9 research outputs found

    Combined ID y depth shadows

    Get PDF
    Presentamos una técnica para minimizar el artifact del self shadow y surface acne característicos del shadow map, basada en un mapa que combina la profundidad con un ID para cada objeto en la escena. La técnica está diseñada para aplicarse en el contexto de una solución para sombras perceptualmente correctas en tiempos casi interactivos.Eje: Workshop Computación gráfica, imágenes y visualización (WCGIV)Red de Universidades con Carreras en Informática (RedUNCI

    Rendering of Shadows in a Scene with DirectX

    Get PDF
    Tato práce pojednává o metodách zobrazení stínů, jejich analýze a implementaci v rozhraní DirectX 11. Teoretická část popisuje historický vývoj použití stínů v 3D aplikácích a jednotlivé algoritmy pro výpočet stínů. V rámci práce jsou na demonstrační aplikaci porovnány zhlediska výkonu, náročnosti implementace a kvality výstupu 2 varianty algoritmu shadow mapping pro všesměrová světla - s využitím cube mappingu a parabolické projekce, každá s pěti různě optimalizovanými implementacemi.This work discusses shadowing methods, analyses them and describes implementation in DirectX 11 API. Theoretical part describes historical evolution of shadow usage in 3D applications and also analyzes shadowing algorithms. This work compares 2 variants of shadow mapping algorithm for omnidirectional lights, based on cube mapping and paraboloid projection, on demo application using quality, performance and implementation aspects.

    Realism in Computer Graphics: A Survey

    Full text link

    Rendering of light shaft and shadow for indoor environments enhancing technique

    Get PDF
    The ray marching methods have become the most attractive method to provide realism in rendering the effects of light scattering in the participating media of numerous applications. This has attracted significant attention from the scientific community. Up-sampling of ray marching methods is suitable to evaluate light scattering effects such as volumetric shadows and light shafts for rendering realistic scenes, but suffers of cost a lot for rendering. Therefore, some encouraging outcomes have been achieved by using down-sampling of ray marching approach to accelerate rendered scenes. However, these methods are inherently prone to artifacts, aliasing and incorrect boundaries due to the reduced number of sample points along view rays. This study proposed a new enhancing technique to render light shafts and shadows taking into consideration the integration light shafts, volumetric shadows, and shadows for indoor environments. This research has three major phases that cover species of the effects addressed in this thesis. The first phase includes the soft volumetric shadows creation technique called Soft Bilateral Filtering Volumetric Shadows (SoftBiF-VS). The soft shadow was created using a new algorithm called Soft Bilateral Filtering Shadow (SBFS). This technique was started by developing an algorithm called Imperfect Multi-View Soft Shadows (IMVSSs) based on down-sampling multiple point lights (DMPLs) and multiple depth maps, which are processed by using bilateral filtering to obtain soft shadows. Then, down-sampling light scattering model was used with (SBFS) to create volumetric shadows, which was improved using cross-bilateral filter to get soft volumetric shadows. In the second phase, soft light shaft was generated using a new technique called Realistic Real-Time Soft Bilateral Filtering Light Shafts (realTiSoftLS). This technique computed the light shaft depending on down-sampling volumetric light model and depth test, and was interpolated by bilateral filtering to gain soft light shafts. Finally, an enhancing technique for integrating all of these effects that represent the third phase of this research was achieved. The performance of the new enhanced technique was evaluated quantitatively and qualitatively a measured using standard dataset. Results from the experiment showed that 63% of the participants gave strong positive responses to this technique of improving realism. From the quantitative evaluation, the results revealed that the technique has dramatically outpaced the stateof- the-art techniques with a speed of 74 fps in improving the performance for indoor environments

    An empirically derived system for high-speed shadow rendering

    Get PDF
    Shadows have captivated humanity since the dawn of time; with the current age being no exception – shadows are core to realism and ambience, be it to invoke a classic Baroque interplay of lights, darks and colours as the case in Rembrandt van Rijn’s Militia Company of Captain Frans Banning Cocq or to create a sense of mystery as found in film noir and expressionist cinematography. Shadows, in this traditional sense, are regions of blocked light – the combined effect of placing an object between a light source and surface. This dissertation focuses on real-time shadow generation as a subset of 3D computer graphics. Its main focus is the critical analysis of numerous real-time shadow rendering algorithms and the construction of an empirically derived system for the high-speed rendering of shadows. This critical analysis allows us to assess the relationship between shadow rendering quality and performance. It also allows for the isolation of key algorithmic weaknesses and possible bottleneck areas. Focusing on these bottleneck areas, we investigate several possibilities of improving the performance and quality of shadow rendering; both on a hardware and software level. Primary performance benefits are seen through effective culling, clipping, the use of hardware extensions and by managing the polygonal complexity and silhouette detection of shadow casting meshes. Additional performance gains are achieved by combining the depth-fail stencil shadow volume algorithm with dynamic spatial subdivision. Using this performance data gathered during the analysis of various shadow rendering algorithms, we are able to define a fuzzy logic-based expert system to control the real-time selection of shadow rendering algorithms based on environmental conditions. This system ensures the following: nearby shadows are always of high-quality, distant shadows are, under certain conditions, rendered at a lower quality and the frames per second rendering performance is always maximised.Dissertation (MSc)--University of Pretoria, 2009.Computer Scienceunrestricte

    Real-time Global Illumination by Simulating Photon Mapping

    Get PDF

    Efficient shadow map filtering

    Get PDF
    Schatten liefern dem menschlichen Auge wichtige Informationen, um die räumlichen Beziehungen in der Umgebung in der wir leben wahrzunehmen. Sie sind somit ein unverzichtbarer Bestandteil der realistischen Bildsynthese. Leider ist die Sichtbarkeitsberechnung ein rechenintensiver Prozess. Bildbasierte Methoden, wie zum Beispiel Shadow Maps, verhalten sich positiv gegenüber einer wachsenden Szenenkomplexität, produzieren aber Artefakte sowohl in der räumlichen, als auch in der temporalen Domäne, da sie nicht wie herkömmliche Bilder gefiltert werden können. Diese Dissertation präsentiert neue Echtzeit-Schattenverfahren die das effiziente Filtern von Shadow Maps ermöglichen, um die Bildqualität und das Kohärenzverhalten zu verbessern. Hierzu formulieren wir den Schattentest als eine Summe von Produkten, bei der die beiden Parameter der Schattenfunktion separiert werden. Shadow Maps werden dann in sogenannte Basis-Bilder transformiert, die im Gegensatz zu Shadow Maps linear gefiltert werden können. Die gefilterten Basis-Bilder sind äquivalent zu einem vorgefilterten Schattentest und werden verwendet, um geglättete Schattenkanten und realistische weiche Schatten zu berechnen.Shadows provide the human visual system with important cues to sense spatial relationships in the environment we live in. As such they are an indispensable part of realistic computerenerated imagery. Unfortunately, visibility determination is computationally expensive. Image-based simplifications to the problem such as Shadow Maps perform well with increased scene complexity but produce artifacts both in the spatial and temporal domain because they lack efficient filtering support. This dissertation presents novel real-time shadow algorithms to enable efficient filtering of Shadow Maps in order to increase the image quality and overall coherence characteristics. This is achieved by expressing the shadow test as a sum of products where the parameters of the shadow test are separated from each other. Ordinary Shadow Maps are then subject to a transformation into new so called basis-images which can, as opposed to Shadow Maps, be linearly filtered. The convolved basis images are equivalent to a pre-filtered shadow test and used to reconstruct anti-aliased as well as physically plausible all-frequency shadows

    Realistic Visualization of Animated Virtual Cloth

    Get PDF
    Photo-realistic rendering of real-world objects is a broad research area with applications in various different areas, such as computer generated films, entertainment, e-commerce and so on. Within photo-realistic rendering, the rendering of cloth is a subarea which involves many important aspects, ranging from material surface reflection properties and macroscopic self-shadowing to animation sequence generation and compression. In this thesis, besides an introduction to the topic plus a broad overview of related work, different methods to handle major aspects of cloth rendering are described. Material surface reflection properties play an important part to reproduce the look & feel of materials, that is, to identify a material only by looking at it. The BTF (bidirectional texture function), as a function of viewing and illumination direction, is an appropriate representation of reflection properties. It captures effects caused by the mesostructure of a surface, like roughness, self-shadowing, occlusion, inter-reflections, subsurface scattering and color bleeding. Unfortunately a BTF data set of a material consists of hundreds to thousands of images, which exceeds current memory size of personal computers by far. This work describes the first usable method to efficiently compress and decompress a BTF data for rendering at interactive to real-time frame rates. It is based on PCA (principal component analysis) of the BTF data set. While preserving the important visual aspects of the BTF, the achieved compression rates allow the storage of several different data sets in main memory of consumer hardware, while maintaining a high rendering quality. Correct handling of complex illumination conditions plays another key role for the realistic appearance of cloth. Therefore, an upgrade of the BTF compression and rendering algorithm is described, which allows the support of distant direct HDR (high-dynamic-range) illumination stored in environment maps. To further enhance the appearance, macroscopic self-shadowing has to be taken into account. For the visualization of folds and the life-like 3D impression, these kind of shadows are absolutely necessary. This work describes two methods to compute these shadows. The first is seamlessly integrated into the illumination part of the rendering algorithm and optimized for static meshes. Furthermore, another method is proposed, which allows the handling of dynamic objects. It uses hardware-accelerated occlusion queries for the visibility determination. In contrast to other algorithms, the presented algorithm, despite its simplicity, is fast and produces less artifacts than other methods. As a plus, it incorporates changeable distant direct high-dynamic-range illumination. The human perception system is the main target of any computer graphics application and can also be treated as part of the rendering pipeline. Therefore, optimization of the rendering itself can be achieved by analyzing human perception of certain visual aspects in the image. As a part of this thesis, an experiment is introduced that evaluates human shadow perception to speedup shadow rendering and provides optimization approaches. Another subarea of cloth visualization in computer graphics is the animation of the cloth and avatars for presentations. This work also describes two new methods for automatic generation and compression of animation sequences. The first method to generate completely new, customizable animation sequences, is based on the concept of finding similarities in animation frames of a given basis sequence. Identifying these similarities allows jumps within the basis sequence to generate endless new sequences. Transmission of any animated 3D data over bandwidth-limited channels, like extended networks or to less powerful clients requires efficient compression schemes. The second method included in this thesis in the animation field is a geometry data compression scheme. Similar to the BTF compression, it uses PCA in combination with clustering algorithms to segment similar moving parts of the animated objects to achieve high compression rates in combination with a very exact reconstruction quality.Realistische Visualisierung von animierter virtueller Kleidung Das photorealistisches Rendering realer Gegenstände ist ein weites Forschungsfeld und hat Anwendungen in vielen Bereichen. Dazu zählen Computer generierte Filme (CGI), die Unterhaltungsindustrie und E-Commerce. Innerhalb dieses Forschungsbereiches ist das Rendern von photorealistischer Kleidung ein wichtiger Bestandteil. Hier reichen die wichtigen Aspekte, die es zu berücksichtigen gilt, von optischen Materialeigenschaften über makroskopische Selbstabschattung bis zur Animationsgenerierung und -kompression. In dieser Arbeit wird, neben der Einführung in das Thema, ein weiter Überblick über ähnlich gelagerte Arbeiten gegeben. Der Schwerpunkt der Arbeit liegt auf den wichtigen Aspekten der virtuellen Kleidungsvisualisierung, die oben beschrieben wurden. Die optischen Reflektionseigenschaften von Materialoberflächen spielen eine wichtige Rolle, um das so genannte look & feel von Materialien zu charakterisieren. Hierbei kann ein Material vom Nutzer identifiziert werden, ohne dass er es direkt anfassen muss. Die BTF (bidirektionale Texturfunktion)ist eine Funktion die abhängig von der Blick- und Beleuchtungsrichtung ist. Daher ist sie eine angemessene Repräsentation von Reflektionseigenschaften. Sie enthält Effekte wie Rauheit, Selbstabschattungen, Verdeckungen, Interreflektionen, Streuung und Farbbluten, die durch die Mesostruktur der Oberfläche hervorgerufen werden. Leider besteht ein BTF Datensatz eines Materials aus hunderten oder tausenden von Bildern und sprengt damit herkömmliche Hauptspeicher in Computern bei weitem. Diese Arbeit beschreibt die erste praktikable Methode, um BTF Daten effizient zu komprimieren, zu speichern und für Echtzeitanwendungen zum Visualisieren wieder zu dekomprimieren. Die Methode basiert auf der Principal Component Analysis (PCA), die Daten nach Signifikanz ordnet. Während die PCA die entscheidenen visuellen Aspekte der BTF erhält, können mit ihrer Hilfe Kompressionsraten erzielt werden, die es erlauben mehrere BTF Materialien im Hauptspeicher eines Consumer PC zu verwalten. Dies erlaubt ein High-Quality Rendering. Korrektes Verwenden von komplexen Beleuchtungssituationen spielt eine weitere, wichtige Rolle, um Kleidung realistisch erscheinen zu lassen. Daher wird zudem eine Erweiterung des BTF Kompressions- und Renderingalgorithmuses erläutert, die den Einsatz von High-Dynamic Range (HDR) Beleuchtung erlaubt, die in environment maps gespeichert wird. Um die realistische Erscheinung der Kleidung weiter zu unterstützen, muss die makroskopische Selbstabschattung integriert werden. Für die Visualisierung von Falten und den lebensechten 3D Eindruck ist diese Art von Schatten absolut notwendig. Diese Arbeit beschreibt daher auch zwei Methoden, diese Schatten schnell und effizient zu berechnen. Die erste ist nahtlos in den Beleuchtungspart des obigen BTF Renderingalgorithmuses integriert und für statische Geometrien optimiert. Die zweite Methode behandelt dynamische Objekte. Dazu werden hardwarebeschleunigte Occlusion Queries verwendet, um die Sichtbarkeitsberechnung durchzuführen. Diese Methode ist einerseits simpel und leicht zu implementieren, anderseits ist sie schnell und produziert weniger Artefakte, als vergleichbare Methoden. Zusätzlich ist die Verwendung von veränderbarer, entfernter HDR Beleuchtung integriert. Das menschliche Wahrnehmungssystem ist das eigentliche Ziel jeglicher Anwendung in der Computergrafik und kann daher selbst als Teil einer erweiterten Rendering Pipeline gesehen werden. Daher kann das Rendering selbst optimiert werden, wenn man die menschliche Wahrnehmung verschiedener visueller Aspekte der berechneten Bilder analysiert. Teil der vorliegenden Arbeit ist die Beschreibung eines Experimentes, das menschliche Schattenwahrnehmung untersucht, um das Rendern der Schatten zu beschleunigen. Ein weiteres Teilgebiet der Kleidungsvisualisierung in der Computergrafik ist die Animation der Kleidung und von Avataren für Präsentationen. Diese Arbeit beschreibt zwei neue Methoden auf diesem Teilgebiet. Einmal ein Algorithmus, der für die automatische Generierung neuer Animationssequenzen verwendet werden kann und zum anderen einen Kompressionsalgorithmus für eben diese Sequenzen. Die automatische Generierung von völlig neuen, anpassbaren Animationen basiert auf dem Konzept der Ähnlichkeitssuche. Hierbei werden die einzelnen Schritte von gegebenen Basisanimationen auf Ähnlichkeiten hin untersucht, die zum Beispiel die Geschwindigkeiten einzelner Objektteile sein können. Die Identifizierung dieser Ähnlichkeiten erlaubt dann Sprünge innerhalb der Basissequenz, die dazu benutzt werden können, endlose, neue Sequenzen zu erzeugen. Die Übertragung von animierten 3D Daten über bandbreitenlimitierte Kanäle wie ausgedehnte Netzwerke, Mobilfunk oder zu sogenannten thin clients erfordert eine effiziente Komprimierung. Die zweite, in dieser Arbeit vorgestellte Methode, ist ein Kompressionsschema für Geometriedaten. Ähnlich wie bei der Kompression von BTF Daten wird die PCA in Verbindung mit Clustering benutzt, um die animierte Geometrie zu analysieren und in sich ähnlich bewegende Teile zu segmentieren. Diese erkannten Segmente lassen sich dann hoch komprimieren. Der Algorithmus arbeitet automatisch und erlaubt zudem eine sehr exakte Rekonstruktionsqualität nach der Dekomprimierung

    Logarithmic perspective shadow maps

    Get PDF
    The shadow map algorithm is a popular approach for generating shadows for real-time applications. Shadow maps are flexible and easy to implement, but they are prone to aliasing artifacts. To reduce aliasing artifacts we introduce logarithmic perspective shadow maps (LogPSMs). LogPSMs are based on a novel shadow map parameterization that consists of a perspective projection and a logarithmic transformation. They can be used for both point and directional light sources to produce hard shadows. To establish the benefits of LogPSMs, we perform an in-depth analysis of shadow map aliasing error and the error characteristics of existing algorithms. Using this analysis we compute a parameterization that produces near-optimal perspective aliasing error. This parameterization has high arithmetical complexity which makes it less practical than existing methods. We show, however, that over all light positions, the simpler LogPSM parameterization produces the same maximum error as the near-optimal parameterization. We also show that compared with competing algorithms, LogPSMs produce significantly less aliasing error. Equivalently, for the same error as competing algorithms, LogPSMs require significantly less storage and bandwidth. We demonstrate difference in shadow quality achieved with LogPSMs on several models of varying complexity. LogPSMs are rendered using logarithmic rasterization. We show how current GPU architectures can be modified incrementally to perform logarithmic rasterization at current GPU fill rates. Specifically, we modify the rasterizer to support rendering to a nonuniform grid with the same watertight rasterization properties as current rasterizers. We also describe a novel depth compression scheme to handle the nonlinear primitives produced by logarithmic rasterization. Our proposed architecture enhancements align with current trends of decreasing cost for on-chip computation relative to off-chip bandwidth and storage. For only a modest increase in computation, logarithmic rasterization can greatly reduce shadow map bandwidth and storage costs
    corecore