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ABSTRACT A single-time velocity estimator-based reinforcement learning (RL) algorithm, integrated with 
a chaotic metaheuristic optimization technique is proposed in this article for the optimal path-planning 
of the nonholonomic robots considering a moving/stationary obstacle avoidance strategy. The additional 
contribution of the present study is by employing the Terramechanics principles to incorporate the effects 
of wheel sinkage into the deformable terrain on the dynamics of the robot aiming to find the optimal 
compensating force/torque magnitude to sustain a robust and smooth motion. The designed systematic 
control-oriented system incorporates a cost function of weighted components associated with the target-
tracking and the obstacle avoidance. The designed velocity estimator contributes to the finite-state Markov 
decision process (MDP) in order to train the transition probabilities of the problem objectives. Based on the 
obtained results, the optimal solution for the Q-learning in terms of the adjusting factor for the minimized 
tracking error and obstacle collision risk propagation profiles is found at 0.22. The results further confirm 
the promising capacity of the proposed optimization-based RL algorithm for the collision avoidance control 
of the nonholonomic robots on deformable terrains. 

INDEX TERMS Mechatronics, terramechanics, path-planning, artificial intelligence. 

I. INTRODUCTION feature is also regarded as one of the substantial consideration 
Autonomous mobile robots are massively employed in the related to the functional design of task-assigned automatic 
hazardous environments such as military operations, space wheeled robots [8]. 
explorations, and mining industries to eliminate the risk that The presence of matched and mismatched uncertainties 
the human labour is being exposed [1], [2]. Likewise, wheeled such as moving obstacles and robots, cluttered environ-
robots are also utilized in the farmlands during various agri- ment and unstable operating conditions aggravate the optimal 
cultural operations such as weed detection/elimination for the design of autonomous robots [1]. Additionally, provision of 
precision farming and optimized productivity [3], [4]. Thus, automated robots with the logic to find the optimal path in 
mobile robots should hold the ability of route finding, high terms of the nearest and safest route to take is still considered 
manoeuvrability, and optimal self-positioning in the plane of as a challenging task [9], [10]. Therefore, intelligent vehi-
motion under different operating conditions such as the road cle navigation systems based on self-organizing/self-training 
condition variability which drastically affects the dynamic aptitude have gained a growing attention in the field of 
response of the moving vehicles [5]–[7]. Obstacle avoidance autonomous wheeled robots. 

Local obstacle avoidance techniques are employed online 
The associate editor coordinating the review of this manuscript and in the absence of global information, typically via popu-

approving it for publication was Chao Shen . lar methods such as artificial potential fields (APFs) [11], 
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vector field histograms (VFH) [12], and the dynamic win-
dow approach (DWA) [13], which extends local avoidance 
approaches on account of kinematics constraints. Liter-
ature is abundant with various strategies proposed to 
address the problem of obstacle avoidance of automated 
robots [14]–[23]. In [14], a generic 2-wheeled automated 
robot with obstacle detection capacity was developed to 
deal with the nonholonomic constraints based on model 
predictive approach. The advantage of predictive model 
based techniques is the improved robot steerability in the 
time domain only if the reference model holds the capac-
ity to satisfactorily predict the robot dynamic response. 
Biological-inspired control methods such as neurodynamics 
model hybridized with a backstepping technique has also 
shown effectiveness for the real-time path planning of non-
holomic robots [15], [16]. In addition to the Lyapunov-based 
adaptive control paradigms, the online minimum-energy con-
trol strategies have shown a remarkable application for the 
path planning goals related to the wheeled omnidirectional 
robots as well [17]–[19]. 

Reinforcement learning (RL) is suggestive of a high-
precision and hugely reliable method to achieve a range of 
pattern-recognition, modelling and control objectives within 
the complex domains that has found substantial application in 
the field of robotics [20]–[22]. For instance, a research was 
carried out to enable the robot for the mobility on an uncertain 
environment by inclusion of stationary and dynamic obstacles 
based on the integrated Q-learning and a neural network plan-
ner [23]. The developed strategy exhibited a proper perfor-
mance in navigation scenarios providing the global position 
of the robot. However, the travelling speed of the robot was 
essentially defined before the computation of the trajectory, 
which in practice is an uncertain variable particularly for the 
terrain robots due to the wheel slippage level. 

Additionally, an immense body of previous research 
has assumed the mobile robots being ideally capable of 
converting the entire delivered torque at the wheels into 
motion, alternatively described as slippage-free pure rota-
tion of the wheels [24]. However, the attributed nonholo-
nomic constraints are insufficient to describe the dynamics 
of deformable terrain based-wheeled robot motioning essen-
tially due to the elastic-plastic behavior of the terrain under 
the shear-compression loads. It is comprehensively under-
stood that wheel skidding and slipping effects remains a huge 
effect on the controllability and maneuverability of mobile 
robots owing to the wheel slippage on terrain. However, there 
has not been sufficiently dedicated to the terrain-based robots 
running on deformable terrains where the directional wheel 
slippage is of primary importance. Moreover, the deformable 
terrains produce massive fluctuations in the correcting force 
magnitude due to the wheel-soil adhesive forces. Besides 
the directional adjusting forces, the lateral stability of the 
robot is provided by the shear forces developed at the con-
tact patch. The lateral force, however, can be insufficient 
to counterbalance the centrifugal force, particularly under 
high-speed or at sharp corners generating even larger side-slip 

of the wheel. Thus, it is essential to comprehend the full 
dynamics of the moving robot on deformable terrain by 
employing the Terramechanics laws and the interactions 
between these complex systems. 

In light of the reviewed literature, it is inferred that the 
machine learning based strategies, such as RL, have demon-
strated superior performance with regard to the learning the 
dynamics of nonlinear and complex robotic systems and 
also for the control of wheeled robots for path-tracking and 
collision avoidance tasks. However, there are certain aspects 
related to RL in terms of the convergence and optimization 
procedure are still regarded as the challenging premises. This 
paper mainly contributes to the available literature by i) incor-
porating the Terramechanics laws for the slip-velocity estima-
tions related to the dynamics of a nonholonomic terrain-based 
robot, and ii) employing a proposed Single-Time Velocity 
Estimator principle integrated by a chaotic metaheuristics-
based Q-learning algorithm for the control of the robot to 
avoid collision with the dynamic obstacles in order to reach 
the final target location. 

II. PROBLEM FORMULATION 
A. TERRAMECHANICS MODEL 

The principles related to terrain mechanics are employed to 
formulate the dynamics of the robot under the effect of the 
developed torque and force at the contact-patch. The prin-
ciple includes the generation and propagation of the normal 
and shear stresses at the contact-patch that finally form the 
driving forces and moments. The magnitude of shear stress τx 
generated at the soil-wheel contact patch is described based 
on the following principle [25]: � � 

− jx 
τx = τmax 1 − e kx (1) 

where jx defines the shear deformation, kx represents the lon-
gitudinally oriented shear deformation modulus, τmax denotes 
the limiting shear stress based on a coupling term related to 
the normal stress σn as follows [25]: � �

∗τmax = C + σn tan ϕ (2) 

where C and ϕ* represent the cohesion and shear resistance 
angle characteristic soil. Consequently, soil shear displace-
ment jx can be calculated based on the time-integration of 
the soil profile shear velocity due to the interaction with the 
rotating wheel [26]: Z θe 

jx (θ) = R [1 − (1 − S) cos θ ] dθ (3) 
−θ r 

where R and S are the wheel radius and longitudinal slippage 
parameters, respectively. Additionally, θ denotes the angular 
position of the wheel segment that launches the rotation in the 
counterclockwise direction with respect to the wheel center, 
and θe represents the frontal contact patch angle (Fig. 1). The 
relationship presented in (3) also defines the shear deforma-
tion jx as a function of the wheel slip magnitude S, in a manner 
that the soil shear displacement grows with the slip value 
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FIGURE 1. Interaction between driven rigid wheel of robot and 
deformable terrain. 

increment. Similarly, the soil shear displacement in the lateral 
direction, jy, is defined by employing a related principle in 
terms of the time-integration of the soil profile shear velocity 
projection based on the side-slip angle value: Z t Z θe 

jy (θ) = Vydt = Vx tan α dθ (4) 
0 −θ r 

where Vx and Vy represent the directional speeds of the 
rotating wheel and α denotes the yaw angle according to � �

Vy
α = arctan (5)

Vx 

Additionally, the wheel slip value under the acceleration and 
braking modes of motion are expressed as follows: ⎧ 

Vx⎪⎨1 − Rω > Vx (acceleration)RωS = (6)Rω⎪⎩ − 1 Vx > Rω (deceleration)
Vx 

where ω represents the rate of wheel angular displacement. 
By incorporating the relationships (1), (2) and (4), the lateral 
shear stress term τycp for the entire contact area (A) can be 
described as: � � � �

∗ − k
jy
yτycp = C + σn tan ϕ 1 − e (7) 

where ky denotes the soil lateral shear deformation mod-
ulus to obtain the generated lateral shear force by the 
time-integration of the shear stress in the contact area assum-
ing the contact width remains constantly the same as the 
wheel width b. It can be also appreciated based on (7) that 
the shear stress expands across the contact length with the 
increase of the soil lateral shear displacement. Accordingly, 
the amount of the entire shear deformation parameter is 
expressed as: q

j = j2 
x + j2 

y (8) 

The magnitude of perpendicular force applied to the terrain 
from the rotating wheel brings about a certain soil sinkage. 
The occurred soil sinkage can be formulated on account of 
the pressure-sinkage relationship that accounts for the soil 

bearing capacity. The radially oriented pressures at the con-
tact patch are employed to derive the acting moments and 
forces on the driven rigid wheel. Bekke’s technique assumes 
that wheel is rigid enough to deform and sinks into the soil 
profile [25]. Based on this principle, the forces applied to the 
wheel during the time-integral related to the soil-wheel stress 
components at the contact patch. Accordingly, the normal 
stress is obtained based on the pressure-sinkage relation-
ship [27]. � � nkc 

σn = + kϕ z (9)
b 

where z, n and b denote the wheel sinkage into the soil, 
exponent factor, and the width of the wheel, respectively. 
For small sinkage ratios, the contact length is considered 
in (9), and, kc and kϕ are soil coefficients [25]. However, there 
are two substantial limiting factors, related to i) insufficient 
capacity of the unified equation to consider the various plate 
shapes employed in the sinkage tests, and ii) the absence of 
varying soil bulk density due to soil sinkage/compaction [26]. 
Instead, a modified form of the relationship, Bekker-Reece 
equation, is presented based on σn � 

0
� � z �n 

σn (θ) = Ckc 0 + bγskϕ (10)
b 

where kc
0 , k 0 represents soil texture cohesion and friction con-ϕ 

stants based on the Bekker-Reece relationship [25]. Based on 
the reviewed literature associated with various soil textures, 
the exponent is generally ranged between 0.8 and 1.2 [25]. 
Soil cohesion constant is derived using either uni-axial or tri-
axial compression tests [28]. The normal stress developed 
in the front (σnf ) and rear (σnr ) sections in the wheel-soil 
interface can be considered asymmetric (Fig.1), and can be 
formulated as follows [26]: (

σnf (θ) 0 < θ < θe 
σn (θ) = (11) 

σnr (θ) θr < θ < 0 

where � �n� 
0
� R (cos θ − cos θe)

σnf (θ) = Ckc 0 + bγskϕ (12)
b 

0σnr (θ) = 
� 
Ckc 0 + bγskϕ 

� � � � � ��nR θ − θr
× cos θe − (θe − θN ) (13)

b θN − θr 

where θN denotes the angle for the maximum stress point 
based on the contact patch center value. The longitudinal 
force generated due to the soil compaction/thrust accounting 
for the external force applied the robot is computed as: �Z Z �θe θe 

FG 
= Rb σn (θ) sin θdθ − τ (θ) cos θdθ (14)x 

−θr −θr 

where τ and σn represent the shear stress at the sur-
face of the wheel-soil and the normal stress component, 
respectively. The above relationships are functional for the 
rigid-wheel based mobile robots where the wheel radius 
remains unchanged but the stress field is regarded with 
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expressed as follows. 

(18)rb = ϕ̇

vy + εrb � 
+ +ϕ εv cos v r= bx y 

� oẎ = vxsinϕ − v cosϕ = vxsinϕ − (19)cosϕy 

FIGURE 2. Schematic illustration of the wheeled nonholonomic robot 

� oẊ = vxcosϕ + v sinϕy cosϕ (20) 

where X and Y represent the global coordinates, ϕ, ε and 
voy denote the yaw angle, longitudinal distance between the 
robot center CG (G) and the tracking point O, and the lateral 
velocity at point O, respectively. Based on Newton’s sec-
ond law, the governing equations of motion for the robot 
are derived considering 5 degrees-of-freedom (DOF) can be 
formulated as 

(body-fixed coordinate system, oxy) including two independent driving 1 �� 
Fr y + Fy

l 
+ Fy

Gwheels to follow the desired trajectory in the global coordinate system − vxrb (21)v̇y = 
OXY subjected to the wheel slippage and external disturbances. m 

1 �� 
Fr + Fl + FG 

+ vyrb (22)x x xv̇x = 
m 

nonuniform distribution. It is also noteworthy that the first 1 n� o��� 
r

Fl − Fr c − Fl + F d − Td (23)x x yṙb = and second components in equations (14) represent the shear Iz y �� 
ηTl − RFl (24)x 

thrust and soil compaction resistance, respectively. 1 X
X 

1
T l = w Iw 

ω̇l = 
Iw

B. PROBLEM FORMULATION FOR ROBOT WHEEL WITH 1 1
T r = w Iw 

� 
ηTr − RFr (25)xSLIPPAGE AND EXTERNAL DISTURBANCE ω̇r = 

The governing equations of motion related to a nonholo-
Iw 

nomic wheeled mobile robot are developed by employing a 
body-fixed coordinate system. In this paper, the rear wheels 
are employed as driving wheels where the front wheels are 
free-rolling wheels without any slippage. The free body dia-
gram of the wheeled robot in the yaw-plane of motion is 
shown in Fig. 2, exhibiting the independently actuated rear 
wheels. The optimal torque for the rear wheels to carry out 
the desired path following on a deformable soil is developed 
utilizing the electric motors. The kinematic equations are 
obtained based on the constraints of the velocity components. 
For a given value of the right and left wheel rotational veloc-
ities, the longitudinal and lateral speeds and the yaw rate of 
the robot are formulated as: 

(Vxl + Sl ) (Vxr + Sr )
ωl = ; ωr = (15)

R R 
(Vxl + Vxr ) d (Vxl − Vxr ) vx = ; vy = + Sk (16)

2 2c 
(Vxl − Vxr ) rb = (17)

2c 

where Fy
r , Fy

l , Fx
r , Fl represent the forces exerted on the right x 

and left driving wheels in the lateral and longitudinal direc-
tions, respectively. Additionally, Fx

G , FG denote the external y 
forces due to the deformable soil characteristics, and Td acts 
as the external moment to the robot frame (Fy

G 
= τycpA, Td = 

FGd + FGc). Furthermore, Fx
r , Fl depend on of the applied y x x 

input torque to the right and left wheels, respectively. More-
over, the lateral force components Fy

r , Fl are linked to the y 
longitudinal components via the sideslip angle of the whee αl. 
Additionally, m, η, Iz and Iw characterize the total robot mass, 
gear ratio related to the motor drives, mass moment of inertia 
in the yaw plane, and the equivalent mass moment of inertia 
associated with the wheel and the driving motor, respectively. 
Finally, Tl and Tr denote the applied input torques to the left 
and rights wheels, respectively. Rearranging (23)-(27) taking 
into account the kinematic formulations (15)-(22), the state-
space representation of the model is obtained as: 

ẋ = F (x) + H (u) + D x ∈ R5 , u ∈ R2 (26) 

where ωl and ωr are the rotational velocities of the left and 
right side wheels, vx and vy are the body-fixed longitudinal 

� �Twhere x = [rb, vx , ϕ, Y , X ]T and u = T1 
∗ , T ∗ 

2 represent 
the states and the inputs to the system and additionally:and lateral velocities of the robot at its center gravity (CG) 

(G). Additionally, rb represents the yaw rate, Vxl and Vxr ⎡ ⎤ � −mdvxrbR2 

Iz + md2
denote the longitudinal velocities of the side wheels. Further- ⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

R2 + 2c2Iwmore, Sk indicates the wheel skidding, Sr and Sl represent 
mdrb 

2R2the right and left side wheel slip values, c is half-track width, 
and d is longitudinal distance between the rear wheels to CG. F = 2Iw + mR2 , 
The wheel slippage includes the major velocity components: rb 
Sr and Sl , and Sk for the braking term. The path-tracking vxsinϕ + (drb + εrb) cosϕ 
trajectory of the wheeled robot and the heading angle can be vxcosϕ − (drb + εrb) sinϕ 
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⎡ ⎤ 
ηcR Describing the robot position in the global coordination at the 

start of the problem and the target where the robot is intended 
0 

R2
� 

Iz + md2 + 2c2Iw 
ηcR to reach without colliding with the obstacles in an optimal 

manner at the end of simulation. The instantaneous physical 
0H = and2Iw + mR2 

0 0 

⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎦ limits of the terrain robot to the states and the control inputs 
according to (26) and (27) and by employing the proposed 0 0 

0 0 algorithm can be proposed as:��⎡ ⎤ ��cIw (v̇xr − v̇xl ) + dFy
G 
− Td − mdṠk R2 

0 ≤ X (t) , Y (t) ≤ Xmax , Ymax t ⊂ 0, Tf⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

� 
T ∗ ≤ T ∗ 
min ≤ Ti 

∗ 
maxIz + md2

FG 
+ mrbSk R2 

− Iw (v̇xr − ˙y 

�R2 + 2c2Iw i = 1, 2� 
(31)ϕmin ≤ ϕ (t) ≤ ϕmaxvxl )

D = (27) 
2Iw + mR2 

0 
Skcosϕ 

where the subscripts, min and max, are suggestive of the min-
imum and maximum thresholds, respectively. In this paper, 
the nonholonomic terrain robot is controlled for obstacle 

−Sksinϕ 

where T1 
∗
= Tl + Tr and T2 

∗
= Tl − Tr , and F, H , and 

D represent the system function, control input and external 
disturbance, respectively. The tracking point O does not nec-
essarily align with the robot center of mass G. Accordingly, 
any external forces at the tracking point need to be translated 
to point G in the form of the equivalent forces and moment. 

III. DESIGN OF COLLISION-AVOIDING PATH-PLANNER 
A. MULTI-OBJECTIVE-BASED COST FUNCTION 

The collision avoidance problem related to the nonholo-
nomic robot can be described in the form of a constrained 
optimization problem. Such an optimization problem can 
be formulated to minimize the start-to-target trajectory path 
while avoiding to collide the moving/stationary obstacles 
over a given time horizon. Accordingly, a cost function can 
be described as: 

J = min [w1Jo + w2Jt ]
T ∗ 
1 ,T ∗ 

2 

(28) 

where 

avoidance and path-planning based on the above optimization 
objective and constraints by employing a chaotic metaheuris-
tics method and RL-algorithm. 

B. METAHEURISTICS-BASED TARGET EXPLANATION 

Kennedy and Eberhart [29] first proposed the particle 
swarm optimization (PSO) algorithm, which has exhibited 
an extensive applicability within various optimization prob-
lems [30]–[32]. However, the standard method in [29] com-
prises various setbacks related to the premature convergence 
for multimodal problems [33]. Therefore, the modified ver-
sions of the standard PSO in terms of inertia parameter 
or hybridized optimization algorithms address the conver-
gence and computational demand concerns. In PSO algo-
rithm, the search space is filled with the swarm of particles 
through a zig-zag-type pattern including two main compo-
nents concerned with the deterministic and stochastic char-
acteristics [33]. The described components are essential for 
the particles to slightly shift the location to the current global 
best x̃gi, and slightly move towards their own local best 
x̃pi regarded as deterministic movement (Figure 4). Simul-
taneously, the particles show a random transition during the 
updates which is known as the stochastic component. 

The velocity of a particle can be updated at any incremental 
time step based on position vector x̃ and velocit vi: 

⎧ ⎪⎪⎪⎪⎨Jo =

(
˙ XobXk − ˙

k 

�T � # 

, 4

)� 
XobXk − ˙
k

˙Q1�T 
PTf −11 

2 k=0 � Y obYk − ˙
k # Y obYk − ˙

k
˙ ˙Q2�T 

+ 

Ẋ − Ẋt ˙⎪⎪⎪⎪⎩ �Q3 

Q3 

X − ẊtR TfJt = 2
1 � ��T dt t+1 tv = vi + αr1i ˜ xxpi − ˜

t 
i ˜ xxgi − ˜

t 
i (32)0 + βr2Ẏ − Ẏt Ẏ − Ẏt+ 

(29) 

where, and [0, Tf ] represents the optimization horizon. More-
over, Xt and Yt are the global positions for the target point, 
Xob and Y ob are the obstacle instantaneous positions, 4k k 
serves as the factor related to the collision risk parameter 
which regulates the obstacle distance at which, the robot 
should be trained to avoid to decrease the distance, w1 and 
w2 are the adjusting weights for the cost function, and Qi i = 
1, 2, 3, 4 acts as the adjusting matrix weight chosen arbitrar-
ily to converge the robot towards the objective in different 
directions. The constraints on the initial and final values of 
the problem are stated as follows: 

t twhere x̃i and vi represent the components of the particle i at 
time t in terms of position and velocity, respectively. Further-
more, the coefficients r1 and r2 are associated with random 
values distributed uniformly between (0,1) while α and β 
are the corresponding learning parameters commonly fixed 
around 2 [33]. Consequently, the updated position vector of 
an individual particle at the next time step is computed as 
based on 1t as the step size: 

t+1 
i
t 
+ vt+1x̃i = x̃ i 1t (33) 

However, the premature and sluggish convergence of the 
PSO algorithm can be modified by incorporating an inertia 
function term such as ϕ(t) in (32): �� � �t+1 t 

i + αr1 ˜ xxpi − ˜
t 
i ˜ xxgi − ˜

t 
iX (0) = Y (0) = 0, X Tf = Y Tf = 26 (30) = ϕ(t)v (34)+ βr2vi 
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FIGURE 3. Schematic presentation of the nonholonomic terrain robot 
training for obstacle avoidance and path-planning based on RL-algorithm. 

FIGURE 4. Illustration of particle chaotic motions including the position 
and velocity components. 

The inertia function ϕ(t) can be assigned any magnitude 
ranging between 0.5 and 0.9 [34]. The inertia term is mainly 
employed to enhance a stabilizer for the particles during 
the evolution and transitions to improve the convergence in 
the optimization problem. Therefore, it is essential to begin 
the problem optimization by setting the inertia function at a 
relatively large constant value and then vary the parameter 
during the iterations (epochs). The classical PSO algorithm 
utilizes the position of the present global best x̃gi, and slightly 
that of particle local best x̃pi. A primary purpose for utilizing 
the local best is essentially to improve the heterogeneity 
in the solution; while such an end can be achieved within 
by introducing some randomness and chaotic motion of the 
particles. A simplified model of accelerated convergence 
with the application of solely a global best was proposed by 
Yang [35], where the velocity vector was updated as: � �t tvti 

+1 
= vi + αr(t) + βr2 xg˜ i − x̃i (35) 

where r(t) represents the vector of randomly selected values 
distributed uniformly between (0,1). Therefore, the position 
of each particle is updated, as follows 

t+1 tx̃ = (1 − β)x̃ i + βxg˜ i + αr(t) (36)i 

This approach yields greater convergence performance 
because updating of the position is implemented independent 
of the velocity components, as seen in (36). This optimization 
problem based on the chaotic transition of the particles is 
employed for the problem (28) and (29) subject to constraints 
(30) and (31). 

C. SINGLE-TIME VELOCITY ESTIMATOR 

The velocity of the robot can be predicted as a Markov chain, 
where the transition probability of the velocity is formu-
lated using the maximum likelihood predictor and the nearest 
neighbor principle: � � 

k+1p8κ (k) = P vi = κ|vi
k 
= 8 �Xρ �−1 

= S8κ S8κ i = x, y (37)
κ=1 

where p8κ (k) represents the one-step transition probability 
as the robot velocity transfers from 8 at time k to κ at next Pρtime k + 1, κ=1 S8κ is the transition number from 8 to κ , 
and S8κ describes the total transition number initiated from 
k. Furthermore, the transition probability matrix 5 is filled 
with element p8κ . The probability vector related to the one-
step-ahead of the robot in the plane of motion, {vi, i = x, y}, 
can arbitrarily adopt one of finite values vj. � �−1 

5 = p8κ (k + 1)T (p8κ (k))T (38) 

and, 

5k 
= p8κ (+k) /p8κ (k + 1) (39) 

Based on the one-step transition probability matrix, the future 
driving cycle is predicted as follows: � � Xρk+1 kv = S8κ.vi i = x, y (40)i p κ=1 � � 
where vi

k+1 is robot predicted velocity in the longitudinal 
p

and lateral directions based on the prediction value, while 
the singe-time prediction is achieved by repeating the above 
process during the entire running time. 

D. REINFORCEMENT LEARNING ALGORITHM 

The standardized reinforcement learning (RL) models are 
typically described in terms of an agent that interacts with the 
environment by employing the action and perception system. 
During any individual interplay for the action-perception, 
the agent takes input i as the sign of the present state s of the 
environment. Subsequently, the agent determines an action 
a to define the output. Subsequently, the action alternates the 
environment state and the magnitude related to the associated 
state transition is taken as the agent by employing a proper 
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reinforcement signal r . In this system, B is the representative 
of the agent behavior which determines the corresponding 
actions in order to enhance the provisional total magnitude 
related to r , in a reciprocating manner. In such a model 
representation, the discrete set of environment states denoted 
by S, as well as a set of discrete agent actions A. Herein, the 
problem of delayed reinforcement, delayed reward based on a 
Markov Decision Process (MDP) is employed. Additionally, 
the reward function R(R : S × A → R) and a state transition 
function T are incorporated (T : S × A → 5(S) ). 5(S) is a 
probability distribution over the set S. The transition function 
T (s, s0 , a) is further described by the probability of perform-
ing a transition from state s to state s0 due to the action a. 
In this paper, the infinite horizon discounted model is 

employed by considering the longer-term reward related to 
the agent into consideration while the prospective future 
rewards are topologically discounted based on the discount 
factor in the range between 0 and 1 (0 ≤ χ < 1) such as �P

∞ � 
E t=0 χ

t rt . 
The optimal value associated with a state is defined as the 

average of infinite discounted rewards obtained by an agent 
to reach the optimality: �X∞ � 

V ∗ (s) = max E χ t rt (41) 
π t=0 

Owing to the uniqueness of the optimality function, the solu-
tion to the simultaneous equations is defined as a recursion 
expression [37]: � X 

0V ∗ (s) = max R (s, a) + χ T (s, s , a) 
a s0∈S � 

0
�� 

+ V ∗ s ∀s ∈ S (42) 

where V ∗ (s) is the amount of s associated with the initial 
optimal action. The above statement indicates that the amount 
of the state is the total sum of the expected instantaneous 
reward and discounted value of the future state values based 
on the current action. Based on the optimality policy the 
desired value function is described as [37]: � X 
π ∗ (s) = argmax R (s, a) + χ T (s, s0 , a) 

a s0∈S � 
0
�� 

+ V ∗ s ∀s ∈ S (43) 

Furthermore, the action-value function Q(s, a) is formulated 
as follows: X � �

0 0 0Q (s, a) = R (s, a) + χ T (s, s , a)Q s , a (44) 
s0∈S 

Accordingly, the corresponding optimal solution Q∗(s, a) can 
be described based on the action-value function X � � � �

0 0 0Q∗ (s, a) = R (s, a) + χ 
s0∈S

T s, s , a Q∗ s , a (45) 

where Q∗ (s, a) is the expected discounted reinforcement 
related to the a in state s in a continuous manner. The Q -
learning algorithm defines the update related to the Q value 
based on the delayed parameter 2 (2 ∈ [0, 1]) as follows: � � 

Q (s, a) := Q (s, a) + 2 χ max Q 
� 
s0 , a0

� 
−Q (s, a) + r 

a0 

(46) 

The above adjustment is employed to perform the 
RL-based predictive decision-making to avoid the obstacle 
collision by contribution of the time-scale velocity estimator. 

IV. RESULTS AND DISCUSSION 
The optimal path between the start and target position con-
sidering the obstacle avoidance of the nonholonomic terrain 
robots in the presence of unstructured skidding and slip-
ping is planned by the proposed algorithm during the sim-
ulation runs. The obtained results by the proposed chaotic 
metaheuristic-based Q-learning (RL) integrated by the STV 
estimator are compared in terms of the root mean square of 
errors (RMSE) with the adaptive neural network (NN) and 
multi-agent Lyapunov based control algorithms [24], [36] 
where the Terramechanics aspects related to the terrain robots 
are excluded. 

FIGURE 5. Obstacle function and the collision risk propagation in the 
plane of robot motion. 

Figure 5 represents the obstacle function values based 
on the one-step transition probability in the global surface 
of motion. Although the location of the stationary/moving 
obstacles can overrule the optimal path for the robot, the prop-
agation of the risk for the robot to collide these obstacles as 
a component of the total cost function can be appreciated 
in Fig. 5, where the collision risk ramps up to a maximum 
at the center. Additionally, the nucleus growth related to the 
collision risk is decreased at the further distances. 

The combined obstacle collision risk with those of start-
target localization in the plane of motion is presented in 
Figure 6, where the location X = 0, Y = 0 defines the 
starting point and X = 26, Y = 26 represents the target 
position. 

The contour plot for the integrated obstacle collision risk 
function and that of the start to target positions is also pre-
sented in Figure 6, where the robot can realize the approach-
ing obstacles (with a total number of 7), and accordingly 
find the optimal path based on the proposed algorithm. It is 
noteworthy that the optimal values related to the robot head-
ing angle, yaw rate, and position described in (26)-(27), are 
obtained based on the average of infinite discounted rewards 
assigned an agent to reach the optimality subject to (28), 
(30) and (31) by employing the chaotic-metaheuristics based 
Q-Learning (41)-(44). 
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FIGURE 6. a) Start-Target location with obstacle collision risk 
propagation; b) contour plot for sum of target and obstacle functions. 

FIGURE 7. Optimal path for the nonholonomic terrain robot subject to 
unstructured uncertainties from the starting point to the target position 
based on obstacle avoidance strategy by employing the proposed 
RL-Algorithm. 

The constrained control inputs for the terrain robot are 
plotted in Figure 7, subject to the deformable terrain induced 
skid/slip magnitudes formulated in (6) and based on the 
single-time velocity estimation described in Section 3.3. 
The control inputs T ∗ and T ∗ that alter the dynamics of 1 2 
the nonholonomic robot according to (26)-(27), are sub-
ject to the imposed slip/skid distributions at ±0.25 occur-
ring at t = 5 s and t = 15 s (Fig. 7). It can be realized 
that the one-step transition probability related to the pro-
posed RL-algorithm contributes to the rapid realization of 
the slip/skid effect and to compensate the torque to overcome 
the effect of the unstructured uncertainties immediately. The 
individual right-/left-wheel torque are reliably constrained 

FIGURE 8. Constrained-control inputs related to the proposed chaotic 
optimization optimally based RL-algorithm system for the right-and 
left-wheels to run the start-target points. 

FIGURE 9. Bidirectional convergence of the robot to the global position 
based on the action of RL-agents by employing the metaheuristics 
optimization and STV estimator. 

within the minimum-maximum range between [−1.5, 1.5] 
N.m. It can be seen that the proposed chaotic optimization 
based RL-algorithm system holds the capacity for the rapid 
stabilization of the robot. 

The bidirectional convergence of the robot to the global 
position of the target is illustrated in Figure 9 with respect 
to the epochs of the RL agents with the environment based 
on the reward policy toward the minimization of the cost 
function presented in (28) and (29). It can be appreciated that 
the proposed system generated the rapid learning such that 
after only 386 iterations (epochs), the system fully converges 
to the optimal global target point and remains stable for 
the rest of the simulation time in the prescribed location at 
X = 26 m, Y = 26 m. Figure 10 also describes the scenario 
at which one of the moving obstacles is separated from the 
nucleus point and shifts the center of the position toward 
X = 8 m, Y = 5 m. In this scenario, the robot is able to 
re-plan the optimal path in terms of the shortest and safest 
one by avoiding to collide to any obstacle and in order to 
reach the target point through an entirely different route. The 
Q-learning based optimized RL-algorithm running based on 
the velocity estimator is trained sufficiently to perform the 
maneuvers about the obstacles and reorganize the preplanned 
path based on the relocation of the environment objects. 

It is also known that the adjusting factor χ plays a sub-
stantial role in the performance of the robot byfinding the 
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FIGURE 10. Reorganization of the optimal route for the robot based on 
the moving obstacle in order to avoid the collision by the MDP 
RL-algorithm and STV-estimator approach. 

FIGURE 11. Variability of the adjusting factor χ effect related to the 
proposed RL-algorithm on the RMSE values of the target position errors 
in the plane of motion. 

optimal value associated with a state as the average of infinite 
discounted rewards through the agents according to (40). 
As appreciated from Fig. 11, the optimal value related to 
the adjusting factor χ based on the RMSE of convergence 
to the final target position in the plane of motion is achieved 
at 0.22 while further decrease/increase of the adjusting fac-
tor could slightly affect either of the directional positioning 
errors. 

Finally, the results of the proposed chaotic metaheuristics 
based optimization integrated by the transition-based RL-
algorithm compared to [24] and [36] are presented in Table 1. 
Based on the presented results, it is clear that the proposed 
algorithm holds the capacity for a generic learning based on 
the agents’ action with the environment when compared to 
the adaptive NN and formation control in terms of the RMSE 
of the target position. The improved performance related to 
the proposed algorithm is also attributed to the estimation 
of the wheel skid/slip values by incorporation of the Ter-
ramechanics principles explained in Section 2.1. Based on 
the obtained results, it can be concluded that the proposed 
optimization-based RL algorithm holds the promising capac-
ity for the collision avoidance control of the nonholonomic 
robots on deformable terrains. 

In this paper, a single-time velocity estimator based 
reinforcement learning (RL) algorithm, integrated with a 
chaotic metaheuristics optimization technique was employed 
for the optimal path-planning of the nonholonomic terrain 
robots. Additionally, the proposed algorithm considers the 

TABLE 1. Comparative results between the proposed algorithm in this 
paper, adaptive NN, and formation control algorithms considering the 
obstacle avoidance strategy and in terms of RMSE. 

moving/stationary obstacle avoidance strategy. Furthermore, 
there are major aspects related to the adoption of the Ter-
ramechanics principles to incorporate the influence of wheel 
sinkage-soil deformation on the response of the mobile robot. 
The dynamic response of the terrain robot to find optimal 
path by employing the compensating force/torque magnitude 
and to sustain a robust and smooth motion was also investi-
gated. Moreover, the developed systematic control-oriented 
system included a cost function with weighted components 
concerned with the target-tracking and the obstacle avoid-
ance. A single-time velocity estimator was wrapped up to 
contribute the finite-state Markov decision process (MDP) in 
learning the transition probabilities of the problem objectives. 
On the basis of the simulation results, the optimal solution for 
the Q-learning in terms of the adjusting factor for the mini-
mized tracking error and obstacle collision risk propagation 
profiles was obtained at 0.22. In light of the obtained results 
and the comparisons made, it was observed that the proposed 
algorithm has the ability to perform the collision avoidance of 
the nonholonomic robots on deformable terrains accurately 
and effectively. 

REFERENCES 

[1] A. Sgorbissa, ‘‘Integrated robot planning, path following, and obstacle 
avoidance in two and three dimensions: Wheeled robots, underwater vehi-
cles, and multicopters,’’ Int. J. Robot. Res., vol. 38, no. 7, pp. 853–876, 
Jun. 2019. 

[2] S. M. H. Rostami, A. K. Sangaiah, J. Wang, and H. J. Kim, ‘‘Real-time 
obstacle avoidance of mobile robots using state-dependent Riccati equation 
approach,’’ EURASIP J. Image Video Process., vol. 2018, no. 1, p. 79, 
Dec. 2018. 

[3] A. Alomari, W. Phillips, N. Aslam, and F. Comeau, ‘‘Swarm intelligence 
optimization techniques for obstacle-avoidance mobility-assisted localiza-
tion in wireless sensor networks,’’ IEEE Access, vol. 6, pp. 22368–22385, 
2018. 

[4] F. Y. Narvaez, G. Reina, M. Torres-Torriti, G. Kantor, and F. A. Cheein, 
‘‘A survey of ranging and imaging techniques for precision agricul-
ture phenotyping,’’ IEEE/ASME Trans. Mechatronics, vol. 22, no. 6, 
pp. 2428–2439, Dec. 2017. 

[5] Y. Qin, Z. Wang, C. Xiang, M. Dong, C. Hu, and R. Wang, ‘‘A novel global 
sensitivity analysis on the observation accuracy of the coupled vehicle 
model,’’ Vehicle Syst. Dyn., vol. 57, no. 10, pp. 1445–1466, 2019. 

[6] Y. Qin, J. J. Rath, C. Hu, C. Sentouh, and R. Wang, ‘‘Adaptive nonlinear 
active suspension control based on a robust road classifier with a modified 
super-twisting algorithm,’’ Nonlinear Dyn., vol. 97, no. 4, pp. 2425–2442, 
Sep. 2019. 

[7] C. Hu, Z. Wang, H. Taghavifar, J. Na, Y. Qin, J. Guo, and C. Wei, ‘‘MME-
EKF-based path-tracking control of autonomous vehicles considering 
input saturation,’’ IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5246–5259, 
Jun. 2019. 

[8] W. Li and R. Xiong, ‘‘Dynamical obstacle avoidance of task-constrained 
mobile manipulation using model predictive control,’’ IEEE Access, vol. 7, 
pp. 88301–88311, 2019. 

[9] D. González, J. Pérez, V. Milanés, and F. Nashashibi, ‘‘A review of motion 
planning techniques for automated vehicles,’’ IEEE Trans. Intell. Transp. 
Syst., vol. 17, no. 4, pp. 1135–1145, Apr. 2016. 

VOLUME 7, 2019 159355 



H. Taghavifar et al.: Optimal Path-Planning of Nonholonomic Terrain Robots for Dynamic Obstacle Avoidance 

[10] J. Alonso-Mora, P. Beardsley, and R. Siegwart, ‘‘Cooperative collision 
avoidance for nonholonomic robots,’’ IEEE Trans. Robot., vol. 34, no. 2, 
pp. 404–420, Apr. 2018. 

[11] H. Chuan, W. Zhenfeng, and Q. Yechen, ‘‘Lane keeping control of 
autonomous vehicles with prescribed performance considering the rollover 
prevention and input saturation,’’ IEEE Trans. Intell. Transp., to be pub-
lished, doi: 10.1109/TITS.2019.2924937. 

[12] A. Babinec, F. Duchoň, M. Dekan, Z. Mikulová, and L. Jurišica, ‘‘Vector 
Field Histogram with look-ahead tree extension dependent on time variable 
environment,’’ Trans. Inst. Meas. Control, vol. 40, no. 4, pp. 1250–1264, 
2018. 

[13] E. J. Molinos, Á. Llamazares, and M. Ocaña, ‘‘Dynamic window based 
approaches for avoiding obstacles in moving,’’ Robot. Auton. Syst., 
vol. 118, pp. 112–130, Aug. 2019. 

[14] N. Uchiyama, T. Hashimoto, S. Sano, and S. Takagi, ‘‘Model-reference 
control approach to obstacle avoidance for a human-operated mobile 
robot,’’ IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3892–3896, 
Oct. 2009. 

[15] S. X. Yang, A. Zhu, G. Yuan, and M. Q.-H. Meng, ‘‘A bioinspired 
neurodynamics-based approach to tracking control of mobile robots,’’ 
IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3211–3220, Aug. 2011. 

[16] Z. Peng, G. Wen, A. Rahmani, and Y. Yu, ‘‘Leader–follower formation con-
trol of nonholonomic mobile robots based on a bioinspired neurodynamic 
based approach,’’ Robot. Auto. Syst., vol. 61, no. 9, pp. 988–996, Sep. 2013. 

[17] H. Kim and B. K. Kim, ‘‘Online minimum-energy trajectory planning 
and control on a straight-line path for three-wheeled omnidirectional 
mobile robots,’’ IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4771–4779, 
Sep. 2014. 

[18] Z. Zhou, C. Du, L. Shu, G. Hancke, J. Niu, and H. Ning, ‘‘An energy-
balanced heuristic for mobile sink scheduling in hybrid WSNs,’’ IEEE 
Trans. Ind. Informat., vol. 12, no. 1, pp. 28–40, Feb. 2016. 

[19] N. Ganganath, C.-T. Cheng, and C. K. Tse, ‘‘A constraint-aware heuristic 
path planner for finding energy-efficient paths on uneven terrains,’’ IEEE 
Trans. Ind. Informat., vol. 11, no. 3, pp. 601–611, Jun. 2015. 

[20] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, and G. X. Xu Liang, ‘‘UAV 
autonomous target search based on deep reinforcement learning in complex 
disaster scene,’’ IEEE Access, vol. 7, pp. 117227–117245, 2019. 

[21] L. Roveda, G. Pallucca, N. Pedrocchi, F. Braghin, and L. M. Tosatti, 
‘‘Iterative learning procedure with reinforcement for high-accuracy force 
tracking in robotized tasks,’’ IEEE Trans. Ind. Informat., vol. 14, no. 4, 
pp. 1753–1763, Apr. 2018. 

[22] G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. K. S. Kumar, S. Koenig, 
and H. Choset, ‘‘PRIMAL: Pathfinding via reinforcement and imita-
tion multi-Agent learning,’’ IEEE Robot. Autom. Lett., vol. 4, no. 3, 
pp. 2378–2385, Jul. 2019. 

[23] M. Duguleana and G. Mogan, ‘‘Neural networks based reinforcement 
learning for mobile robots obstacle avoidance,’’ Expert Syst. Appl., vol. 62, 
pp. 104–115, Nov. 2016. 

[24] S. J. Yoo, ‘‘Adaptive neural tracking and obstacle avoidance of uncertain 
mobile robots with unknown skidding and slipping,’’ Inf. Sci., vol. 238, 
pp. 176–189, Jul. 2013. 

[25] J. Y. Wong, Terramechanics and Off-Road Vehicles. Amsterdam, 
The Netherlands: Elsevier, 1989. 

[26] H. Taghavifar and A. Mardani, Off-Road Vehicle Dynamics (Studies in 
Systems, Decision and Control). Berlin, Germany: Springer, 2017. 

[27] M. G. Bekker, Theory of Land Locomotion. Ann Arbor, MI, USA: Univ. 
of Michigan Press, 1956. 

[28] N. E. Dowling, Mechanical Behavior of Materials: Engineering Methods 
for Deformation, Fracture, and Fatigue. Upper Saddle River, NJ, USA: 
Prentice-Hall, 1993. 

[29] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. IEEE 
Int. Conf. Neural Netw., Nov. 1995, pp. 1942–1948. 

[30] H. Taghavifar and A. Mardani, ‘‘Energy loss optimization of run-off-
road wheels applying imperialist competitive algorithm,’’ Inf. Process. 
Agricult., vol. 1, no. 1, pp. 57–65, Aug. 2014. 

[31] H. Pang, F. Liu, and Z. Xu, ‘‘Variable universe fuzzy control for vehicle 
semi-active suspension system with MR damper combining fuzzy neural 
network and particle swarm optimization,’’ Neurocomputing, vol. 306, 
pp. 130–140, Sep. 2018. 

[32] M. Gohari and M. Tahmasebi, ‘‘Off-road vehicle seat suspension optimisa-
tion, Part II: Comparative study between meta-heuristic optimisation algo-
rithms,’’ J. Low Freq. Noise, Vib. Act. Control, vol. 33, no. 4, pp. 443–454, 
2014. 

[33] A. H. Gandomi, G. J. Yun, X.-S. Yang, and S. Talatahari, ‘‘Chaos-enhanced 
accelerated particle swarm optimization,’’ Commun. Nonlinear Sci. Numer. 
Simul., vol. 18, no. 2, pp. 327–340, Feb. 2013. 

[34] M. Clerc and J. Kennedy, ‘‘The particle swarm-explosion, stability, and 
convergence in a multidimensional complex space,’’ IEEE Trans. Evol. 
Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002. 

[35] X.-S. Yang Engineering Optimization: An Introduction With Metaheuristic 
Applications. Hoboken, NJ, USA: Wiley, 2010. 

[36] S. Mastellone, D. M. Stipanović, C. R. Graunke, K. A. Intlekofer, and 
M. W. Spong, ‘‘Formation control and collision avoidance for multi-agent 
non-holonomic systems: Theory and experiments,’’ Int. J. Robot. Res., 
vol. 27, no. 1, pp. 107–126, Jan. 2008. 

[37] T. Liu, X. Hu, W. Hu, and Y. Zou, ‘‘A Heuristic planning reinforcement 
learning-based energy management for power-split plug-in hybrid electric 
vehicles,’’ IEEE Trans. Ind. Informat., to be published. 

HAMID TAGHAVIFAR (M’18) received the Ph.D. 
degree in mechanical from Urmia University, Iran, 
in 2016. He was a Horizon Postdoctoral Fellow 
with the CONCAVE Research Center, Depart-
ment of Mechanical, Industrial and Aerospace 
Engineering, Concordia University, Canada. He is 
currently an Assistant Professor with the School 
of Mechanical, Aerospace and Automotive Engi-
neering, Coventry University, U.K. His research 
interests include vehicle dynamics and control, 

terramechanics and mechatronics, adaptive and nonlinear controls, artificial 
intelligence, and optimizations. In the above fields, he has contributed over 
45 articles, a book, and two Iranian registered patents. He serves as the 
Editor-in-Chief for Journal of Advances in Vehicle Engineering and an 
Editor for International Journal of Vehicle Systems Modeling and Testing and 
International Journal of Vehicle Information and Communication Systems. 

BIN XU received the B.Sc. and Ph.D. degrees in 
mechanical engineering from the Beijing Institute 
of Technology, China, in 2005 and 2013, respec-
tively. He is currently an Associate Professor with 
the Vehicle Research Center, Beijing Institute of 
Technology. His research interests include aerial 
and ground vehicle, and its dynamic control. 

LEYLA TAGHAVIFAR received the B.Sc. and 
M.Sc. degrees in electrical engineering from 
Tabriz University and IAU, Tehran, Iran, 
in 2009 and 2013, respectively. Her research inter-
ests include signal processing and synchroniza-
tion, telecommunications, cellular networks, and 
artificial intelligence. 

YECHEN QIN (S’14–M’17) received the B.Sc. 
and Ph.D. degrees in mechanical engineering 
from the Beijing Institute of Technology, China, 
in 2010 and 2016, respectively. From 2013 to 
2014, he was a Visiting Ph.D. Student with Texas 
A&M University, USA. He was a Postdoctoral 
Research Fellow and a Visiting Scholar with the 
Beijing Institute of Technology and University of 
Waterloo, respectively. He is currently an Asso-
ciate Professor with the Beijing Institute of Tech-

nology. His research interests include vehicle dynamics control and road 
estimation. 

159356 VOLUME 7, 2019 

http://dx.doi.org/10.1109/TITS.2019.2924937

	Optimal Path-Planning  cs
	08886591

