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ABSTRACT

Media Access Control (MAC) addresses in wireless networks can be trivially spoofed

using off-the-shelf devices. We proposed a solution to detect MAC address spoofing in

wireless networks using a hard-to-spoof measurement that is correlated to the location of

the wireless device, namely the Received Signal Strength (RSS). We developed a pas-

sive solution that does not require modification for standards or protocols. The solution

was tested in a live test-bed (i.e., a Wireless Local Area Network with the aid of two air-

monitors acting as sensors) and achieved 99.77%, 93.16%, and 88.38% accuracy when the

attacker is 8–13 m, 4–8 m, and less than 4 m away from the victim device, respectively.

We implemented three previous methods on the same test-bed and found that our solution

outperforms existing solutions. Our solution is based on an ensemble method known as

Random Forests.

We also proposed an anomaly detection solution to deal with situations where it

is impossible to cover the whole intended area. The solution is totally passive and unsu-

pervised (using unlabeled data points) to build the profile of the legitimate device. It only

requires the training of one location which is the location of the legitimate device (unlike

the misuse detection solution that train and simulate the existing of the attacker in every

possible spot in the network diameter). The solution was tested in the same test-bed and
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yield about 79% overall accuracy.

We build a misuse Wireless Local Area Network Intrusion Detection System (WIDS)

and discover some important fields in WLAN MAC-layer frame to differentiate the attack-

ers from the legitimate devices. We tested several machine learning algorithms and found

some promising ones to improve the accuracy and computation time on a public dataset.

The best performing algorithms that we found are Extra Trees, Random Forests, and Bag-

ging. We then used a majority voting technique to vote on these algorithms. Bagging

classifier and our customized voting technique have good results (about 96.25 % and 96.32

% respectively) when tested on all the features. We also used a data mining technique based

on Extra Trees ensemble method to find the most important features on AWID public data-

set. After selecting the most 20 important features, Extra Trees and our voting technique

are the best performing classifiers in term of accuracy (96.31 % and 96.32 % respectively).
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CHAPTER 1: INTRODUCTION

The usage of wireless networks such as Wireless Sensor Networks (WSNs) and

Wireless Local Area Networks (WLANs) have grown in recent years. WSN presents itself

as a significant implementation for many applications due to its proficiency to monitor ob-

servations and report them to a central unit. Therefore, WSNs have been adopted by several

applications such as health monitoring and military surveillance. Additionally, WLANs

have gained noticeable attention because of their ease of deployment and the availability of

portable devices. Internet usage has moved from stationary computers that are connected to

the wired side of the network to mobile devices such as smartphones, laptops, and tablets,

which use radio waves to connect to an Access Point (AP) and then to the Internet. Peo-

ple spend a large amount of time online, regardless of where they are. To connect to the

Internet, users have to choose between two options. The first is to use a Wi-Fi network, in

particular when connecting to the Internet from homes, offices, airports, shopping malls,

and universities. The other, more costly option is to use mobile cellular networks. This

second option has increased in popularity over the past decade. However, the influence of

WLANs remains crucial, especially as Wi-Fi hotspots become ubiquitous. Most wireless

users prefer WLANs because, unlike cellular networks, they are free to use [1]. APs are
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an integral part of WLANs, providing a coordinated point that manages workstations and

connects users to the wired network [2]. Consequently, malicious attacks have increased

enormously because of the shared medium that wireless networks use to serve wireless

devices [3].

The Media Access Control (MAC) address identifies wireless devices in wireless

networks, yet it is susceptible to identity-based attacks. MAC address spoofing is an attack

that changes the MAC address of a wireless device that exists in a specific wireless network

using off-the-shelf equipment. MAC address spoofing is a serious threat to wireless net-

works. One of the most common security problems faced by WLANs is the Rogue Access

Point (RAP) [4], [5], [6], [7], [8], [9], [10], [11], which is a fake AP that was not installed

by the network administrator. As APs have become cheaper, the ability to deploy them

maliciously in WLANs has grown tremendously. In the literature, RAPs are classified into

four categories: Evil-twin APs, Improperly Configured APs, Unauthorized APs, and Com-

promised APs [6], [12]. There are also RAP-based DoS attacks that are not classified by

the research community. These are deauthentication/disassociation attacks and the forging

of the first message in a four-way handshake. It has been estimated that approximately 20%

of all APs in enterprise WLANs are in fact RAPs [13], [14], [15].

Some of the early RAP detection methods assumed that the RAP has been inserted

by a naive user who wants to access the Internet from, for example, a conference room.

Although this was initially true, today it is more likely that the person who has inserted

the RAP is a skilled attacker that knows and can evade RAP countermeasures [13]. Cur-

rent mobile devices contain an array of personal information, such as photos, passwords,
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business documents, and important emails. Therefore, connecting to RAPs is highly dan-

gerous, because it could allow attackers to steal sensitive information. Thus, it is vital to

secure WLANs and detect suspicious APs.For instance, an attacker can spoof the MAC

address of a productive Access Point (AP) in WLAN-infrastructure mode and replace or

coexist with that AP to eavesdrop on the wireless traffic or act as a man-in-the-middle (this

attack is known as the evil twin attack) [16], [17], [18], [19], [20]. In addition, the attacker

can flood the network with numerous requests using random MAC addresses to exhaust the

network resources. This attack is known as resource depletion [21], [22], [23].

These threats, along with other existing threats, necessitate the existence of MAC

address spoofing detection to eliminate rogue devices. MAC address spoofing detection is

very significant because it is the first step to protect against rogue devices in wireless net-

works. Wireless networks (such as WSNs and WLANs) are integrated into a wide range of

critical settings including health care systems such as mhealth applications using machine-

to-machine technology [24]. In addition, it is important to detect the presence of the rogue

devices in wireless networks to protect smart grids systems such as heating, ventilation,

and air conditioning (HVAC) systems [25]. The classical way to deal with spoofing is to

employ authentication methods. Although authentication causes overhead and power con-

sumption for wireless devices, it is even more costly to apply authentication to wireless

devices that have limited resources. For instance, before authentication takes place (i.e.,

before establishing the session keys to authenticate frames in a WLAN) the only identifier

for a given wireless device is the MAC address. Thus, two devices in the same network

that have the same MAC address are treated as legitimate clients, even though one of them

has cloned the MAC address of the other.
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External solutions [26], [27], [28] that do not require modification to standards and

protocols (such as IDSs) have gained attention for decades because of the immediate re-

sponse to threats and the possibility of eliminating intruders [29]. Some of the IDSs are

based on predetermined signatures of familiar attacks, which are saved on the database.

The monitored frames are compared with the predetermined signatures. If the match is

found, the notification takes place immediately. On the other hand, data mining or machine

learning IDSs have an advantage because they do not require predefined static signatures

of known attacks. Thus, it can be done automatically through classification or clustering

algorithms. There are a wide range of security measurements (such as encryption mecha-

nisms, authentication methods, and access control techniques), but many intrusions remain

undetected. Thus, there is a demand to automate the monitoring of WLAN activities to

detect intrusions.

There are two known Intrusion Detection methods: anomaly detection and misuse

detection. Anomaly detection observes attacks if there is a deviation from the normal

behavior by the devices that generate these attacks. Misuse detection recognizes suspicious

activities regarding patterns matching of previous built known attacks. Anomaly detection

techniques are more likely to detect unknown intrusions and has a high false positive rate.

On the other hand, misuse detection techniques have a low false positive rate, but unknown

attacks could remain undetected. Several IDSs are considered to be rule-based (in which

the system fulfillment depends on security experts who build the rules). Considering the

vast amount of WLAN traffic, it is so expensive and slow to build the rules. The rules have

to be modified manually and applying new rules is a hard and time-consuming task. To

overcome the aforementioned limitations, data mining or machine learning techniques take
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place to discover important patterns of large data sets. It can build intrusions patterns which

can be used for misuse detection techniques based on classification, and to build profiles

for normal behavior (to detect intrusions by anomaly detection techniques).

We propose a solution that is based on the Random Forests ensemble method [30]

and a hard-to-spoof metric, namely the Received Signal Strength (RSS). Random Forests-

based approaches have been proposed in several applications and systems including Intru-

sion Detection Systems in the wired networks [31], [32], spam detection [33], and phishing

email detection [34]. However, Random Forests has not been used for similar issues as the

one that we are solving in this proposal. Our problem depends entirely on the location of

the legitimate and the attacker devices. The important feature that we utilize is the RSS that

belongs to the physical layer. On the other hand, the wired IDSs utilize the upper layers

such as Application, Transport, and Network Layers; some important features are service

type (i.e., telnet, http, or ftp), the presence of JavaScript, and the number of links in the

email. We also propose another solution based one class Support Victor Machines to deal

with difficult situations such as unreachable locations. RSS measures the strength of the

signal of the received packet at the receiver device. RSS can be affected by several fac-

tors such as the transmission power of the sending device, the distance between the sender

and receiver, and some environmental elements such as absorption effects and multi-path

fading [35]. Normally, the wireless device does not change its transmission power, so the

degradation of the signal from the same MAC address suggests the existence of MAC ad-

dress spoofing [36]. We carried out an experiment in a “Small Office and Home Settings”

live test-bed using WLAN devices to evaluate our proposed solution with the help of two

air-monitors acting as sensors. The sensors are capable of sniffing the wireless traffic pas-
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sively and injecting traffic into the WLAN. We used the sensors to passively capture the

wireless traffic and send it to the centralized utility for further analysis. Finally, we pro-

pose a new misuse detection framework based on some machine learning algorithms and a

voting technique and discover some important frame fields that reveal the excising of the

rogue device.

1.1 Research Problem and Scope

An attacker can spoof the MAC address of a given legitimate user to hide his/her

identity or to bypass the MAC address control list by masquerading as an authorized user.

A more effective attack that the attacker can perform is to deny service on a given wireless

network [37].

Deauthentication/disassociation: In the IEEE 802.11i standard, it is necessary to

exchange the four-way handshake frames before an association takes place between a wire-

less device and the AP [38], [39]. Once the station is associated with the AP, a hacker can

disturb this association by sending a targeted deauthentication/disassociation frame to ei-

ther disconnect the AP by spoofing the MAC address of the wireless user or disconnect

the wireless user by spoofing the MAC address of the AP. A more harmful deauthentica-

tion/disassociation attack is to send frames to all of the wireless users using a broadcast ad-

dress by spoofing the MAC address of the AP [40], [41]. After sending the frame, the AP or

the user who receives the frame is disconnected and has to repeat the entire authentication

procedure in order to connect again. The attacker can also send spoofed deauthentication

frames repeatedly to prevent the wireless user or the AP from maintaining the connection
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[42]. There are also other attacks such as the power-saving attack that prevents the AP from

queuing the upcoming frames for a given station by requesting these frames for a hacker

instead of a legitimate station.

In general, there are three broad groups of attacks that target WLAN users which

are flooding attacks, impersonation attacks, and injection attacks. Figure 1.1 shows and

example of each group of attacks that explains the threats that WLAN users exposed to.

WiFi Access Point

Switch

Evil Twin Access Point

LabtopTablet Smartphone Wireless Printer
Wireless Users Wireless Users

MAC Address a

Evil Twin facts:
1. Impersonation attack
2. Mimic actual AP
3. Deceive users to connect
4. Steal sensitive info

Fake Access Point (beacon flooding)

Another MAC Address

Evil Twin facts:
1. Flooding attack
2. Send thousands of beacons
3. Prevent users to connect
4. Deny the service

ARP Injection facts:
1. Injection attack
2. Send small ARP packets
3.  Force users to respond
4. Collect IVs
5. Crack WEP key

Figure 1.1: Attack scenarios for each group of attacks.

A complete list of flooding, impersonation, and injection attacks and their descrip-

tion are shown in Table 1.2.

7



Table 1.2: WLAN attacks and their classification.

Attack Classification Effect Description

Amok Flooding Dis-connectivity Sending large amount of de-authentication\dissociation
frames to deny the service for long period of time

Beacon Inability to Sending a stream of beacon frames broadcasting
join WLAN non-existing network in order to make the clients

unable to join the preferred network
Deauthentication Dis-connectivity Forging de-authentication frames due to the lack of

management frames protection using one of the
connected clients\APs MAC address to deny the service

Disassociation Dis-connectivity Similar to de-authentication attack, however the
dis-connectivity is shorter since the target returns to
associated state from unassociated

CTS Disturbance The adversary continuously sends CTS frames into
WLAN to force the clients to deny their transmission

Power Saving Disturbance The attacker tricks the AP by sending null data
frames to deceive into thinking a targeted client is in
sleep mode and cannot receive frames

Probe Request Disturbance The attacker transmits probe request frames to the
AP to force it to respond with probe response frames
to stress the resources

RTS Disturbance The attacker sends large amount of fake RTS frames
having large duration times in order to reserve the
medium to force clients to back-off from transmitting

ARP Injection Injection Cracking WEP Sends ARP packets into WLAN to collect IVs in
key order to crack WEP key

Chop-Chop Key-stream The attacker chops the last byte of the packet’s
retrieval and encrypted part in order to derive the genuine
frame decryption cipher-text

Fragmentation Key-stream The attack at least needs a data packet from the AP
retrieval and to be initiated. The attacker breaks the packet into
frame decryption fragments and sends the fragments to the broadcast

address via the AP in order to retrieve the key stream
Cafe Latte Impersonation Cracking WEP Helps speed up the process of cracking WEP key by

key without capturing ARP packets from clients, manipulating
AP help the packets, and transmitting it to the clients

Evil Twin Privacy A fake AP that advertises the same network name as
exposure one of the existing networks to deceive users to

connect
Hirte Cracking WEP The attacker sends ARP request because he or she

key without needs either ARP response or IP packet from the user
AP help to perform this attack successfully. The attacker then

breaks the packet into smaller packets which speed
the process of collecting IVs to crack the WEP key

8



1.2 Motivation behind the Research

Many techniques have been proposed to detect MAC address spoofing as it is a

major threat to wireless networks. First, sequence number techniques [43], [44] track the

consecutive frames of the genuine wireless device. The sequence number increments by

one every time the genuine device sends either data or management frame. Once the de-

tection system finds an unexpected gap between two consecutive frames, the attacker is

detected. Second, the Operating System (OS) fingerprinting techniques [42] utilize the fact

that some operating system characteristics could differentiate the attacker from the legiti-

mate device when the spoofing occurs. Finally, RSS techniques [16], [17], [36], [45], [46]

utilize the location of the legitimate device that should be different from the location of the

attacker if they are not in the same location.

However, there are some limitations in the previous work. Sequence number ap-

proaches suffer from some drawbacks: one of the main types of MAC layer frames does

not have sequence numbers, which is control the frame. Thus, spoofing of control frames is

possible. Also, some of the tools used by the hackers provide the capability of eavesdrop-

ping and injecting frames that have sequence numbers similar to the frames of the legitimate

device. OS fingerprinting techniques have some weaknesses as well. The first weakness

is that the only frame type that can be detected by network layer’s OS fingerprinting is

data frame. The second weakness is that some of the techniques assume that the attacker

spoofs the MAC address using Linux-based operating system tools. This assumption could

cause some attackers to bypass the intrusion detection system. The attackers can use a
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capability that Windows operating system provides to change the MAC address of a given

user. Finally, vendor information, capability information, and other similar fingerprinting

techniques can be easily spoofed using off-the-shelf devices.

RSS approaches also have some limitations. Some researchers have reported that

RSS samples from a given sender follow a Gaussian distribution, whilst other researchers

revealed that the distribution is not Gaussian [47] or that it is not rare to notice non-Gaussian

distributions of the samples [36]. As [36] reported, we found that it is not rare to find many

peaks in the collected RSS samples. This suggests that the detection techniques [16], [17],

[36], [45], [46] (based on clustering algorithms) that are closely related to our proposal

are not the optimal solutions because these solutions assume that the samples are always

Gaussian. Therefore, their solutions generate false alerts or miss some intrusions if the

data is not Gaussian distributed. In addition, when the attacker and the victim devices

are close to each other, the means/medians of both devices are close to each other, so

distinguishing the two devices becomes hard. Furthermore, we discovered that in multi-

ple cases, the distribution of the data from a single device constructs two clusters, so it

is hard for the clustering algorithms-based approaches to perform well in these situations.

Motivated by these concerns, we utilized a machine learning algorithm that can deal with

both data that are Gaussian-distributed and, more importantly, data that are not actually

Gaussian-distributed. Thus, in this article, we proposed a detection method based on Ran-

dom Forests because it can determine the dataset shape in order to obtain better results and

the hard-to-spoof measurement (i.e., the RSS).
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1.3 Contributions

This research contributions can be summarized as follows:

1. We develop a new passive technique to detect MAC address spoofing based on Ran-

dom Forests ensemble method.

2. We compare our work with existing techniques empirically in a live test-bed and find

that our technique outperforms existing techniques.

3. We also propose an anomaly detection technique to deal with situations where it is

hard-to-cover the whole area.

4. We propose a new WLAN misuse Intrusion Detection framework based on majority

voting.

5. We apply feature selection technique based on Extra Trees classifier to improve the

accuracy and more importantly to expedite the detection time.
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CHAPTER 2: 802.11 STANDARD OVERVIEW

This chapter describes the 802.11 wireless standard at the abstract level. As the

focal point of this proposal is APs, we briefly explain the infrastructure mode. The frame

types in the 802.11 standard fall into three categories: management, control, and data as

shown in Table 2.3. Each type contains several sub-types. Management frames allow

WLAN devices to initiate and maintain communications. Control frames govern the wire-

less links, allowing some stations to access the medium while denying access to others.

Data frames convey higher-layer data [48].

Table 2.3: WLAN class 1, 2, and 3 frames

Management Control Data

Class 1 Frames Beacon, Probe Request/Response RTC, CTS, ACK Frames with false ToDS
Authentication, Deauthentication and ATIM CF-END and CF-ACK or FromDS

Class 2 Frames Association Request/Response, Disassociation
and Reassociation Request/Response

Class 3 Frames Deauthentication PS-Poll All data frames

2.1 Connection Establishment Process

Connections are established using several management frame sub-types, as shown

in Figure 2.2. The first step is network discovery, which starts when the AP advertises its
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existence by broadcasting beacon frames to clients in the vicinity. Clients passively listen

to the beacon frames or actively send probe requests to identify APs within range. After

receiving a probe request, the AP sends a probe response frame that contains important

information such as the supported rates and capabilities of the network. The second step

involves the exchange of authentication and association messages. Authentication is the

procedure of sending the identity of the station to the AP through the authentication request

frame. Upon receiving the request, the AP either accepts or rejects the wireless user via an

authentication response. In an open authentication environment, no identity checking takes

place. The association request is sent by the station to enable the AP to allocate resources

to the wireless user and to synchronize with the user’s NIC. The association response sent

by the AP details the acceptance or rejection of the connection [27]. Subsequently, the AP

and wireless user can exchange data. Establishing secure communication requires further

steps after the association stage, such as the exchange of four-way handshake messages for

mutual authentication in WPA/WPA2-PSK or the provision of credentials to the authenti-

cation server (i.e., RADIUS [49]) in the enterprise mode before the four-way handshake

exchange [50].

SUPPLICANT AUTHENTICATOR

Beacon
Probe Request

Probe Response
Authentication Request

Authentication Response
Association Request

Association Response

Figure 2.2: Establishing a connection for open authentication
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The authentication/association and deauthentication/disassociation state diagram is

shown in Figure 2.2. In the first state, the station is neither authenticated nor associated.

After the authentication exchange, the station becomes authenticated, but is not associated.

Sending a deauthentication message at this stage causes the station to return to the first

state, whereas exchanging association frames places the station in the third state, whereby

the station is authenticated and associated and can exchange data. Sending a deauthentica-

tion frame pushes the station back to the first state, whereas sending a disassociation frame

causes the station to return to the second state [37], [51]. To terminate an established con-

nection, the AP disconnects one or all of the connected clients using the broadcast address

by sending a deauthentication frame. Both the station and the AP can send a disassociation

frame to end the association. For example, the wireless station can send a disassocia-

tion frame when the NIC is powering off, allowing the AP to remove the station from the

association table and deallocate memory. Deauthentication/disassociation frames are not

protected in 802.11i, but are encrypted in 802.11w [52] after the four-way handshake (i.e.,

exchanging the session keys (PTKs, GTKs)). However, there are some issues regarding

the deployment of this standard, namely that millions of devices need to be changed or

upgraded. Hence, few WLANs worldwide have implemented this standard. Thus, deau-

thentication/disassociation DoS attacks remain a problem in WLANs.
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State 1

State 2

State 3

Unauthenticated, Unassociated (Class 1 Frames)

Successful Authentication

Authenticated, Unassociated (Class 1 and 2)

Successful Authentication or Reassociation

Authenticated, Associated (Class 1, 2 and 3)

Disassociation Notification

Deauthentication Notification

Deauthentication Notification

Figure 2.3: Deauthentication and disassociation procedure

2.2 Classification of RAPs

In the literature, RAPs are classified into four categories: Evil-twin, Improperly

Configured, Unauthorized, and Compromised. Two more types that can also be classified

as DoS attacks are RAP-based deauthentication/disassociation attacks and the forging of

the first message in a four-way handshake. These latter two are classified as RAPs in

this article, because the deauthentication/disassociation attacks can be sent on behalf of a

legitimate AP to disconnect wireless users. This is similar to the Evil-twin attack, because

the attacker spoofs the MAC address of the legitimate AP to disconnect associated users.

The forged message in a four-way handshake is sent by a hacker who masquerades as the
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genuine AP to disturb and block the four-way handshake message exchange between the

wireless user and the AP.

2.2.1 Evil-twin

Sometimes referred to as Soft AP or Spoofed AP, we use the term Evil-twin to

represent this type of attack. The Evil-twin AP uses a software-based AP installed on a

portable device. Thus, a portable device with an external wireless card and a tool such as

airbase-ng1 are sufficient to set up this type of RAP. There are only two identifiers in the

IEEE 802.11 standard that can authenticate APs to users. These are the SSID and MAC

address (BSSID) of the AP [18]. As these identifiers can easily be spoofed, the AP can be

fabricated by an outsider and remain undistinguishable by wireless users. Evil-twin APs

come in two forms:

1. Coexistence : the legitimate AP and the Evil-twin coexist in the same location. The

Evil-twin clones the SSID and MAC address of the legitimate AP [53], and increases

its signal strength to force users to connect. It then relays packets through the legiti-

mate AP.

2. Replacement : the Evil-twin shuts down the legitimate AP and replaces it. This form

of RAP has its own Internet connection.

The first form uses two wireless cards, one built-in to the device and the other a plug-and-

play wireless card. The built-in wireless card associates with the legitimate AP, while the
1A tool for attacking users and APs.
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other wireless card masquerades as the legitimate AP. Packets are then relayed from the

Evil-twin’s plug-and-play wireless card to the built-in wireless card. The Evil-twin AP is

set up by an adversary to listen to users’ traffic as they browse the Internet, and to launch

several attacks on the victims’ devices [4], [19], [54], [55]. The IEEE 802.11 standard states

that WLAN clients must connect to the AP that has the strongest signal. To lure users, the

Evil-twin can move closer to the users or increase its signal strength to be stronger than the

legitimate AP. The Evil-twin then waits for users to connect to it, or may send DoS attacks

via deauthentication or disassociation frames on behalf of the legitimate AP to force users

to disconnect from the legitimate AP. In practice, an Evil-twin configuration involves more

steps to avoid IDSs, such as masquerading AP MAC address and SSID, establishing a DNS

server to connect to the Internet, and establishing a DHCP server to automatically assign

connected clients with valid IP addresses.

Once a user connects to the Evil-twin, their traffic is exposed to the adversary, who

may launch several attacks such as interception, replaying, and traffic manipulation. This

can also occur if encryption such as SSL is employed in the user’s device. The attacker

can act as the Man-in-the-Middle using his AP [18]. To do so, the attacker can easily use

tools such as SSLstrip2 to decrypt the traffic and BurpProxy3 to generate fake certificates.

Because users trust their encryption method, most will accept the faked certificates [56],

[57]. Therefore, Evil-twin APs can launch MITM attacks and decrypt encrypted traffic,

modify this traffic, and hijack sessions. Evil-twin attacks are very dangerous because of

their simplicity. Any mobile operating system such as iOS or Android can be used to

2An SSL stripping tool.
3An interception tool targeting web applications.
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create an Evil-twin. Thus, creating this attack using a smartphone does not necessarily

attract attention. Furthermore, easy-to-use tools such as airbase-ng and rfakeap4 are readily

available to help launch the attack.

The second form of Evil-twin attack replaces the legitimate AP, and uses the same

Internet connection that the legitimate AP had been using. This type of Evil-twin is harder

to detect than the first type, because it clones almost all of the characteristics of the legiti-

mate AP. Additionally, timing approaches that depend on delay cannot detect this type of

Evil-twin.

2.2.2 Improperly Configured AP

This type of RAP is not placed by an adversary: it exists in WLANs because the

AP is improperly configured. There are numerous situations where the AP can be miscon-

figured. An administrator who does not have a sufficient security background may choose

insufficiently robust authentication or encryption settings. Another example occurs when

the AP driver malfunctions or the whole device is worn out. In addition, the AP may

become vulnerable after a software update (e.g., firmware with encryption enabled using

WPA-PSK or WEP might cause the AP to resume without encryption) [6], [58]. This can

open a backdoor to bypass the organization’s authentication, allowing unauthorized users

to share network resources. This is a hardware-based RAP that is plugged into a switch or

router, and there is no malicious intent behind its existence.
4A tool that sets up a fake AP.
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2.2.3 Unauthorized AP

This type of RAP is installed by an employee or naive user without the network

administrator’s permission. Although, this AP is not installed by the network administra-

tor, it is considered part of the actual WLAN because it is connected to the wired side

of the network, like the legitimate APs. Thus, the unauthorized AP receives and sends

wireless traffic from the wireless users to the wired side of the network and vice versa.

This RAP can be set up for purposes of convenience, especially in large organizations, to

allow employees to gain access to network resources. Unauthorized APs can also be set

up maliciously to create vulnerabilities in an organization’s security, enabling outsiders to

exploit these weaknesses. Thus, unauthorized users who use these RAPs share the medium

with authorized users, eavesdrop the authorized users’ traffic, and launch attacks against

the network resources [6], [58]. This is another hardware-based RAP.

2.2.4 Compromised AP

Security methods such as WPA-PSK and WEP use shared keys to secure the com-

munication between the APs and the wireless users. If an adversary obtains the shared keys

used by the APs, the AP becomes rogue [6], [58], allowing hackers to launch attacks and

gain access to sensitive information. Hackers with no security background can use sim-

ple hacking software; Linux-based operating systems such as BackTrack5 or Kali6 provide

5Linux-based distribution for ethical hacking.
6Another Linux distribution for ethical hacking and security auditing.
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multiple tools for hackers to crack the shared keys, such as Aircrack-ng7.

2.2.5 RAP-Based Deauthentication/Disassociation

This survey focuses on the deauthentication/disassociation attacks that are launched

by RAPs to target wireless users. The IEEE 802.11 standard states that deauthentication

frames are a notification that cannot be rejected by the receiving wireless client. Thus, the

hacker can masquerade as a legitimate AP, and send deauthentication frames on behalf of

the AP to the wireless clients to terminate the connection. The attacker can launch a huge

number of deauthentication frames to prevent the wireless users from maintaining their

connection with the real AP or vice versa. There are three ways that a hacker can launch a

deauthentication/disassociation attack:

1. The attacker can create forged deauthentication/disassociation frames on behalf of a

connected user, and send the frames to the AP. When the AP receives these frames,

it assumes that they were sent by a legitimate user who wants to disconnect from the

WLAN. Hence, the AP disconnects the user. This type of attack is beyond the scope

of this survey.

2. The attacker can generate forged deauthentication/disassociation frames on behalf of

the AP, and send them to a single WLAN user. Once the frame is received, the user

disconnects from the WLAN.

3. The attacker can forge deauthentication/disassociation frames on behalf of the AP,

7A tool for cracking WEP and WPA-PSK keys.
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and send them to all connected users using the broadcast MAC address as a destina-

tion address. This attack is severe, because all associated WLAN users are discon-

nected when they receive the deauthentication/disassociation frame.

2.2.6 Forged First Message in a Four-way Handshake

The purpose of the four-way handshake messages is to verify that the station is in

possession of the pre-shared key. For simplicity, we now explain the four-way handshake

in WPA2-PSK; this is similar to that in enterprise mode. The PSK in WPA-personal is also

known as the PMK. The PTK is derived from PMK, and is installed into the MAC layer

[59].

The PTK is split into three keys. The first is known as the Key Confirmation Key

(KCK), which is used to verify MIC during the four-way handshake. The other two keys

(the Key Encryption Key (KEK) and Temporal Key (TK)) are created after the four-way

handshake [27], [60], as shown in Figure 2.3. Before sending the first message, the authen-

ticator generates a nonce (known as ANonce, generated randomly by the AP) and sends

it to the supplicant along with its MAC address, known as AA, the sequence number(sn)

to prevent replay attacks, and the message number (i.e., in this case msg1). The suppli-

cant generates a random number known as the SNonce, and has the ANonce and the PMK

(i.e., entered by the wireless user when choosing the preferred AP from the AP list). Thus,

the supplicant can construct the PTK. In the second message, the supplicant sends its own

nonce, MAC address, sn, and message number (i.e., msg2) to the authenticator along with

the related hash value (i.e., hashed using MIC), which are generated using the PTK that just
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has been computed at the supplicant device. The authenticator now has the three important

components needed to compute the PTK, namely the ANonce, SNonce, and PMK (i.e.,

entered initially at the AP captive portal). Prior to sending the third message, the authen-

ticator computes the PTK, verifies MIC, and sends a message including the hash values

of ANonce, sn+1, and msg3 along with AA, ANonce, sn+1, and msg3 to the supplicant.

The supplicant verifies their receipt by sending a confirmation to the authenticator using

the same procedure.

The adversary can mimic the authenticator and transmit a forged first message to

the supplicant. This occurs just after the second message has been sent by the supplicant,

as the first message is not encrypted (see Figure 2.3). The supplicant then generates a

new PTK corresponding to the new nonces that have been generated according to the new

received message. Thus, this vulnerability blocks the subsequent handshakes because of

inconsistencies in the PTK at the authenticator and the supplicant. Smart attackers can

determine the perfect time to send the forged first message by sniffing WLAN traffic, or

may simply flood the WLAN with messages, causing a DoS [61], [38].
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Â Ŝ
Message1 = (AA,ANonce,SN,Msg1)

Message1−−−−−→
Constucts−PTK
Message2 = SPA,SNonce,sn,Msg2,
MICPT K(SNonce,SN,Msg2)

Message2←−−−−−
Constucts−PTK,verify−MIC
Message3 = AA,ANonce, IncrementedSN,msg3,
MICPT K(ANonce, IncrementedSN,Msg3)

Message3−−−−−→
Install−PTK,verify−MIC
Message4 = SPA, IncrementedSN,Msg4,
MICPT K(IncrementedSN,Msg4)

Message4←−−−−−
Install−PTK

Figure 2.4: Four-way handshake message exchange
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CHAPTER 3: LITERATURE SURVEY

Existing countermeasures can be classified based on whether the technique protects

against one or more RAPs, whether the technique is passive or active, and whether it re-

quires protocol modification or special hardware. The following categories are identified

to classify the existing countermeasures:

Operator versus Client-side In the operator option, the IDS is implemented on an AP or

a router, and the AP tasks are divided between serving the traffic of the wireless users and

detecting intrusions. The client-side option focuses on detecting RAPs. There are some

challenges to developing a detection system on the client machine, such as:

1. Clients might be limited by the network settings or have fewer privileges than oper-

ators.

2. It is difficult for clients to gather WLAN traffic at the network gateway without the

operator’s assistance.

3. Similarly, it is difficult for clients to have dedicated servers with which to detect

RAPs.
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Passive versus Active Passive methods simply observe RAPs through wireless traffic,

whereas active approaches send test packets to the APs to examine how they react. The

biggest problem with detecting RAPs is that they do not reply to active probing. This

absence of collaboration has led to passive detection becoming the more popular technique.

Techniques that require special hardware Some techniques require special hardware

to perform detection methods, whereas others can simply use smartphones or laptops to

perform the task.

Techniques that require protocol modification Some techniques require standards or

protocols implemented by the APs to be modified or changed, either by adding more cryp-

tography methods or additional identifiers.

Wireless versus Wired Wireless approaches detect the RAPs using wireless traffic only,

whereas wired techniques detect the RAPs by analyzing the wireless traffic that has been

relayed by the router/switch at the network backbone on the wired side. Hybrid approaches

combine both wired and wireless approaches. Hackers can use various methods to evade

the detection methods on the wired side of the network:

1. The RAP can be hidden behind a legitimate AP:

As hotels, airports, universities, and other public WLANs have legitimate APs to

which a hacker could connect, the hacker can provide access to friends or outsiders

by connecting unauthorized APs to the legitimate AP. Several wired-side detection
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methods depend on the usage policy of the switch port; these methods detect the

legitimate wireless traffic, and cannot detect an RAP connected to a legitimate AP.

2. Modifying the pattern of the transmission:

Because wired-side detection methods depend on DCF statistics using wireless traf-

fic, hackers can modify their traffic using traffic shaping methods to either add delay

or reduce the delay to emulate wired traffic. Thus, an adversary that knows the Eth-

ernet and WLAN speeds can add delay at the application layer to emulate wired-side

traffic when the WLAN side is faster than the wired side, and vice versa.

Wireless approaches suffer from expensive sensor deployment. Hybrid techniques are gen-

erally good, but hackers can evade the hybrid methods through the wired side.

Techniques that detect all or some RAPs Most techniques focus on Evil-twin detection

and indirectly detect RAP-based deauthentication/disassociation attacks. Some techniques

detect Unauthorized APs, but the detection of Compromised APs is rare. There is no single

technique that detects all RAP types.

The ideal method is one that can detect all RAP types, is passive, does not require

protocol modification, and does not require specialized hardware. All existing techniques

have one or more of these features, but none of them has all four. In the next two sections,

the RAP prevention and detection methods are comprehensively surveyed to identify risks

and clarify the restrictions of state-of-the-art detection approaches.
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3.1 Available Security Countermeasures

In this section, we explain why available security countermeasures cannot protect

against all RAP types. Some countermeasures are designed for WLANs, whereas the rest

are adopted from the wired world. This section introduces the most widely used protocols

in WLANs to help protect against rogue devices in general, and RAPs specifically.

WEP was developed to encrypt the data transmitted on WLANs. The encryption process

in WEP starts by combining the 24-bit IV and the secret key that indicates the encryp-

tion/decryption key. In addition, the resulting key is used to produce the key sequence.

Furthermore, the plaintext message and the ICV are XORed with the key sequence to pro-

duce the cipher text. In the final step, the IV and the cipher text are concatenated. The

reverse of the encryption process is the decryption process. There are two characteristic

weaknesses with WEP: the IV is frequently reused, and the WEP secret key is not changed

often enough. Hence, it is difficult to ensure the existence of two different key streams.

Additionally, it is not difficult to attack WEP because it is possible to eavesdrop the IV

that is transmitted. Thus, if the sender encrypts two messages using the same IV along

with an original message, it is feasible to decrypt the encrypted messages using the XOR

operation. The key can then be recovered once the attacker gathers the key streams [62].

Because WEP is not secure, it does not protect against all RAP types.

PSK is used to encrypt wireless traffic between the wireless user and the legitimate AP.

One weakness of PSK is that the protocol does not allow any update or renewal property,
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so distributing the key in a secure manner is difficult. Some organizations distribute the key

on a printed receipt, whereas others use easy-to-guess passwords, so it is easy to intercept

the four-way handshake messages and perform a dictionary attack to obtain the key. Thus,

network administrators must renew the PSK on the AP manually, and provide the key to

all clients that participate in the network. Therefore, this procedure is time consuming and

insecure, especially if the administrator chooses an easy-to-guess pass-phrase [63]. This

method can protect against Compromised APs and Evil-twins if and only if the network

administrator chooses a hard-to-guess password and distributes it in a secure manner.

WPA-Enterprise Mode (802.1x) IEEE 802.1x [64] was designed as an access control

method to allow users to connect to the network. It also provides port security to prevent

unauthorized access to network resources. IEEE 802.1x has three important components

in a given wireless network: the supplicant, i.e., the wireless user that intends to join the

wireless network, the authenticator, who is responsible for providing access, and the au-

thentication server, which is responsible for making authentication decisions. IEEE 802.1x

uses existing protocols to accomplish its objectives, such as EAP [65], [66] and RADIUS.

EAP provides many methods, each having different properties that are suitable for a spe-

cific wireless network environment. The system administrator is responsible for choosing

which EAP method is used in the wireless network that he/she administrates [67]. EAP

uses challenge/response messages. The authenticator is responsible for asking the suppli-

cant to provide more information before deciding which authentication method to use in

the link control phase. The EAP authentication process consists of two important elements,

requests and type fields. The authentication phase uses either success or failure messages.
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There are several EAP methods for different network environments, such as EAP-MD5,

LEAP, EAP-TLS, EAP-TTLS, PEAP, and EAP-FAST. One of the most secure is EAP-

TLS, which uses public key cryptography to provide certificates to the users. EAP-TLS

provides certificates to both the client and the server, and supports mutual authentication

and dynamic key derivation [68]. This method can protect against Evil-twin and Compro-

mised APs, because it is hard to set up a fake authentication server that is protected by

strong cryptographic methods. However, the method has to be set up by the administrator.

This is difficult to implement, especially in Wi-Fi hotspots; this difficulty allows Evil-twin

APs to continue to exist. Another drawback with this method is that the server certificate

validation is optional, which may allow the authentication server to be faked by capturing

the four-way handshake messages [69], [70].

Web-based Authentication is sometimes used in colleges, cafes, airports, malls, and ho-

tels. In this type of authentication, the user is first directed to a captive portal that asks for

credentials or a disclaimer. For instance, many college WLANs use software authentication

systems to authenticate students or faculty members on the network. The systems belong

to different vendors—either free systems or priority systems—so they are not compatible

with one another. In addition, authentication is not related to the network topology, so there

is no knowledge of the network’s structure. Thus, broadcasts that are sent over WLANs,

such as DHCP broadcasts, could be leaked from DHCP requests prior to the authentication

of a specific user on the network. This would enable an intruder to break into the network

using DHCP requests. The authentication software employed in some colleges uses open

WLAN, and the authentication procedure can be done using HTTP. A login webpage is
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used to force the user to enter their username and password to authenticate their identity.

The authentication process depends on the firewall to redirect the HTTP requests to the

login webpage and block all other requests. Once the user has provided the correct cre-

dentials, they are authenticated and authorized to access the network resources [71]. The

problem with the open nature of WLANs and web-based authentication is that broadcasts

such as DHCP frames can be seen by anyone in the network, even if they are not au-

thenticated on the network or authorized to access the network resources. The broadcast

frames can be seen by unauthorized users using tools such as Wireshark8 or tcpdump9.

This method cannot protect against all RAPs, because it is easy to clone the login webpage

and capture users’ credentials using tools such as Airsnarf10. This method does not provide

mutual authentication, whereby the user and the access point authenticate each other; it can

authenticate the user, but not vice versa.

VPNs are used to connect to the Internet securely from unsecure environments. To im-

plement a VPN, a tunnel is created over the IP. For example, OpenVPN is open-source

software that uses SSL [72]. This method cannot protect against all types of RAP, because

the security of VPNs is not satisfactory, especially for portable devices. There are sev-

eral unsolved attacks that target SSL, such as certificate-based attacks. Thus, it is likely

that the VPN session will be aborted because of sinking management packets, forcing the

connection to return to the unsecure environment.
8A network protocol analyzer.
9A command-line packet analyzer.

10A utility to set up RAPs.
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IEEE 802.11w amendment protects the management and control frames once the ses-

sion key has been established after the key management exchange. Because the deauthen-

tication and disassociation processes are protected, it is unfeasible to forge the deauthenti-

cation/disassociation frames. However, there are some issues regarding the deployment of

this standard. Problems with upgrading the firmware and hardware mean that millions of

WLAN devices must be changed to become compatible, so most WLANs do not currently

implement the 802.11w standard.

3.2 Classification of RAP Detection Approaches

Because the aforementioned countermeasures do not protect against all RAP types,

several novel approaches have been proposed by researchers. Some existing approaches use

fingerprint techniques to detect the RAP. A device fingerprint aims to stamp a target device

using one or more characteristics via its wireless traffic. Fingerprinting can be used for

network monitoring, identification, or IDSs. It is triggered either by actively sending traffic

to a target device, or passively observing the traffic generated by the target device [73].

Fingerprinting uniquely identifies devices on a WLAN without using identifiers that can be

easily spoofed, such as IP addresses and MAC addresses [74]. Some approaches require

standard modification, whereas others solve one type of problem. As most techniques

focus on detecting Evil-twin APs, we split this section into six categories, two for Evil-twin

AP solutions, one for Unauthorized AP solutions, one for deauthentication/disassociation

attacks, and one for solutions that detect more than one RAP type. All forged first message

approaches require protocol modifications. We do not consider these here, as this survey is
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focused on approaches that do not require protocol modifications.

3.2.1 Coexistence Approaches

This subsection introduces approaches that solve the Evil-twin Coexistence sub-

type, as classified in Table 3.4. This sub-type seeks to insert an RAP into the WLAN

simultaneously with the legitimate AP. In [4], a timing-based scheme was presented that

detects RAPs that are injected through a Linux-based machine. In the attacking scenario,

the RAP can change its identity by masquerading as the legitimate AP by spoofing the

legitimate AP’s MAC address and SSID. The RAP then deceives users into connecting to it

by increasing its signal strength, and then launches several attacks on the users’ machines.

The scheme exploits the expected two hops that occur when the user connects to the DNS

server.

The authors of [4] used RTT to determine whether or not the given AP is legitimate.

The RAP is detected because it relays the traffic to the DNS server via the actual AP.

Therefore, the delay results from the two hops that occur between the user and the RAP,

instead of the permanent one-hop process. However, the proposed solution needs further

investigation, because the authors focused on only one specific cause of the delay in a

WLAN. There may be various reasons for such a delay, including (but not limited to) the

WLAN’s exposure to interference and collisions. Thus, this scheme is neither accurate nor

robust, especially in highly traffic-loaded WLANs. Additionally, the proposed technique is

more likely to detect the hotspot’s AP as an RAP.
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An approach called WiFiHop, in which test packets are actively sent to see if the

RAP relays the packets on a different wireless channel, has been proposed [75]. The authors

of [76] used SVM to train and validate the precise timing measurements related to the

authentication procedure to distinguish fingerprints. This method achieved an accuracy

rate of 86%, but the validation considered only five APs. This technique also requires the

use of another device to monitor the authentication sequences.

Kim et al. [77] simulated the launch of an RAP while the attacker’s device has

more than one RSSI. Detection can be achieved using the deviation between the two APs’

received signal strength. However, this approach depends on the scenario in which the RAP

relays traffic to the actual AP, which is not always the case. Bratus et al. [78] used an active

behavioral fingerprinting method adopted from TCP/IP fingerprinting. This approach is

implemented by network discovery and security auditing tools like Nmap11, and applies

an active request–response technique. This approach sends a request frame, and then waits

for the response in order to determine how the devices react to fragmented or manipulated

frames. This technique has the drawback of using active detection, which can be avoided

by most attackers. In addition, this technique can interfere with regular WLAN traffic.

Nikbakhsh et al. [79] proposed a multi-step approach to detect RAPs. If two APs

broadcast the same SSID and MAC address, the approach checks whether the IP addresses

are the same, then compares the trace routes. It is unlikely that the same trace route will be

found, because having the same IP addresses at the same time would cause an IP address

conflict. Thus, the only possible situation is to have the same IP addresses and different

11Free security scanner for network exploration and hacking.
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trace routes, which is a result of IP spoofing. This approach cannot deal with such a condi-

tion, as it cannot determine which AP is authorized and which is unauthorized.

A second possibility is that there are different IP addresses. The method proposed

by Nikbakhsh et al. then calculates the network IDs using different IP classes to compare

the IP addresses. If the method finds that the network IDs are identical, the APs are defi-

nitely in the same WLAN, which is considered a result of load balancing in the WLAN. In

this situation, large organizations use more than one AP to cover the whole WLAN. Thus,

the IP addresses of the APs are different, but the network IDs are similar, so the proposed

solution marks this situation as safe. Another possibility is that there are different network

IDs and different IP addresses. In this case, the approach triggers the trace route for both

APs to determine whether there is an extra hop, which would signify that the Evil-twin AP

relays packets to the legitimate AP. The last possibility is that network IDs, IP addresses,

and routes are different. In this situation, the attacker uses his AP to broadcast the same

SSID as the legitimate AP. This situation cannot be handled by this approach, as it cannot

determine which AP is legitimate. That is, the approach of Nikbakhsh et al. cannot protect

against the Replacement sub-type, as it only detects the Evil-twins that relay packets to a

legitimate AP.

Chumchu et al. [83] used the data rates and modulation types to differentiate be-

tween legitimate and rogue wireless devices. Important information from PLCP metadata

is extracted to detect the rogue devices. The data rates and modulation types rely on a rate

adaption algorithm, and are difficult to spoof because they belong to the physical layer. The

problem with this approach is that it is limited to the small number of modulation types and
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data rates that can be used by the 802.11 standards. There is a high probability that hackers

will use similar data rates and modulation types as one or more of the genuine wireless

devices in the WLAN.

Chae et al. [80] used the authentication and cipher types of the AP to detect RAPs.

Their method stores information on the authorized APs, such as SSID, authentication type,

and cipher type, in a database. It then sniffs the beacon frames and compares the parameters

with those in the database. If the information does not match that of the authorized APs, an

alert is triggered. This approach is designed to be implemented on the client side for protec-

tion in airports or malls. However, it is not practical, because all Wi-Fi hotspots in airports

and shopping malls are restricted to open authentication (i.e., no other authentication types

are used in hotspots) and have only one cipher type.

Szongott et al. [84] combined parameters such as SSID, BSSID, supported authen-

tication, key management, and encryption schemes to detect mobile Evil-twin APs. They

also used cell tower information as an environment identifier. Finally, they used the loca-

tion of the device, as determined by the Google Play services API or through Android’s

location API. If the user selects a WLAN that is not in the database, no warning message

is needed. If the SSID is known, but the BSSID of this AP is not in the database, a warning

message is triggered. In this situation, the user has two options. If the user trusts the AP, a

profile of this AP is created in the database; otherwise, the connection process is dropped

and no information is stored. The other parameters are used to determine the location of the

mobile Evil-twin AP. This approach is similar to TOFU, a method used in contexts such as

SSH that depend mainly on the user. This method can only detect mobile Evil-twin attacks.
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It cannot detect Evil-twin APs that share the Internet with existing legitimate APs, and can-

not locate other devices such as laptops or iPhones, because it depends on applications that

are related to Android.

Qu et al. [81] proposed an indirect RAP detection approach, known as RAPiD,

which uses the Local Round Trip Time (LRTT) of TCP packets to measure the delay. This

approach is similar to several other approaches that assume any delay is a sign of RAPs.

However, WLANs have two other main reasons for the delay: interference and collision.

Kao et al. [82] proposed an approach based on the beacon time interval deviation. The

approach takes advantage of the fact that the AP sends a beacon frame approximately every

100 ms, and the time interval between two consecutive beacon frames can be measured to

identify suspicious activity. However, it is difficult to predict the time interval between two

consecutive beacon frames. Additionally, this approach does not scale in real-life scenarios,

because 802.11b, 802.11g, and 802.11n WLAN devices interfere with one another and

Bluetooth and microwave ovens cause more interference and collisions in the frequency

band. Collecting information from distributed sensors in large organizations would also

be a problem, as the time interval would be different from sensor to sensor based on the

distance to the AP.

3.2.2 Approaches that handle all Evil-twin sub-types

An overview of the approaches that solve both the coexistence and replacement

Evil-twin sub-types is presented in Table 3.5. The authors of [20] combined ISP-based

detection and timing-based detection to detect Evil-twin APs. A hotspot’s AP must have
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a gateway with a global IP address to provide Internet to wireless users. A block of IP

addresses is given to the ISP by IANA12, so the ISP provides a unique global IP address

to customers who subscribe to this service. Information in each global IP address, such

as the name of the organization, location, and assignment date, is publicly available on

various websites. The proposed approach sends a request to one of these servers, and waits

for the reply to obtain important information such as the source address of the AP, ISP

information, and location. It was found that the hotspot APs that are connected to the same

router share the same global IP address or the same ISP. The authors used the information

obtained from the public servers to distinguish legitimate APs from Evil-twin APs. ISP-

based detection cannot identify Evil-twin APs that share an Internet connection with one

of the legitimate APs, as the Evil-twin AP uses the same Internet service, which cannot be

differentiated from that of the legitimate AP. Thus, the authors developed another detection

method called timing-based detection to detect Evil-twin APs that share the Internet with

one legitimate AP. This approach uses active probing, which can add traffic to WLANs.

The work in [85], [86], [87] requires the modification of 802.11 standards or pro-

tocols. The authors of [85] introduced a protocol entitled “Secure Open Wireless Access”,

which adopts the well-known SSL protocol to distribute certificates. The SSID of a given

access point is considered a unique string, and is associated with a certificate by a trusted

CA. The association between the certificate and the unique string can be used to authen-

ticate the AP operator. The authors of [86], [87] proposed an EAP-based authentication

method, referred to as the Simple Wireless Authentication Technique (EAP-SWAT). This

utilizes the SSH’s trust-on-first-use approach, whereby trust is certified for the first connec-

12The authority in charge of managing global IP addresses.
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tion to the AP. Subsequent connections to the AP are ensured to be authenticated by the

coexistence of the certificates. For deployment reasons, techniques that require standard or

protocol modifications are not ideal solutions. It is impossible to deploy the protocols in

[85], [86], [87] because it is difficult to change the drivers and firmware of the supplicants

and APs.

Some researchers have focused on hardware fingerprinting to detect RAPs based

on the characteristics that uniquely identify the WLAN device. The authors of [88], [89]

proposed a clock skewing approach that extracts the TSF timestamp from beacon frames.

In addition, the authors compared the beacon frame timestamp generated at the AP with

the inter-arrival time of the frame at the user station. This technique is not robust because

of variations in the WLAN medium that are susceptible to delay, especially in high-traffic

WLANs.

The authors of [18], [90] applied the time skew method using TSF to differentiate

between hardware- and the software-based APs. They only detect RAPs that are generated

from airbase-ng-based RAP tools, and cannot detect RAPs that are generated by other tools.

The authors of [91] used a method called active probing on adjacent channels, which, as the

name implies, is an active technique. IEEE 802.11 g/n and some other existing technologies

such as Bluetooth operate in the 2.4 GHz band for compatibility purposes. The protocols

require channel separation of 16.25–22 MHz, but the problem is that the channel center fre-

quencies can only be separated by 5 MHz, which causes adjacent channels to overlap. It is

impossible for WLAN devices to receive a single frame that is not sent on the same opera-

tional channel on which this WLAN device operates. It was found that software-based APs
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treat these frames in a different way to hardware-based APs. Several probe requests were

sent on the operating channel and adjacent channels of 30 hardware-based APs and several

software-based APs to examine how probe request frames were treated. It was noticed

that hardware-based APs send probe responses on the same operational channel, whereas

software-based APs respond to both the operational channel and the adjacent channel.

The authors of [91] proposed another approach called Malformed Probe Request

Stimuli. The Address 1 field is set to contain the destination MAC address (i.e., the MAC

address or broadcast address of the AP). The Address 3 field is always set to the BSSID;

therefore, it is only relevant to IBSSs such as ad hoc or mesh networks. Because the pro-

tocol in infrastructure mode states that the BSSID is the AP’s MAC address, the AP that

receives a probe request should reply to Addresses 1 and 3, which includes the MAC ad-

dress of the AP. However, the authors noticed that hardware-based APs do not check the

Address 3 field of the probe request, unlike numerous software-based APs. This looks

reasonable, because APs are designed to be in infrastructure mode and are not part of an

IBSS or mesh network. These two approaches have similar drawbacks to other active prob-

ing techniques, namely the sharing of bandwidth with the WLAN devices, which causes

interference and delay.

Wei et al. [92], [93] used ACK-pairs to distinguish whether traffic was being gen-

erated from the wired or wireless side. The authors used an algorithm known as iterative

Bayesian inference to acquire a maximum likelihood approximation. Although this ap-

proach is effective, it cannot be deployed in real time, because it takes time to converge.
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3.2.3 Unauthorized AP Countermeasures

A number of approaches focus on protecting against APs that have been inserted

by insiders, as shown in Table 3.6. The authors of [94] proposed an active approach to the

detection of unauthorized APs. Their approach has a verifier that is placed on the wired

side of the network. This verifier sends test packets to the wireless side of the network.

The APs that relay those test packets are detected as RAPs because they are on the wired

side of the network and allow the relay of packets to the wireless side. Once an RAP has

been detected, its IP address is returned to allow the network administrator to locate the

RAP. The verifier was used to monitor the wired side of the network to avoid NAT private

IP address problems. The verifier can monitor the active users on the wired side and send

test packets to them. If a user who receives this packet is an AP, the packet is forwarded to

the wireless side. If the AP uses the WPA or WEP mechanisms, the sniffer on the wireless

side cannot reveal the payload of the sent packets. Thus, the authors used the sequence of

predefined packet sizes, and employed an active technique to send test packets, although

this added an overhead to the shared network medium.

The Shadow Honeypot approach [12] consists of three components: a filtering en-

gine, anomaly detection sensors, and shadow honeypot code. The filtering engine is the

first line of protection, responsible for purifying unauthorized wireless traces based on an

authenticated list. The authenticated list contains the authorized AP MAC addresses. Any

traffic sent from source MAC addresses other than the authorized ones is assumed to orig-

inate from an RAP. Traffic from authenticated users is bypassed by the detection engine.
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The traffic that goes through the detection engine is passed to the anomaly detection sen-

sors, which examine the characteristics of the packets and pass legitimate packets to the

shadow honeypot stage. The shadow honeypot stage uses popular signatures of worms and

attacks and compares them with the network trace. This approach is not very accurate,

and is not automated. The authors used different tools to analyze network traffic, an inef-

ficient and time-consuming process. For instance, in the anomaly detection sensor stage,

tools such as Wireshark and Ettercap13 are needed to analyze the network trace and detect

RAPs. Additionally, RAPs that have spoofed the MAC address of a legitimate AP have a

high probability of passing the other two stages, especially if they send frames that cause a

DoS attack. These frames have similar characteristics, and can bypass all of the anomaly

detector sensors.

Beyah et al. [95] used the inter-packet spacing to determine whether traffic had been

generated from a wired or wireless link. This approach is passive, so it does not add traffic

to the WLAN, and can distinguish between wired and wireless traffic. It does not require

protocol modification. This approach has a vital drawback, as inter-packet spacing can also

be a load on a switch, which might cause this approach to be inaccurate. As the number of

switches increase, the accuracy may become an issue. The authors of [96], [97] proposed

using the RTT to distinguish between wired and wireless links. The RTT is the time that

the TCP/IP session packet pair takes to travel from the router to the host.

An agent based approach has been proposed [98] whereby an agent equipped with a

wireless card sniffs wireless frames and returns a packet to the analyzing engine containing

13A comprehensive suite for MITM attacks.
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information about new APs. The analyzing engine has an authorized list of legitimate

APs, so the information corresponding to new APs is checked against the authorized APs

to determine suspicious nodes. This type of approach depends completely on the MAC

addresses of the APs, which can easily be spoofed.

3.2.4 De-auth/Disassociation Countermeasures

The security standard of 802.11 series WLAN is IEEE 802.11i. This was ratified

in 2004, and provides data confidentiality, integrity, and mutual authentication in the MAC

layer. It uses 802.1x for authentication and access control, and a four-way handshake for

key management and distribution. However, there are some weaknesses in WLANs related

to the fact that the management and control frames are unprotected. DoS attacks in WLANs

can mainly be classified as deauthentication/disassociation attacks [99], [100] or four-way

handshake memory/CPU DoS attacks [101].

The deauthentication and disassociation frames are management frames [102]. They

can easily be forged by an adversary if IEEE 802.11w is not implemented, because man-

agement frames are not protected. An adversary can spoof the MAC address of a legitimate

user, either a supplicant or an authenticator, and send either deauthentication or disassocia-

tion packets on behalf of that user to disassociate or deauthenticate the victim. More harm-

ful attacks can be launched by broadcasting these frames on behalf of the authenticator to

all the supplicants in the WLAN by setting the destination MAC address to the broadcast

address [103], [104]. Thus, one deauthentication/disassociation frame disconnects all of

the supplicants on the WLAN.
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The deauthentication and disassociation frames are management frames [102]. They

can easily be forged by an adversary if IEEE 802.11w is not implemented, because man-

agement frames are not protected. An adversary can spoof the MAC address of a legitimate

user, either a supplicant or an authenticator, and send either deauthentication or disassocia-

tion packets on behalf of that user to disassociate or deauthenticate the victim. More harm-

ful attacks can be launched by broadcasting these frames on behalf of the authenticator to

all the supplicants in the WLAN by setting the destination MAC address to the broadcast

address [103], [104]. Thus, one deauthentication/disassociation frame disconnects all of

the supplicants on the WLAN.

Table 3.7 lists several approaches to detect deauthentication and disassociation at-

tacks launched by wireless users or the AP. Bellardo et al. [105] applied authentication to

all of the management frames by modifying the authentication framework. This might help

prevent the deauthentication attacks, but it necessitates an upgrade to the AP and WLAN

users’ firmware. Authenticating each management frame acquires supplementary cost for

the AP and the users, consuming the power resources of portable devices. The authors also

proposed a delay to the deauthentication effect. If a deauthentication frame followed by

a data frame is received from a victim, the deauthentication frame is discarded. However,

delaying the management frames generates problems related to roaming.

Sequence number-based approaches [43], [108], [44], [106], [107] have been pro-

posed by several researchers exploiting the fact that every data and management frame has

a sequence number in the MAC header. The sequence number typically is incremented by

one when the sending device sends a management or data frame. The sensor captures the
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frames from the same MAC address, and if it finds there is a gap between two consecu-

tive frames, it assumes that MAC address spoofing has occurred. These approaches cannot

work well when the legitimate station is not sending any frames. In addition, it cannot de-

tect an attacker when it only sends control frames, as control frames do not have sequence

numbers.

RSSI approaches [21], [109], [16], [17], [36], [45], [46], [111] can be used to differ-

entiate WLAN devices based on their location. The RSSI is the signal power of the frame,

measured at the receiving wireless device. A number of factors play an integral role in mea-

suring the RSSI, such as the transmission power, multi-path and absorption effects, and the

distance between the two communicating parties. A wireless device does not ordinarily in-

crease or decrease its transmission power, and so obvious changes in RSSI from the same

MAC address are an indicator of MAC address spoofing. Because the distance between the

adversary and the legitimate wireless device is significant, an adversary is more likely to

be detected. One problem with these approaches is that a smart adversary will increase the

transmission power to mimic the legitimate wireless device. Another problem is that it is

hard to detect the attack, especially if the adversary is in close proximity to the legitimate

wireless device.

Chen et al. [16], [17] proposed an approach based on the K-means clustering al-

gorithm to detect MAC address spoofing in WLANs and wireless sensor networks. The

authors assume that the RSS samples form a Gaussian. They assume that the RSS samples

at a given period at N-sensors form an N-dimensional vector and the number of clusters is

two (i.e., k = 2). They then use the Euclidean distance algorithm to compute the distance

48



between the two centroids and eventually detect any MAC address spoofing. In practice,

their approach might not work very well, especially when the hacker and legitimate device

are close to each other. The centroids of both devices are close to each other, which makes

it hard to differentiate the RSS samples that come from the hacker. In addition, their ap-

proach struggles with non-Gaussian data distributions. Finally, one device can form two

independent clusters, as we explain in the next sections.

Sheng et al. [36] proposed to profile legitimate device RSS samples using the GMM

clustering algorithm. They assume that the RSS samples from a given sender-sensor pair

follow a Gaussian and apply a GMM clustering algorithm to detect spoofing. The solution

that they propose has some limitations: a non-Gaussian distribution of the RSS samples

could occur in real wireless networks because of interference, multi-path fading, and ab-

sorption effects. As a result, their approach would not perform well, especially in high

traffic wireless networks.

Yang et al. [45], [46] proposed to use the Partitioning Around Medoids approach,

also known as the K-medoids clustering algorithm, to detect MAC address spoofing. This

algorithm is better than K-means because it is robust against any noise and outliers that

the data might contain. However, they have similar assumptions to those in [16], [17].

They assume that there are two clusters (i.e., K = 2). They also assume that, under nor-

mal conditions, the distance between the two medoids should be small because there is

only one cluster at a specific location that is the legitimate device. In contrast, under ab-

normal behavior, the distance between the two medoids should be large and this suggests

the existence of an attacker [45], [46]. This approach has a problem that is similar to the
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K-means-based approach, which is that it is difficult to determine the attacker if he/she is

in close proximity to the legitimate device because the two medoids are close to each other

and the RSS samples are mixed together. In addition, one device can have two independent

clusters that could degrade the accuracy of their proposed solution.

The authors of [41], [110] assumed that deauthentication causes some degradation

in throughput. Thus, they count the number of frames sent by a certain wireless client,

and set a threshold value to detect an attack. Although this assumption might be true, it

has some drawbacks. First, it is impossible to detect a single deauthentication attack. An

attacker can do many disruptive things with only one frame, such as discovering hidden

SSIDs or cracking WEP/WPA-PSK methods. Second, a legitimate wireless station may

be marked as an attacker simply because it sends two or more frames, as some devices

are designed to send more than one frame to leave a WLAN. Nguyen et al. [40] suggested

that the AP and WLAN users employ a secret key to authenticate the deauthentication

frames. However, this technique would require the firmware of the drivers and devices to

be modified.

Tao et al. [42] proposed a layered architecture named Wireless Security Guard

(WISE GUARD) to detect MAC address spoofing using three stages. The first stage is

OS fingerprinting, which can be applied to the network layer in the protocol stack. The

authors extended the SYN-based OS fingerprinting because it is capable of differentiating

the attacker from the legitimate device only if the attacker injects data frames into the net-

work. They utilized the capability information, traffic indication map, and tag information

(which includes the vendor information) to extend it. The second stage employs the data
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link layer, the sequence number field in particular. They utilized the idea that there could be

a sequence number gap between the legitimate device and the attacker consecutive frames.

The third stage brings to play the RSS, which belongs to the physical layer; unfortunately,

the authors did not explain this stage in much detail.

The authors established some rules to detect the MAC address spoofing. They used

a simple and yet effective technique to combine the outputs from the three stages. Every

stage outputs either normal or abnormal states of every upcoming frame. They then com-

bined the outputs to evaluate how severe the suspicious frame is; if the analyzer finds the

outputs of more than one stage to be abnormal, the alert is triggered. If the OS fingerprint-

ing stage alone is abnormal, the alert is triggered. This indicates that the MAC address

of the AP is masqueraded, because the OS fingerprinting that the authors used, depends

on fields that are vital to the APs such as capability information. Some drawbacks exist in

such approaches: most of the spoofing attacks involve control and management frames, and

these frames cannot reveal OS characteristics; therefore most of the intrusions in WLANs

go undetected. OS fingerprinting also assumes that most of the tools that attackers use

are based on Linux based operating systems. This is somehow a valid assumption, but

Windows Operating System also provides a capability to change the MAC address of any

wireless card in the WLAN. The sequence number techniques have several drawbacks as

explained previously, so combining both SN and OS fingerprinting could miss some intru-

sions.
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3.2.5 Countermeasures that Solve Multiple Attacks

The approaches listed in Table 3.8 can protect against multiple RAP types. In [6],

[58], a hybrid approach was proposed that works on the wired and wireless sides of the

network. This approach includes several centralized and distributed tasks. A frame collec-

tor is used to capture frames and filter anomalies, allowing Evil-twin, Unauthorized, and

Compromised RAPs to be detected. This approach has two main drawbacks: it uses active

probing, and must be bundled with the router or the switch. It is difficult for the router

or the switch to divide its work between serving the wireless users by carrying traffic and

acting as an IDS.

Companies such as Air-Magnet [115] use wireless sniffing solutions. Sensors are

deployed across the whole diameter of the network to gather physical and data link layer

information, enabling RAPs to be detected in a distributed agent–server architecture [115],

[116]. The collected information contains RF measurements, MAC addresses, signal strengths,

and AP control frames. This approach is very expensive, because the analyzer system pro-

vided by Air-Magnet costs $3,000 [13], [115].

Vanjale et al. [112] proposed using the SSID, MAC address, and RSSI to detect

RAPs. The authors created a profile containing these three parameters for each legitimate

AP. This technique first checks the AP SSIDs. If it finds any duplication, then it consid-

ers the MAC addresses of the duplicate APs. If both are the same, this is considered a

legitimate AP. If different MAC addresses are found, the RSSI is checked. If the differ-

ence in RSSIs is less than 10 dB, then the technique considers this AP legitimate. This
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approach is passive and does not require protocols or standard modifications, but it has

some drawbacks. The first is that, in reality, it cannot detect Evil-twin APs, because these

RAPs can mimic the same SSID and MAC address as one of the legitimate APs. This ap-

proach assumes that APs with the same SSID and MAC address are genuine; however, this

assumption is misleading. A second drawback is that this approach detects a hotspot’s APs

as RAPs, as they have the same SSID but different MAC addresses.

Sriram et al. [113] proposed a multi-agent solution that can detect Evil-twin and

Unauthorized RAPs. This approach has two important components, namely a master agent

and a slave agent. The master agent is used to regulate the authorization processes of

the WLAN, while the slave agent is used by the master agent to identify active APs in

the WLAN. The slave agent is connected to an AP to obtain important information such

as SSID, vendor name, MAC address, and channel number. This information is sent to

the master agent and compared with information on an authorized list. However, this ap-

proach depends on parameters that can be easily spoofed by many Evil-twin tools. Such

approaches use an agent equipped with a wireless card to sniff wireless frames and return

a packet containing information about new APs to the master agent. The master agent has

an authorized list of legitimate APs, and checks the new AP against the authorized APs to

determine suspicious nodes. This type of approach is heavily dependent on the AP MAC

addresses, which are easy to spoof.

In [114], a Distributed Wireless Security Auditor (DWSA) was proposed. This

approach uses both Linux and Windows-based implementations to provide network ad-

ministrators with continuous wireless assessments. It also uses trusted wireless clients as
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distributed sensors to find anomalies throughout the WLAN. DWSA provides periodic se-

curity reports, and detects and locates RAPs using 3D trilateration. This approach can

detect Evil-twins and Unauthorized RAPs.

Companies such as NetStumbler [117] use wireless packet analyzers on laptops or

hand-held devices to detect RAPs. That is, IT personnel physically walk through the halls

of an organization or university to search for RAPs. This technique is time-consuming and

ineffective, because the scan is performed manually. Additionally, IT employees should

upgrade the detection devices to be able to work on different frequencies. Furthermore, the

scan can be evaded if the hacker simply unplugs the RAP as the detection is taking place.

Various techniques [118], [119], [120], [121] use a scan from a central location to

achieve enterprise-wide coverage. Several dedicated sensors are distributed with the help of

one or more legitimate APs to scan beacon frames from surrounding areas. Information on

the surrounding APs is sent to a central unit for further analysis under the prevailing security

policy. The problem with these techniques is that each sensor only scans one frequency,

and some sensors only cover one channel. Another problem with some techniques is that

they detect neighboring APs as RAPs.

The authors of [3] used several light machine-learning algorithms that could classify

the four classes that they studied for WLAN attacks. The best performing classifier was

J48, with an accuracy of 96.19%, when using all the 156 feature set. This algorithm takes,

about 3921.68 seconds. The authors then reduced the dimensionality of the data-set and

picked the best 20 features to improve accuracy and reduce time. They were able to increase

the accuracy of the best performing algorithm to 96.2574% and decrease the time of that
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algorithm by 568.92 seconds.

In this research we will not survey the wired IDSs researches [27], [122], [123],

[124], [125] as they are limited to detect network, transport, and application layers attacks.

We will only consider the wireless IDSs that are closely related to our research which work

on the two layers that are only available in WLANs which are physical and data link layers.

3.3 Road Map and Future Directions

The simplicity of configuring an RAP creates a real security threat to WLAN de-

vices. There are several existing techniques that can detect RAPs, but they are inefficient

and often inaccurate. Some techniques require the active addition of traffic to the WLAN,

whereas other techniques require protocol modifications. The current techniques have sev-

eral drawbacks, as listed in Table 3.9. Early wireless-side solutions detected Evil-twin

APs by examining SSID and MAC addresses to differentiate legitimate (authorized) APs

and locate the RAPs. The wired-side solutions locate RAPs using switch port mapping,

but do not have an integral authorization method as they depend only on switch port poli-

cies. Furthermore, it is not possible to detect an RAP that is attached to a legitimate AP.

The wired-side solutions must require authorization techniques other than the switch port

policies.
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Table 3.9: Strengths and weaknesses of existing techniques

Technique Type Strengths Weaknesses

Unautomated Wireless Solutions Passive Can be evaded easily
Minimal infrastructure is needed Requires considerable effort and time

Sensors must perform on every channel

Wired-Active Probing Does not depend on wireless frequency Active
RAP might not respond to packets
Only depends on switch port policies

Hybrid Passive Can be evaded from the wired side
Can detect most RAP types

Timing approaches Passive Necessitates samples on wired and wireless
Does not depend on wireless frequency Assumes wired link faster than wireless

Could be evaded from insiders

Identification approaches Passive Could be evaded from insiders
Does not depend on wireless frequency
No samples from wired and wireless
Link speed is not important

The road map in Figure 3.5 shows how the detection of RAPs has evolved from

manual scanning by walking through halls to automated WIDS. Based on our survey, it is

clear that future solutions should have numerous characteristics. A complete solution to

the RAP problem should be able to detect all RAP types. A passive approach is prefer-

able, as this will not increase the traffic on the WLAN. In addition, approaches that require

protocol modifications or additional special hardware, besides sensors, should be avoided,

because deploying modifications can be difficult, supplying new hardware is costly, and

implementation may cause incompatibilities. An approach that is implemented on the AP

is disadvantageous, as it requires the detection task to be shared with the serving of wireless

traffic. An ideal approach would allow complete coverage of a WLAN, including all pos-

sible channels and frequency bands. For robustness, a suitable approach should not rely on

higher-layer protocols such as TCP ACKs, because this will delay detection and is ineffec-

tive against deauthentication/disassociation and forged first message attacks, which depend

on management frames rather than higher-layer protocols. Finally, a well-built approach
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Figure 3.5: Timeline of existing techniques

should not depend on easily spoofed identifiers such as MAC addresses or IP addresses.
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CHAPTER 4: RESEARCH PLAN

RSS has been adopted by researchers for localization for several years because of its

correlation to the location of a wireless device [126], [127], [128], [129], [130], [131]. The

goal of localization is to focus on RSS samples of a single device. In contrast, in spoofing

detection, it is sometimes difficult to distinguish between two devices at different locations

that claim to be the owner of a specific wireless device through spatial information alone,

especially when they are in close proximity. We exploit the fact that RSS samples at a

specific location are similar while the RSS samples at two different locations are distinctive.

To distinguish an attacker, we should first develop the characteristics of normal behavior

by building a profile of the legitimate device.

4.1 Network Architecture

The network architecture is assumed to be similar to the one that is in Figure 4.1(a)

which consists of sensors monitoring the network. Every sensor captures frames from

nearby wireless devices. Each sensor sends the important information of the captured pack-

ets, as shown in Figure 4.1(a), to the server for global detection. The console receives the
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Figure 4.6: Network Architecture and Profiling

packets, normalizes the RSS samples using the timestamps or sequence number, combines

the packets, and constructs the sample. Each sample contains the information of the same

packet from both sensors.

4.2 Profiling based on Random Forests

The proposed framework involves two stages: the offline stage and the online stage.

In the offline stage, the legitimate device profile is built. During profiling, we label the

legitimate device RSS samples for the training set as 0 and all possible other locations as

1 to construct a profile of the legitimate device. We train the classifier on 50% of the data

for each combination (this can be done once per new environment or periodically). We

test on 50% of the unseen data to evaluate our predictor. Once we are satisfied with our

predictor, we can serialize it, as shown in Figure 4.1(b), to predict new unseen data. After

serialization, the training procedure depicted in the lower part of the figure is not necessary

for real-time prediction. Thus, in the online stage, any new packet can be fed immediately

60



to the predictor. The predictor then predicts if the packet comes from a legitimate device

or not. If it finds that the packet is coming from a suspicious device, an alert is triggered.

Let x denote the RSS sample and C denote the class, so that

C =


0 if x is genuine

1 if x is suspicious

Data points are denoted by a vector

v = (z1,z2, ...,zm) (4.1)

where z is an integer representing the signal strength of each frame in the signal

space.

dataset d can be represented as

d = (x1,y1), ...,(xn,yn) (4.2)

where d = 20000 for each combination in (4.2), xi is the RSS sample and yi is its label.

and xi ∈ N−dimensional

where N-dimensional is feature vectors having RSS samples captured by each sen-
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sor (e.g., the first feature is the RSS samples captured by the first sensor, the second feature

is the RSS samples captured by the second sensor and so on).

We used the Python library [132] in our experiment to train and test our detection

method. Algorithm 1 shows the training set using the Random Forests ensemble method.

Random Forests uses a specified number of trees (e.g., 100) to perform the whole proce-

dure. Each tree works on a different subset of the dataset randomly to create the ensemble

[133].

Algorithm 1 Training using the Random Forests algorithm
1: for t = 1 to F do . F = 100

2: Uniformly render a bootstrap sample Z∗ from d

3: Random Forests tree Tt increases bootstrapped data Z∗ in size by performing the

following steps:

• At each node choose r features randomly

• Choose the best possible feature . xi ∈ N−dimensional as stated previously

• Split into two child nodes using the best split-point . r 6 N

4: Output: Trees ensemble {Tt}F
1

To detect MAC address spoofing, we used the prediction ability of Random Forests

after serialization to predict unseen new samples, as indicated in Algorithm 2. The new

sample is classified as normal or abnormal, if the predictor finds it to be different from the

profiled samples.
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Algorithm 2 Detection algorithm
1: for profiled MAC address frames do

2: Predict every sample using the following equation . To predict new data point x̂

cF
R = Mvct(x̂)

F
1 (4.3)

. ct is the prediction class of the Random Forests . Mv is the majority vote

3: If the sample is different from the legitimate device samples

4: Output: A rogue device has been detected

4.3 Anomaly Detection

The anomaly detection capability utilizes the one-class SVM to detect anomalies.

The capability uses the Radial Basis Function (RBF), because the data shape is non-linear.

Also, the capability is total unsupervised (i.e., the samples are not labeled). In the offline

stage, the anomaly detection capability uses one-class SVM-RBF to build up the virtual

profile of the RSS samples as shown in Figure 4.7, then it passes the samples to the normal

profile builder for building the patterns. In the online stage, the network traces are passed

and the RSS samples are extracted. Consequently, the anomalies detection takes place to

find out if the RSS samples are similar or different from the constructed profile. If it finds

it different from the profiles samples, the alert is triggered.

4.4 Applying the Misuse Detection on Public Dataset

The proposed framework (shown in Figure 4.8) uses several machine learning al-

gorithms to build the patterns of both the normal behavior and the intrusions. The patterns
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of the intrusions are built in the offline stage. The intrusions are classified based on their

types in the online stage. Prior to training the framework applies a feature selection capa-

bility to choose important features and discard unwanted features. The training includes

some algorithms that are fed into majority voting for robustness and to improve the per-

formance. These algorithms are Extra Trees with 20 trees, Random Forests with 20 trees,

and Bagging with 10 Decision Trees. After majority voting, the patterns are built by the

matching builder for normal samples and intrusions. Once the builder creates the patterns,

the patterns can be serialized and fed into the detection capability. In the online stage, the

network traces are pre-processed using the features that have been selected by the feature

selection capability. After pre-processing, the frames are fed into the detection utility for

online detection. The detection utility decides whether the frame is suspicious or not; if it
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finds a suspicious one, the alert is triggered.
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Figure 4.8: Misuse detection

4.4.1 Bagging

Tree Bagging algorithm was found by Leo Breiman in 1996 [134]. Bagging ensem-

ble method consists of predetermined and parallelized classification trees. These trees are

grown from bootstrap replications. The randomization of the cut-points is accomplished

implicitly through the bootstrap re-sampling.

4.4.2 Random Forests

Random Forests classifier was also introduced by Breiman in 2001 [30]. Random

Forests ensemble method is constructed using collections of weakly-correlated decision

trees. A bootstrap sample of the training set is used to train each tree in the forests. The

best split is chosen at each node from a random subset of the features. This procedure
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guarantees that each tree uses independent features from the training samples. Thus, it

helps reduce the statistical correlations on the rest of the trees.

4.4.3 Extra Trees

Extra Trees was found by Geurts et al. in 2006 [135]. The ensemble method utilizes

the top-down procedure to construct an ensemble of unpruned decision trees. The cut-

points selection is carried out fully at random to provide the best split of the nodes. Extra

Trees algorithm grows the trees by utilizing the entire learning sample instead of a bootstrap

replication.

4.4.4 Majority Voting

Majority Voting is one of the most popular voting methods along with Plurality

Voting and Weighted Voting [136]. Majority Voting has been used by several researchers,

utilizing the base classifiers to obtain better results. There are some advantages in combin-

ing several classifiers (such as increasing robustness, obtaining better accuracy, and heavily

built generalization) [137], [138], [139], [140], [141]. The vote for one class is carried out

by each base classifier, and the final class label is the one that receives more than half of

the votes. If there is no class label that receives more than the half of the votes, the ma-

jority vote technique makes no prediction (i.e., a rejection option is given) or one of the

base classifiers option is explicitly selected. In this article, we first used the best perform-

ing classifiers to get strong generalization. Then, we used majority voting technique to get
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better accuracy.

Suppose a set of N classifiers (i.e., ensemble methods in our case) are given {e1, ...,eN}

and our aim is to incorporate ei’s to predict the target of a given sample from a set of t tar-

gets {c1, ...,ct}.

Suppose that for a given sample s, the outputs of the ensemble ei can be given as

t−dimensional target vector (e1
i (s), ...,e

t
i(s))

>

Where e j
i (s) is the output of ei for the class target c j.

The e j
i (s) ∈ {0,1}, which is one if ei predicts c j as the class target and zero other-

wise.

The popular majority voting technique for binary classification problems (where

every ensemble method votes for a target) is introduced in this subsection. In this technique,

the target that gets more than half of the votes would be selected. However, if none of the

targets gets more than half of the votes, either a rejection option is given (which indicates

no prediction is taken) or we trust one of the classifiers to predict. So, the target of our

method can be assigned as:

E(s) =


c j if

N

∑
i=1

e j
i (s)>

1
2

t

∑
m=1

N

∑
i=1

em
i (s),

re jection otherwise.

(4.4)

where E is a set of learners (i.e., ensemble methods).
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For the binary classification problem, the ensemble decision will occur if at least

[ N
2+1 ] of the classifiers select the right class target.

PMV =
N

∑
m= N

2+1

(N

m

)
pm(1− p)N−m (4.5)

where p is the probability to classify the correct class target.

The previous two equations can work if the classification problem is binary. In case

the classification problem is multi-class, the plurality voting should be utilized to choose

the class target that gets the largest number of votes as the correct target. So, the selected

class target should be:

E(s) = c
argmax

j

N

∑
i=1

e j
i (s)

, (4.6)

It is noticeable that plurality voting does not contain rejection propriety because it

should always realize the class target that gets the largest number of votes.

4.4.5 Feature Selection

Some of the frames fields are not necessarily for distinguishing between the legit-

imate devices’ traces and the attackers’ traces. Extracting unwanted features adds time

overhead and might not improve the performance. Feature selection is a valuable initiative

to build IDSs, especially machine learning-based IDSs. Although, the number of features is
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definite since it depends on the frame header, many other features can be added artificially

to the frames metadata when capturing the frames. However, only some frames fields are

crucial to detect the intruders. Some machine learning algorithms are hypersensitive to the

number of features; choosing the significant features increases the performance of the IDS

and decreases the time. Some researchers reported that choosing the suitable features is

hard and time consuming. The usual, prune-to-errors way to in choosing the right features

is to let the security expert decide which features are important. A better way to do it is to

use the data mining approach to discover important patterns of large data sets. It can build

intrusions patterns, which can be used for misuse detection techniques based on classifi-

cation or can build profiles of normal behavior to detect intrusions by anomaly detection

techniques.

Some information might obstruct the classification task, especially in classification

problems that consist of many different and connected correlations. Incorrect interrelation-

ships exist in features which affect the detection performance. Some features might be

needless or redundant. Furthermore, reducing the features could improve the computation

time and the performance of the WIDS. It is impossible for human to discover the com-

plex correlations that exist between features. Feature selection is significant for the WIDS

to perform real time prediction, so reducing the features is recommended. Thus, reduc-

tion could be done using data filtering by system experts’ supervision or by data mining

techniques. The former might ignore useful data, so it has to be done with caution.

69



CHAPTER 5: IMPLEMENTATION AND TEST PLAN

We covered an area of 102 m2 using 15 locations marked by the red dots in Fig-

ure 5.9 to evaluate our proposed method. The distance between any two neighbors is about

four meters (from 3 to 5 meters). We tried to simulate the attacker to be at every possible

place throughout our test-bed. We placed two sensors, indicated by the triangles, to cover

as much ground as possible of the network diameter. We also used some active probing

techniques to force the device to respond to specific frames in order to speed up the process

of profiling. Each sensor captures enough packets for legitimate device profiling. The total

number of combinations is 105; we chose one location to be the location of the legitimate

device (e.g., location 1) and picked another location for the suspicious device (e.g., location

2) and ran the test for all other locations (e.g., location 3 to location 15) as attacker against

the legitimate device (i.e., location 1) as well. We tested all possible combinations.

5.1 Hyperparameter Optimization

To avoid high variance and determine whether the dataset is sufficient to train a

Random Forests classifier of 100 trees, we used the learning curve of one of the noisiest
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Figure 5.9: Test-bed

datasets, that of locations 6 and 7, where the distance between the two locations is less

than 4 m, shown in Figure 5.2(a). We started with about 3,000 samples and determined

that we could improve the accuracy and reduce the variance. At about 15,000 samples, the

variance was eliminated and stabilized, indicating that a dataset of 20,000 observations is

more than enough. Figure 5.2(b) shows how Random Forests of 100 trees separates the

data-points when the attacker is 10 m away from a genuine user. The Random Forests

ensemble method performed very well in the presence of outliers and can separate data of

any shape.
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Figure 5.10: Optimization and data separation

5.2 Signal Strength Attenuation

Figure 5.3(a) illustrates the signal attenuation that signal strength might face in

wireless networks. We picked two of the sampled locations to represent this phenomenon

and measure 2,000 consecutive packets at each location. One sampled location is close to

the first sensor and the other one is close to the other sensor. The two subplots show an

attenuation of about 3.4 dB standard deviation (a maximum of -52 dB and minimum of -76

dB) for the first sampled location and a 2.4 dB standard deviation for the second sampled

location (a maximum of -43 dB and minimum of -63 dB). It is not rare to see some signal

attenuation in our experiments. This phenomenon exists because of several factors such as

multi-path fading and obstacles that could make the signal oscillate, especially when there

is a significant distance between the sender and receiving device.

The distribution of the data from location 8 at the two sensors is shown in Figure

5.3(b) and 5.3(c). Some researchers state that the distribution of the transmitter and sensor

72



0 500 1000 1500 2000

−80

−75

−70

−65

−60

−55

−50

C
ap

tu
re
d 
by
 s
en

so
r 
on

e

Attenuation

0 500 1000 1500 2000
Samples

−65

−60

−55

−50

−45

−40

C
ap

tu
re
d 
by
 s
en

so
r 
tw
o

(a) Signal strength attenua-
tion

60 55 50 45 40 35 30
RSS (dBm)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P
ro

ba
bi

lit
y

(b) Location 8: sensor 1 data
distribution

100 90 80 70 60 50 40 30
RSS (dBm)

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

ba
bi

lit
y

(c) Location 8: sensor 2 data
distribution

Figure 5.11: Data distribution and attenuation

pair is Gaussian [16], [17] while other researchers report that the distribution is not Gaus-

sian [47] or that it is not rare to see non-Gaussian distributions of RSS samples [36]. We

found that non-Gaussian distributions are not rare and have different distribution shapes

and peaks. The distribution of 10,000 RSS samples is shown in the figure. Figure 5.3(b)

shows a distribution of data that form two Gaussians with one peak that is slightly greater

than the other one (i.e., one device has formed two separate clusters) while Figure 5.3(c)

shows a distribution of data with one Gaussian and some sporadic data points that are far

away from the Gaussian. This suggests that using clustering algorithms-based approaches

[45], [46], [36], [16], [17] can generate many false alerts or cause the Intrusion Detection

System to allow large margins that permit attackers to harm the network.

73



CHAPTER 6: RESULTS AND EVALUATION

To evaluate our proposed solution and compare it with previous work [45], [46],

[36], [16], [17], we implemented the four possible GMM kernels because the kernel that

[36] used was not indicated in their article. We considered only the best performing kernel

(i.e., GMM-Full) for comparison. We first calculated the accuracy of the previous pro-

posed solutions [45], [46], [36], [16], [17] along with our proposed method. The clustering

algorithms-based approaches [45], [46], [36], [16], [17] did not work well, as shown in

Table 6.1(a), especially when the two locations were close to each other because of the

reasons mentioned earlier (see subsection 5.2).

Our proposed method achieved the best accuracy of 94.83. We tested all the de-

tection methods where the distances between the two locations were less than 4 m, as

shown in Table 6.1(b), between 4 and 8 m, as shown in Table 6.1(c), and between 8 and

13 m, as shown in Table 6.1(d). When the locations are close to each other, the clustering

algorithms-based approaches [45], [46], [36], [16], [17] did not perform well, with a min-

imum of 47.18% accuracy for Sheng et al. approach [36], as shown in Table 6.1(b). All

the techniques did slightly better when the locations were a little further apart, as shown in

Table 6.1(c). However, all these methods did very well; our method’s performance remains
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high when the distance between the two locations increases, as shown in Table 6.1(d).

6.1 Performance Measures

To evaluate our detection method more rigorously, we used the Receiver Operat-

ing Characteristic (ROC) curve, shown in Figure 6.1(a), which plots the Detection Rate,

that is, the True Positive Rate or sensitivity against the (1 - specificity) or False Positive

Rate (FPR). We evaluated our detection method to measure the tradeoff between correct

detection and FPR for different distances between the attacker and legitimate device. At

3% FPR, the correct detection rate is about 99% for all combinations in our test-bed. At

12% FPR, the detection rate is 99% when the distance between the attacker and legitimate

device is between 4 and 8 m. At 25% FPR, the detection rate is 90% when the distance

between the attacker and the legitimate device is less than 4 m, and 100% when the dis-

tance is between 8 and 13 m. We also measured the prediction time to see if it is possible to

predict the captured frames in real-time. Table 2 shows the average testing time, standard

deviation, minimum, and maximum values for 10,000 samples of all the tested locations.

The clustering algorithms-based methods, Chen et al. [16], [17], Sheng et al. [36], and

Yang et al. [45], [46] are faster than our method. Chen et al. [16], [17] approach is the

fastest with times as high as 48 ms. Figure 6.1(b) illustrates the overall performance of

our detection method and the existing methods with regard to testing time. Our detection

method has a good performance in terms of testing time, with an average of only 155 ms

as shown in Table 6.11.
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Table 6.10: Detection accuracy by distance between locations

Chen et al. [16], [17] Sheng et al. [36] Yang et al. [45], [46] Our method
mean 88.9492 87.5902 91.1658 94.8296
std 14.0435 15.2362 11.0422 7.1087
min 53.38 28.61 53.21 71.35
50% 96.08 94.95 96.47 98.81
75% 98.75 99.53 98.76 99.92
max 100 100 100 100

(a) All location combinations (105 combinations)

Chen et al. [16], [17] Sheng et al. [36] Yang et al. [45], [46] Our method
mean 76.5895 76.3920 80.3875 88.3800
std 15.4416 15.2714 13.5181 8.2278
min 53.41 47.18 53.21 75.88
50% 77.520 70.375 81.345 89.640
75% 89.3675 90.6650 90.9975 94.5825
max 98.56 98.25 98.56 99.77

(b) Locations < 4 m apart (20 combinations)

Chen et al. [16], [17] Sheng et al. [36] Yang et al. [45], [46] Our method
mean 85.7275 82.5584 89.1618 93.1614
std 14.2020 16.0099 10.0814 6.8342
min 53.38 28.61 64.56 71.35
50% 91.360 84.740 92.600 95.610
75% 96.2825 96.5850 96.9475 98.6025
max 99.72 99.91 99.72 99.95

(c) Locations > 4 m and < 8 m apart (44 combinations)

Chen et al. [16], [17] Sheng et al. [36] Yang et al. [45], [46] Our method
mean 98.4359 98.4527 98.5741 99.7661
std 1.6246 2.3989 1.4843 0.42908
min 94.31 92.04 94.97 98.22
50% 99.09 99.72 99.09 99.95
75% 99.76 99.94 99.76 99.98
max 100 100 100 100

(d) Locations is > 8 m and < 13 m apart (41 combinations)
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Figure 6.12: ROC Curve of the proposed method and testing time of all the methods

Table 6.11: Testing time for all location combinations

Chen et al. [16], [17] Sheng et al. [36] Yang et al. [45], [46] Our method
mean 0.010400 0.053219 0.060190 0.154705
std 0.007718 0.017691 0.010918 0.031848
min 0.004 0.024 0.044 0.100
max 0.048 0.100 0.096 0.224

6.2 Discussion

RSS measurements can be utilized to differentiate wireless devices based on lo-

cation. Some factors play a vital role in measuring the RSS, such as multi-path fading,

absorption effects, transmission power, and the distance between the transmitter and the

receiver. Our experiment shows multiple situations where the data forms different shapes

and peaks. This is probably because WLAN devices interfere with one another. In addi-

tion, microwave ovens and Bluetooth might cause more collision and interference in the

frequency band. Thus, our proposed method is very effective because (unlike the previous

solutions [16], [17], [36], [45], [46] that could deal with the data if it is only Gaussian

distributed) our method could pick the data of any shape. The overall accuracy of our pro-
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posed method is 94.83% of all combinations which outperforms the previous solutions: the

overall accuracy of Chen et al. [16], [17] solution is 88.95; the accuracy of Sheng et al.

[36] solution is 87.59%; and the accuracy of Yang et al. [45], [46] solution is 91.17%.

We tested the proposed method where the distances between the genuine device

and the attacker is less than 4 m, from 4 to 8 m, and from 4 to 8 m. The longest distance

between any two locations in our test-bed is about 13 m. Although we did not test any

two locations where the distance is more than 13 m, we believe that the accuracy would

be perfect as the distance between the attacker and the legitimate device increases to more

than 13 m. We also did not test different types of antennas such as directional or beam

antennas, because this research assumes that the attacker uses an omnidirectional antenna,

so more sophisticated attacks might remain undetected.

The sensors placement is significant to determine the difference between the pro-

filed legitimate device samples and the masquerader frames. Figure 6.13 shows how im-

portant the features after training are at determining the two locations for three different

combinations (note that understanding feature importance is a capability that is provided

by almost all of the ensemble methods). The first feature comprises the RSS samples cap-

tured by the first sensor, and the second feature consists of the RSS samples captured by the

second sensor. The figure shows which sensor determines most of the samples of locations

1 and 14. It appears that the two sensors are close: about 51% are determined by the first

sensor and 49% by the second sensor. In this case, the distance between the attacker and

the legitimate device is about 12 m. The legitimate device (i.e., location 14) is 3 m from

the first sensor. The hacker (i.e., location 1) is about 9 m away from the first sensor and
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about 3 m away from the second sensor.
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Figure 6.13: Feature importance of three tested combinations

Locations 1 and 4 are both close to the second sensor, so the second sensor deter-

mines most of the samples (about 80%), as shown in the figure. Location 4 is about 5 m

from sensor 2 and is about 11 m from sensor 1. In addition, the distance from the attacker

to the legitimate device is about 4 m. Locations 8 and 9 are close the first sensor, thus the

first sensor determines which samples belong to which class for the majority of samples

(about 85%), as shown in the figure. Location 8 is about 2 m away from the first sensor

and about 10 m away from the second sensor. Location 9 is about 4 m away from the first

sensor and 11 m away from the first sensor. The two locations are about 4 m away from

each other.
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6.3 Anomaly Detection Results and Discussion

The decision boundary that separates the legitimate device data points and the at-

tacker is similar to the one that is shown in Figure 6.14 for most of the combinations. A

hyperplane is drawn around the legitimate device to isolate it from the outliers as shown

in the figure. The data point that falls inside the drawn decision boundary is classified as

normal, and the data point that falls outside the decision boundary is classified as abnormal.
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Figure 6.14: Anomaly detection decision boundary and data separation.

Two important parameters that control the decision boundary are γ and ν . We

choose to make big decision boundary to minimize the false alerts. The accuracy of the

misuse detection is better than the anomaly detection. The overall accuracy of the anomaly

detection framework shown in Table 6.12 is 79.20% for all location combinations, 63.63%

when the distance between the attacker and the legitimate device is less than 4 m, 72.85%
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when the distance between the two devices is between 4 and 8 m, and 93.60% when the

distance is between 8 and 13 m.

Table 6.12: Novelty detection accuracy

Mean By Distance Normal Accuracy Abnormal Accuracy Total
Overall mean 98.12 60.28 79.20

4 m mean 98.44 28.83 63.63
8 m mean 98.15 47.55 72.85

8-13 m mean 97.94 89.27 93.60

However, the anomaly detection is suitable for situations where it is hard to cover

the whole area (e.g., a company in a three floor building that has neighbouring companies,

the anomaly detection can create a profile for the legitimate device). It can reduce the

training overhead by only training the legitimate device samples instead of simulating the

existence of the attacker in every possible location in the area. Also, the detection time is

acceptable; the average detection time is only 8.3 ms as shown in Figure 6.15.
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Figure 6.15: Anomaly detection testing time.
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6.4 MAC Address Spoofing Detection by Majority Vote

We applied the majority voting technique to detect MAC address spoofing. The

accuracy of the majority voting is slightly better than our approach that is based on Random

Forests. The average accuracy shown in Table 6.13 is 94.83% and the standard deviation is

so low in comparison to the previously mentioned approaches including our approach.

Table 6.13: Majority voting detection accuracy.

mean std min 50% 75% max
94.83181 7.105315 71.35 98.81 99.92 100

The detection time is more expensive than the previous solutions including ours.

However, the detection can be done in real-time, because the detection time per frame is

still in microseconds. The average testing time shown in Figure 6.16 is about 192 ms.
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6.5 Public Dataset Results and Discussion

The only public data-set that we know for WLANs is introduced in [3]. The data-set

includes four parts, which are two reduced data-sets for researches interested in Wireless

Intrusion Detection Systems (WIDSs) and two full data sets for big data researches. The

two reduced data-sets consists of four classes and fifteen classes, respectively. The four

classes are the categories that the launched attacks belong to (which are flooding, injection,

and impersonation) and the normal class while the other reduced data-set consists of the

names of the launched attacks and the normal class. The number of training samples of each

reduced data-set is 1,795,575 and the number of testing samples is 575,643. Figure 6.17

shows the percentage of each class in both the training set and the testing set. The number

of features is 156 features, representing the WLAN frame fields along with physical layer

meta-data.

Injection (3.64%)

Flooding (2.70%)

Normal (90.96%)

Impersonation (2.70%)

(a)

Injection (2.9%)

Flooding (1.4%)

Normal (92.2%)

Impersonation (3.5%)

(b)

Figure 6.17: The dataset records. (a) training set records; (b) testing set records
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6.5.1 802.11 Attacks

The attacks that are launched by the authors (who published the data-set) were

based on WEP, but most of the attacks share the same characteristics on the other security

mechanisms. In this subsection we will explain the classes that are used in the reduced

data-set and how the 20 features have been selected by the data mining technique.

Injection Attacks

Flood the wireless network with encrypted data frames of smaller size than the

normal frames. ARP injection attack is an attack of which the attacker launches to speed

up the process of collecting Initialization Vectors (IVs) from the targeted wireless device

or AP in a small amount of time. Some penetration testing tools (such as Aireplay) are

used to launch this attack and use the same IV values, which cannot occur under normal

conditions. Also, the DS status flag is always set to 1 for all the frames sent during ARP

injection.

Another vital attack is fragmentation, in which the attacker injects small fragmented

data frames. This attack usually takes about a second if succeeded. Some of the penetration

testing tools that launch this attack use a static invalid Destination Address; the DS status

flag is always set to 1, the frame length is small but is not fixed, and the frames have

out-of-order sequence number.
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Flooding Attacks

usually generate an increase in the frames in the WLAN, the management frames

in particular. However, it is not always a valid assumption to consider the increase of the

management frames as indication of flooding attacks; sometimes it could be an indication

of malfunction of certain device. Although the attacker can masquerade as a legitimate de-

vice, it is much harder to hide the increase of the management frames produced by flooding

attacks. For example, a de-authentication attack is launched by some tools using the same

reason code and has an out-of-order sequence number.

Also, some tools (such as MDK3 that the hackers use to launch authentication flood-

ing and beacon flooding attacks) use a sequence number that is always set to 0. Tools such

as Metaspolit (used to launch probe response flooding attack) use a random sender address,

which could have a valid 24-bit number that identifies the vendor uniquely. This is known

as Organizationally Unique Identifier (OUI).

Impersonation Attacks

masquerades as one of the legitimate devices in WLAN by changing one or more of

its characteristics. Evil-twin AP is one example, where the attacker can change the MAC

address and Service Set Identifier (SSID) of the device to be the same as the MAC address

and SSID of the existing AP. Such attacks are always proceeded by de-authentication at-

tacks targeting wireless devices that are connecting to the targeted AP, to force them to

connect back to the fake AP. This attack is launched by tools like Airbase, which sends
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broadcast beacon frames with fixed frame length. Furthermore, in all impersonation at-

tacks, the Received Signal Strength (RSS) of the attacker is different than the legitimate

device RSS if there is a significant distance between the two devices.

6.5.2 Data set Limitations

• It only applied on WEP encryption method, some of the features are WEP-dependent.

The majority of the attacks in the data set can be applied on other security standards

(such as WPA, WPA2 and 802.11w amendment), but some of them are WEP-specific.

• Most of the attacks are launched by specific penetration testing tools to build the

patterns of the intrusions; attackers might use different existing or customized tools

to exploit some of the wholes and bypass the IDS.

• Does not consider some cases, the mobility of the attacker in particular.

The best machine learning algorithms that we used in our experiments are Decision

Trees, Extra Trees, and Random Forests. Decision Trees is not stable; we ran the test

several times and it gave us different results every time. The three classifiers did not achieve

better results than the J48 classifier that the authors of [3] used in their experiments. We

decided to use Bagging classifier of minimum Decision Trees as a base estimator to be

more robust and to have minimum time. Bagging classifier yields slightly better results

and better timing. We then used the voting classifier that utilized Extra Trees of 20 trees,

Random Forests of 20 trees, and Bagging classifier of 10 Decision Trees as base estimator

and got better results and better time.
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6.5.3 Bagging

We used Decision Tree [142] (introduced by Breiman) et al. as a base estimator to

build the Bagging method. A number of 10 trees was used to minimize the cost. Table 6.14

shows the confusion matrix of the bagging method.

Table 6.14: Bagging

Normal Flooding Injection Impersonation Classified as
530383 343 0 59 Normal
2585 5512 0 0 Flooding

2 0 16680 0 Injection
18606 2 0 1471 Impersonation

Among the three tested classifiers, it is the most accurate classifier for the hardest

class, which is the impersonation class. It is also slightly better than our voting classifier,

of which about 1471 to 1470 occurrences classified correctly. Bagging and Extra Trees

classifiers are better than the rest of the classifiers (including the voting technique) in clas-

sifying the injection class of 16680 occurrences (i.e., it misclassified only 2 occurrences).

It is expensive in term of time (about 154 seconds) in comparison to Random Forests and

Extra Trees ensemble methods. The overall accuracy of the bagging method is 96.25%, as

shown in Table 6.15.

Table 6.15: All Features

Method Accuracy Time
Extra Trees 96.06 18.1

Random Forests 95.89 22.4
Bagging 96.25 154
Voting 96.32 390

Kolias et al. [3] 96.20 3921.68
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The accuracy did not change when we used the reduced features, but the time has

decreased of about 35.7 seconds as shown in Table 6.16.

Table 6.16: 20 Features

Method Accuracy Time
Extra Trees 96.31 8.03

Random Forests 96.31 9.95
Bagging 96.25 35.7
Voting 96.32 107

Kolias et al. [3] 96.26 568.92

6.5.4 Random Forests

We used 20 trees to build the ensemble because Random Forests is lighter than

Bagging method. The accuracy of Random Forests is the worst among the tested methods

when we used the entire feature set of about 95.89% (as shown in Table 6.15). However, it

is the best method to classify flooding class. The training time is second after Extra Trees

classifier of about 22.4 seconds when using all of the feature set and 9.95 seconds when

using the reduced feature set. It is the algorithm that most likely benefited from reducing

the feature set in term of accuracy. It jumped from 95.89% to 96.31% after we applied the

feature selection technique. Table 6.17 shows the confusion matrix of Random Forests; it

is the best method that classifies the flooding class correctly.

Table 6.17: Random Forests

Normal Flooding Injection Impersonation Classified as
530775 6 0 4 Normal
2536 5561 0 0 Flooding
41 0 16641 0 Injection

18645 0 0 1434 Impersonation
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6.5.5 Extra Trees

We also used 20 trees to build the ensemble of Extra trees. The overall accuracy of

Extra Trees is 96.06% when we used the whole feature set. It improved to 96.31% when

we applied the feature selection capability. The best time among the tested algorithms is

the time of Extra Trees (about 18.1 seconds) when using the whole feature set and 8.03

seconds when we applied the reduced feature set. Aside from the Bagging method, Extra

Trees classified 16680 occurrences of injection class correctly (as shown in Table 6.18).

Table 6.18: Extra Trees

Normal Flooding Injection Impersonation Classified as
530773 2 0 10 Normal
2601 5496 0 0 Flooding

2 0 16680 0 Injection
18619 0 0 1460 Impersonation

6.5.6 Majority Voting

The Majority Voting relies on the base classifiers. We chose light classifiers to get

better results and to be able to detect intrusions in real time. As expected, it is the best

method in term of accuracy (about 96.32%) when using the whole feature set. The time is

expensive, about 390 seconds. It is the best method to classify the normal class. As shown

in Table 6.19, the method 100% correctly classified the normal occurrences as normal (i.e.,

there is no false positive at all). It also maintained its accuracy; the best method in term

of accuracy when we reduced the feature set. The time decreased significantly when we

reduce the feature set from about 390 seconds to 107 seconds, using the full feature set.
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Table 6.19: Voting Classifier

Normal Flooding Injection Impersonation Classified as
530778 0 0 0 Normal
2589 5508 0 0 Flooding

5 0 16677 0 Injection
18609 0 0 1470 Impersonation

Figure 6.18 shows the overall details of the four classes, the correctly classified

and mis-classified occurrences. The normal class has been classified 100% correctly, the

flooding class classification rate is good, the error rate is about 32%, the injection class

error rate is so low (only 0.03%), while the impersonation error rate is high because most

of the attacks that belong to the impersonation class are in the testing set, but not in the

training set.
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Normal

Error (0%)

Correctly Classified (100%)

(a)

Flooding

Error (31.97%)

Correctly Classified (68.03%)

(b)
Injection

Error (0.03%)

Correctly Classified (99.97%)

(c)

Impersonation

Error (92.68%)

Correctly Classified (7.32%)

(d)

Figure 6.18: Each class classification accuracy. (a) normal class accuracy; (b) flooding
class accuracy; (c) injection class accuracy; (c) impersonation class accuracy

The accuracy improvement was not significant. Our method accuracy is slightly

better than Kholias et al.’s best performing algorithm (i.e., 96.32% to 96.19% when we

used the entire feature set and 96.32% to 96.26% using the reduced feature set). However,

the computation time has improved significantly; Kholias et al.’s best performing algorithm

in term of accuracy takes about 3922 seconds using the entire feature set and 569 seconds

using the reduced feature set. Our method takes only 390 seconds when using the entire

feature set and 107 seconds when we reduced the feature set of 20 features.
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6.5.7 Most Important 20 Features

Figure 6.19 shows the most important features selected by Extra Tree ensemble

method.

0 2 4 6 8 10 12
WEP Key

Protected 
Signal Strength
Source Address

Basic Service Set ID
Type

Initilization Vector
Reason Code

Integrity Check Value
Data Rate

Frame Length
Power Management

Distributation System
Code Keying

Reciever Address
Duration

Transmitter Address
Sequence Number

Sub-type
Destination Address

relative importance

Importance of features

Figure 6.19: Most important 20 features.

The most important 20 features that have been selected are as follows:

• Destination Address(DA) is the final destination of the data frame.

• Sub-type is in the control frame which identifies the purpose of the frame type. For

instance, if the type of the frame is control, the sub-type field could be one of the

possible sub-types such as CTS, RTS, Ack and so on.

• Seq: every 802.11 frame has a sequence number except of control frames. The

sequence number is incremented by one from 0 to 4,095 of every consecutive frame.
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• Transmitter Address(TA) is one of two addresses that the frame might be transmit-

ted from which are the first originator of the frame (i.e., the wireless users) or the

intermediate address that transfer the frame to the final destination (i.e., the AP).

• Duration field identifies the time required to transmit the frame in microseconds.

• Receiver Address (RA) is the first device that receives the data frame, it could be the

AP in the path to the final destination or the device that receives the frame which is

the final destination.

• Type.cck (Complementary Code Keying) is a modulation scheme that is adopted to

achieve high data rates.

• fc.ds is the distribution system status field that indicates which direction the frame is

going to.

• pwrmgt indicates if the station is either going to change its status to power save mode

or can receive frames.

• frame-len indicates the length of the frame in the wire.

• datarate specifies the supported data rate.

• wep.icv (Integrity Check Value) is a 4 byte long that is calculated using the frame

and attached to it.

• reason c there are some reasons to be indicated when sending a deauthentication

frame such as station is leaving or disassociated due to inactivity.
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• wep.iv (WEP Initialization Vector) is a 24 bits long that is sent in the clear, different

for each encrypted frame and concatenated with the fixed root key.

• type has to be one of data, control, or management.

• bssid is the MAC address of the AP.

• Source Address (SA) of the frame originator.

• RSS is the Received Signal Strength (RSS) of the sender measured at the receiver.

• protected indicates the encryption method that is used by the WLAN network.

• wep.key (Wired Equivalence Privacy) key that is a hexadecimal number that encrypts

messages between group of connected devices in WLAN. There are two key sizes

that WEP supports which are 40 bits and 104 bits.
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CHAPTER 7: CONCLUSION

We proposed a technique based on Random Forests ensemble method which charac-

terizes the shape of a dataset to detect MAC address spoofing, instead of assuming that the

data are Gaussian-distributed. All previous methods based on clustering algorithms assume

that there are two clusters, which is not a good assumption because one device, such as an

AP, can form two clusters. Based on our extensive experiments and evaluations, we deter-

mined that our proposed method performs very well in terms of accuracy and prediction

time. We proposed a technique to detect MAC address spoofing based on Random Forests,

as it outperforms all the clustering algorithms-based approaches that were proposed previ-

ously, in terms of accuracy. Furthermore, it has a good prediction time. We also proposed

an outlier or novelty detection method to detect MAC address spoofing. Outlier/novelty de-

tection methods only require training using a legitimate device without covering the whole

network range. We used an approach that is based on a one-class SVM to build a profile

for legitimate devices.

Furthermore, we improved the accuracy and the time on the AWID data-set using

a classifier that votes on the output of the carefully picked three classifiers (which are

Extra Trees, Random Forests, and Bagging with ten Decision Trees as base estimators)
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which performs well in both accuracy and time. The best performing classifier is the voting

classifier which improved the accuracy and the time to 96.31% and 390 seconds when we

used all the features. We also used a data mining technique based on Extra Trees ensemble

method to choose the best 20 features to decrease time and improve accuracy of the best

performing classifiers. We maintain the same accuracy, but improved the time of about 107

seconds.

In this research we assumed the mobility of the attacker to detect MAC address

spoofing, but the legitimate device should be static for the detection to be succeeded. In

the future, we will consider the mobility of both the legitimate device and the spoofing

device. We would also investigate location determination in both WLANs and WSNs after

spoofing detection.
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