327 research outputs found

    Orbiting Rainbows: Optical Manipulation of Aerosols and the Beginnings of Future Space Construction

    Get PDF
    Our objective is to investigate the conditions to manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an ultra-lightweight surface with useful and adaptable electromagnetic characteristics, for instance, in the optical, RF, or microwave bands. Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. See Figure 1 for a scenario of application of this concept. The solution that we propose is to construct an optical system in space in which the nonlinear optical properties of a cloud of micron-sized particles are shaped into a specific surface by light pressure, allowing it to form a very large and lightweight aperture of an optical system, hence reducing overall mass and cost. Other potential advantages offered by the cloud properties as optical system involve possible combination of properties (combined transmit/receive), variable focal length, combined refractive and reflective lens designs, and hyper-spectral imaging. A cloud of highly reflective particles of micron-size acting coherently in a specific electromagnetic band, just like an aerosol in suspension in the atmosphere, would reflect the Sun's light much like a rainbow. The only difference with an atmospheric or industrial aerosol is the absence of the supporting fluid medium. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft clouds to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exoplanet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exoplanet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities

    Research of Simulation in Character Animation Based on Physics Engine

    Get PDF
    Computer 3D character animation essentially is a product, which is combined with computer graphics and robotics, physics, mathematics, and the arts. It is based on computer hardware and graphics algorithms and related sciences rapidly developed new technologies. At present, the mainstream character animation technology is based on the artificial production of key technologies and capture frames based on the motion capture device technology. 3D character animation is widely used not only in the production of film, animation, and other commercial areas but also in virtual reality, computer-aided education, flight simulation, engineering simulation, military simulation, and other fields. In this paper, we try to study physics based character animation to solve these problems such as poor real-time interaction that appears in the character, low utilization rate, and complex production. The paper deeply studied the kinematics, dynamics technology, and production technology based on the motion data. At the same time, it analyzed ODE, PhysX, Bullet, and other variety of mainstream physics engines and studied OBB hierarchy bounding box tree, AABB hierarchical tree, and other collision detection algorithms. Finally, character animation based on ODE is implemented, which is simulation of the motion and collision process of a tricycle

    Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

    Full text link
    Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.Comment: Accepted for publication by the International Journal of Computer Vision (IJCV) on 16.02.2016 (submitted on 17.10.14). A combination into a single framework of an ECCV'12 multicamera-RGB and a monocular-RGBD GCPR'14 hand tracking paper with several extensions, additional experiments and detail

    Quadrotor team modeling and control for DLO transportation

    Get PDF
    94 p.Esta Tesis realiza una propuesta de un modelado dinámico para el transporte de sólidos lineales deformables (SLD) mediante un equipo de cuadricópteros. En este modelo intervienen tres factores: - Modelado dinámico del sólido lineal a transportar. - Modelo dinámico del cuadricóptero para que tenga en cuenta la dinámica pasiva y los efectos del SLD. - Estrategia de control para un transporte e ciente y robusto. Diferenciamos dos tareas principales: (a) lograr una con guración cuasiestacionaria de una distribución de carga equivalente a transportar entre todos los robots. (b) Ejecutar el transporte en un plano horizontal de todo el sistema. El transporte se realiza mediante una con guración de seguir al líder en columna, pero los cuadricópteros individualmente tienen que ser su cientemente robustos para afrontar todas las no-linealidades provocadas por la dinámica del SLD y perturbaciones externas, como el viento. Los controladores del cuadricóptero se han diseñado para asegurar la estabilidad del sistema y una rápida convergencia del sistema. Se han comparado y testeado estrategias de control en tiempo real y no-real para comprobar la bondad y capacidad de ajuste a las condiciones dinámicas cambiantes del sistema. También se ha estudiado la escalabilidad del sistema

    NON-RIGID BODY MECHANICAL PROPERTY RECOVERY FROM IMAGES AND VIDEOS

    Get PDF
    Material property has great importance in surgical simulation and virtual reality. The mechanical properties of the human soft tissue are critical to characterize the tissue deformation of each patient. Studies have shown that the tissue stiffness described by the tissue properties may indicate abnormal pathological process. The (recovered) elasticity parameters can assist surgeons to perform better pre-op surgical planning and enable medical robots to carry out personalized surgical procedures. Traditional elasticity parameters estimation methods rely largely on known external forces measured by special devices and strain field estimated by landmarks on the deformable bodies. Or they are limited to mechanical property estimation for quasi-static deformation. For virtual reality applications such as virtual try-on, garment material capturing is of equal significance as the geometry reconstruction. In this thesis, I present novel approaches for automatically estimating the material properties of soft bodies from images or from a video capturing the motion of the deformable body. I use a coupled simulation-optimization-identification framework to deform one soft body at its original, non-deformed state to match the deformed geometry of the same object in its deformed state. The optimal set of material parameters is thereby determined by minimizing the error metric function. This method can simultaneously recover the elasticity parameters of multiple regions of soft bodies using Finite Element Method-based simulation (of either linear or nonlinear materials undergoing large deformation) and particle-swarm optimization methods. I demonstrate the effectiveness of this approach on real-time interaction with virtual organs in patient-specific surgical simulation, using parameters acquired from low-resolution medical images. With the recovered elasticity parameters and the age of the prostate cancer patients as features, I build a cancer grading and staging classifier. The classifier achieves up to 91% for predicting cancer T-Stage and 88% for predicting Gleason score. To recover the mechanical properties of soft bodies from a video, I propose a method which couples statistical graphical model with FEM simulation. Using this method, I can recover the material properties of a soft ball from a high-speed camera video that captures the motion of the ball. Furthermore, I extend the material recovery framework to fabric material identification. I propose a novel method for garment material extraction from a single-view image and a learning based cloth material recovery method from a video recording the motion of the cloth. Most recent garment capturing techniques rely on acquiring multiple views of clothing, which may not always be readily available, especially in the case of pre-existing photographs from the web. As an alternative, I propose a method that can compute a 3D model of a human body and its outfit from a single photograph with little human interaction. My proposed learning-based cloth material type recovery method exploits simulated data-set and deep neural network. I demonstrate the effectiveness of my algorithms by re-purposing the reconstructed garments for virtual try-on, garment transfer, and cloth animation on digital characters. With the recovered mechanical properties, one can construct a virtual world with soft objects exhibiting real-world behaviors.Doctor of Philosoph

    Quadrotor team modeling and control for DLO transportation

    Get PDF
    94 p.Esta Tesis realiza una propuesta de un modelado dinámico para el transporte de sólidos lineales deformables (SLD) mediante un equipo de cuadricópteros. En este modelo intervienen tres factores: - Modelado dinámico del sólido lineal a transportar. - Modelo dinámico del cuadricóptero para que tenga en cuenta la dinámica pasiva y los efectos del SLD. - Estrategia de control para un transporte e ciente y robusto. Diferenciamos dos tareas principales: (a) lograr una con guración cuasiestacionaria de una distribución de carga equivalente a transportar entre todos los robots. (b) Ejecutar el transporte en un plano horizontal de todo el sistema. El transporte se realiza mediante una con guración de seguir al líder en columna, pero los cuadricópteros individualmente tienen que ser su cientemente robustos para afrontar todas las no-linealidades provocadas por la dinámica del SLD y perturbaciones externas, como el viento. Los controladores del cuadricóptero se han diseñado para asegurar la estabilidad del sistema y una rápida convergencia del sistema. Se han comparado y testeado estrategias de control en tiempo real y no-real para comprobar la bondad y capacidad de ajuste a las condiciones dinámicas cambiantes del sistema. También se ha estudiado la escalabilidad del sistema
    corecore