525,086 research outputs found

    Alkaline Water and Longevity: A Murine Study

    Get PDF
    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of \u201cdeceleration aging factor\u201d as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models

    The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment.

    Get PDF
    Anthropogenic hyper-alkaline sites provide an environment that is analogous to proposed cementitious geological disposal facilities (GDF) for radioactive waste. Under anoxic, alkaline conditions cellulosic wastes will hydrolyse to a range of cellulose degradation products (CDP) dominated by isosaccharinic acids (ISA). In order to investigate the potential for microbial activity in a cementitious GDF, cellulose samples were incubated in the alkaline (∼pH 12), anaerobic zone of a lime kiln waste site. Following retrieval, these samples had undergone partial alkaline hydrolysis and were colonised by a Clostridia dominated biofilm community, where hydrogenotrophic, alkaliphilic methanogens were also present. When these samples were used to establish an alkaline CDP fed microcosm, the community shifted away from Clostridia, methanogens became undetectable and a flocculate community dominated by Alishewanella sp. established. These flocs were composed of bacteria embedded in polysaccharides and protein stabilised by extracellular DNA. This community was able to degrade all forms of ISA with >60% of the carbon flow being channelled into extracellular polymeric substance (EPS) production. This study demonstrated that alkaliphilic microbial communities can degrade the CDP associated with some radioactive waste disposal concepts at pH 11. These communities divert significant amounts of degradable carbon to EPS formation, suggesting that EPS has a central role in the protection of these communities from hyper-alkaline conditions

    Alkaline and alkaline-earth cyanoacetylides: A combined theoretical and rotational spectroscopic investigation

    Get PDF
    Producción CientíficaThe metallic cyanoacetylides LiC3N, NaC3N, MgC3N, and CaC3N have been investigated by combined spectroscopy measurements and theoretical calculations. The theoretical calculations predict for the four species that the linear isomer with the formula MCCCN (M = Li, Na, Mg, and Ca) is the most stable one. We used laser ablation molecular beam Fourier transform microwave (FTMW) spectroscopy to synthesize these species by the reaction of metal vapors, produced by laser ablation, and 3-bromo-2-propynenitrile (BrCCCN). Pure rotational spectra were observed by FTMW spectroscopy in the 2–18 GHz frequency region only for LiCCCN and NaCCCN, while no spectral signatures for MgCCCN and CaCCCN could be detected. Finally, we have searched for LiCCCN and NaCCCN species toward the carbon-rich evolved star IRC +10 216, but only upper limits to their abundances have been obtained.Consejo Europeo de Investigación a través del VII Programa Marco de Investigación y Desarrollo (grant 610256 NANOCOSMOS)Ministerio de Economía, Industria y Competitividad (grants CTQ 2013-40717-P / CTQ 2013-76393-P / AYA2017-87515-P / Consolider-Ingenio 2010 CSD2009-00038)Junta de Castilla y León (grants VA175U13 / VA010G18 / VA077U13

    Preparation, Proximate Composition and Culinary Properties of Yellow Alkaline Noodles from Wheat and Raw/Pregelatinized Gadung (Dioscorea Hispida Dennst) Composite Flours

    Get PDF
    The steady increase of wheat flour price and noodle consumptions has driven researchers to find substitutes for wheat flour in the noodle making process. In this work, yellow alkaline noodles were prepared from composite flours comprising wheat and raw/pregelatinized gadung (Dioscorea hispida Dennst) flours. The purpose of this work was to investigate the effect of composite flour compositions on the cooking properties (cooking yield, cooking loss and swelling index) of yellow alkaline noodle. In addition, the sensory test and nutrition content of the yellow alkaline noodle were also evaluated for further recommendation. The experimental results showed that a good quality yellow alkaline noodle can be prepared from composite flour containing 20% w/w raw gadung flour. The cooking yield, cooking loss and swelling index of this noodle were 10.32 g, 1.20 and 2.30, respectively. Another good quality yellow alkaline noodle can be made from composite flour containing 40% w/w pregelatinized gadung flour. This noodle had cooking yield 8.93 g, cooking loss 1.20, and swelling index of 1.88. The sensory evaluation suggested that although the color, aroma and firmness of the noodles were significantly different (p ≤ 0.05) from wheat flour noodle, but their flavor remained closely similar. The nutrition content of the noodles also satisfied the Indonesian National Standard for noodle. Therefore, it can be concluded that wheat and raw/pregelatinized gadung composite flours can be used to manufacture yellow alkaline noodle with good quality and suitable for functional food

    Phytosociological study of the shrub and pre-forest communities of the effusive substrata of NW Sardinia

    Get PDF
    The trachybasalt biogeographic sub-district of the NW Sardinian district, included in the coastal and hilly sub-sector of the Sardinian biogeographic sector, is characterised by two large effusive complexes: that of the rhyolites, andesites and dikes of the Oligo-Miocene alkaline volcanic cycle (14-32 Ma) and alkaline basalts, rhyolites, rhyodacites and dikes of the volcanic cycle with alkaline, transitional and sub-alkaline affinity of the Pliocene-Pleistocene (0.14-5.3 Ma). Between 2000 and 2004, 156 surveys were carried out on shrub communities in order to improve knowledge of their phytosociology. Vegetation analysis led to the identification of 11 associations and 13 subassociations, referring to 3 syntaxonomic classes. Of these, 5 new associations are hereby described for the first time: Clematido vitalbae-Maletum pumilae, Crataego monogynae-Aceretum monspessulani, Lavatero olbiae-Rubetum ulmifolii, Genisto desoleanae-Ericetum arboreae and Telino monspessulanae-Cytisetum villosi

    Experimental constraints on amphibole stability in primitive alkaline and calc-alkaline magmas

    Get PDF
    Equilibrium crystallization experiments were carried out on two primitive basaltic rocks (APR16: Na2O+K2O=4.40 wt%; CM42: Na2O+K2O=2.59 wt%) with the aim to investigate the amphibole stability in the differentiation processes at deep crustal level, of primitive alkaline (APR16) and calc-alkaline (CM42) magmas. The experiments were performed with different initial H2O contents (0-5 wt%), at pressure of 800 MPa, in the temperature range of 975-1225 °C. For the explored conditions, amphibole crystallization occurs in both compositions at H2O in the melt >7wt% while the temperature of their occurrence is lower in the alkaline composition (<1050 °C in APR16 and ≥1050 °C in CM42). Moreover, amphibole crystallization seems to be influenced by the Na2O/K2O ratio rather than the absolute Na2O content in the melt. This is evident when experimental results on the APR16 and CM42 are compared with experimental data obtained from a primitive ultrapotassic composition (leucite-basanite: Na2O+K2O=4.58 wt%) and with thermodynamic modelling by the Rhyolite-MELTS algorithm. The comparison shows that amphibole never saturates the leucite-basanite at any of the investigated/modelled conditions, even when an extended crystallization increases the Na2O of melts up to contents like those of calc-alkaline experimental glasses. We conclude that, at pressure of 800 MPa and hydrous conditions, only primitive liquids with Na2O/K2O ratio ≥0.9 are more prone to crystallize amphibole

    Separator for alkaline batteries

    Get PDF
    Separator compositions have been tested as components of three-plate silver-zinc oxide cells in a standard cycling test. Six materials meet imposed requirements, giving cycling performance superior to cellophane
    corecore