemented BAC-pricer is denoted as BAC MIP Pricer
(AFL).

We tested the performance of the two pricer approaches for different test sets

under progressively higher vehicle capacities. We tested for different inflation

scale factors s, namely s∈{1,2,4,5,8,10,20}. See section 7.1.1 for a discussion

on how the inflated CVRP instances were obtained.

The empirical results of figs. 7.3–7.12 are subdivided as follows:
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• The empirical evaluation for the E test set is contained in figs. 7.3 and 7.4.

• The empirical evaluation for the F test set is contained in figs. 7.5 and 7.6.

• The empirical evaluation for the A test set is contained in figs. 7.7 and 7.8.

• The empirical evaluation for the B test set is contained in figs. 7.9 and 7.10.

• The empirical evaluation for the P test set is contained in figs. 7.11

and 7.12.

The situation depicted by the empirical results is summarized in the remainder

of this section.

In the case of the E test set, we can see that at s ≤ 4, the BAC-pricer is not

sufficiently competitive but was able to feed slightly better dual bounds to the

BPC framework. The BAC-pricer begins to compete with the labeling algorithm

at s = 5. For s ∈ {8,10,20}, not only is the BAC-pricer faster than the labeling

algorithm but feeds substantially better dual bounds to the BPC framework. At

s = 20, the labeling algorithm is 20 times slower than the BAC-pricer in 42% of

the cases.

In the case of the F test set, we can see that at s ∈ {1,2}, the BAC-pricer is

not competitive and occasionally fails to complete the pricing problem within

the time limit of 20 minutes. This scenario is most likely caused by the F-
n135-k7 instance, for which we have empirically observed to require a massive

amount of cutting planes, resulting in memory exhaustion for the host machine.

At s ∈ {4,5,8,10,20}, the BAC-pricer performs progressively better and feeds

tremendously tighter dual bounds to the BPC framework.

In the case of the A test set, the BAC-pricer is not competitive at s ∈ {1,2,4}
and occasionally fails to complete the pricing problem within the time limit.

At s = 5, the BAC-pricer begins to be competitive in terms of running time.

The BAC approach yields no discernible dual-bound improvements to the BPC

framework.

In the case of the B test set, the BAC-approach becomes competitive at s = 5.

At s ≤ 4, it fails to complete the pricing problem within the time limit. At

s = 20, the BAC-pricer outperforms the labeling algorithm. When s = 10, the

BAC-pricer produces slightly tighter dual-bounds, but significantly better ones

when s = 20.
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In the case of the P test set, the BAC-approach becomes competitive at s = 5.

At s = 8, the BAC approach outperforms the labeling algorithm while yielding

significantly better dual bounds to the BPC framework.
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Figure 7.2: This empirical study investigates the tightness of the dual bound for various
versions of the BAC algorithm. The plots are laid out in a matrix format.
Each row corresponds to a unique CVRP test set. From top to bottom: E, F,
A, B and finally P. Each column represents a different inflation scale factor
s. From left to right: s = 1, s = 2 and finally s = 4. The version that uses
amortized fractional labeling (AFL), represented here by the orange line,
appears to produce tighter dual bounds in the majority of cases.
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Figure 7.3: Empirical study comparing the pricing performance of the proposed BAC-
pricer to the labeling algorithm of Pessoa et al. (2020a) on the E test set.
On the left, the cost profile representing the optimal value found by each
method. On the right, the time profile measuring the time ratio of the two
approaches. Each row represents a different inflation scale factor s. From
top to bottom: s = 1,2 and 4.
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Figure 7.4: Continuation of the empirical study on the E test set from fig. 7.3 testing
even further inflation scale factors: s = 5,8,10 and 20.
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Figure 7.5: Empirical study comparing the pricing performance of the proposed BAC-
pricer to the labeling algorithm of Pessoa et al. (2020a) on the F test set.
On the left, the cost profile representing the optimal value found by each
method. On the right, the time profile measuring the time ratio of the two
approaches. Each row represents a different inflation scale factor s. From
top to bottom: s = 1,2 and 4.
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Figure 7.6: Continuation of the empirical study on the F test set from fig. 7.5 testing
even further inflation scale factors: s = 5,8,10 and 20.
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Figure 7.7: Empirical study comparing the pricing performance of the proposed BAC-
pricer to the labeling algorithm of Pessoa et al. (2020a) on the A test set.
On the left, the cost profile representing the optimal value found by each
method. On the right, the time profile measuring the time ratio of the two
approaches. Each row represents a different inflation scale factor s. From
top to bottom: s = 1,2 and 4.
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Figure 7.8: Continuation of the empirical study on the A test set from fig. 7.7 testing
even further inflation scale factors: s = 5,8,10 and 20.
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Figure 7.9: Empirical study comparing the pricing performance of the proposed BAC-
pricer to the labeling algorithm of Pessoa et al. (2020a) on the B test set.
On the left, the cost profile representing the optimal value found by each
method. On the right, the time profile measuring the time ratio of the two
approaches. Each row represents a different inflation scale factor s. From
top to bottom: s = 1,2 and 4.
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Figure 7.10: Continuation of the empirical study on the B test set from fig. 7.9 testing
even further inflation scale factors: s = 5,8,10 and 20.
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Figure 7.11: Empirical study comparing the pricing performance of the proposed BAC-
pricer to the labeling algorithm of Pessoa et al. (2020a) on the P test set.
On the left, the cost profile representing the optimal value found by each
method. On the right, the time profile measuring the time ratio of the two
approaches. Each row represents a different inflation scale factor s. From
top to bottom: s = 1,2 and 4.
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Figure 7.12: Continuation of the empirical study on the P test set from fig. 7.11 testing
even further inflation scale factors: s = 5,8,10 and 20.



CHAPTER 8
Conclusions

We proposed a branch-and-cut framework for solving the pricing problem in-

duced by Column Generation (CG) approaches when applied to Capacitated Ve-

hicle Routing Problems (CVRPs).

The first portion of the thesis provided a theoretical foundation for the

CVRP while examining notable contributions to CVRP’s exact algorithms.

The dynamic-programming-based label-correcting algorithm, proposed in

Desrochers et al. (1992) and Feillet et al. (2004), is yet to this day a fundamental

component for solving the pricing problem in contemporary VRP solvers. We

examined the label-correcting algorithm and discussed additional contributions

in the pricing problem domain.

We identified the labeling algorithm’s limitations in solving pricing problems

with non-stringent vehicle capacities and its inability to scale to multiple ma-

chine cores. As a solution, we proposed a BAC algorithm to address the pricing

problem, the implementation of which was provided in chapter 6. The BAC al-

gorithm was built on top of the CPLEX MIP optimizer, with the added benefit

of scaling to multiple machine cores effortlessly.

Despite the inherent operational differences between the two approaches, we

conducted an empirical study in chapter 7 to assess their performance as the

associated CVRP vehicle capacity increases. Our analysis revises and vastly

supplements the previous study published in Jepsen et al. (2014).

The empirical results were discussed in sections 7.5 and 7.5.1. While we
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did not achieve outstanding results in all cases, we demonstrated that the BAC

framework outperforms the labeling algorithm as the vehicle capacity bound in-

creases. Our results imply that further research on BAC-based pricer approaches

may provide additional benefits to modern CVRP solvers. BAC-based pricers

may be integrated within branch-and-price (BAP) frameworks supplementing

the traditional dynamic programming labeling algorithm.

8.1 Improvements and Future Work

In the section section 8.1, we discuss improvements and future work regarding

our BAC-based pricer.

The labeling algorithm for pricing q-routes of Desrochers et al. (1992) could

be integrated to provide sensible dual bounds to the CPLEX MIP optimizer in

the early stages. Preprocessing algorithms may also be studied and implemented

to reduce the search-space size of the CPTP.

Mathheuristics (Fischetti et al., 2018), such as local branching (Fischetti et

al., 2003) or hard-fixing, could be used to transform an exact BAC algorithm into

a heuristic one. Mathheuristics shrinks the search space by imposing additional

invalid constraints. These constraints typically limit the search space to solutions

resting "closely" to a candidate point. The utility of mathheuristic approaches

should be investigated further in the context of pricing.

Readjusting the decremental state-space relaxation (DSSR) of Boland et al.

(2006), Righini et al. (2008), and Martinelli et al. (2014) to a BAC approach, may

also be a viable option for accelerating convergence towards optimal solutions.

Initially, the BAC-pricer could be asked to generate non-elementary q-routes.

The elementarity condition could then be gradually enforced over time using an

integral cutting-planes approach by strengthening the bounds associated with the

yi ∀i ∈V decision variables that violated the elementarity condition.

Porting the ng-routes relaxation (Baldacci et al., 2011) to a BAC framework

could be an intriguing research topic, though it may be unrealistic to accomplish.

It will be interesting to see if paradigm shifts from the employed CPTP

MIP model could provide performance boosts to the BAC pricer. Compact
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formulations (polynomial number of constraints) could be studied in the

context of pricing: such as sequential formulation (MTZ) (Miller et al., 1960),

single-commodity flow formulations (FLOW-1) (Gavish et al., 1978) or multi-

commodity flow formulations (MCF) (Wong, 1980; Claus, 1984). Compact

formulations, on the other hand, were empirically proven to be unsatisfactory

in Taccari (2016) for the ESPP. Nonetheless, hybridizations of these models,

combining decision variables and cutting planes strategies, could be a topic of

future evaluation.

The BAC pricer could benefit from novel cutting planes with shorter separa-

tion times that achieve reasonable dual-bound improvements. We did not use any

custom branching strategies in our implementation. Other branching schemes,

such as branching over cut-sets of Rounded Capacity Constraints (RCC), could

be advantageous to test. To reduce memory consumption and improve efficiency,

we could also tune the cutting planes violation thresholds and use the GSEC

sparser formulation of (5.20) whenever possible.

We saw the impact of fractional labeling and fractional separation in sec-

tions 7.5 and 7.5.1 and how these two components are critical to the BAC pricer’s

efficiency. The speed of fractional labeling could be increased by using heuris-

tics to compute reasonable min-cuts. The Lin-Kernighan heuristic (Kernighan et

al., 1970), for example, could be used to compute reasonable min-cuts in O(N2.2)

time. Instead, a simpler heuristic alternative is to perform a DFS traversal in the

support graph generated by the non-zero fractional solutions x⋆e > 0 ∀e ∈ E. If

the heuristic fractional labeling cannot identify any violated inequality, then the

exact fractional labeling of section 6.4.2 can be used instead.

In the future, it would be interesting to investigate the competitiveness of our

approach by instead measuring the time required to solve the entire CVRP in-

stance with the BPC algorithm using the BAC algorithm as a pricer. Doing so

would require additional implementation efforts to port the BAC-pricer to BaP-

Cod, requiring the development of a C++ translation layer to route the BaPCod

pricing requests to our BAC pricer.

As a final side-note, it would be interesting to see if the same results obtained

for the CVRP also apply to the VRPTW. However, this scenario would neces-
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sitate radical modifications to the pricer implementation, the MIP model, and

the cutting planes. In the VRPTW, the MIP model needs to be modified into an

ESPPRC to account for time window slots. Time window slots must be modeled

as big-M constraints, which are known to be computationally unstable (Jepsen

et al., 2008b). Despite the VRPTW is beyond the scope of this thesis, it could

be an interesting subject for studying BAC-based pricers in the future.



APPENDIX A
Introduction to CPLEX

IBM ILOG CPLEX Optimizer1, CPLEX for short, is a commercial optimization

software package for solving problems expressed as either: linear programs,

mixed-integer programs, quadratic programs, or quadratically constrained pro-

grams. ILOG CPLEX was purchased by IBM in 2009 and is still maintained by

IBM. CPLEX is available in two flavors: a standalone executable and a callable

library. The executable can solve problems defined interactively or defined in-

side a custom file format. The CPLEX Callable library is a C dynamic library

linkable with custom user code. CPLEX also includes language bindings for

C++, Java, Python, and other popular programming languages. CPLEX uses the

simplex algorithm (both primal and dual) and an advanced proprietary algorithm

based on a branch-and-cut technique called Dynamic Search. CPLEX applies

pre-processing at the root to improve the formulation and reduce the problem

size. It also features a probing technique for analyzing logical implications by

setting binary variables to 0 or 1. It applies several heuristics at each node of the

tree: diving heuristics, Local Branching (LB) (Fischetti et al., 2003), Feasibility

pump (Fischetti et al., 2005), Relaxation Induced Neighborhood (Danna et al.,

2005), Evolutionary genetic algorithms for polishing the solutions (Rothberg,

2007), and more. CPLEX includes efficient implementations of several cut tem-

plates. Among the most notable: Gomory cuts (Chvátal, 1973), Knapsack covers

1IBM ILOG CPLEX Optimizer: https://www.ibm.com/analytics/
cplex-optimizer
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(Letchford et al., 2020), GUB covers (Wolsey, 1990), Local Branching (Fis-

chetti et al., 2003), Flow covers (Padberg et al., 1985), Clique covers (Brigham

et al., 1983), 0-1 half cuts (Caprara et al., 1996), and more. Moreover, the node-

selection and branching decision strategies in CPLEX are top-notch. The node-

selection and branching decision strategies are the most delicate component of a

branch-and-cut algorithm because they can substantially alter the whole running

time of the procedure (Lodi et al., 2013). They received many years of develop-

ment and tuning to make them top-notch. For more details about CPLEX refer

to Lima et al. (2010) and Lodi (2013).

MIP solvers are rather general and can be used to solve a wide range of prob-

lems from various fields (Bixby et al., 2007). MIP models are, in spirit, a way to

mathematically program a solver to achieve the desired solution. A MIP solver

can solve a mixed-integer linear programming formulation expressed as (Wolsey

et al., 1999):

max
x,y

cT x+dT y (A.1)

s.t. Ax+By≤ b (A.2)

x ∈ Rn (A.3)

y ∈ Zk
+, (A.4)

where A ∈ Rm×n,B ∈ Rm×k are matrices and c ∈ Rn,d ∈ Rk,b ∈ Rm are vector

coefficients. The bound in eq. (A.2) can also be rewritten in equality and/or

greater form.

MIP programs are solvable in various ways, but the most common is to use

the simplex algorithm (for solving the continuous relaxation) and a branch-and-

cut algorithm (to handle the integrality constraints). The branch-and-cut algo-

rithm, first introduced in Padberg et al. (1991), is a hybridization between a cut-

ting plane method and a branch-and-bound procedure (Land et al., 2010). The

branch-and-bound algorithm is a divide-and-conquer algorithm that manipulates

a search tree to explore the solution space. Each node of the tree represents a

sub-problem of the feasible region. The continuous relaxation was proven to

be solvable in polynomial time in Khachiyan (1979). Even though the simplex

algorithm works well in practice, it could rarely take an exponential amount of
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time to complete. Regardless, the simplex algorithm works flawlessly in prac-

tice.

MIP solvers are exact by nature: given enough running time, they can com-

pute a proven optimal solution by exhibiting both a lower and upper bound to

the objective function. They tend to be less effective than an ad-hoc heuristic

algorithms since they work with a generic abstract mathematical model and can-

not anticipate all the nuances that the model itself represents. As Bixby (1999)

points out, MIP modeling is a powerful and convenient technique that wasn’t

practical 40 years ago due to limited hardware and inadequate implementations.

MIP models are now quite manageable and solvable in a reasonable time on

consumer hardware, thanks to numerous reasons: advances in processor speed,

the development of faster algorithms, embedded heuristics, better preprocessing,

post-processing, and polishing techniques.

Unfortunately, MIP solvers are frequently quite complex. Lots of efforts are

needed to develop an efficient MIP solver. Unlike a simple heuristic whose

implementation spans a few lines of code, a MIP solver cannot be developed

in "house" using limited resources within a reasonable time. The most efficient

MIP solvers on the market have licenses that cost tens of thousands of dollars.

Fortunately, CPLEX is available freely through an academic license at this

URL2.

2URL: https://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.
odms.cplex.help/CPLEX/GettingStarted/topics/preface/preface_synopsis.
html

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/preface/preface_synopsis.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/preface/preface_synopsis.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/preface/preface_synopsis.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.5.1/ilog.odms.cplex.help/CPLEX/GettingStarted/topics/preface/preface_synopsis.html




APPENDIX B
BaPCod Parametrization

This section exhaustively lists all of the configuration parameters for respec-

tively the BaPCod and VRPSolver extension. These parameters were employed

to obtain the results in chapter 7. We will not provide an exhaustive list of each

parameter; instead, we will focus on the significant ones employed to achieve the

desired intent. The BaPCod technical report (Sadykov et al., 2021b) provides a

more comprehensive list and description of the available parameters. The tech-

nical report alone is not enough to comprehend the purpose of each parameter,

therefore it is highly suggested to supplement the read with the scientific docu-

ment of Pessoa et al. (2020a).

The parameters we’ve used will be summarized in the following sections of

this appendix, along with their associated values, meaning, and justification for

their use. First, in the remainder of this section, we want to provide a summary

of the guiding decisions that influenced the choice of the parameters.

Non-robust inequalities (branching and cutting planes) are necessarily dis-

abled since our pricer does not support them. While robust branching and cut-

generation are technically doable, we chose to disable these two features entirely

to simplify the BAP algorithm and reduce the computation time. Evaluating the

column generation iterations issued at the root node of the branch-and-bound

tree without additional cutting planes or branching is more than sufficient to

stress the labeling algorithm.

We want to apply as much pressure on the VRPSolver’s pricer as possible. The
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ng-sets augmentation (Pessoa et al., 2020a) is enabled, and the ng-sets maximum

set size is raised as high as possible. Furthermore, the VRPSolver pricer’s tailing-

off condition was disabled. The labeling algorithm will work harder to produce

dual bounds closer to the elementary bound as the ng-sets extend. As a result,

the dual bound at the root node will improve significantly.

The VRPSolver extension’s labeling algorithm can generate multiple routes

per pricing iteration, providing the BPC with more diverse paths. We disabled

such a feature to produce a fair comparison because our BAC framework can

only output a single column per pricing iteration.

B.1 Misc parameters

These parameters control numerous aspects of BaPCod, such as the logging

verbosity. These aren’t especially significant parameters, but they can help with

debugging/understanding what’s going on inside the BPC algorithm’s guts.

• DEFAULTPRINTLEVEL = 0. Controls the verbosity of the BaPCod’s log-

ging system by setting it to a low level. This value strikes an acceptable

balance between the amount of information emitted and the number of

characters printed per second.

• printMasterPrimalSols = 2. By setting this parameter to 2, BaPCod

will print the fractional solution after each column generation conver-

gence. Useful for debugging.

B.2 Core parameters

These parameters govern the BPC algorithm’s overall behavior, such as total

running time, which pricer to use, enabling specific components and performing

validation checks.

• GlobalTimeLimit = 3600. The maximum allowed solving time is set to

one hour. This global timelimit affects the entire BPC algorithm from the
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beginning to the resolution process at the root node until the discovery of

an integral optimal solution.

• colGenSubProbSolMode = 3. Tells BaPCod to use the user-supplied

custom pricing functor. In our case, the pricing functor is a stubbed im-

plementation that wraps the original VRPSolver extension pricing functor

and times it (see section 7.4 for more details). Instead, by setting this pa-

rameter to the value 2, we can instruct BaPCod to use the default generic

MIP pricer for solving the pricing sub-problems.

• ApplyPreprocessing = true. Tells BaPCod to utilize pre-processing

to adjust bounds and remove redundant constraints. We enabled this fea-

ture because it can potentially improve the model without affecting the

pricing sub-problem.

• PreprocessVariablesLocalBounds = false. Ensures that BaPCod

does not change the variable bounds of sub-problems after pre-processing.

We disable this feature because our pricer does not support modifying vari-

ables’ bounds.

• CheckSpOracleFeasibility = false. This feature is helpful for de-

bugging and when developing custom pricing functors. When this pa-

rameter is set to true, an expensive MIP resolution process validates the

pricer algorithm’s correctness. The MIP determines whether the generated

columns satisfy all the MP’s constraints. It is disabled in our case.

• CheckOracleOptimality = false. Similar to the CheckSpOracle-
Feasibility parameter but it also verifies the optimality of the generated

columns.

B.3 Column Generation parameters

These parameters control the column generation framework.

• GenerateProperColumns = false. When this parameter is set to true,

BaPCod will throw an error if the pricer produces a non-proper column,
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that is, a column that violates the sub-problem variable bounds. In our

case, we set this parameter to false because it did not appear to cooperate

with the VRPSolver pricing functor in our tests.

• MaxNbOfStagesInColGenProcedure = 3. Sets the number of stages

that the pricer may use. When the stage iteration is greater than one,

the pricer is permitted to use progressively lighter heuristics for column

determination. The pricing problem should be solved exactly when the

stage iteration reaches stage zero. When the previous stage converges,

namely when it fails to find any reduced cost column, BaPCod automati-

cally lowers the current stage number. When using the VRPSolver exten-

sion, the technical documentation recommends setting this parameter to 3.

The VRPSolver extension implements two heuristic stages using a mod-

ified bidirectional labeling algorithm. See the "Pricing heuristics" and

"Column and cut generation" sections of Sadykov et al. (2021a).

• ReducedCostFixingThreshold = 0.0. Setting it to zero disables re-

duced cost fixing.

B.4 Cut Generation parameters

These parameters govern the generation of cutting planes. We’ve decided to turn

off cut generation entirely in the BPC framework.

• MasterCuttingPlanesDepthLimit = -1. When this parameter is set

to -1, core cut generation is disabled. Core cuts are problem-independent

cutting planes generated directly from the BPC algorithm. Because this

parameter does not affect user-defined cuts, they must be disabled manu-

ally. Explicit usage of user-defined cuts is requested explicitly by register-

ing the associated functors. Consequentially in our BaPCod model, we do

not register any additional user-defined cuts. As a result, all cutting planes,

including the separation of the RCC inequalities eq. (2.5), are disabled.
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• MaxNbOfCutGeneratedAtEachIter = 0. Sets the maximum number of

core cuts added per cut round to zero, effectively enforcing the core cuts

generation’s deactivation.

B.5 Branching parameters

These parameters govern the BPC algorithm’s branching scheme and branching

priorities. We’ve decided to turn off all forms of branching.

• StrongBranchingPhaseOne="", StrongBranchingPhaseTwo="",

StrongBranchingPhaseThree="", StrongBranchingPhaseFour=""
These parameters govern the strong branching behavior of BaPCod,

comprised of several phases. We disable each phase’s strong branching

by setting the corresponding parameter to an empty string.

• SimplifiedStrongBranchingParameterisation = false. When

this parameter is set to true, BaPCod populates the parameters Strong-
BranchingPhaseOne, StrongBranchingPhaseTwo, StrongBranch-
ingPhaseThree, StrongBranchingPhaseFour with sane default values.

We set SimplifiedStrongBranchingParameterisation to false
because populating these aforementioned parameters would effectively

re-enable branching.

B.6 VRPSolver extension parameters

These settings affect the labeling algorithm, the size of the ng-sets, the route enu-

meration procedure and a few other minor aspects of the VRPSolver extension.

Recall that the VRPSolver extension was introduced in Pessoa et al. (2020a),

where it quickly became one of the most advanced strategies for solving routing-

like problems. Refer to the scientific paper of Pessoa et al. (2020a) for additional

details.
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• RCSPuseBidirectionalSearch = 2. This parameter, known as φ bidir in

the scientific paper, instructs the RCSP pricer to use bidirectional search

to solve the pricing problem.

• RCSPapplyReducedCostFixing = 1. This parameter, known as φ elim

in the scientific paper, instructs the pricer to use the standard bucket arc

elimination discussed in Sadykov et al. (2021a).

• RCSPmaxNumOfColsPerExactIteration = 1, RCSPmaxNumOf-
ColsPerIteration = 1. These parameters, known as γexact,γheur

in the scientific paper, control the number of generated columns per

iteration for the heuristic and exact stages, respectively. Because our

pricer can only output a single column per pricing iteration, we force the

labeling algorithm to operate similarly to ensure a fair comparison.

• RCSPallowRoutesWithSameVerticesSet = false. This parameter

tells the labeling algorithm whether it is permissible to output multiple

routes that pass through the same vertices. When disabled, it allows the

pricer to generate more diversified paths at the expense of increasing the

pricing run time. This parameter has no effect because we’re forcing the

labeling algorithm to output a single route regardless.

• RCSPmaxNumOfEnumSolutionsForMIP = 1. This parameter, known as

ωMIP in the scientific paper, controls the route enumeration (Baldacci et

al., 2008) threshold, at which the number of enumerated paths can directly

trigger a solution of the SP formulation via a MIP optimizer. Because

we want to measure pricing complexity, we disable the route enumeration

feature by setting the corresponding parameter to 1.

• RCSPstopCutGenTimeThresholdInPricing = 1e21, RCSPhard-
TimeThresholdInPricing = 1e21. These parameters, known as τsoft

and τhard in the scientific paper, affect the soft and hard time thresholds.

These thresholds, applicable only during the exact pricing stage, modify

the tailing-off condition of the pricer. If the pricer’s running time exceeds

one of these thresholds, column generation is preemptively interrupted
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in favor of cut generation or branching. We want to measure the label

setting algorithm’s performance even when it struggles, so we set those

parameters to high values to disable the tailing-off condition.

• RCSPdynamicNGmode = 1. This parameter tells BaPCod to scale dynam-

ically the ng-sets size based on the fractional solution obtained by the col-

umn generation. Note that ng-set augmentation is not based on the solu-

tion received from the pricing problem. See Pessoa et al. (2020a) for more

details.

• RCSPinitNGneighbourhoodSize = 8, RCSPmaxNGneighbourhood-
Size = 63. These parameters, known as η init and ηmax in the scientific

paper, limit the the ng-set size during augmentation. Raising η init can

improve the dual bound generated by the pricer, but it usually results in

an explosion of computation times. As a result, if one wants to improve

the dual bound at each branch-and-bound node, keeping η init small and

increasing ηmax is the preferred approach. The ng-sets size starts at the

lower value η init and it is later increased (if RCSPdynamicNGmode is

enabled) after the column generation convergence and only if the MP

contains a fractional solution (see Pessoa et al., 2020a). Since our pricer

produces the best dual-bound improvement possible (elementary routes),

we want to stress the labeling algorithm to try as hard as possible to

achieve similar results. Therefore, by setting η init = 8 and ηmax = 63 we

force the labeling algorithm to produce better dual bounds towards the

end of the column generation convergence. Note that, due to BaPCod’s

implementation details ηmax ≤ 63 and thus elementary routes can be

guaranteed in the column generation only for instances having less than

64 nodes.

• RCSPmaxNGaverNeighbourhoodSize = 63. This parameter is very sim-

ilar to the ηmax parameter, but for the average case. In our case we set

this parameter to the same value of ηmax as it was suggested from Ruslan

Sadykov, a researcher who worked on BaPCod and VRPSolver extension

implementations.
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• CutTailingOffThreshold = 0.0000001, CutTailingOffCoun-
terThreshold = 999999. These parameters, known as δ gap and δ num

in the scientific paper, control the tailing off condition of cut-separation;

namely, the threshold at which the BPC deems cuts ineffective and

switches to lower priority (and usually more computationally expensive)

cuts. Despite their name and application to cut separation, these two

critical parameters also affect the column generation procedure: the

augmentation of the ng-sets. As stated in the original paper, increasing

the ng-sets size is a form of "cut generation" because it improves the

dual bound. Ng-sets augmentation has the highest priority, followed

by cut-generation and branching in this order. We want to disable the

cut-tailing off condition because we always prefer to augment the ng-sets

as much as possible. Setting these parameters to the above values allows

us to disable the cut-tailing off condition.
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