740 research outputs found

    Analysis of Behavioral Characteristics of Jammers to Detect Malicious Nodes in Mobile ADHOC Networks

    Get PDF
    Wireless ADHOC Networks are used to establish a wireless connection between two computing devices without the need for a Wi-Fi access point or router. This network is decentralized and uses omnidirectional communication media, which makes it more vulnerable to certain types of attacks compared to wired networks. Jamming attacks, a subset of denial-of-service (DoS) attacks, involve malicious nodes that intentionally interfere with the network, blocking legitimate communication. To address this issue, the proposed method analyzes various characteristics of nodes, such as packets sent, received, and dropped, at each node. Using the packet delivery ratio and packet drop ratio, the method detects jamming nodes from normal nodes, improving network performance. The network is simulated in NS2 environment

    A novel intrusion detection system against spoofing attacks in connected electric vehicles

    Get PDF
    The Electric Vehicles (EVs) market has seen rapid growth recently despite the anxiety about driving range. Recent proposals have explored charging EVs on the move, using dynamic wireless charging that enables power exchange between the vehicle and the grid while the vehicle is moving. Specifically, part of the literature focuses on the intelligent routing of EVs in need of charging. Inter-Vehicle communications (IVC) play an integral role in intelligent routing of EVs around a static charging station or dynamic charging on the road network. However, IVC is vulnerable to a variety of cyber attacks such as spoofing. In this paper, a probabilistic cross-layer Intrusion Detection System (IDS), based on Machine Learning (ML) techniques, is introduced. The proposed IDS is capable of detecting spoofing attacks with more than accuracy. The IDS uses a new metric, Position Verification using Relative Speed (PVRS), which seems to have a significant effect in classification results. PVRS compares the distance between two communicating nodes that is observed by On-Board Units (OBU) and their estimated distance using the relative speed value that is calculated using interchanged signals in the Physical (PHY) layer

    Towards Secure, Power-Efficient and Location-Aware Mobile Computing

    Get PDF
    In the post-PC era, mobile devices will replace desktops and become the main personal computer for many people. People rely on mobile devices such as smartphones and tablets for everything in their daily lives. A common requirement for mobile computing is wireless communication. It allows mobile devices to fetch remote resources easily. Unfortunately, the increasing demand of the mobility brings many new wireless management challenges such as security, energy-saving and location-awareness. These challenges have already impeded the advancement of mobile systems. In this dissertation we attempt to discover the guidelines of how to mitigate these problems through three general communication patterns in 802.11 wireless networks. We propose a cross-section of a few interesting and important enhancements to manage wireless connectivity. These enhancements provide useful primitives for the design of next-generation mobile systems in the future.;Specifically, we improve the association mechanism for wireless clients to defend against rogue wireless Access Points (APs) in Wireless LANs (WLANs) and vehicular networks. Real-world prototype systems confirm that our scheme can achieve high accuracy to detect even sophisticated rogue APs under various network conditions. We also develop a power-efficient system to reduce the energy consumption for mobile devices working as software-defined APs. Experimental results show that our system allows the Wi-Fi interface to sleep for up to 88% of the total time in several different applications and reduce the system energy by up to 33%. We achieve this while retaining comparable user experiences. Finally, we design a fine-grained scalable group localization algorithm to enable location-aware wireless communication. Our prototype implemented on commercial smartphones proves that our algorithm can quickly locate a group of mobile devices with centimeter-level accuracy

    Contributions to the security of cognitive radio networks

    Get PDF
    The increasing emergence of wireless applications along with the static spectrum allocation followed by regulatory bodies has led to a high inefficiency in spectrum usage, and the lack of spectrum for new services. In this context, Cognitive Radio (CR) technology has been proposed as a possible solution to reuse the spectrum being underutilized by licensed services. CRs are intelligent devices capable of sensing the medium and identifying those portions of the spectrum being unused. Based on their current perception of the environment and on that learned from past experiences, they can optimally tune themselves with regard to parameters such as frequency, coding and modulation, among others. Due to such properties, Cognitive Radio Networks (CRNs) can act as secondary users of the spectrum left unused by their legal owners or primary users, under the requirement of not interfering primary communications. The successful deployment of these networks relies on the proper design of mechanisms in order to efficiently detect spectrum holes, adapt to changing environment conditions and manage the available spectrum. Furthermore, the need for addressing security issues is evidenced by two facts. First, as for any other type of wireless network, the air is used as communications medium and can easily be accessed by attackers. On the other hand, the particular attributes of CRNs offer new opportunities to malicious users, ranging from providing wrong information on the radio environment to disrupting the cognitive mechanisms, which could severely undermine the operation of these networks. In this Ph.D thesis we have approached the challenge of securing Cognitive Radio Networks. Because CR technology is still evolving, to achieve this goal involves not only providing countermeasures for existing attacks but also to identify new potential threats and evaluate their impact on CRNs performance. The main contributions of this thesis can be summarized as follows. First, a critical study on the State of the Art in this area is presented. A qualitative analysis of those threats to CRNs already identified in the literature is provided, and the efficacy of existing countermeasures is discussed. Based on this work, a set of guidelines are designed in order to design a detection system for the main threats to CRNs. Besides, a high level description of the components of this system is provided, being it the second contribution of this thesis. The third contribution is the proposal of a new cross-layer attack to the Transmission Control Protocol (TCP) in CRNs. An analytical model of the impact of this attack on the throughput of TCP connections is derived, and a set of countermeasures in order to detect and mitigate the effect of such attack are proposed. One of the main threats to CRNs is the Primary User Emulation (PUE) attack. This attack prevents CRNs from using available portions of the spectrum and can even lead to a Denial of Service (DoS). In the fourth contribution of this the method is proposed in order to deal with such attack. The method relies on a set of time measures provided by the members of the network and allows estimating the position of an emitter. This estimation is then used to determine the legitimacy of a given transmission and detect PUE attacks. Cooperative methods are prone to be disrupted by malicious nodes reporting false data. This problem is addressed, in the context of cooperative location, in the fifth and last contribution of this thesis. A method based on Least Median Squares (LMS) fitting is proposed in order to detect forged measures and make the location process robust to them. The efficiency and accuracy of the proposed methodologies are demonstrated by means of simulation

    Design Models for Trusted Communications in Vehicle-to-Everything (V2X) Networks

    Get PDF
    Intelligent transportation system is one of the main systems which has been developed to achieve safe traffic and efficient transportation. It enables the road entities to establish connections with other road entities and infrastructure units using Vehicle-to-Everything (V2X) communications. To improve the driving experience, various applications are implemented to allow for road entities to share the information among each other. Then, based on the received information, the road entity can make its own decision regarding road safety and guide the driver. However, when these packets are dropped for any reason, it could lead to inaccurate decisions due to lack of enough information. Therefore, the packets should be sent through a trusted communication. The trusted communication includes a trusted link and trusted road entity. Before sending packets, the road entity should assess the link quality and choose the trusted link to ensure the packet delivery. Also, evaluating the neighboring node behavior is essential to obtain trusted communications because some misbehavior nodes may drop the received packets. As a consequence, two main models are designed to achieve trusted V2X communications. First, a multi-metric Quality of Service (QoS)-balancing relay selection algorithm is proposed to elect the trusted link. Analytic Hierarchy Process (AHP) is applied to evaluate the link based on three metrics, which are channel capacity, link stability and end-to-end delay. Second, a recommendation-based trust model is designed for V2X communication to exclude misbehavior nodes. Based on a comparison between trust-based methods, weighted-sum is chosen in the proposed model. The proposed methods ensure trusted communications by reducing the Packet Dropping Rate (PDR) and increasing the end-to-end delivery packet ratio. In addition, the proposed trust model achieves a very low False Negative Rate (FNR) in comparison with an existing model

    СЦЕНАРІЙ АТАКИ З ВИКОРИСТАННЯМ НЕСАНКЦІОНОВАНОЇ ТОЧКИ ДОСТУПУ У МЕРЕЖАХ IEEE 802.11

    Get PDF
    One of the most serious security threats to wireless local area networks (WLANs) in recent years is rogue access points that intruders use to spy on and attack. Due to the open nature of the wireless transmission medium, an attacker can easily detect the MAC addresses of other devices, commonly used as unique identifiers for all nodes in the network, and implement a spoofing attack, creating a rogue access point, the so-called "Evil Twin". The attacker goal is to connect legitimate users to a rogue access point and gain access to confidential information. This article discusses the concept, demonstrates the practical implementation and analysis of the “Evil Twin” attack. The algorithm of the intruder's actions, the scenario of attack on the client, and also procedure for setting up the program-implemented rogue access point is shown. It has been proven that the implementation of the attack is possible due to the existence of several access points with the same service set identifier and MAC address in the same area, allowed by 802.11 standard. The reasons for failure operation of the network and possible interception of information as a result of the attack are identified, methods of detecting rogue access points are analyzed. During the experiment, observations of the 802.11 frames showed that there were deviations in the behavior of beacon frames at the time of the "Evil Twin" attack. First, the number of beacon frames coming from the access point which succumbed to the attack is increasing. Secondly, the traffic analyzer detected significant fluctuations in the values of the received signal level, which simultaneously come from a legitimate and rogue access point, which allows to distinguish two groups of beacon frames. The "Evil Twin" attack was implemented and researched using Aircrack-ng – a package of software for auditing wireless networks, and Wireshark – network traffic analyzer. In the future, the results obtained can be used to improve methods of protection against intrusion into wireless networks, in order to develop effective systems for detecting and preventing intrusions into WLAN.Однією з найсерйозніших загроз безпеці безпроводових локальних мереж (WLAN) в останні роки є шахрайські несанкціоновані точки доступу, які зловмисники використовують для шпигунства і атак. Через відкритий характер середовища передачі безпроводових мереж, зловмисник може легко виявляти МАС-адреси інших пристроїв, що зазвичай використовуються як унікальні ідентифікатори для всіх вузлів в мережі та реалізовуючи спуфінг-атаку, створювати несанкціоновану безпроводову точку доступу, так званий, "Злий двійник" (“Evil Twin”). Зловмисник має на меті перепідключити законних користувачів до шахрайської точки доступу та отримати доступ до конфіденційної інформації. У даній статті розглянуто концепцію, продемонстровано практичну реалізацію та досліджено атаку “Evil Twin”. Показано алгоритм дій зловмисника, сценарій атаки на клієнта, а також процедуру налаштування програмно-реалізованої несанкціонованої точки доступу. Доведено, що реалізація атаки можлива завдяки, дозволеному стандартом 802.11, існуванню кількох точок доступу з однаковими ідентифікатором набору послуг та MAC-адресою в одній і тій же області. Виявлено причини порушення функціонування мережі та можливого перехоплення інформації в результаті атаки, проаналізовано сучасні методи виявлення несанкціонованих точок доступу. В ході експерименту, проведено спостереження за кадрами 802.11 та показано, що існують відхилення в поведінці кадрів-маяків під час атаки "Evil Twin". По-перше кількість кадрів-маяків, які надходять від точки доступу, що піддалась атаці, зростає. По-друге, аналізатором трафіку зафіксовано суттєві флуктуації значень рівня прийнятого сигналу, які одночасно надходять від легітимної та шахрайської точки доступу, що дозволяє виділити дві групи кадрів-маяків.  Реалізація та дослідження даного виду атаки проведено з використанням пакету програм для аудиту безпроводових мереж Aircrack-ng та Wireshark для захоплення і аналізу мережного трафіку. В подальшому отримані результати можуть бути використані для вдосконалення методів захисту від стороннього втручання в безпроводові мережі, з метою розробки ефективних систем виявлення і запобігання вторгнень в WLAN

    Privacy-preserving controls for sharing mHealth data

    Get PDF
    Mobile devices allow people to collect and share health and health-related information with recipients such as health providers, family and friends, employers and insurance companies, to obtain health, emotional or financial benefits. People may consider certain health information sensitive and prefer to disclose only what is necessary. In this dissertation, we present our findings about factors that affect people’s sharing behavior, describe scenarios in which people may wish to collect and share their personal health-related information with others, but may be hesitant to disclose the information if necessary controls are not available to protect their privacy, and propose frameworks to provide the desired privacy controls. We introduce the concept of close encounters that allow users to share data with other people who may have been in spatio-temporal proximity. We developed two smartphone-based systems that leverage stationary sensors and beacons to determine whether users are in spatio-temporal proximity. The first system, ENACT, allows patients diagnosed with a contagious airborne disease to alert others retrospectively about their possible exposure to airborne virus. The second system, SPICE, allows users to collect sensor information, retrospectively, from others with whom they shared a close encounter. We present design and implementation of the two systems, analyse their security and privacy guarantees, and evaluate the systems on various performance metrics. Finally, we evaluate how Bluetooth beacons and Wi-Fi access points can be used in support of these systems for close encounters, and present our experiences and findings from a deployment study on Dartmouth campus

    Vehicular Networks and Outdoor Pedestrian Localization

    Get PDF
    This thesis focuses on vehicular networks and outdoor pedestrian localization. In particular, it targets secure positioning in vehicular networks and pedestrian localization for safety services in outdoor environments. The former research topic must cope with three major challenges, concerning users’ privacy, computational costs of security and the system trust on user correctness. This thesis addresses those issues by proposing a new lightweight privacy-preserving framework for continuous tracking of vehicles. The proposed solution is evaluated in both dense and sparse vehicular settings through simulation and experiments in real-world testbeds. In addition, this thesis explores the benefit given by the use of low frequency bands for the transmission of control messages in vehicular networks. The latter topic is motivated by a significant number of traffic accidents with pedestrians distracted by their smartphones. This thesis proposes two different localization solutions specifically for pedestrian safety: a GPS-based approach and a shoe-mounted inertial sensor method. The GPS-based solution is more suitable for rural and suburban areas while it is not applicable in dense urban environments, due to large positioning errors. Instead the inertial sensor approach overcomes the limitations of previous technique in urban environments. Indeed, by exploiting accelerometer data, this architecture is able to precisely detect the transitions from safe to potentially unsafe walking locations without the need of any absolute positioning systems

    Empirical Techniques To Detect Rogue Wireless Devices

    Get PDF
    Media Access Control (MAC) addresses in wireless networks can be trivially spoofed using off-the-shelf devices. We proposed a solution to detect MAC address spoofing in wireless networks using a hard-to-spoof measurement that is correlated to the location of the wireless device, namely the Received Signal Strength (RSS). We developed a passive solution that does not require modification for standards or protocols. The solution was tested in a live test-bed (i.e., a Wireless Local Area Network with the aid of two air monitors acting as sensors) and achieved 99.77%, 93.16%, and 88.38% accuracy when the attacker is 8–13 m, 4–8 m, and less than 4 m away from the victim device, respectively. We implemented three previous methods on the same test-bed and found that our solution outperforms existing solutions. Our solution is based on an ensemble method known as Random Forests. We also proposed an anomaly detection solution to deal with situations where it is impossible to cover the whole intended area. The solution is totally passive and unsupervised (using unlabeled data points) to build the profile of the legitimate device. It only requires the training of one location which is the location of the legitimate device (unlike the misuse detection solution that train and simulate the existing of the attacker in every possible spot in the network diameter). The solution was tested in the same test-bed and yield about 79% overall accuracy. We build a misuseWireless Local Area Network Intrusion Detection System (WIDS) and discover some important fields in WLAN MAC-layer frame to differentiate the attackers from the legitimate devices. We tested several machine learning algorithms and found some promising ones to improve the accuracy and computation time on a public dataset. The best performing algorithms that we found are Extra Trees, Random Forests, and Bagging. We then used a majority voting technique to vote on these algorithms. Bagging classifier and our customized voting technique have good results (about 96.25 % and 96.32 %respectively) when tested on all the features. We also used a data mining technique based on Extra Trees ensemble method to find the most important features on AWID public dataset. After selecting the most 20 important features, Extra Trees and our voting technique are the best performing classifiers in term of accuracy (96.31 % and 96.32 % respectively)
    corecore