
Efficient Shadow Map Filtering

Thomas Annen

Max-Planck-Institut Informatik

Saarbrücken, Germany

Dissertation zur Erlangung des Grades

Doktor der Ingenieurwissenschaften (Dr.–Ing.)

der Naturwissenschaftlich-Technischen Fakultäten

der Universität des Saarlandes

Eingereicht am 10. Oktober 2008 in Saarbrücken.

ii

Betreuender Hochschullehrer — Supervisor

Prof. Dr. Hans-Peter Seidel MPI Informatik

Saarbrücken, Germany

Gutachter — Reviewers

Prof. Dr. Hans-Peter Seidel MPI Informatik

Saarbrücken, Germany

Prof. Dr. Jan Kautz University College London

London, UK

Prof. Dr. Frédo Durand Massachusetts Institute of Technology

Cambridge, USA

Dekan — Dean

Prof. Dr. Joachim Weickert Universität des Saarlandes

Saarbrücken, Germany

Datum des Kolloquiums — Date of Defense

12. Dezember 2008 in Saarbrücken

Prüfungsausschuss — Board of Examiners

Head of Colloquium Prof. Dr. Christph Weidenbach MPI Informatik

Saarbrücken, Germany

Examiner Prof. Dr. Hans-Peter Seidel MPI Informatik

Saarbrücken, Germany

Examiner Prof. Dr. Jan Kautz University College London

London, UK

Protocol Prof. Dr. Karol Myszkowski MPI Informatik

Saarbrücken, Germany

Thomas Annen

Max-Planck-Institut Informatik

Campus E1 4 (Room 226)

66123 Saarbrücken, Germany

tannen@mpi-inf.mpg.de

iii

Abstract

Shadows provide the human visual system with important cues to sense spatial re-

lationships in the environment we live in. As such they are an indispensable part

of realistic computer-generated imagery. Unfortunately, visibility determination

is computationally expensive. Image-based simplifications to the problem such

as Shadow Maps perform well with increased scene complexity but produce arti-

facts both in the spatial and temporal domain because they lack efficient filtering

support.

This dissertation presents novel real-time shadow algorithms to enable effi-

cient filtering of Shadow Maps in order to increase the image quality and overall

coherence characteristics. This is achieved by expressing the shadow test as a

sum of products where the parameters of the shadow test are separated from each

other. Ordinary Shadow Maps are then subject to a transformation into new so

called basis-images which can, as opposed to Shadow Maps, be linearly filtered.

The convolved basis images are equivalent to a pre-filtered shadow test and used

to reconstruct anti-aliased as well as physically plausible all-frequency shadows.

Kurzfassung

Schatten liefern dem menschlichen Auge wichtige Informationen, um die räum-

lichen Beziehungen in der Umgebung in der wir leben wahrzunehmen. Sie sind

somit ein unverzichtbarer Bestandteil der realistischen Bildsynthese. Leider ist

die Sichtbatkeitsberechnung ein rechenintensiver Prozess. Bildbasierte Methoden,

wie zum Beispiel Shadow Maps, verhalten sich positiv gegenüber einer wachsen-

den Szenenkomplexität, produzieren aber Artefakte sowohl in der räumlichen, als

auch in der temporalen Domäne, da sie nicht wie herkömmliche Bilder gefiltert

werden können.

Diese Dissertation präsentiert neue Echtzeit-Schattenverfahren die das effizi-

ente Filtern von Shadow Maps ermöglichen, um die Bildqualität und das Koh-

ärenzverhalten zu verbessern. Hierzu formulieren wir den Schattentest als eine

Summe von Produkten, bei der die beiden Parameter der Schattenfunktion se-

pariert werden. Shadow Maps werden dann in sogenannte Basis-Bilder transfor-

miert, die im Gegensatz zu Shadow Maps linear gefiltert werden können. Die

gefilterten Basis-Bilder sind äquivalent zu einem vorgefilterten Schattentest und

werden verwendet, um geglättete Schattenkanten und realistische weiche Schatten

zu berechnen.

iv

v

Summary

Shadows provide the human visual system with important cues to sense spati-

al relationships in the environment we live in. As computer generated imagery

has become an integral part of our lives, e.g. media, computer animated films or

games, fast and high-quality shadow algorithms are key to realistic and efficient

digital image synthesis. In particular, games and preview systems in movie pro-

duction environments require real-time or interactive feedback to offer a player an

enjoyable gaming experience or to equip artists with productive working tool sets.

Unfortunately, quality and feedback-time are two opposing objectives whe-

re either one often has to be compromised to achieve the other. As visibility

computation takes a significant amount of the overall rendering time and as we

witness a steady growth in geometric fidelity including dynamic and deformable

objects, modern real-time shadow algorithm have to fulfill several requirements.

They must be efficient, render high-quality shadows, and they must be flexible

with regard to the input data. Even though the theoretical foundations for compu-

ting accurate shadows are well established, combining all aforementioned requi-

rements renders visibility computation a challenging problem.

This dissertation is therefore dedicated to novel solutions for real-time sha-

dow rendering and builds on Williams’ Shadow Maps [Williams, 1978]. To this

end, we propose a new mathematical framework to transform traditional Shadow

Maps into a new representation which naturally affords Shadow Map filtering, an

important property not available otherwise. Our new algorithms maintain the effi-

ciency and flexibility of Shadow Maps but overcome their crucial limitations.

Part I reviews the filtering problem inherent in Shadow Mapping which stems

from the non-linearity of the shadow test function. We explain why filtering the

depth values is not equivalent to filtering the result of the shadow test and present

a new solution to linearize the shadow function. We achieve this by expressing the

shadow test as a sum of products where we separate the two parameters d and z of

the shadow test function. Where d represents the distance from the shading point

to the light source, and z encodes the closed blocker for that shading point. There-

by we can evaluate filtered shadows in constant-time through pre-filtering which

leads to better shadow quality, performance, and temporal coherence. Based on

this core idea we develop new techniques for anti-aliasing shadow discontinuities

in Part II and introduce an extension to our linearization process for rendering ef-

ficient soft shadows in Part III.

vi

Part II proposes two solutions to expand the shadow test function, i.e. into a

Fourier and an Exponential series. The Fourier series approach transforms a depth

map into a set of special basis images. We can then apply arbitrary linear filter

kernels to each image. During rendering we evaluate the series expansion and

effectively reconstruct a filtered shadow test.

The second solution we present relies on the same linearization pipeline as

the previous method, but only requires a single basis image. We trade quality for

speed and memory consumption by assuming that the shadow test domain is limi-

ted in order to simplify the problem. By imposing this assumption we can show

that the shadow test can be approximated by a simple exponential function which

yields a low memory footprint and an increased performance while the quality is

still comparable to the Fourier series.

Part III focuses on realistic physically plausible shadows and derives an ex-

tended theory to harness our pre-filtering facilities for rapid and high-quality all-

frequency shadow computation. The main idea is to replace an exhaustive and

explicit blocker search which determines the softness of the shadow by a constant-

time reconstruction. Not only allows this new method to render physically plausi-

ble shadows in real-time but it also supports dynamic objects and arbitrary distant

environment illumination.

In summary, this dissertation contributes new ideas and solutions to an import-

ant and long standing problem in the field of Computer Graphics. Our algorithms

cover a broad range of applications from real-time anti-aliasing of shadow discon-

tinuities to rendering all-frequency shadows, in fully dynamic environments with

multiple light sources simultaneously.

vii

Zusammenfassung

Schatten liefern dem menschlichen Auge wichtige Informationen, um die räum-

lichen Beziehungen in der Umgebung in der wir leben wahrzunehmen. Da com-

putergenerierte Bilder ein integraler Bestandteil unseres Lebens geworden sind,

z.B. Medien, computeranimierte Filme oder Spiele, werden schnelle Schattenal-

gorithmen zum Schlüssel zur realistischen und effizienten digitalen Bildsynthese.

Besonders Spiele oder Vorschausysteme in Filmstudios erfordern Echtzeit- oder

interaktives Feedback, um Spielern eine unterhaltsame Spielerfahrung bieten zu

können bzw. Künstler mit produktiven Arbeitsmitteln auszustatten.

Leider konkurrieren Qualität und Feedback-Verhalten der Software oft um

Ressourcen, und nicht selten müssen bei einem der beiden Ziele Kompromisse

eingegangen werden, um das andere zu erreichen. Da die Sichtbarkeitsberech-

nung alleine einen beachtlichen Teil der Renderingzeit in Anspruch nimmt, und

geometrische Komplexität ständig wächst, z.B. dynamische oder deformierbare

Objekte, sollten moderne Schattenverfahren mehrere Bedingungen erfüllen. Sie

müssen effizient sein, Schatten in hoher Qualität erzeugen, und robust bezüglich

der Eingabeprimitiven sein. Obwohl die theoretischen Grundlagen für die genaue

Berechnug von Schatten ethabliert sind, bleibt die Schattengenierung eine grosse

Herausforderung, wenn alle vorher genannten Bedingungen erfüllt werden sollen.

Diese Doktorarbeit widmet sich daher neuen Lösungen für Echtzeit Schat-

tenverfahren und gründet auf Williams’ Shadow Maps [Williams, 1978]. Hierzu

präsentieren wir ein neues mathematischen Grundgerüst, das es ermöglicht tra-

ditionelle Shadow Maps in eine neue Repräsentation zu transformieren, die das

effektive Filtern von Shadow Maps erlaubt. Dies ist eine wichtige Eigenschaft,

die für herkömmliche Shadow Maps leider nicht gilt. Unsere neuen Algorithmen

erhalten dabei die Effizienz und Flexibilität normaler Shadow Maps, löen aber ei-

nige ihrer kritischen Probleme.

Teil I gibt einen Einblick in das Problem des Shadow Map Filterns, welches

auf der Nicht-Linearität des Schattentests beruht. Wir erklären im Detail, warum

es das Filtern der Tiefenwerte nicht äquivalent zum Filtern der Ergebnisse des

Schattentests ist, und stellen eine neue Methode vor, um die Schattenfunktion zu

linearisieren. Wir erreichen dieses Ziel indem wir den Schattentest als eine Sum-

me von Produkten ausdrücken mittels derer wir die beiden Parameter d und z der

Testfunktion von einander trennen. d stellt dabei die Distanz vom Shadingpunkt

zur Lichtquelle dar, und z kodiert die kleinste Blockerdistanz zur Lichtquelle für

den Shadingpunkt. Dadurch gelingt es uns vorgefilterte Schatten in konstanter Zeit

zu errechnen, was zu besserer Schattenqualität, Laufzeit und temporaler Kohärenz

viii

führt. Darauf basierend entwickeln wir neue Methoden zum Filtern von Schatten-

kanten in Teil II und demonstrieren eine Erweiterung zum Erzeugen realistischer

Schatten im Teil III.

Teil II präsentiert zwei konkrete Lösungen zur Linearisierung des Schatten-

tests: eine Fourier und eine Exponential Reihe. Die Fourier Reihe transformiert ei-

ne normale Shadow Map in eine Menge sogenannter Basis-Bilder. Danach können

wir beliebige lineare Glättungsfilter auf diese Basis-Bilder anwenden. Während

des Renders werden diese Bilder dann genutzt, um die Reichenentwicklung aus-

zuwerten und somit einen gefilterten Schatten zu rekonstruieren.

Die zweite Lösung, die wir präsentieren, basiert auf der gleichen Linearizie-

rungspipeline wie zuvor, erfordert allerdings lediglich ein einziges Basis-Bild.

Hierbei erlauben wir das die Qualität etwas vermindert wird, um im Gegenzug

Speicher zu sparen und die Performance zu steigern. Hierfür machen wir ein An-

nahme bezüeglich des Definitionsbreichs des Schattentests, welche es uns erlaubt

die Schattenfunktion mit einer einfachen Eponentialfunktion zu approximieren.

Dies führt zu niedrigem Scheicherbedarf und einem verbesserten Laufzeitverhal-

ten, wohingegen die Schattenqualität vergleichbar ist zu der, der Fourier Reihe.

Teil III dieser Dissertation konzentriert sich auf physikalisch plausible Schat-

ten und leitet eine erweiterte Theorie her, die unsere speziellen Filtereigenschaften

auch zur schnellen und hoch-qualitativen Berechnung von weichen Schatten ver-

wendet. Die grundlegende Idee ist es die bisher aufwendige und explizite Blocker-

Suche zum Bestimmen der Weichheit des Schattens, mit einem konstanten Loo-

kup zu ersetzen. Das hat den Vorteil, dass es das Erzeugen von realistischen Schat-

ten in Echtzeit erlaubt, voll dynamische Objekte, und sogar beliebige (weit ent-

fernte) Emgebungsbeleuchtung unterstützt.

Kurz zusammengefasst, diese Dissertation trägt neue Lösungen zu einem wich-

tigen und lange existierenden Problem im Gebiet der Computer Graphik bei. Die

hier präsentierten Algorithmen decken ein breites Spektrum an Anwendungsge-

bieten ab, das sich vom Filtern von Schattenkanten bis hin zum Erzeugen rea-

listischer Schatten in Echtzeit in voll dynamischen Umgebungen und mehreren

Lichtquellen erstreckt.

ix

Acknowledgements

This dissertation would not have been possible without the help and support of

many people. First, I would like to thank my Ph.D. adviser Prof. Dr. Hans-

Peter Seidel who has guided, motivated, and supported me throughout my entire

time at MPI. I am grateful for an excellent work environment and that I had the

opportunity to visit several research laboratories over the past five years.

I owe special thanks to Prof. Dr. Jan Kautz for being a reviewer of my thesis

and Dr. Tom Mertens. Both have guided me and shared their experiences with

me during my Ph.D. studies. Over the past few years we have not only closely

cooperated but we have also become good friends.

I am also grateful to Prof. Dr. Frédo Durand from CSAIL at the Massachusetts

Institute of Technology for being an external reviewer of this dissertation and for

his inspiring supervision during my research visit in his group in winter 2003.

Special thanks to my former supervisor Stefan Brabec who introduced me into

the field of Computer Graphics and shadow computation in particular.

I owe special thanks to Zhao Dong for his effort on both the theoretical back-

ground and the implementation of the algorithm presented in Chapter 8.

Furthermore, I would like to thank all my colleagues from the Computer

Graphics group at MPI for their help, support, and for making MPI a great place to

work. I can not name all of them but special thanks go to (alphabetical order and

including former members): Tunc Ozan Aydin, Sabine Budde, Christian Fuchs,

Martin Fuchs, Michael Goesele, Thorsten Grosch, Hendrik P.A. Lensch, Conny

Liegl, Karol Myszkowski, Christian Rössl, Carsten Stoll, Kristina Scherbaum,

Holger Theisel, Rhaleb Zayer, und Gernot Ziegler.

Finally, I would like to thank my family Oranna, Norbert, Daniela, Thomas,

Jonas, Jana, and Sandra for their support throughout the years of this dissertation.

Very special thanks also to my best friends Kaleigh Smith, Bernd (Fluff) Kiefer,

Oliver Müller, Stefan Lauer, and Michi Becker, for true friendship, great times,

and memorable moments.

Thomas Annen

x

Contents

1 Introduction 3

1.1 Problem Statement . 5

1.2 Main Contributions . 7

1.3 Chapter Overview . 9

2 Background 11

2.1 Notation . 11

2.2 Radiometry and Photometry . 12

2.2.1 Radiometric Quantities 12

2.2.2 Photometric Quantities 15

2.3 Common Illuminats . 15

2.3.1 Light Source Models . 16

2.3.2 Discussion . 19

2.3.3 Near-Field and Far-Field Theory 20

2.4 Concepts of Surface Reflections 21

2.4.1 Bidirectional Reflectance Distribution Function 21

2.4.2 Material Properties . 23

2.5 The Rendering Equation . 25

2.6 The Framebuffer: Final Image Assembly 26

2.7 Hardware Accelerated Rendering 27

2.8 Shadows and Human Perception 30

2.9 Assumptions . 31

2.9.1 Visibility Computation 31

3 Shadow and Visibility Techniques 33

3.1 Shadow Classification . 33

3.2 Image-Space Methods . 37

3.2.1 Z-Buffer Algorithm . 37

3.2.2 Shadow Maps . 38

3.3 Object-Space Methods . 44

3.4 Painter’s Algorithm . 44

xii CONTENTS

3.4.1 Shadow Volumes . 45

3.4.2 Shadow Rays . 46

3.5 Hybrid Methods . 47

3.6 Pre-computation Methods . 48

4 Related Work on Shadow Map Filtering 49

4.1 Anti-aliasing . 49

4.2 Soft Shadows . 50

I Linearization 53

5 Shadow Test Linearization 55

5.1 Shadow Test Function . 55

5.2 Convolution . 56

II Anti-aliasing of Shadows 61

6 Convolution Shadow Maps 63

6.1 Fourier Series Expansion . 63

6.1.1 Discussion of Fourier Expansion 65

6.2 Anti-aliasing Using CSMs . 67

6.2.1 GPU Implementation . 67

6.3 Results . 69

6.4 Discussion . 73

7 Exponential Shadow Maps 77

7.1 Exponential Approximation . 77

7.1.1 Choice of Exponent . 79

7.2 Violation of Assumption . 79

7.2.1 Frequency of Violation 80

7.3 Classification and Fall Back Solution 81

7.3.1 Z-Max Classification . 82

7.3.2 Threshold Classification 83

7.4 Implementation . 83

7.5 Results . 83

7.5.1 Discussion . 86

CONTENTS xiii

III Pre-filtered Soft Shadows 91

8 Convolution Soft Shadow Maps 93

8.1 Plausible Soft Shadows Using Convolution 93

8.2 Convolution for Soft Shadows 94

8.2.1 Estimating Average Blocker Depth 96

8.2.2 Initializing Average Depth Computation 98

8.2.3 CSM Order Reduction 98

8.3 Illumination with Soft Shadows 99

8.3.1 Rendering Prefiltered Soft Shadows 99

8.4 Applications and Results . 101

8.5 Discussion . 103

9 Summary and Conclusions 109

9.1 Summary . 109

9.2 Conclusions . 110

xiv CONTENTS

CONTENTS 1

“Shadow is the obstruction of light. Shadows appear to me to

be of supreme importance in perspective, because, without them

opaque and solid bodies will be ill defined; that which is con-

tained within their outlines and their boundaries themselves will

be ill-understood unless they are shown against a background of

a different tone from themselves.”

Leonardo da Vinci (1452 to 1519)

2 CONTENTS

Chapter 1

Introduction

The desire to comprehend and to describe the interaction between light and mat-

ter has always been a fascinating and challenging problem throughout history. It

has been subject to intensive research in disciplines like scientific study, art and

philosophy. Shadows, a natural phenomenon resulting from the interaction, have

been of special interest ever since the original questions were asked. In his book,

a “Short History of the Shadow”, Victor I. Stoichita [1997] explains that shadows

have often been an integral element of theories, knowledge, as well as our percep-

tion of reality. He reaches back to Plato (428 BC - 348 BC1) and Pliny the Elder

(23 AD – 79 AD) to point out how philosophers used shadows in metaphors to

communicate their view on truth and knowledge. A famous example is Plato’s

“Allegory of the Cave” from the 7th book of “The Republic” by Plato [1968].

In more recent history during the Italian renaissance (1420 – 1600), Leonardo

da Vinci, the embodiment of a versatile genius, made significant contributions to

a large number of different fields. Among other activities he experimented with

the interplay between light and objects. Leonardo sketched his results and doc-

umented his conclusions in a number of famous notebooks [see da Vinci, 1970].

Although these notes contain some misconceptions on how shadows are formed,

it is astonishing to see the rich detail in which da Vinci separated and classified

different types of light sources as well as their corresponding shadows. Figure

1.1 shows an example of da Vinci’s drawings where he describes the intensities of

cast shadow. The citation at the beginning of this introduction is also an excerpt

from da Vinci’s notebooks. It emphasizes his belief that shadows add very impor-

tant spatial information to our perspective perception. He states that if they are

missing, paintings or portraits will appear amorphous and flat. This aspect was

known among artist too.

1According to Jonathan Barnes, British historian of ancient philosophy.

4 Chapter 1: Introduction

Figure 1.1: A sketch on shadows

from da Vinci’s notebooks.

They carefully incorporated changes

in brightness to better simulate light and

shade in their paintings or drawings. This

popular artistic tool of the 16th century

is referred to as “Chiaroscuro” 2. It al-

lows painters to express shapes of bodies

and objects in a more plastic manner and

thereby lends realism to pictorial represen-

tations.

Later in the last century along with

the advent of modern computers came the

wish to generate imagery digitally, which

founded the field of Computer Graphics.

One discipline of this field of research is

(photo-) realistic image synthesis. There

have been amazing advancements in the past decades which narrowed the gap be-

tween the real world and artificial environments. Computers are nowadays able to

generate stunning results virtually indistinguishable from real images. Such tech-

nology has for instance been used to generate breathtaking visual effects in recent

feature films.

A central part in realistic digital image synthesis is the evaluation of mutual

visibility between primitives within virtual environments. Such entities are for in-

stance, point samples, polygons, or arbitrarily shaped light sources. Knowing the

visibility relation among any two of those items is a crucial factor and ultimately

the key to physically accurate solutions. For example, a program needs to know

if a surface point is fully, partially, or not visible at all to determine the amount of

energy reaching this surface. Unfortunately, the importance of visibility computa-

tion to realistic image generation is accompanied by an enormous computational

cost.

It was this computational burden that encouraged researchers to use approxi-

mations during lighting simulations to increase the overall rendering performance.

The outcome was a separation into two major fields, local and global illumination

techniques. Fully local methods consider only energy reaching a surface on a di-

rect path from the light source. They usually neglect or imitate indirect effects

such as shadows, inter-reflections, and caustics. Although these assumptions re-

duce the natural look of images and degrade quality, they grant local methods

higher performance. Usually, images can be rendered in real-time or at interactive

frame rates depending on the complexity of the shading model. Global methods

do not rely on crude approximations, but instead involve physically based compu-

2Italian for clear/dark or light/dark.

1.1 Problem Statement 5

tations. This yields superior and photo-realistic image quality but takes normally

minutes or up to hours to produce a single frame.

This journey through the history of shadows in Computer Graphics was very

brief and not exhaustive. Yet it displays the great relevance of shadows for con-

veying spatial information to make art work, technical illustrations, games, and

computer generated imagery appear more realistic and natural.

We will now move on to a modern approach to resolve visibility and to com-

pute shadows. The next section describes a critical problem in today’s most pop-

ular and efficient real-time shadow procedure. We outline the difficulties and

present a set of new solutions to overcome these limitations. By doing so we

achieve more accurate, more efficient, and physically plausible shadows, which

are valuable to many real-time applications.

1.1 Problem Statement

This dissertation focuses on efficient and high quality shadow computation in the

context of real-time Computer Graphics and allows to include valuable spatial

information into the local illumination domain. Today, the dominating shadow

techniques in this field are Shadow Volumes by Crow [1977] and Shadow Maps

by Williams [1978] (aka depth maps). The latter is far more popular partially

due to its simplicity and robustness, but primarily due to its efficiency compared

to shadow volumes. However, despite of several advantages, shadow mapping is

plagued by aliasing artifacts originating from its image-based nature. Figure 1.2

(left) illustrates this problem, and shows the resulting poor shadow quality.

To lessen or resolve these artifacts has been the goal of many research articles.

Plenty of these solutions tackle the problem by trying to increase the effective res-

olution of a shadow map in order to reduce discretization artifacts. However, so far

little attention has been paid to filtering shadows even though it has a great impact

regarding the image quality. The benefits of appropriate filtering are twofold. It

conceals discretization artifacts and provides effective screen-space anti-aliasing.

Second it drastically improves temporal coherence in animations. See Figure 1.2

(right) for a demonstration of the quality improvement when filtering is applied.

One reason why filtering has drawn little attention so far may reside in the shadow

test function itself. Shadow mapping is a non-linear operation with respect to the

depth values stored in the shadow map. This fact reveals a fundamental problem

in shadow mapping. It means that Shadow Maps cannot be filtered like ordinary

texture maps and therefore it renders Shadow Map filtering a non-trivial opera-

tion. As a consequence filtering regular depth maps is very expensive. It requires

6 Chapter 1: Introduction

Figure 1.2: Williams’ Shadow Maps are prone to aliasing. Two types of aliasing

are shown on the left. Discretization and under-sampling artifacts. Our novel

filtering methods reduce both problems and improve the overall shadow quality

significantly show on the right.

explicit and extensive sampling of the depth values to achieve reasonable shadow

quality.

Providing solutions to this challenging problem is essential because shadow

mapping is widely used in games and in film production. This dissertation is

1.2 Main Contributions 7

dedicated to this problem and provides new means for efficient Shadow Map fil-

tering. But before we continue with the contributions we make, let us summarize

some desirable and important properties which characterize a general, efficient,

and high quality shadow algorithm. Such an algorithm should:

• be simple to implement and easy to integrate into existing software,

• general with respect to the rendering primitives (points, polygons, etc.),

• scale well with geometric complexity,

• allow pre-filtering to prevent expensive run-time sampling,

• yield high quality through efficient anti-aliasing,

• afford all-frequency shadow support.

The first three qualities are provided by Shadow Maps and explain their popular-

ity. They also motivate us to base our new ideas on Shadow Mapping to achieve

the remaining three objectives. The next sections of this chapter discuss our con-

tributions towards such an improved shadow technology and outline the remainder

of this thesis.

1.2 Main Contributions

The contributions listed here have already been published in conference proceed-

ings or journals. These publications are the central part of this dissertation in

which we present:

• a new mathematical framework to decompose the shadow test into a sum

of products to circumvent the filtering problem of Shadow Maps. By this

we effectively enable filtering [Annen et al., 2007] the shadow test function

before to the actual visibility evaluation is performed.

• Convolution Shadow Maps [Annen et al., 2007] a first solution to realize the

decomposition of the shadow test into a Fourier Series expansion. This fa-

cilitates high-quality anti-aliasing of shadows boundaries in real-time even

for large scenes and high-resolution Shadow Maps.

• Exponential Shadow Maps [Annen et al., 2008b] as a second approach which

trades quality for high performance and memory savings by introducing an

assumption on the parameter range of the shadow test in which case a sum

of Exponentials suffices to compute a filtered shadow. This methods deliv-

ers very high frame-rates while preserving competitive quality compared to

the Fourier Series.

8 Chapter 1: Introduction

• Convolution Soft Shadow Maps [Annen et al., 2008a] an extension of our

mathematical framework to support more complex all-frequency shadows,

e.g. penumbrae. We replace a costly explicit average blocker estimation

used in many soft shadow algorithms by fast pre-filtering capabilities. An

important step to render plausible all-frequency shadows3 in real-time.

(a) Shadow Test Linearization (b) High-Quality Antialiasing

(c) High-Performance Antialiasing (d) Pre-filtered Soft Shadows

Figure 1.3: Contributions: (a) outline of our linearization process. (b) and (c)

show two different solutions to anti-aliasing. This framework also delivers high

quality and plausible all-frequency shadows in real-time depicted in (d).

3The frequency of shadows depends on the blocker, receiver, and light source configuration.

An example that contains various frequencies is shown in Figure 1.3 (d).

1.3 Chapter Overview 9

1.3 Chapter Overview

After introducing the importance of shadows throughout history, we proceed in

Chapter 2 with a background discussion to familiarize the reader with the basics of

Computer Graphics necessary to understand the new shadow filtering techniques.

This information will be instrumental when reviewing visibility and shadow tech-

niques in Chapter 3. We then refer to the most related work on Shadow Map

filtering in Chapter 4. Together these chapters give the context of this dissertation.

In Part I we propose rethinking standard Shadow Mapping. We introduce an el-

egant process that involves a transformation from depth maps into a new kind of

image which we call a basis image, from which shadows can be reconstructed.

Because of the linearity of this procedure, we have effectively achieved the lin-

earization of the non-linear standard shadow test. In contrast to regular Shadow

Maps, this new image type can be filtered. Figure 1.3 (a) shows the entire process.

We develop two solutions for the linearization process in Part II. Our first so-

lution is based on a Fourier Series expansion. It delivers high-quality anti-aliasing

(see Figure 1.3 (b)) and its inherent properties permit further extensions. One

limitation of this method is its memory consumption, which is why we propose

a second algorithm based on an Exponential Series expansion. It is primarily de-

signed to deliver very high frame rates and quality is of secondary importance.

Even though it requires special treatment of a small amount of pixels (see pixels

marked red in Figure 1.3 (c)) the overall quality is competitive compared to the

Fourier Series solution. We will describe each method in detail and discuss their

advantages and limitations.

Part III is dedicated to an extension of the theory presented in Part I and II.

We can utilize our framework to formulate a highly efficient algorithm to render

all-frequency shadows in real-time. It is based on the same theoretical foundations

and achieves great speed-ups compared to previous procedures. Image (d) in Fig-

ure 1.3 is an example of high-quality all-frequency shadows. We then summarize

this dissertation with conclusions on our approaches in Chapter 9.

10 Chapter 1: Introduction

Chapter 2

Background

Though efficient and high quality shadow computation is the primary objective of

this dissertation, shadows only constitute one out of many complex natural phe-

nomena emerging from light interacting with matter. In order to comprehend the

versatile factors that cause or modify shadows, we first need to understand the

physics of light. Specifically, how it propagates through space and the nature of

its interplay with different material compositions. This chapter therefore strives

to provide the reader with enough background information on rendering to com-

prehend our novel shadow ideas in the following chapters.

We first establish the notation we use throughout this dissertation, then layout

properties of energy and conduct a light source classification. Once we have the

light source models available we shift our focus to light-matter interaction and

address the properties and geometry of surface reflectance. Eventually, this leads

us to the fundamental equation in CG, the Rendering Equation. We conclude this

chapter with a graphics hardware review, notes on how shadows impact our human

perception, and a summary of assumptions our work is founded on.

2.1 Notation

This section describes the mathematical symbols we are going to use in this dis-

sertation. We choose to denote spatial positions in R
3 and R

2 in bold font e.g. x.

We provide subscripts to further indicate specific coordinate frames. For example,

when x has been transformed by the camera matrix it resides in camera-space xc.

When xc is projected onto a camera’s image plane it is in screen-space (we use the

term texture- or Shadow Map space when projecting onto the light source image

plane) and we use an underline to indicate projected positions, e.g. xc.

For vectors in R
3 we use the standard arrow sign e.g. ~n and their normal-

ized (unit) counterparts are indicated using a hat symbol like n̂. Subscripts pro-

12 Chapter 2: Background

Quantity Description

x Point in R
3

x Point in R
2

~v, v̂ Vector and its normalized version in R
3.

e,o,i Subscripts refer to emitted, outgoing, and incident

c,l Subscripts denote a variable in camera- or light-space

ω, ω̂ Solid angle and unit solid angle.

w Spatial convolution kernel in R
2

Table 2.1: A list of quantities and their description used in this dissertation. Di-

rectional subscripts can be combined with camera- and light-space subscripts.

vide information on whether energy is incident (i) at their associated locations, or

outgoing (o) from that point. We use (e) for emitted energy from light sources.

Table 2.1 summarizes our notation.

2.2 Radiometry and Photometry

Radiometry is the scientific discipline concerned with the measurement of electro-

magnetic radiation including spectra like microwaves, infrared light, visible light,

and ultraviolet light.

Photometry was established by Pierre Bouguer in 1760 and is the psychophys-

ical measurement of electromagnetic radiation only taking into account energy

perceptible by the human eye. It is typically limited to wavelengths between 380

and 740 nanometers (nm). The range visible to our human visual system is merely

a narrow band in the electromagnetic spectrum.

2.2.1 Radiometric Quantities

The subsequent paragraphs layout all radiometric quantities and their individual

SI units listed in Table 2.2. Subscripts in the table distinguish between radiomet-

ric and photometric symbols but we consider the full electromagnetic spectrum in

our discussion.

Radiant Energy Q is electromagnetic radiation and can be seen as energy quan-

tized into finite entities called photons. The energy carried by a single photon ac-

cording to Planck’s hypothesis is Q = hν , where h is the Planck constant and ν is

the frequency of radiation. The total radiant energy is the contribution of all pho-

tons over all wavelengths. Q is measured in Joule [J = N ·m = kg ·m2/s2 =W · s].

2.2 Radiometry and Photometry 13

Radiometry Photometry

Quantity Unit Sym. Quantity Unit Sym.

Radiant Energy J Qr Luminous Energy lm · s Qv

Radiant Flux W Φ Luminous Flux lm F

Radiosity
W/m2 Br Luminosity

lm/m2 Bv

Irradiance Er Illuminance Ev

Radiant Intensity W/sr Ir Luminous Intensity lm/sr Iv

Radiance W/(m2sr) Lr Luminance lm/(m2sr) Lv

Table 2.2: Radiometric and photometric quantities and units. We denote radiomet-

ric terms with subscript r for radiometry and their photometric counterparts with

subscript v for visible as they take the sensitivity of the human eye into account.

Radiant Flux or Radiant Power Φ is the energy transmitted over unit time and

is defined by the following equation:

Φ(x, ω̂) :=
dQ(x, ω̂)

dt
. (2.1)

When we integrate Φ over time we obtain the total radiant energy output Q. The

physical unit of radiant flux is measured in Watt [W = kg ·m2/s3 = J/s].

Radiance L is one of the most important quantities encountered in computer

graphics. Radiance describes the differential flux per unit projected area, per unit

solid angle, either incoming at a surface point x or leaving x:

L(x, ω̂) :=
d2Φ(x, ω̂)

dAx dω̂ cosθ
, (2.2)

where θ is the angle between the surface normal at x and solid angle ω . The solid

angle is the 3D extension of planar 2D angles and it is proportional to the coverage

of the projected surface A onto the sphere which translates to:

ω :=
A cosθ

r2
, (2.3)

where r is the distance from the surface patch to the area being projected1. Note

we use cosθ to describes the angle between a surface normal and a direction.

Please see Figure 2.1 for an illustration of radiance and solid angle.

A very important characteristic of radiance is that it does not change when

traveling through empty space. The reason why this is important in graphics is

1Integrating the solid angle over the unit sphere results in a total solid angle of 4π sr.

14 Chapter 2: Background

(a) Geometry of radiance (b) Geometry of the solid angle

Figure 2.1: A close-up of a differential surface area on a teapot surface is used to

illustrate the geometry of radiance (a). The solid angle is given in (b) where an

area is projected onto a sphere.

that the reflected radiance of a surface point moves along a ray towards the cap-

turing device (virtual camera or eye) to fully determine the object appearance. The

unit of radiance is [W/(m2sr)].

Radiant Flux Density is the amount of energy per unit area that either arrives or

leaves a differential surface area measured with respect to the upper hemisphere

Ω+ centered at that differential surface patch and aligned with the normal at that

patch. Incident energy is called irradiance E, energy that is emitted is called ra-

diant exitance M. Mathematically, they are written as:

E(x) :=
dΦi(x)

dAx
, M(x) :=

dΦo(x)

dAx
. (2.4)

When multiplying radiance by the denominator in Equation 2.2 to get the differ-

ential flux and then inserting it into the above formula we can derive:

dE(x) dAx = Li(x, ω̂i) dAx dω̂i cosθi

E(x) =
∫

Ω+
Li(x, ω̂i) cosθi dω̂i

M(x) =

∫

Ω+
Lo(x, ω̂o) cosθo dω̂o. (2.5)

Computer Graphics often refers to radiant exitance as radiosity B = M. The radi-

ant flux density is given in units of [W/m2].

2.3 Common Illuminats 15

Radiant Intensity I is the ratio of flux per unit solid angle and can be used to

describe the intensity of light sources. It is defined as the derivative of radiant flux

divided by the differential solid angle:

I(x, ω̂) :=
dΦ(x, ω̂)

dω̂
, (2.6)

and quantified in units of [W/sr] (sr = steradian). We will get back to intensity in

Section 2.3 to describe light source intensities.

2.2.2 Photometric Quantities

To obtain the photometric counterparts of radiometric quantities, the spectrum

needs to be factored by the sensitivity of the human visual system. Photometry

therefore describes radiant energy with respect to the receptive capabilities of the

human eye. Our retina consists of two different photo receptors: rods (≈ 120 mio.)
and cones (≈ 6−7 mio.). Rods are insensitive to color and responsible for night

vision, whereas cones provide color sensation. As a result from measurements

cones can be classified according to their response to different wavelengths into

”red” (64%), ”green” (32%), and ”blue” cones (2%) [see Nave, 2006].

When we now convolve the energy within the spectrum from 380 and 740

nanometers (nm) with these three color sensitivity curves, we obtain colors in the

ranges of violet (380− 435 nm), green (520− 565 nm), to red (625− 740 nm)
respectively.

2.3 Common Illuminats

We address the energy emission characteristics and partition sources of visible

light into the most common light models used in Computer Graphics.

In an endeavor to generate realistic imagery, adequate description of illumi-

nants is indispensable. Among other elements (e.g. light-matter interaction see

Section 2.4), physically correct simulation of real world lighting conditions also

requires physically accurate models of any such source. Unfortunately, this is of-

ten impossible or infeasible with regard to both acquisition and rendering time.

Hence, most rendering systems resort to simple light source models to sufficiently

mimic the behavior of natural or manufactured lights (e.g. the sun or light bulbs).

An important theory to enable simplifications is the near-field and far-field theory.

As it also has an important influence on secondary lighting effects such as accurate

shadows we present more information on this theory after the light classification.

16 Chapter 2: Background

Opaque Material

x

wconst

wi

ni

(a) Directional Light

Opaque Material

y

x

we

wi

ni

(b) Point Light

Opaque Material

Cut-Off
Angle

y

x

we

wi

ni

l

(c) Spot Light

Opaque Material

y

x

ne

we

wi

ni

A
Light

(d) Area Light

Opaque Material

ne

we

wi

ni

x

y

(e) Linear Light

Opaque Material

Full Environment

Sky

ni

x

(f) Environment Light

Figure 2.2: Various light source types commonly used in Computer Graphics.

Light source from (a)–(c) emit energy either from a singular or an infinitely distant

location. In contrast, lights in (d) and (e) have a spatial extent and (f) is a special

case using an entire sphere of illumination.

2.3.1 Light Source Models

Typically, graphics systems categorize lights into a few classes. We illustrate the

most important of these models relevant to our shadow algorithms in Figure 2.2

along with their individual geometric configuration. Please note our discussion

does not take visibility into account. Hence, equations describe intensity calcula-

tions only and omit shadow effects. Due to the relevance of visibility we devote

a separate section to this topic and how it integrates into the rendering process in

Sections 2.5 and 2.9.1

Directional Lights are considered to be infinitely far away from a receiving sur-

face. This has two major consequences. The emitted light rays can be considered

as parallel, and as a directional light would have to have infinite intensity to ac-

count for its infinite distance such lights use a constant intensity term per light

2.3 Common Illuminats 17

ray. Therefore, they are completely defined by their light direction and constant

intensity. Figure 2.2 (a) gives an example. Its intensity is:

E(x) = Iconst(∞, ω̂const) 〈ω̂i · n̂i〉 . (2.7)

Point Lights describe light emission which is radiated from a single point in space

into all directions (see Figure 2.2 (b)). They are slightly more expensive than

directional light as the renderer has to compute the vector to the light per shading

point. The total intensity of a uniform point light is given as:

Φ(y) =

∫

S2
I(y, ω̂) dω̂o

Φ(y) = I(y) 4π

I(y) =
Φ(y)

4π
. (2.8)

The irradiance at x due to a single point light is derived as follows:

E(x) dA = I(y, ω̂e) dω̂e

E(x) = I(y, ω̂e)
cosθ

r2

E(x) =
Φ(y, ω̂e)

4π

〈ω̂i · n̂i〉

r2
, (2.9)

where r is the distance between the light source and receiver point. We implicitly

assume to take the max(〈ω̂i · n̂i〉 ,0) to avoid lighting surfaces which are actually

back-facing.

Spot Lights were introduced by Warn [1983] and are similar to point lights but

offer more control over the light distribution than just a position. Spot lights are

steerable with respect to an illumination direction and cone and resemble real spot

lights used to light theater stages for example. Figure 2.2 (c) illustrates a spot with

a given cut-off angle α that defines the light opening. The irradiance due to a spot

light cause is given as:

E(x) =
Φ(y, ω̂e)

4π

〈ω̂i · n̂i〉

r2
se(l̂, ω̂e), (2.10)

where the se(l̂, ω̂e) term computes if x actually falls within the cone of illumination

or not and l̂ is the spot direction. This is often called the spot light factor:

se(l̂, ω̂e) =

{

1 if 〈l · ω̂e〉 ≤ α

0 otherwise
. (2.11)

18 Chapter 2: Background

Area Lights are the most important class of lights for realistic image synthesis

because practically every real light source has a spatial extent. A solution to area

light source support was first presented by Nishita & Nakamae [1983] and en-

hances the look of virtual scenes by adding a natural appearance due to realistic

shadow effects such as umbra and penumbra (see Chapter 3.1). We show a simple

rectangular example in Figure 2.2(d), however the illuminant can have an arbi-

trary shape with a finite spatial dimension. The irradiance at x incident from an

area light is the integral over the light surface/area:

E(x) =

∫

ALight

Le(y, ω̂e)
〈ω̂e · n̂e〉〈ω̂i · n̂i〉

‖x−y‖2
dAy. (2.12)

Linear Lights are similar to area lights and often used to represent long thin light

sources. The difference between area lights is that their irradiance at x integrates

over a line segment instead of an area. Nishita et al. [Nishita et al., 1985] however

present a method to integrate over a long and very thin rectangle. A depiction is

shown in Figure 2.2 (e) and their formula can be derived, as afore mentioned, by

replacing the integration domain in Equation 2.12 by the a line segment L instead

of an area.

Environment Lights are ideal light models to represent illumination arriving at

a point x from an entire environment or sky. Usually, the environment is cap-

tured by taking pictures of a perfectly specular ball. Here, images are taken at

different exposure times to later reconstruct high-dynamic range (HDR) images

[Wyckoff & Feigenbaum, 1962; Debevec & Malik, 1997] for more realistic rep-

resentation of the surroundings. Figure 2.2 (f) presents a complete environment

(Ω) and the upper hemisphere for sky lighting Ω+. Formula 2.13 computes its

irradiance.

E(x) =

∫

Ω+
Li(x, ω̂i)〈ω̂i · n̂i〉 dω̂i (2.13)

Goniometric Diagram are not very common in real-time rendering but a popular

method to represent emission characteristics of realistic light sources. Gonio-

metric diagrams [Kaufman, 1987; Verbeck & Greenberg, 1984] capture a single

planar slice through the light’s energy distribution. Each diagram describes the

radiation with respect to a certain angle. Most point lights (e.g. light bulbs) can

be described by one goniometric diagram owing to their rotational symmetric ge-

ometry. Note that only a light source’s far-field is measured because only a single

point of energy emittance is considered.

2.3 Common Illuminats 19

(a) Far-Field Shadows (b) Near-Field Shadows

Figure 2.3: Near-field and far-field effects on shadows for extended light sources.

Far-field assumption reduces light emission to a single point (direction) and causes

hard shadow. The near-field description properly accounts for the light’s extent

and produces correct soft shadows. Note that the overall illumination in fully

visible regions is equivalent for the near- and far-field.

2.3.2 Discussion

Most light sources used for real-time/interactive shading pipelines are simple

models (e.g. directional and point or spot lights) because of their efficient light-

ing evaluation. These models are particularly useful for computer animation film

studios because their scenes are entirely computer generated and do not contain

any real characters or environments. The shots in such movies are often lit by

dozens or even hundreds of lights to create the desired ambiance in a sequence.

Even with the use of indirect lighting or bounce lighting the production needs to

have cinematographic freedom to tweak lighting in such a way that it integrates

with story telling and overall style choice. Having many simple but efficient lights

becomes then more important than having physically accurate lighting.

We will exploit this fact and implement our methods using spot lights mostly

though our algorithms are applicable to other light types (directional and point

lights) too.

20 Chapter 2: Background

2.3.3 Near-Field and Far-Field Theory

As mentioned before, virtually every light source we normally encounter has some

finite spatial extend and their emission characteristics can be defined by a function

L(y, ω̂e). Here y is any position within the light’s extent (see Figure 2.2) and ω̂e

defines the radiation direction at y (we adopt a notation similar to Gösele [2004]).

L(y, ω̂e) defines the light source’s near-field.

Unlike this, when a light and receiving surface are at least five times [Ashdown,

1995] the light’s maximum extend apart from each other, the spatial dependence

of L(y, ω̂e) can be dropped without discernible differences [Murdoch, 1981] in

the illumination (however it does affect secondary effects like shadows, see next

paragraph). This yields a new function L(ω̂e) only depending on the angular dis-

tribution of energy. L(ω̂e) then encodes a light’s far-field.

Before we proceed we need to discuss the impact of the near- and far-field

theory on secondary lighting effects such as shadows. For directional, point, and

spot light models, a far-field description is sufficient for computing the irradiance

as well as shadows because the visibility computation only involves a simple bi-

nary function2. Either the ray from the surface to the light source position y (for

directional light there is only one direction for all surface locations) towards x is

blocked by an obstacle or not. As a result their shadows form sharp discontinuities

without any penumbra areas3.

For extended luminaires the far-field is not sufficient to model shadow effects

correctly. When visibility is computed at a receiver point, the light can not only be

visible or blocked but also partially visible. This is the reason why extended light

sources cause penumbra and explains their importance for realistic image gener-

ation. To illustrate the difference we show a dragon model in a scene equipped

with a quadratic area light at more than five times the distance of its maximum ex-

tend away from the dragon in Figure 2.3. Shadows in Figure 2.3 (b) are computed

using the light’s near-filed description and exhibit the expected shadows including

umbra4 and penumbra. Figure 2.3 (a) shows the same rendering using the far-field

and contains crisp shadows only.

These final remarks conclude our discussion on light sources and we will present

more information on the nature of shadows in Chapter 3. We would like to point

the reader interested in more details on light source acquisition and representation

to the Ph.D. thesis of Gösele [2004] and the work of Poulin [1993] as valuable

resources of this filed of research. We are now going to review fundamental re-

flection properties.

2Chapter 3 provides a detailed discussion on shadow computation.
3Penumbra is the transition between fully lit and completely dark regions. See Chapter 3.
4Umbra is an entirely dark region where no light arrives. See Chapter 3.

2.4 Concepts of Surface Reflections 21

2.4 Concepts of Surface Reflections

In rendering images are generated as if the scene was observed by a virtual camera.

To obtain the color of the individual pixels of a raster image, the renderer has to

compute the radiance reflected from the matter visible through each of these pixels

along the direction towards the camera. To attain an insight on how surfaces

interact with light we need to take a closer look at their material properties and

how these material compositions alter or reflect incoming light.

2.4.1 Bidirectional Reflectance Distribution Function

The mathematical formulation of surface reflectance is accomplished by the bidi-

rectional reflectance distribution function, abbreviated as BRDF. It was intro-

duced by Edward Nicodemus [Nicodemus, 1965] in 1965 and describes the re-

lation between reflected and incoming energy at a surface position x with respect

to an incident and outgoing direction.

More formally, a BRDF describes the ratio of differential outgoing radiance

dLo(x, ω̂o) to the differential irradiance dE(x) at x. An important fact inherent

in this definition is that a BRDF is only capable of modeling energy reflected

from opaque surfaces. It is not suitable to model matter with transmittance or

scattering behavior. Such materials require a more advanced description called a

bidirectional scattering-surface reflectance distribution function or BSSRDF. We

only review the BRDF and refer to more sophisticated reflectance models later at

the end of this section.

The BRDF, neglecting wavelength λ , is a six-dimensional function, two di-

mensions for each, the position on the surface, the incoming and outgoing direc-

tions ω̂i and ω̂o respectively. It is measured in [1/sr], and formally written as:

fr(xs, ω̂i→ ω̂o) =
dLo(xs, ω̂o)

dE(xs)
=

dLo(xs, ω̂o)

Li(xs, ω̂i) cosθi dω̂i
, (2.14)

where xs defines the 2D position on the surface and the directional dependence

for both ω̂i = (θi,φi) and ω̂o = (θo,φo) is expressed in polar coordinates (θ being

the polar and φ being the azimuth angle). The diagram in Figure 2.4 (a) illustrates

the geometry of the BRDF. This general model accounts for both spatially and

rotational variation and is called a shift-variant anisotropic BRDF.

Two important conditions must hold in order to make a BRDF a physically

correct model and to enable simulation of realistic materials [Nicodemus, 1965;

Wolff et al., 1992]. The first condition is the Helmholz reciprocity or symmetry

condition:

fr(xs, ω̂i→ ω̂o) = fr(xs, ω̂i← ω̂i) (2.15)

22 Chapter 2: Background

(a) Geometry of a BRDF

Figure 2.4: The nomenclature of a BRDF and its parameters.

which states that the incoming and outgoing directions for the light transport can

be exchanged (ω̂i↔ ω̂i). The second condition that must hold is energy conser-

vation:
∫

Ω+
fr(xs, ω̂i→ ω̂o)≤ 1. (2.16)

Energy conservation is important because it respects the fact that real materials

do not reflect more energy than they receive. This means when we integrate the

reflected energy over the upper hemisphere at xs the total amount of energy must

be less or equal to the incident energy.

The dimensionality of a BRDF as defined in Equation 2.14 can be reduced by

two dimensions from six to four if the material is homogeneous. In other words

the reflectance properties remain the same when its spatial location changes. Such

BRDFs are called shift-invariant (as opposed to spatially varying) and only require

directional information: fr(ω̂i→ ω̂o). Yet another dimension can be dropped in

case the BRDF that does not change its reflection characteristics when the surface

is rotated around the surface normal ~n at xs. This is called an isotropic BRDF

fr(xs,θi,θo,φo−φi).

This review on BRDF theory is just a brief overview rather than an exhaustive

discussion. More details on the complex subject of BRDF representations can be

found, amongst many other sources, in the works of Nicodemus [1965]; Blinn

[1977]; Wolff et al. [1992]; Glassner [1994]; Koenderink et al. [1996] as well as

Kautz [2002], Lensch [2003], and the SIGGRAPH course from 2005 organized by

Lensch and Gösele [Lensch et al., 2005]. Now, before we continue with more the-

ory we would like to present a few examples of the most common BRDF models

2.4 Concepts of Surface Reflections 23

(a) Diffuse BRDF (b) Glossy BRDF (c) Specular BRDF

(d) Diffuse Ball (e) Glossy Ball (f) Specular Ball

Figure 2.5: Material examples. We show plots of the reflectance model in the

top row and rendered examples for each model in the row below. The rendered

images where lit by a point (from left) and an area light (from right). Both light

sources are clearly visible in image (f), blur out in (e), and finally vanish in (d).

found in real-time graphics.

2.4.2 Material Properties

Today, nearly every renderer supports materials with: diffuse, glossy, and spec-

ular reflections. More complex materials such as translucent, transparent ob-

jects or even human skin have very sophisticated properties and are known to be

difficult to model and render (see Mertens et al. [2003a], Mertens et al. [2003b],

Gösele et al. [2004], Jensen & Christensen [1998], Kautz [2003] and Hullin et al.

[2008] for more information).

Diffuse Objects have a surface which shows a certain roughness such that in-

coming light is scattered (almost) uniformly in all directions and therefore do not

24 Chapter 2: Background

(a) Example of BRDF components

Figure 2.6: BRDF plot of a material that combines multiple reflectance properties.

cause any specular highlights. Consequently, diffuse materials are invariant under

view direction changes. Often, diffuse surfaces are also referred to as Lambertian

materials named after Johann Heinrich Lambert (August 26, 1728 - September

25, 1777). Chalk is a good example for a an almost Lambertian material. Figures

2.5 (a) and (d) show the emission characteristics of an ideal Lambertian surface

as well as a rendered example.

Glossy Objects have a much smoother surface layer compared to its rough dif-

fuse counterpart. Glossiness is caused by light leaving such objects scattered into

a preferred direction and therefore created a shiny appearance. In contrast to dif-

fuse materials glossy matter does have view-dependency. Examples for glossy

sheen are finished wood or matte paint. Figures 2.5 (b) and (e) display the glossy

lobe in which light reflected and a example rendering.

Specular Objects are view-dependent as glossy materials but have a completely

smooth surface. The law of reflection (for opaque surfaces) states that a single ray

incident at a surface point xs under an angle θ , with respect to the normal at xs, is

reflected (mirrored) off the surface under the same angle θ . Therefore, θi = θo. A

mirror is a real world examples for perfect specularity. The reflectance properties

and a computer generated example is shown in Figure 2.5 (c) and (f).

BRDF models can be very complex and are usually obtained by physically

measuring material samples. Several characteristics can often be found in a single

BRDF. Figure 2.6 shows an example where all three models from figure 2.5 have

been merged.

Now that we have seen some example renderings of different BRDFs we turn

back to the theory part again and discuss the formula that all realistic rendering

systems try to solve.

2.5 The Rendering Equation 25

2.5 The Rendering Equation

In 1986 Jim Kajiya [Kajiya, 1986] and David Immel [Immel et al., 1986] simulta-

neously presented the Rendering Equation to the Computer Graphics world. The

rendering equation is an integral equation that describes the radiance equilibrium

leaving a point as the sum of emitted and reflected radiance at that point. Similar

to the BRDF it can be evaluated with respect to a given wavelength only. We

will omit wavelength in our discussion and begin with its most basic form being

defined as:

Lo(x, ω̂o) = Le(x, ω̂o)+Lr(x, ω̂o). (2.17)

The term Le is only non-zero for surfaces that emit energy and are hence classified

as light sources in the rendering process. Lr relates to the energy reflected off sur-

faces and must account for all incident illumination at x. Filling in the integration

over incident illumination at x reflected into ω̂o this formula expands into:

Lo(x, ω̂o) = Le(x, ω̂o)+

∫

Ω+
Li(x, ω̂i) fr(x, ω̂i→ ω̂o) cosθi dω̂i (2.18)

where cosθi is the cosine weighting term 〈n̂i · ω̂i〉. This form of the rendering

equation integrates over the solid angle. Another viable option is to parameterize

the equation over surfaces instead. To do so, the invariance of radiance is utilized:

Li(x, ω̂i) = Lo(x
′, ω̂o) = Lo(Ψ(x, ω̂i),−ω̂i). (2.19)

Here Ψ is a ray-casting operator. It casts a ray from x into ω̂i and returns the

closes surface point x′ that was hit or infinity if nothing was intersected. Hence:

x′ = Ψ(x, ω̂i). (2.20)

We assume x′ to be implicitly given in the following formulation and omit the ray

casting operator. To avoid confusion between ω̂o, which defines the direction of

outgoing radiance from x with the outgoing energy from the surface x′ we use

the arrow (→) notation similar the notation for angles in the BRDF. Then the

rendering equation becomes:

Lo(x, ω̂o) = Le(x, ω̂o)+
∫

x′∈S
Li(x← x′) fr(x, ω̂i→ ω̂o) G(x,x′) dAx′, (2.21)

where G(x,x′) is the geometric term which is responsible for the geometric ar-

rangement of both differential surfaces taking their distance to each other, their

orientation, as well as their mutual visibility into account:

G(x,x′) =
cosθx cosθx′

‖x−x′‖2
V (x,x′). (2.22)

26 Chapter 2: Background

The visibility term V (x,x′) computes whether x and x′ can see each other or if

their sight is occluded. V is piecewise function given as:

V (x,x′) =

{

1 if x and x′ are mutually visible.

0 otherwise
(2.23)

In the case where the rendering equation is evaluated for one bounce only, all Li’s

consist of Le’s which represent the light sources in a scene and basically corre-

sponds to direct illumination. It only uses lights as sources of energy and neglects

secondary effects such as color bleeding or caustics both effects of multiple light

bounces. When these effects need to be reproduced it becomes necessary to re-

cursively compute Equation 2.17 where lit surfaces after the first bounce become

light sources themselves.

Given the various factors of the rendering equation one can imagine the heavy

computational load involved solving the radiance equilibrium. Among all terms

the ray casting operator Ψ(x,x′) is by far the most expensive operation because it

is needed to sample the surroundings to collect all surfaces x′ from which radiance

is either emitted or reflected towards x.

Unfortunately, solving the rendering equation to an extent that reaches photo-

realism can easily take several hours just to compute a single picture even on

todays most powerful workstations. This has led to several approximations in

order to gain performance. The part of the rendering equation that has the highest

potential for computational savings is the visibility term on which we focus on

Part II and III.

2.6 The Framebuffer: Final Image Assembly

In Section 2.5 we have seen that the rendering equation needs to determine sur-

faces from which illumination emanates and surfaces which are not visible due

to occlusion. In graphics two fundamental methods are available to sample sur-

faces and to implement the ray-casting operator to transforms a three dimensional

scene description into a 2D image. One is ray-tracing and the other one is scan-

conversion or rasterization.

Ray-tracing was introduced by Turner Whitted [Whitted, 1979] in 1979 and is an

extension of ray casting (see Appel [1968] and Roth [1982] for ray-casting which

has more restrictions compared to ray-tracing). Ray-tracing traces virtual rays

of light from the observers eye position (the camera) through the image plane’s

pixel centers and intersects each ray with the scene geometry. As intersecting all

polygons in a scene is not feasible, researchers have designed various forms of

2.7 Hardware Accelerated Rendering 27

hierarchical acceleration structures to increase intersection testing. However, the

majority of these structure is no suited for dynamic objects and requires a rebuild

process whenever objects change their position or shape. The ability to trace re-

flection, refraction, numerous shadow rays to light sources, and natural handling

of transparencies [Porter & Duff, 1984] are the striking advantages of ray-tracing.

Rasterization or scan-conversion is based on Edwin Catmull’s [Catmull, 1974]

sorting technique called the z-buffer and operates in a different way than ray-

tracing. First a view matrix is applied to every vertex of the scene representation

to transform all objects into camera space. Then a second matrix transformation

projects all polygons from view- into into screen-space. A scan-line algorithm

then processes each polygon and computes its coverage on the pixel or raster grid.

Each picture element is shaded by linearly interpolating the lighting results from

the vertices. Here, the vertices’ depth value is stored in an additional buffer, the z-

buffer to resolve visibility.

Both techniques are point sampling algorithms and suffer from aliasing due to

insufficient sampling rates and requires suitable anti-aliasing methods to reduce

unpleasant artifacts.

2.7 Hardware Accelerated Rendering

Initially, dedicated hardware support was only available through expensive high-

end graphics systems, such as the SGI Onyx system fitted with an Infinite Reality

graphics accelerator. Yet even then the hardware support of this equipment was

limited to certain parts of the rendering pipeline. This changed in August 1999

when the first graphics processing unit (GPU) was introduced to the consumer

level hardware market. It integrates the entire graphics pipeline in one graphics

chip and supports user programmability for some stages. Without making too

much of a generalization these chips followed more or less the computational

paradigm given in Figure 2.7.

The massive parallelism offered by GPUs is mainly due to the fact that their

computation kernels work on single vertices or pixels only. As a result no connec-

tivity information between vertices for instance is accessible. The same holds for

pixel data too because a pixel’s neighbors may not have been computed yet and

imposing this dependency would ultimately hinder parallelism. It should be noted

that this restriction has only been recently loosened by a new extension called a

geometry shader.

Vertex Operations. Input data (graphics hardware processes polygonal data e.g.

28 Chapter 2: Background

Figure 2.7: Graphics pipeline and hardware support for the pas two decades. In-

put primitives are streamed through the pipeline until the final rendered image is

output to the framebuffer.

points, lines, and triangles) is streamed into the first block of the pipeline where

all vertex related operations take place. This block can be divided into two major

units, a vertex shader that performs transform and lighting, short (T&L), opera-

tions and a post T&L stage. T&L includes for example model/view transforma-

tions, texture coordinate assignment, and lighting. This unit was the first to allow

the user to replace fixed wired functionality by customized programs. It opened

the door for new vertex transformations, more flexible lighting, and even vertex-

texture access. Post T&L functionality includes perspective correction, viewport

mapping, and clipping. Note that if the user decides to bypass the hard-wired

pipeline he is responsible to implement all hardware operations the vertex pro-

cessing stage usual performs.

Rasterization. After all vertex operations are complete, the processed data is

streamed into the rasterization unit. Here, all polygons are setup for conversion

into a 2D raster image. This is sometimes called triangle setup and prepares ver-

tex properties such as color, the perspective correction coordinate, and texture

coordinates for interpolation. This is an important step because each pixel that

the rasterizer generates has to carry a set of data that represents the interpolated

values within the polygon at the pixel’s 2D position to enable proper processing

in subsequent pipeline modules. When all vertices have bee set up they are ready

for scan-conversion and rasterized into pixels. The generated fragments, as pixels

are also often called, then continue their journey to the next processing kernel.

2.7 Hardware Accelerated Rendering 29

Figure 2.8: NVIDIA’s latest graphics hardware chip offers more general process-

ing power to accomplish graphics computations and supplies more flexibility.

Pixel Operations. This is the final unit before an actual result is eventually writ-

ten to memory. All fragments generated during rasterization are subject to certain

pixel operations which can be summarized as a pixel shader part and a raster oper-

ations part. The pixel shader was the second stage that became programmable and

allows for customized (dependend) texturing, per-pixel lighting, and many other

shading features. Though pixels leaving the pixel shader are properly shaded they

are not yet sorted according to their spatial depth. Also, pixels can be transpar-

ent in which case their coverage must be accumulated when overlapping. This

is why pixels are subject to further raster operations after shading. Raster opera-

tions include visibility tests, proper blending with color entries already resident in

memory, as well as anti-aliasing and stencil tests.

The traditional pipeline from Figure 2.7 has experienced a conceptual change

during the past few years. As hardware features advance and the demand for more

flexibility grows, GPU designs change towards a more general processing unit as

shown in Figure 2.8. In the old design a fixed number of processors with even

different instruction set was dedicated to the vertex and pixel shaders. Nowadays

however, GPUs possess a large number of processing units with almost the same

instructions and they allocate these resources dynamically depending on where

they are currently required. This naturally provides an automatic load balancing

between computation units. It further increases the flexibility to add new oper-

ations and allows for more general purpose programming (GPGPU) to facilitate

30 Chapter 2: Background

the GPU as powerful multi-processor devices rather than a graphics accelerator.

The interested reader should consult the manufacturer’s websites for more in-

sights and white papers on modern graphics architectures at www.nvidia.com

and www.amd.com. Intel is currently working on their new GPU called Larrabee

which is going to use x86 instruction www.intel.com.

Mip-maps. All algorithms throughout Part II and III are entirely implemented on

the GPU and utilize hardware accelerated features that are not dedicated to the

rendering pipeline directly. The most important one is efficient on chip generation

of mip-maps5 introduced by Williams [1983]. It avoids streaming image data back

and forth between the CPU and GPU and utilizes high performance imaging sub-

sets on the GPU. Multi-resolution image pyramids [Burt, 1981; Williams, 1983]

have a long history in the graphics and vision community and proven a great tool

for pre-filtering to avoid disturbing popping artifacts, thereby increasing tempo-

ral coherence in renderings. Basically, an image pyramid encodes the repetitively

pre-convolved results in each sub-level for the its parent image.

2.8 Shadows and Human Perception

Shadows are known to be among the most important visual cues for our spatial

coordination. However, the role that the shadow quality plays in our humans

judgment of spatial relationship is still a controversy among scientists.

Wanger [1992] conducted three experiments where test subjects where run

through tests to analyze the effect shadow quality would have on certain tasks the

users were asked to perform. The first two experiments focused on the subject’s

ability to estimate objects properties like size and position when shadows vary

in shape and sharpness. The third experiment was designed to check if shadow

sharpness had an influence on shape matching tasks. Wanger [1992] concludes

that the shape and sharpness had no significant impact on the size and position

estimation task but shadow sharpness did have an influence on the shape matching

performance.

Similar to Wanger [1992], Kersten et al. [1994] conducted experiments that

are concerned with the perception and influence of shadows in motion and presents

remarkable results. Their results reveal that motion is shadow overrides other vi-

sual cues (object size consistency) and that the human system poses the constraint

of a stationary light source. The latter is very interesting and happens because

displaced objects and their moving shadows provide ambiguous information to

the perceptual system. Our brain has to make implicit assumptions, e.g. the light

5Mip-map is an acronym for multum in pravo or many things in a small place.

www.nvidia.com
www.amd.com
www.intel.com

2.9 Assumptions 31

source is fixed in space, in order to infer the spatial location of an object when

moving.

In a more recent experiment Kozlowski & Kautz [2007] investigate if accurate

occlusion is needed when rendering glossy reflections. Their experiment reveals

that the geometry complexity of objects can be reduced enormously without pro-

ducing noticeable differences in specular and glossy reflections.

2.9 Assumptions

We are now reaching to the end of the background chapter and we would like to

summarize the assumptions we make incorporate into our shadow algorithms. We

begin with the most important one, separating the visibility function from light

source integration followed by the remaining assumption.

2.9.1 Visibility Computation

In Section 2.21 when we discussed the rendering equation we encountered the vis-

ibility term which computes mutual visibility between the current shading point

x and the sampled surface position y. This computation turns out to be the most

expensive part of the rendering equation and causes a major bottleneck in the ren-

dering process. The reason for this is that visibility has unfortunately no locality.

Theoretically, any scene object can cause occlusion along the ray from y to x.

Now, let us consult the rendering equation defined over surfaces 2.21 once

more, in order to compute the irradiance at a certain point due to an area light

source, now including the visibility term:

Lo(x, ω̂o) = Le(x, ω̂o)+

∫

x′∈S
Li(x← x′) fr(x, ω̂i→ ω̂o) G(x,x′) dAx′ .

As we seek to compute the irradiance at x due to a single area light source, the

rendering equation can discard the emitted energy term Le, as x would in that case

itself act as a light source, as well as the reflected energy fr, leading us to:

E(x) =

∫

x′∈S
Li(x← x′)G(x,x′)dAx′.

The invariance of radiance (Equation 2.19) and the ray casting operator (Equation

2.20) allow us to re-write the incident radiance Li in terms of outgoing or emit-

ted radiance as: Li(x← x′) = Le(Ψ(x, ω̂i),−ω̂i), where the ray casting operator

samples the light source area. From y = Ψ(x, ω̂i) and ω̂e =−ω̂i then follows:

E(x) =
∫

ALight

Le(y, ω̂e)
〈ω̂e · n̂e〉〈ω̂i · n̂i〉

‖x−y‖2
V (x,y) dAy. (2.24)

32 Chapter 2: Background

This means we have to integrate over the light’s area and for each sample we must

compute if energy from this sample actually arrives at x or if it is blocked and

poses an enormous load on the shading process.

An assumption often made to reduce the expensive visibility evaluation is to

factor the visibility out of the irradiance computation [Agrawala et al., 2000] and

to multiply an approximate attenuation or shadow factor afterwards. Even though

this is not physically correct it allows to control the overall visibility cost and

the difference is often not noticeable. We can formalize this approximation as

follows:

E(x) = Ṽ (x)

∫

ALight

Le(y, ω̂e)
〈ω̂e · n̂e〉〈ω̂i · n̂i〉

‖x−y‖2
dAy. (2.25)

We are then left with the approximate visibility factor Ṽ which can be defined as:

Ṽ (x) =
1

A

∫

ALight

V (x,y) dAy

≈
1

N

N

∑
i

V (x,y)i, (2.26)

and allows to reduce the computational cost for shadowing drastically. Especially

in real-time applications such as games the number of samples is often very low

(sometimes it falls down to four or even just one sample) to achieve the highest

performance. We will examine the shadow quality for varying number of visibility

samples in Chapter 3.

The shadowing techniques we present all build on top of approximation from

Equation 2.26 and we will show that our algorithms provide higher quality shad-

ows and prevent exhaustive sampling through efficient pre-filtering capabilities

compared to standard shadow mapping based techniques.

Besides an approximate visibility term we also rely on the following assumptions:

• we can currently not integrate the BRDF into our visibility sampling ,

• we discard indirect lighting effects and therefore also indirect shadows as

recursive evaluation of the rendering equation would be necessary,

• our algorithms are currently not able to support textured light sources as

described by Segal et al. [1992],

• we currently do not support volumetric or transparent shadow effects.

We deem these assumptions as an acceptable solution and as a requirement to re-

duce computational expenses and to move closer to real-time high quality shadow

computation.

Chapter 3

Shadow and Visibility

Techniques

The computation and interpretation of visibility characteristics has a long history

in the computer graphics community, and over the course of the past decades

numerous articles on this topic have been published. The problem is especially

complicated because of the non-local nature inherent in visibility computation

which means that a small change in the spatial location or shape of any object

potentially influences its entire surroundings.

In this chapter we will discuss the properties of shadows and review solu-

tions to resolve visibility for shadow generation which are not directly related

to Shadow Map filtering. We will review these methods separately in Chapter

4 where we elaborate on the differences of other filtering methods compared to

your approaches. Even though it is not always possible to strictly divide these

approaches into separate domains we strive to classify them into four categories.

Algorithms that work in image-space or object-space, hybrid methods which com-

bine algorithms and techniques based on precomputation. For the Image-Space

section we will explain the major problem inherent in William’s Shadow Maps in

more detail to found a solid understanding for the difficulties of filtering Shadow

Maps. In addition we would like to refer to Woo et al. [1990] and Hasenfratz et al.

[2003] for excellent overviews on shadow algorithms.

3.1 Shadow Classification

By the words of Leonardo da Vinci “Shadow is the obstruction of light” da Vinci

[1970]. The question that rises then is: “How much light is blocked at a given

location in space?” To answer this question let us take a look at a simple example.

34 Chapter 3: Shadow and Visibility Techniques

(a) Shadow Rendering (b) View towards light from y (c) View towards light from x

Figure 3.1: Principle shadow regions. A rendering of overlapping geometry lit

by a large area light source (a). (b) shows that the light source is completely

concealed when seen from y (umbra) whereas in (c) the light is only partially

blocked when seen from x (penumbra).

Figure 3.1 (a) shows three objects casting shadow on each other and on the ground

plane. Note how the shadows vary depending on the relation between the occluder

(an object that blocks light rays) and receiver. Now, let us take a closer look at

two points x and y, marked in Figure 3.1 (a). If we were to place cameras at x and

y and aim them towards the light source we would receive the images shown in

Figure 3.1 (b) and (c). From y the light source is completely occluded as opposed

to the rendering from x where the light source is partially visible. Both locations

fall in two principle regions of shadow: y is in the “umbra” and x resides in the

“penumbra” region.

Umbra is the Latin word for shadow and defines the region in shadow from where

all light is blocked and is therefore the darkest part in shadow.

Penumbra is a combination of the Latin words paenes (“almost, nearly”) and

umbra. It defines shadow regions from where the light source is at least partially

visible.

We can also translate the images from Figure 3.1 (b) into intensity plots where

the percentage of the light area that is visible from a surface point x is given as

a function of x. In Figure 3.2 (a) we show a single row of pixels R taken from

Figure 3.1. For each pixel we determine its 3D world-space position x and plot

the occlusion O of the light source as seen from that point.

This allows us to identify shadow regions simply by looking at the occlusion

plot. Function values of f (x) = 0 correspond to umbra regions, function values

in the range of 0 < f (x) < 1 represent locations in penumbra areas, and values

of f (x) = 1 mark fully lit regions from where the entire light source is visible.

3.1 Shadow Classification 35

(a) Shadow rendering and occlusion plot for an area light source

(b) Shadow rendering and occlusion plot for a point light source

Figure 3.2: Occlusion for a given row of pixels. The right part of (a) and (b) shows

a close-up of the rendered results R of the focused pixel row and the occlusion

plot O as a function of x. Note that we stretched the pixel row in the close-ups in

height.

An interesting comparison can be made when rendering the same scene using a

point light instead of an area light shown in Figure 3.2 (b). Now we encounter

umbra regions exclusively because visibility computation reduces to a simple bi-

nary function. One only needs to check if a single ray from x to the point light is

occluded or not. This is why all shadows have hard edges and the occlusion plot

shows that f (x) becomes a piecewise constant function for point lights of either

f (x) = 0 or f (x) = 1.

In additional to providing information on whether or not a point is located

in an umbra or penumbra region, for area light sources the occlusion plot from

Figure 3.2 (a) also informs about the spatial relation between objects and the area

light. Inspecting the inclination of the occlusion curve tells us about the relative

distances between the occluder, receiver, and light source. Given the distance

between the light and receiver we can estimate the relative location of an occluder

between the light and receiver. For example the red rectangle is relatively close to

36 Chapter 3: Shadow and Visibility Techniques

(a) Directional Light (b) Point Light (c) Spot Light

(d) Area Light (e) Linear Light (f) Environment Map Light

Figure 3.3: Shadows and illumination as a result of a sphere being lit by all the

different light source types we discussed in Section 2.3.1. Note the we extended

the point and linear light spatially to appear as reflections on the specular sphere.

the receiver plane which is reflected in the slope of f (x) from pixels≈ 200−300.

In contrast to this pixels from≈ 450−650 have a much smaller inclination which

tells us that the blocking object is located further away from the receiver plane.

We now conclude our shadow classification with an overview on the differ-

ent kind of shadows produced by the light sources we presented in Section 2.3

(see Figure 2.2). Figure 3.3 shows a shadow rendering of a specular sphere for

each light type. As aforementioned, simplified light source models whose energy

is emitted from an infinitesimal point e.g. Figure 3.3 (a-c) are limited to hard

shadow edges whereas Figure 3.3 (d-f) provide an increased visual fidelity as they

incorporate more realistic light sources with a finite extent and all-frequency shad-

ows. Further we would like to refer to the Ph.D thesis of Durand [1999] for an

exhaustive analysis on visibility.

3.2 Image-Space Methods 37

3.2 Image-Space Methods

In this section we review image-space approaches which constitute important and

popular means for visibility computation. In general this class of algorithms has

the advantage, compared to methods that operate in the object space, that they are

general, efficient, and simple to implement. However, image-based methods also

have their shortcomings. Their disadvantages rank among aliasing artifacts and

additional memory consumption. These methods are the subject of the following

sections.

3.2.1 Z-Buffer Algorithm

The majority of image-space shadow and visibility algorithms are founded on the

Z-Buffer algorithm introduced in 1974 by Edwin Catmull [Catmull, 1974]. The

Z-Buffer technique is a sorting scheme to resolve visibility using an additional

image buffer that stores depth information which is utilized during rasterization.

The basic idea is trivial and can be summarized as follows:

• Allocate an additional monochrome1 Z-Buffer Z with a resolution equiva-

lent to the framebuffer size.

• Initialize Z with furthest depth value possible.

• For each rasterized pixel P(i, j) check if P(i, j).z < Z(i, j). If true replace Z(i, j)

by P(i, j).z and update framebuffer with P(i, j).rgba.

There were two concerns at the time the Z-Buffer was published. One issue

relates to the additional memory required to store the z-values and the overhead

of writing sample updates into this buffer. The second one emerges from the third

item from the above listing. All pixels undergo expensive shading calculations

before the visibility test happens. As a result many pixels will be shaded but never

written to the framebuffer.

But only a few years later in the early 1980’s Silicon Graphics began to provide

special hardware support for z-buffering. This had a significant impact on the CG

community and influenced hardware architectures up to nowadays latest graphics

chips which also support an early-z culling prior to pixel shading to avoid unnec-

essary computations. Accompanied by cheaper and faster memory the Z-Buffer

became the state-of-the-art image-space method for visibility computation.

An important extension of the Z-Buffer algorithm is the Hierarchical Z-Buffer

by Greene et al. [1993]. Greene et al. exploit two kinds of coherence to speed

up the rasterization process significantly. Object-space coherence is achieved by

1Colors channels are irrelevant for opaque surface depth sorting.

38 Chapter 3: Shadow and Visibility Techniques

partitioning the scene geometry into an octree where each node is surrounded

by its bounding box. Image-space coherence is utilized by managing an image

pyramid of the Z-Buffer. Here each pyramid level above the finest contains the

maximum z-value of the 2×2 window above. Rendering a node from the octree

works as follows. First, get the hierarchical Z-Buffer entry from the pyramid level

that covers covers the node’s bounding box in screen-space. If the nearest depth

of the bounding box’s faces is farther away than the z-value from the Z-Buffer

pyramid discard the entire node. If not step inside the node and keep recursively

executing this scheme until a node is either rejected or it has reached the finest

Z-Buffer level and therefore will be rasterized. After rasterization depth changes

are propagated throughout the Z-Buffer pyramid.

3.2.2 Shadow Maps

Only four years after Edwin Catmull’s introduction of the Z-Buffer in the mid

1970’s Lance Williams introduced Shadow Mapping [Williams, 1978] which had

great impact on the field of Computer Graphics. Shadow Mapping can be seen

as an extension of Catmull’s Z-Buffer. Williams’ method however generates the

depth buffer from the light source’s vantage point, thereby recording the distance

to the closest surfaces with respect to the light instead of the eye camera. He calls

this form of a Z-Buffer a Shadow Map and employs it to perform shadow queries.

Nowadays, shadow mapping has grown into a de facto standard for rendering

shadows in movie productions and video games.

Let us now take a closer look at how Shadow Maps are being used to create

shadowed images. For this purpose let us consider the world-space position x of

a given camera pixel xc shown in Figure 3.4. In order to decide if x is shadowed

by any occluding geometry (a helix in our example) we need to check if there is

any object located in between the light and x. This is where the Shadow Map

comes into play. Point xl represents the position of a shadow map pixel, which is

obtained via a surjective mapping T : R
3→R

2 between world-space and Shadow

Map, such that:

xl = T (x). (3.1)

This mapping basically warps a pixel into Shadow Map space via a perspective

projection. The Shadow Map itself encodes a function z(xl), that represents the

depth of the blocker that is closest to the light source for each xl. A camera pixel

xc with world-space position x is considered in shadow when d(x) > z(xl), with

d(x) being the depth of x (again, with respect to the light source). See Figure 3.4.

We can now formally define a shadow function s:

s(x) := f (d(x),z(xl)) =

{

1 if d(x)≤ z(xl)

0 if d(x) > z(xl),
(3.2)

3.2 Image-Space Methods 39

Figure 3.4: Shadow Mapping. Computing the binary visibility function s(x) re-

quires a comparison between z(xl) and d(x). If z(xl) < d(x) then x is shadowed,

otherwise it is lit.

that basically encodes the visibility test. For the remainder of this dissertation

we will often use the scalar notation f (d,z) to abbreviate f (d(x),z(xl)). Adding

shadows to a scene rendering with Shadow Maps then reduces to the evaluation

of f (d,z) for each camera pixel.

Due to its purely image-based nature, Shadow Mapping is a versatile shadow

algorithm robust against increased scene complexity. It is also very general be-

cause it supports any primitive that can be rasterized and its simplicity allows it

to translate very well to graphics hardware. For example, Segal et al. [1992] show

that the OpenGL texture pipeline can be utilized to implement Shadow Mapping

in graphics hardware, and all modern GPUs support a hardware shadow test us-

ing special shadow texture lookup functions (Zhang [1998] propose a workaround

when the texture pipeline load becomes too high).

Unfortunately, Shadow Mapping also has its problems. Since the blocker ge-

ometry is discretized into a finite resolution image, aliasing artifacts can occur

which decrease the overall image quality and become disturbing in animated se-

quences. There are mainly two sources for Shadow Map aliasing which are shown

in Figure 3.5.

40 Chapter 3: Shadow and Visibility Techniques

(a) Rendering of fine details (b) Insufficient Resolution (c) Unfiltered Reconstruction

Figure 3.5: Shadow Mapping issues. Discretization artifacts shown in (a) are

due to an insufficient depth map resolution. (b) shows the lack of Shadow Map

filtering resulting in severe flickering.

One source for aliasing is an insufficient shadow map resolution which causes

discretization artifacts noticeable as jagged edges illustrated in Figure 3.5 (b).

Such artifacts are the result of Shadow Map under-sampling where the depth

buffer resolution is not capable to encode enough spatial information to provide

a shadow sample per camera pixel. It often happens that several camera pixels

project into the same depth buffer pixel causing block artifacts.

The second source for aliasing might be less obvious and stems from the fact

that Shadow Maps can not be filtered in the same manner than ordinary surface

textures can be. To confirm this fact we can simply conduct the experiment and

apply a blur filter to the depth values of a Shadow Map and inspect the results.

For this purpose we rasterize a helix into a Shadow Map as shown in Figure 3.6.

We then render with regular Shadow Mapping enabled (left close-ups), and with

the filtered version of the Shadow Map (right close-ups).

Though it seems tempting to simply filter the z-values it does not produce the

desired outcome, as one wants to filter the results of the shadow test and not just

the depth values. Reeves et al. [1987] were the first to switch the order of filtering

and testing. This has two significant consequences:

• Shadow Maps can not be pre-filtered e.g. high quality texture map filtering

based on mip-mapping [Williams, 1983] is not directly applicable since the

result of the filter cannot be pre-computed.

• Consequently, explicit run-time filtering is necessary to reduce screen-space

aliasing, which becomes very expensive with growing filter sizes.

While this comes at a foreseeable cost for small up-sampling kernels to alleviate

discretization artifacts, down-sampling can potentially require to filter very larger

3.2 Image-Space Methods 41

Figure 3.6: Left images show a regular Shadow Map close-ups whereas the right

close-ups show a filtered Shadow Map and the resulting shadows. As we can see:

filtering depth values does not produce a filtered shadow.

(a) Too little bias (b) Suitable bias (c) Too much bias

Figure 3.7: The bias problem causes incorrect self-shadowing (a) when the bias is

to small. (c) shows an example of a bias parameter chosen to high which pushes

the shadow away, and (b) depicts the result with an appropriate bias.

regions up the full image resolution which is naturally provided by mip-mapping.

It is exactly this problem that our framework solves to allow constant time pre-

filtering for Shadow Mapping.

Beyond aliasing problems Shadow Maps are also plagued by self-shadowing

artifacts. As a result of numerical imprecision during the rasterization and sub-

sequent coordinate frame transformations, s(x) can not always be evaluated ac-

curately and incorrect self-shadowing appears, as demonstrated in Figure 3.7 (a).

The solution to this problem is to add a depth bias while the Shadow Map is being

generated effectively pushing the surfaces a little bit away from the light source.

42 Chapter 3: Shadow and Visibility Techniques

In most graphics API’s such as OpenGL this is achieved with a polygon offset

mechanism. The challenge is to find the right bias because the offset depends on

the depth slope of polygons and a constant bias can be problematic as it might

push the surface too far away to eliminate all self-shadowing, as shown in Figure

3.7 (c) whereas the rendering in Figure 3.7 (b) uses an appropriate bias parameter.

While the latter problem is less difficult to solve, Hourcade & Nicolas [1985];

Wang & Molnar [1994] present methods to avoid incorrect self-shadowing, dis-

cretization artifacts and filtered shadow reconstruction are much harder problems.

In this chapter we will give an overview of the most recent Shadow Map variants.

As mentioned before Shadow Map filtering is described separately in the related

work Chapter 4 where we explain in detail why straight forward Shadow Map

filtering is not possible.

We will now present the related work that tackles the discretization artifact

problem and focus on previous efforts to Shadow Map filtering in the next chapter.

Shadow Map Parameterization. One way to alleviate the discretization prob-

lem is to re-parameterize the Shadow Map to extend the effective Shadow Map

resolution. The following presents a review on such techniques.

Adaptive Shadow Mapping [Fernando et al., 2001] is based on the fact that a

large overall shadow map resolution is not necessary. Only along shadow discon-

tinuities a higher resolution is needed. Adaptive Shadow Maps therefore strives

to eliminate the mismatch between camera and Shadow Map pixels by hierarchi-

cally refining shadow borders. The original method was implemented in software

which was later ported to the GPU by Lefohn et al. [2005].

Perspective Shadow Mapping [Stamminger & Drettakis, 2002] and its descen-

dants [Wimmer et al., 2004; Lloyd, 2007] compute the Shadow Map in normal-

ized post-perspective space which decreases perspective aliasing as it yields a bet-

ter sampling distribution with respect to the vantage point. The mapping from

world-space to the post-perspective coordinate frame requires special care de-

pending on the light source type.

Shadow Silhouette Maps [Sen et al., 2003] embed silhouette information into

Shadow Maps for rendering perfectly hard shadows, but cannot deal with every

possible configuration of shadow boundaries.

Practical Shadow Mapping [Brabec et al., 2003] first projects a pattern from

the eye-camera onto the scene to then analyze from the light source view what

region of the shadow map is actually relevant for shadow computation. A mini-

mum enclosing rectangle is fitted to enclose the projected pattern in shadow map

space to rotate and up-scale this rectangle to the original shadow map size. This

paper also proposes to use linearly distributed depth values instead of the regular

hyperbolic distribution. We will used linear z-values in all our implementations.

Alias Free Shadow Maps [Aila & Laine, 2004] and the Irregular Z-Buffer

3.2 Image-Space Methods 43

[Johnson et al., 2004] were both presented in 2004 and showed that it is possi-

ble to find an optimal sampling distribution for a Shadow Map when using an

irregular sampling structure. While the work of [Aila & Laine, 2004] addition-

ally supports transparent objects, both methods use an irregular sampling strategy,

but a direct implementation on graphics hardware was not possible. Therefore,

Aila & Laine [2004] utilized a software rasterizer. In 2007, Arvo [2007] amended

the performance of Alias Free Shadow Maps by implementing a layer-based vari-

ant on graphics hardware. A similar performance gain was achieved for the Irreg-

ular Z-Buffer by Johnson et al. [2005].

Soft Shadows using Shadow Maps. Accurate real-time display of soft shadows

due to extended light sources, is a topic of ongoing research and we will present

our contribution to this area in Part III. Instead of physically-based computation

Shadow Maps can be used as a sampled scene representation to render inaccurate

but visually plausible soft shadows in order to lessen computational effort as a

viable alternative [Brotman & Badler, 1984].

Early work on Shadow Mapping extensions to render soft shadows borrow

ideas from image-based rendering to efficiently average hard shadows. Chen & Williams

[1993] use a view interpolation algorithm to portrait 3D scenes. The same algo-

rithm can be naturally used to generate soft shadows from area light sources. The

main idea is to render a few key Shadow Maps first. New Shadow Maps can then

be efficiently interpolated from near-by key Shadow Maps.

Similar in spirit, Agrawala et al. [2000] merge Shadow Maps rendered from

different positions on an area light source to pre-compute Layered Attenuation

Maps. Due to fixed sampling locations during pre-computation this algorithm can

lead to banding artifacts. They use Layered Attenuation Maps as a quick preview

tool and use a coherence based ray tracer on the same data structure to render

higher quality results (see Section 3.3).

Chan & Durand [2003], and Wyman & Hansen [2003] create plausible penum-

brae in such a way that they extend the occluder object’s silhouettes by a virtual

geometric hull. The object itself is considered opaque whereas the geometric ex-

tension around the object represents a smooth decay from fully opaque to fully lit

to mimic a penumbra region. Though these methods render plausible soft shad-

ows, they overestimate umbra size and also require costly silhouette information.

Brabec & Seidel [2002] follow a similar avenue and attenuate light rays near

blockers to reproduce the outward decay in visibility with respect to the umbra re-

gion, but rely on a costly neighborhood search in the depth map. These heuristics

may produce results that deviate significantly from the actual physically-based

solution.

In more recent work Atty et al. [2006] and Guennebaud et al. [2006] have

transferred ideas from classical discontinuity meshing [Stewart & Ghali, 1994;

44 Chapter 3: Shadow and Visibility Techniques

Drettakis & Fiume, 1994] to the Shadow Mapping domain. Such techniques com-

pute a shadow value as the fraction of coverage of blocker geometry projected

back onto the area light. To maintain high performance, the Shadow Map is used

as a piecewise constant approximation of the blocker geometry which may yield

either incorrect occluder fusion or light leaking. The work by Guennebaud et al.

[2007] and bitmask soft shadows by Schwarz & Stamminger [2007] remove some

of these problems, but increase the algorithmic complexity or computation time.

Coherent Shadow Maps [Ritschel et al., 2007] use to pre-compute visibility

events from many Shadow Maps placed around the scene and present a loss-less

compression scheme to prevent a large memory footprint. A GPU based Monte

Carlo ray tracer then uses the Coherent Shadow Map data structure for efficient

visibility queries. Their system enables interactive illumination for dynamic rigid

objects including plausible all-frequency shadows, spatially varying BRDFs, and

environment maps.

Coherent Surface Shadow Maps [Ritschel et al., 2008a] are an extension of

Coherent Shadow Maps and render the Shadow Maps from objects surfaces to

support indirect light transfer which is required for global illumination.

Imperfect Shadow Maps [Ritschel et al., 2008b] are low resolution Shadow

Maps which exploit the fact that indirect light transfer is in general smooth. A

point based scene approximation is rasterized into the low resolution Shadow

Maps and is subsequently used for indirect lighting computations to decrease the

rendering cost.

3.3 Object-Space Methods

The next class of shadow algorithms are solutions that operate in object-space

rather than on sampled scene representations. These methods are known to pro-

duce superior shadow results on one hand but impose a higher computational cost

compared to image-space algorithms on the other hand. Often such techniques re-

quire well defined input geometry and need to exercise special care or even break

when objects deform or change their topology

3.4 Painter’s Algorithm

One of the simplest algorithms for hidden surface removal is the Painter’s method

[Newell et al., 1972]. It owes its name to the way a painter might draw the part

of the scene at the furthest distance first and then adding objects closer to the

observer. The algorithm is an object-space sorting where each polygon is checked

again the others and therefore has a run-time complexity of O(n2). The basic

3.4 Painter’s Algorithm 45

(a) Shadow Volumes and silhouettes (b) Accurate and crisp shadows

Figure 3.8: Shadow Volumes. (a) silhouettes are constructed on a per-object basis

first. Then finite volumes are constructed and subsequently rendered to updated

the stencil buffer. The stencil buffer is then used as a shadow mask in screen-space

(b) to render crisp and accurate shadows.

method involves the following steps:

• Sort all polygons according to their z-value (e.g. maximum depth).

• Check if polygons overlap. If their z-range overlaps too, split polygons.

• Draw all polygons from back-to-front.

An advantage of this sorting scheme compared to the Z-Buffer is that it can handle

transparent surfaces which requires a back-to-front rendering to correctly accumu-

late color contributions.

3.4.1 Shadow Volumes

In 1977 Crow [1977] published Shadow Volumes which harnesses object silhou-

ettes to produce shadows from point lights. The idea is to compute an object’s

silhouette with respect to the current light position. Once the silhouettes are avail-

able, semi-finite volumes are constructed as shown in Figure 3.8.

Each of the resulting finite volumes partitions the scene into regions lit and

unlit volumes. In practice Shadow Volumes are mostly used in combination with

a Z-Buffer. All volume faces attached to an object are rasterized front-to-back.

Each times a front-facing pixel is generated the stencil buffer of that pixel is in-

cremented. Similarly, when a back-facing pixel is rasterized the pixel’s stencil

value is decremented. Eventually, after all volume faces have been rendered the

46 Chapter 3: Shadow and Visibility Techniques

stencil buffer acts as a shadow mask where value 0 refers to a lit pixel, and ≥ 1

means that the pixel is in at least one shadow volume and therefore occluded.

Shadow Volumes are known to render accurate shadows up to the underlying

geometric fidelity because they operate in object-space. However, this is also a

major source for its performance bottlenecks. Shadow Volumes strongly depend

on the geometric complexity, are inherently fillrate-limited due to the rasterization

overhead, and suffer from robustness problems [Everitt & Kilgard, 2002].

Assarson & Akenine-Möller [2002, 2003] enhance the original algorithm to

support soft shadows. They introduce a new primitive called a penumbra wedge.

Penumbra Wedges from region of penumbra and are used to compute a visi-

bility buffer to enable soft shadows based on the occlusion within a Penumbra

Wedge. Though using frequent frame buffer accesses their work has pushed soft

shadow rendering for limited complexity scenes toward real-time performance

[Assarson et al., 2003].

Aila & Akenine-Möller [2004] developed a tile-based hierarchical Shadow

Volume algorithm to reduce the fillrate drastically. Based on the observation

that a shadow boundary can only appear inside a screen-space tile if at least one

shadow volume triangle intersects that tile. Therefore, tiles with no intersections

are masked as non-boundary tiles and can rapidly determine if all pixels within

that tile are in shadow or lit.

Please consult Heidmann [1991]; Everitt & Kilgard [2002]; McGuire et al. [2003];

Assarson et al. [2003] for more information on implementations of Shadow Vol-

umes which utilize graphics hardware or Brabec & Seidel [2003] for a solution

completely realized on a GPU.

3.4.2 Shadow Rays

Ray Tracing [Whitted, 1979] shoots a ray through each camera pixel into the vir-

tual environment and intersects each ray with a hierarchical spatial acceleration

structure containing all scene polygons. Each time a surface is hit, a shader is

executed to compute the pixel color. While original Ray Tracing only shoots a

single ray to the light, Cook et al. [1984] show that it can easily be extended to

distribute many samples, e.g. over the light sources to determine the current oc-

clusion magnitude to render accurate umbra and penumbra. Depending on the

amount of sampling and time spent during image generation Ray Tracing based

rendering systems produce stunning results and reach photo-realistic quality.

Parker et al. [1998] demonstrate a simple extension to Ray Tracing where they

alter the geometry (they use the term soft-edged object) similar to Brabec & Seidel

[2002] who use a sampled representation to virtually extend the object to render

believable soft shadows by just using a single ray sample. Special treatment be-

comes necessary when the distance between two objects becomes too small in

3.5 Hybrid Methods 47

which case light leaking would appear.

Despite promising advances in recent years (see the work of Wald [2004] and

references therein), whether utilizing the GPU [Timothy J. Purcell & Hanrahan,

2002], building special purpose hardware [Schmittler et al., 2002], or distributing

the workload [Wald et al., 2003] to PC-Clusters, Ray Tracing unfortunately is still

too costly for real-time rendering. Especially dynamic scenes pose a great chal-

lenge (see Günther et al. [2006]; Wald et al. [2007]) and necessitate updates of the

spatial acceleration structure.

3.5 Hybrid Methods

Researcher frequently combine the advantages of two algorithms to yield im-

proved solutions. In the following we review some interesting combinations of

Shadow Maps, Shadow Volumes, and Ray Tracing.

McCool [2000] combines Shadow Maps and Shadow Volumes to leverage the

performance of a sampling-based method and the accuracy of an object-space

technique. His algorithm starts with rendering a Shadow Map to get a discrete

scene description. A special edge-detection and reconstruction process determines

silhouette information from the depth map and constructs Shadow Volumes. He

further shows that a single bit stencil buffer is sufficient to distinguish lit and

shadowed pixels.

Chan & Durand [2004] lessen the fillrate related burden of traditional Shadow

Volume rendering in such a way that they use Sen’s method [Sen et al., 2003] on

a low resolution Shadow Map to detect shadow discontinuities. Shadow Volume

pixels are only processed if confirmed by a screen-space mask reducing the fillrate

significantly.

Ray Tracing Multi-Layer Shadow Maps [Keating & Max, 1999; Im & Han,

2005] instead of a full polygonal model has proven to be a profitable solution and

yields very good results depending on the Shadow Map resolution and the budget

spent for ray sampling multiple depth layers to reconstruct the visibility function.

Agrawala et al. [2000] present a Coherence-Based Ray Tracing for depth im-

ages. This allows for more flexible sampling and increases the quality while keep-

ing the run-time cost cheaper than regular Ray Tracing.

Supporting multiple layers has an important advantage compared to the single

layer philosophy. Such methods can handle transparencies and therefore render

more complex materials and also represent high frequency details such as hair

or fur as coverage. Xie et al. [2007] demonstrate that Multi Layer Depth Maps

achieve film production quality and are frequently used on current shows.

As a last hybrid method we would like to mention Soft Shadow Volumes for

48 Chapter 3: Shadow and Visibility Techniques

Ray-Tracing, a combination proposed by Laine et al. [2005]. The authors present

a highly efficient hierarchical process to compute silhouettes that overlap an area

light source from the view of a shading point. In contrast to previous techniques

[Nishita & Nakamae, 1983; Takahashi & Tanaka, 1997], Laine et al. [2005] use

silhouette edges to integrate the depth complexity. Their results are one to two

orders of magnitude faster compared to tracing shadows ray for similar image

quality.

3.6 Pre-computation Methods

Other methods based on Precomputed Radiance Transfer Sloan et al. [2002] cal-

culate and store an illumination-invariant light transport solution off-line and use

it for real-time relighting. The scene is assumed to be static and storage demands

aggressive compression which may introduce artifacts such as blurring. Even

though these limitations have been alleviated [Ng et al., 2003; Zhou et al., 2005;

Sloan et al., 2005], it remains challenging to support fully dynamic scenes with

arbitrary illumination.

Shadow computation for dynamic scenes can be accelerated by simplifying

the geometry. Ren et al. [2006] approximate dynamic objects using a sphere hier-

archy, whereas Kautz et al. [2004] use a two-level mesh hierarchy. These methods

only support model deformation, and assume that object topology remains static.

We would like to conclude this chapter with a new method that is conceptually

different from the ones we have mentioned so far; Implicit Visibility. Dachsbacher et al.

[2007] show how to reformulate the rendering equation in order to transform ex-

plicit visibility sampling into local iteration using a new quantity called Antiradi-

ance.

Chapter 4

Related Work on Shadow Map

Filtering

In the previous chapter, Shadow Mapping was reviewed with regard to its dis-

cretization problems. The focus of this chapter lies on methods providing Shadow

Map filtering which are closely related to our work. We distinguish two objectives.

Efficient anti-aliasing of shadow discontinuities and approximate soft shadow ren-

dering both through spatial convolutions of Shadow Map (or data structures de-

rived from depth maps).

4.1 Anti-aliasing

After its introduction, a lot of effort has been made to tackle the aliasing problem

inherent in Shadow Mapping, and efficient filtering techniques similar to texture

filtering [Heckbert, 1989] have been investigated.

Reeves et al. [1987] observed that shadows should be anti-aliased by filtering

Shadow Map pixels after after the depth test. This led to the Percentage Closer

Filtering (PCF). PCF determines the coverage of a camera pixel in light space

and applies the shadow test to a number of samples distributed over this region.

The outcome of the shadow test is then averaged into a filtered results. Unfortu-

nately, the shadow test depends on the distance from the light to the point to shade.

Therefore, efficient filtering as for regular textures which relies on pre-filtering the

image a priori is not possible. PCF became available on graphics hardware, albeit

with limited quality (bilinear filtering only). One can increase the quality of PCF

by taking into account more samples, (e.g., in a hardware shader) but this reduces

performance dramatically.

50 Chapter 4: Related Work on Shadow Map Filtering

Deep Shadow Mapping by Lokovic & Veach [2000] pre-computes the aggre-

gate result of binary shadow tests within each texel for excessively complex scenes

like hair, yielding a continuous visibility function for each texel, which can be

queried at render-time. It assumes illumination and geometry to be static. This

restriction was later lessened by exploiting graphics hardware [Kim & Neumann,

2001; Mertens et al., 2004]. Our technique bears some similarity to Deep Shadow

Maps, since we also store a visibility function. However, we are only interested

in using binary visibility functions, and applying spatial convolution instead of

intra-pixel averaging.

In a recent effort, Donnelly & Lauritzen [2006] introduced Variance Shadow

Maps a probabilistic approach for rendering filtered shadows that supports pre-

filtering, and additional convolutions. The result can therefore be computed in

constant time by using mip-mapping or summed area tables (SAT) [Crow, 1984].

When the Shadow Map is rasterized, the z and z2-values are stored and used in

the Chebyshev Inequality during rendering to estimate the probability whether a

point is in shadow or not. Their estimate only gives an upper bound of the result

and produces noticeable high-frequency light leaking artifacts for scenes with a

high depth complexity.

A variant of VSMs using summed-area tables has been published by Lauritzen

[2007a], which reduces light leaking. However, the authors show that it cannot be

removed completely. Our method from Chapter 6 requires less stringent assump-

tions, and even though it is also approximate, it converges to the exact solution

instead of an upper bound.

In concurrent work Salvi [2008] derives the same exponential formula we will

present in Chapter 7. While his work originates from the Marcov Inequality our

approach stems from geometric considerations. In addition to Salvi [2008] we

present a failure case analysis and offer a fall-back filtering solution to reduce no-

ticeable artifacts.

4.2 Soft Shadows

Soler & Sillion [1998] propose an image-based shadow algorithm based on con-

volution. Convolutions can be computed efficiently, even for large penumbrae.

Soler and Sillion do not employ a depth buffer and therefore require an explicit

notion of blockers and receivers, and cannot directly support self-shadowing. We

apply a similar convolution in the context of shadow mapping, which naturally

allows for self-shadowing.

Fernando [2005] introduced Percentage Closer Soft Shadows to render plau-

sible penumbra from Shadow Maps using two-step filtering approach. First the

4.2 Soft Shadows 51

virtual area light source is used to compute an appropriate Shadow Map filter size.

For instance for a rectangular light, the pyramid formed by the four light source

corners and the shading point can be intersected with the Shadow Map to deter-

mine a spatial filter size. Fernando [2005] use 32 samples to compute the average

depth of pixels blocking the current shading point. The average blocker z-value is

used in combination with the triangle equality to estimate a new filter width pro-

portional to the penumbra size to filter the Shadow Map again by distributing 64

samples into the new filter region. Although this technique can be implemented

using adaptive sampling according to the filter kernel is still requires many sam-

ples to yield good results. We will compare the quality and sampling bandwidth of

this approach against our filtering strategy and demonstrate that we can not only

significantly reduce the sampling but even provide constant-time shadow filtering.

A recent version of Variance Shadow Maps [Lauritzen, 2007b] simulates pe-

numbrae more accurately by varying the kernel size based on the average blocker

depth, similar to Fernando Fernando [2005]. Unfortunately, the cost of computing

this average defeats the purpose of constant cost convolution, as it requires brute-

force sampling of the Shadow Map. An important advantage of our soft shadow

approach is that this step can be carried out in constant time as well.

52 Chapter 4: Related Work on Shadow Map Filtering

Part I

Linearization

.

Chapter 5

Shadow Test Linearization

In the previous chapter we have seen that discretization artifacts due to insuffi-

cient Shadow Map resolution are a major problem of Shadow Mapping. They

degrade the image quality, cause aliasing, and temporal incoherence (Figure 3.5).

Compared to the vast amount of papers dedicated to increase the effective Shadow

Map resolution relatively few articles deal with Shadow Map filtering to provide

effective screen-space anti-aliasing.

It appears tempting to apply the same filtering operations, e.g. mip-mapping,

as commonly used for texture filtering to a depth map, and then expect the same

outcome. Indeed it would be beneficial if Shadow Maps could be treaded in the

exact same way as regular texture images can be. Not only would this speed-up

rendering time but it would also allow to take advantage of high-quality texture

filtering which is commonplace on todays graphics chips.

Unfortunately, as we have already seen in Section 3.2.2, simply filtering the

depth values does not produce the desired result. What happens in this situation is

that geometric details are being filtered and after the spatial convolution is com-

plete, a binary shadow test is applied. This only widens the shadow boundary but

does not remove or conceal jagged edges.

In the following we will explain and discuss this problem in more detail and

propose a new framework to solve this problem and to enable efficient filtering for

Shadow Maps.

5.1 Shadow Test Function

We would like to first review the shadow test function s(x) from Equation 3.2

s(x) := f (d(x),z(xl)) =

{

1 if d(x)≤ z(xl)

0 if d(x) > z(xl),

56 Chapter 5: Shadow Test Linearization

(a) Shadow Mapping (b) Heaviside Step Function

Figure 5.1: Shadow Mapping is shown in (a). If we were to slide a second point

x′ along the ray from the light to x we would receive a step function shown in (b).

which we introduced in the Background chapter on Shadow Maps 3.2.2. We saw

that s(x) is a piecewise constant function and we would like to illustrate what

this function represents geometrically as we will often refer to it and to easy the

understanding for the following chapters. For this purpose let us slide a second

point x′ along the ray from L into x and plot the result of the shadow test for x′

as shown in Figure 5.1 (a) and (b). x′ remains lit = 1, as shown in Figure 5.1 (b)

until it reaches a depth larger than z(xl). In this case it becomes shadowed = 0.

As a result for s(x) we receive the aforementioned piecewise constant function.

As one can see this function resembles the Heaviside Step function:

H(t) :=











0 if t < 0
1
2

if t = 0

1 if t > 0,

(5.1)

except that we have 1−H(t). This function plays an integral part in solving the

filtering problem as we would like to convolve its results with a filter kernel. Let

us now investigate what steps need to be taken to achieve this goal.

5.2 Convolution

In order to have anti-aliased shadows, we need to filter s(x) e.g., using a low

pass filter. Generally speaking, a convolution (or linear filtering) operation on a

function g with kernel w supported over a neighborhood N , is defined as:

[

w∗g
]

(xl) := ∑
ul∈N

w(ul)g(xl−ul). (5.2)

5.2 Convolution 57

(a) Filtering Shadow Maps (b) Order of Shadow Test and Convolution

Figure 5.2: Shadow Map filtering. (a) shows why we need to assume d(y)≈ d(x).
(b) visualizes the correct order of shadow test and subsequent filtering. Note that

the convolution happens over variable ul in the neighborhood N .

Figure 5.2 (a) shows the filter region N and (b) illustrates the filtering process we

seek to achieve. Let us now try to convolve s(x), and denote the result as s f (x):

s f (x) = ∑
ul∈N

w(ul) f
(

d(y),z(xl−ul)
)

. (5.3)

Even though s f is formulated in terms of x, the actual convolution happens in

Shadow Map space, i.e. over variable ul. Note that Equation 5.3 contains a new

variable y, which is informally defined as the point that lies near x, such that

T (y) = xl− ul. Unfortunately, there is no unique y = T−1(xl− ul), because T

is not invertible, see Figure 5.2 (a). In order to arrive at a mathematically sound

formulation of Shadow Map convolution, we need to assume that d(y)≈ d(x), so

that we can write:

s f (x) = ∑
ul∈N

w(ul) f
(

d(x),z(xl−ul)
)

=
[

w∗ f
(

d(x),z
)]

(xl) (5.4)

This assumption d(y)≈ d(x) basically states that d(x) is a representative distance

for the neighborhood N , which is only correct for a planar receiver, parallel to

the Shadow Map’s image plane. Note that a similar approximation is made for

PCF [Reeves et al., 1987], and in Soler et al.’s work [Soler & Sillion, 1998].

58 Chapter 5: Shadow Test Linearization

(a) Regular Shadow Mapping (b) Incorrect Filtering (c) Correct Filtering

Figure 5.3: Non-linearity of s(x). Close-ups from the helix scene (a–c). Shadow

Mapping (a), filtering the z-values (b) which gives incorrect and widened shadow

boundaries, and correctly filtered shadows (c).

It is important to see that we cannot directly apply a convolution to z(xl), because

f is non-linear with respect to its arguments. In other words:

[

w∗ f
(

d(x),z
)]

(xl) 6= f
(

d(x), [w∗ z](xl)
)

. (5.5)

This explains why regular texture filtering cannot be applied to z(xl) (i.e., the

Shadow Map): filtering z(xl) values is not equivalent to filtering the result of the

shadow test. We show an example in Figure 5.3 where we illustrate this inequality

and show the expected result.

Although it is possible to carry out the summation in Equation 5.5 directly at

run-time Reeves et al. [1987], our goal is to apply pre-filtering. In other words, to

apply a filter before the shadow test is actually used. This would enable efficient

separable filtering, and more importantly, to employ mip-mapping.

To achieve this, we transform the z-values such that the shadow test can be

written as a sum. This will allow us to linearize the depth test. Let us therefore

expand f (d,z) as follows:

f (d,z) =
∞

∑
i=1

ai(d)Bi(z) (5.6)

Here, Bi are basis functions in terms of z, which we will concretely define in

Section 6.1 and 7.1. Each basis is weighted by corresponding coefficients ai de-

pending on d. The expansion has to be truncated in practice to some truncation

order N. We see that the expansion does not yield a direct linear dependence on z,

5.2 Convolution 59

(a) Transform Shadow Map (b) Convolve Basis Images

Figure 5.4: Conversion of a traditional Shadow Map into a set of basis images (a).

Applying a convolution to the individual basis images is essentially the same as

filtering the shadow test function s(x).

but it is linear with respect to the basis set Bi=1...N . In order to apply this expan-

sion in practice, we convert the Shadow Map to basis images by applying each

basis function to the Shadow Map: Bi

(

z(xl)
)

. This process is shown in Figure 5.4

(a). Consequently, the shadow function in Equation 3.2 can be translated to linear

combination of these basis images:

s(x)≈
N

∑
i=1

ai

(

d(x)
)

Bi

(

z(xl)
)

(5.7)

To see why this is useful, we fill in the expansion from Equation 5.7 in the convo-

lution in Equation 5.4:

s f (x) ≈
[

w∗ f
(

d(x),z
)]

(xl)

≈
[

w∗
N

∑
i=1

ai

(

d(x)
)

Bi(z)
]

(xl)

≈
N

∑
i=1

ai

(

d(x)
)[

w∗Bi(z)
]

(xl) (5.8)

The last equation is the key observation in this dissertation:

Any convolution operation on the shadow function is equivalent to

convolving the individual basis images Bi

(

z(xl)
)

.

60 Chapter 5: Shadow Test Linearization

Figure 5.5: Reconstructing a filtered shadow value for x requires to evaluate

the linear combination from Equation 5.8. This is achieved by summing up the

weighted and pre-filtered basis images.

(a) Shadow Mapping (b) Basis Image Reconstruction

Figure 5.6: The difference between Shadow Mapping and our new basis image re-

construction theory is compared. Filtering is possible for basis images, as opposed

to regular depth maps and therefore allows pre-filtering.

It is important to see that in order to reach Equation 5.8, each term in the

expansion (Equation 5.6) had to be separable with respect to variables d and z.

Decoupling d(x) from z(xl) is important, because it enables us to convolve the

images Bi

(

z(xl)
)

before the shadow test.

Once we have transformed a Shadow Map into this new basis image repre-

sentation (see Figure 5.4 (a)), we can reconstruct the a shadow from the filtered

basis images by simply evaluating Equation 5.8 (see Figure 5.4 (b)). Comparing

the result to the original Shadow Mapping algorithm in Figure 5.6 illustrates the

usefulness and quality improvement as shadow boundaries are nicely anti-aliased.

The image from Figure 5.3 (c) has also been rendered with our technique.

The success of our technique will obviously depends on the chosen series

expansion. We will now continue to Part II of this dissertation where we present

two expansions: a Fourier and an Exponential series.

Part II

Anti-aliasing of Shadows

.

Chapter 6

Convolution Shadow Maps

In this chapter we present Convolution Shadow Maps (CSMs) [Annen et al., 2007],

our first solution to the proposed expansion from the previous chapter by approx-

imating the shadow test by a Fourier series expansion. Depending on the trunca-

tion order, z-values are converted into several basis textures. In the final rendering,

pre-filtered texture samples are fetched to reconstruct a smoother shadow.

We demonstrate the usefulness of this representation, and show that hardware-

accelerated anti-aliasing techniques, such as tri-linear and anisotropic filtering,

can be applied naturally to Convolution Shadow Maps. Our approach can be

implemented very efficiently in current generation graphics hardware, and offers

real-time frame rates.

Compared to Variance Shadow Maps [Donnelly & Lauritzen, 2006], our ap-

proach is unbiased and can deal with arbitrary depth complexity, and even though

it is also approximate, it converges to the exact solution instead of an upper bound.

6.1 Fourier Series Expansion

In this section we show how the Fourier series can be utilized as a solution for to

shadow test linearization. For clarity, we note that the Fourier expansion will not

be used for applying the convolution theorem to perform spatial filtering; convo-

lution of the basis images Bi

(

z(xl)
)

will be done explicitly.

We strive to expand the shadowing function f according to Equation 5.6 using

a Fourier series. In general, we can decompose any periodic function g(t) as an

infinite sum of waves:

g(t) =
1

2
a0 +

∞

∑
n=1

[

an cos(
2πn

T
t)+bn sin(

2πn

T
t)

]

, (6.1)

64 Chapter 6: Convolution Shadow Maps

where the coefficients an and bn are obtained by integrating the cosine and sine

basis functions against g, respectively. This is the standard Fourier series and will

be used to represent the shadowing function.

f is a function in terms of two variables, but it can be expressed as the Heav-

iside step (or the “unit step”) function H(t), which we saw in the last chapter, as

follows: f (d,z) = H(d− z). Let us first focus on expanding H(t). We represent it

using a square wave function, in order to make it periodic (a requirement to apply

a Fourier series approximation). Let S(t) be a square wave function with period

2. For t ∈ (−1,1) we have H(t) = 1
2
+ 1

2
S(t). For this particular case of S(t), the

(truncated) Fourier series expansion yields:

S(t)≈
4

π

M

∑
k=1

1

2k−1
sin

[

(2k−1)πt
]

(6.2)

Now, returning to f we have:

f (d,z)≈
1

2
+2

M

∑
k=1

1

ck

sin
[

ck(d− z))
]

, (6.3)

with ck = π(2k− 1). We convert the previous summation into a form similar to

Equation 5.6 using the trigonometric identity

sin(a−b) = sin(a)cos(b)− cos(a)sin(b). (6.4)

Note the we swap the sine and cosine terms in the above equation to flip f along

the x-axis, as (d− z) <= 0 has to represent a lit surface, or in other words a value

of 1. This is opposite to the original Heaviside function. We then get:

f (d,z)≈
1

2
+2

M

∑
k=1

1

ck

cos(ckd)sin(ckz)

−2
M

∑
k=1

1

ck

sin(ckd)cos(ckz)

(6.5)

We see that Equation 6.5 complies with Equation 5.6, and we have separable terms

with respect to d and z:

a(2k−1)(d) = 2
ck

cos(ckd), a(2k)(d) = −2
ck

sin(ckd)

B(2k−1)(z) = sin(ckz), B(2k)(z) = cos(ckz)
(6.6)

with k = 1 . . .M (note that N = 2M in Equation 5.6) and we add the constant term
1
2

separately.

6.1 Fourier Series Expansion 65

(a) Reconstruction Order M (b) Ringing

Figure 6.1: Reconstruction and ringing. The x-axis encodes the difference (d− z)
along a shadow ray (lookup). (a) illustrates the conflict of increasing M to achieve

a more reliable shadow test and introducing high frequencies noticeable as ringing

artifacts. (b) shows the impact of attenuation to suppress ringing as the red turns

into the blue signal.

6.1.1 Discussion of Fourier Expansion

We opted for the Fourier expansion for two reasons. First, it is shift-invariant

with respect to d and z, which is a general property of the Fourier transform

(cf. rotational invariance of Spherical Harmonics Sloan et al. [2002]). Intuitively

speaking, this enables us to “move” the Heaviside step around without any loss

in precision. In fact, this can be done by independently changing d and z, while

keeping the approximation error due to truncation constant. The second reason is

that the basis functions (sine and cosine waves) are bounded: they always map to

the interval [−1,1]. This affords a fixed point representation, which we can even

quantize to 8 bits in practice.

The Fourier series does not come without disadvantages. First, as with any

Fourier representation, it is prone to ringing (Gibbs phenomenon). Second, the

Fourier expansion smoothens the step function, which can result in incorrect shad-

owing if not handled. We deal with both problems as shown the following sub-

sections.

Ringing

A Fourier expansion potentially suffers from ringing, particularly when the ex-

pansion is truncated to a small number of terms M as illustrated in Figure 6.1 (a).

We reduce this effect by attenuating each k-th term by exp
(

−α(k
M

)2
)

. Parame-

ter α controls the attenuation strength (α = 0 leaves the series unchanged). The

66 Chapter 6: Convolution Shadow Maps

(a) Offset (b) Scaling

Figure 6.2: Two methods to enhance the shadow test. In (a) an offset is applied

to d before reconstruction, which prevents incorrect darkening of lit areas. (b)

shows how scaling makes the transition steeper and how it also prevents incorrect

darkening. Please compare (a) and (b) with the results in Figure 6.3.

magnitude of the high frequencies is always reduced more, while the low frequen-

cies remain almost the same. This incurs an important tradeoff: reducing ringing

also means that the reconstructed Heaviside step becomes less steep as shown in

Figure 6.1 (b).

Offsetting and Scaling

The Fourier expansion of the step function introduces a smooth transition, which

is obvious with low-order expansions M, see Figure 6.1 (a). This means that for

lit surfaces, where (d− z)≈ 0, the shadow function f (d,z) evaluates to 0.5. This

is undesirable, as all lit surfaces would be 50% shadowed. We can correct this,

by offsetting the expansion of the Heaviside step, see Figure 6.2 (a). After offset-

ting, f (d,z) goes through 1 for (d− z)≈ 0, which results in correctly lit surfaces.

The shift-invariance property of the Fourier expansion allows us to formulate a

constant offset, which only depends on the truncation order and can thus be ap-

plied at every pixel. Of course, offsetting makes the transition from unshadowed

to shadowed more obvious near contact points.

Scaling the expansion by 2.0 makes the transition steeper and also ensures

that all lit surfaces (around d− z ≈ 0) are actually correctly lit, see Figure 6.2

(b). However, scaling sharpens shadows and can potentially reintroduce aliasing.

The shadow value is always clamped to [0,1]. Figure 6.3 shows renderings with

offsetting and scaling.

6.2 Anti-aliasing Using CSMs 67

(a) Offsetting d (b) Scaling f

Figure 6.3: Difference of subtracting an offset from d or scaling f . (a) shows that

subtracting an offset preserves convolution results but may exhibit reconstruction

limitations near contact points (depending on M). Here we used a 9× 9 Gauss

filter and M = 16. (b) illustrates that scaling f sharpens the transition but also

reduces filtering (shadows are sharper).

6.2 Anti-aliasing Using CSMs

Aliasing from Shadow Map minification (multiple Shadow Map texels falling

onto the same image pixel) as well as from Shadow Map discretization (jagged

boundaries) are difficult problems, since pre-filtering techniques cannot be eas-

ily applied. However, Convolution Shadow Maps enable filtering with arbitrary

convolution kernels, and therefore enable the use of pre-filtering techniques for

anti-aliasing.

In particular, we perform mip-mapping as well as blurring of the Shadow Map,

i.e. of the basis functions to be more precise, in order to remove aliasing artifacts

from both minification as well as discretization.

6.2.1 GPU Implementation

Convolution Shadow Maps require only a few modifications to a standard Shadow

Mapping pipeline. After rendering the depth values from the light’s point of view,

we evaluate the basis functions (sin(ckz) and cos(ckz), see Equation 6.6) using

the current z-values at each texel and store the result, which correspond to the

basis functions Bi

(

z(xl)
)

from Equation 5.7, in texture maps. Figure 6.4 shows

the evaluated sine basis functions for a given depth map (blue positive, red neg-

ative). Note that we use linear depth values to increase the sampling precision

Brabec et al. [2003].

Depending on the Fourier expansion order M and hardware capabilities, we

68 Chapter 6: Convolution Shadow Maps

(a) Shadow Map (linear depth) (b) CSM basis textures

Figure 6.4: Visualization of a shadow map and its corresponding basis textures for

M = 16 (RGBA channels are split in separate images for visualization purposes).

perform multiple rendering passes to convert a single shadow map into a set of

sine and cosine textures. For example, with M = 16 we need to generate 16 sine

and also 16 cosine terms which we will pack into four sine and four cosine 8-bit

RGBA textures. 32-bit floating precision did not produced noticeable differences

and we use 8-bits fixed point for all our renderings. With four Multiple Render-

ing Targets (MRTs) only two additional render passes are necessary. Each pass

renders a screen-align quad and computes the sine and cosine terms based on the

current shadow map respectively. Results are packed into four RGBA textures

simultaneously. Once this set of basis textures has been computed, we can apply

filtering to it. First, we apply a separable Gaussian filter kernel on the textures

to hide aliasing from discretization. Of course for high-resolution Shadow Maps,

this is not necessary. We then build a mip-map of this texture (using the auto-mip-

map feature of modern GPUs) to prevent minification aliasing of shadows.

During the final rendering from the camera view we exchange regular shadow

mapping (either binary or PCF) with our shadow reconstruction as described by

Equation 6.5. I.e., we evaluate a weighted sum at each pixel of the filtered basis

functions multiplied by coefficients ai(d) (defined in Equation 6.6), where d is

the distance from the current pixel to the light source. The resulting value s f (see

Equation 5.8) is the filtered shadow value. Simply switching on mip-mapping

or even anisotropic filtering removes screen-space aliasing; no shader magic is

needed. Due to ringing, the resulting shadow value can be outside outside the

[0,1]-range and we therefore clamp the result to lie within [0,1].

6.3 Results 69

(a) M=1 (b) M=2 (c) M=4

(d) M=8 (e) M=12 (f) M=16

Figure 6.5: Quality comparison for shadow test reconstruction using different

number of Fourier series order M. All signals have been quantized to 8-bits per

channel. When using a tightly fitted light frustum a single 8-bit RGBA texture

usually faithfully reconstructs the shadow test. Note that ringing causes varying

lightness in shadowed areas for small M.

6.3 Results

In this section we present results highlighting the potential of Convolution Shadow

Maps. All figures have been rendered using OpenGL on a Dual-Core AMD

Opteron with 2.6GHz and 2.75GB RAM equipped with an NVIDIA GeForce

8800 GTX graphics card. All results have been rendered using 8-bit precision

per basis function and using offsetting as described earlier.

The amount of memory required by the CSM data structure only depends on

the reconstruction order M. As we fix the precision to 8-bits per channel, we

require M
2

8-bit RGBA textures to store the basis functions. Compared to VSM,

the CSM requires four times more memory for M = 16 than a VSM with 32-

bit floating point precision. For scenes where M = 4 is sufficient, CSMs require

the same amount of memory as 32-bit VSMs. In practice, this is a reasonable

configuration, as we have seen in Figure 6.5 that this setting yields good results.

Table 6.1 contains performance measurements for various sizes, shadow map

sizes, and different reconstruction orders M. Timings are stated in frames per

second. All images rendered with PCF use standard NVIDIA hardware filtered

shadow test. Note that all processing happens on the GPU and that reconstruction

order M determines the number of texture fetches per pixel that is shaded. For

70 Chapter 6: Convolution Shadow Maps

C = no S : 2562 S : 5122 S : 10242 S : 20482

PCF 76 fps 74 fps 71 fps 69 fps

M = 4 64 fps 62 fps 60 fps 50 fps

M = 8 55 fps 53 fps 49 fps 38 fps

M = 16 47 fps 45 fps 39 fps 26 fps

C = 3x3 S : 2562 S : 5122 S : 10242 S : 20482

M = 4 63 fps 61 fps 57 fps 43 fps

M = 8 53 fps 50 fps 44 fps 30 fps

M = 16 42 fps 39 fps 32 fps 19 fps

C = 7x7 S : 2562 S : 5122 S : 10242 S : 20482

M = 4 62 fps 60 fps 53 fps 36 fps

M = 8 52 fps 49 fps 41 fps 24 fps

M = 16 41 fps 38 fps 28 fps 14 fps

Table 6.1: Frame rates for the complex scene (365k faces) from Figure 6.10 for

varying shadow map sizes S and varying reconstruction order M (screen resolution

is 1024×768). We compare 16× anisotropic tri-linear hardware filtering without

additional convolution, a 3×3 and a 7×7 convolution kernel C.

M = 4 we need two, for M = 8 we need four, and for M = 16 we need eight

RGBA texture fetches. Timings include convolution (if applied) and mip-map

generation for all basis textures. As can be seen, CSMs are generally slower than

PCF but enable effective anti-aliasing.

Figure 6.5 shows the relationship between reconstruction order M and shadow

intensity. A small M results in wrongfully brightened shadows when occluder and

receiver are close to each other (lower square), and near contact points (slanted

polygon), since the reconstructed step function is very smooth (see Figure 6.1

(a)). As M grows, the reconstructed step function becomes steeper, which pro-

duces correctly shaded shadows. In practice M = 4 yields satisfactory shadows

without noticeable intensity artifacts. Even the slanted plane in Figure 6.5 (c)

which touches the receiver plane achieves good shadowing quality using only 4

terms.

To demonstrate the image quality of CSMs, we chose a scene with high depth

complexity where two tree models are lit from the side, in order to project long

and thin shadows on a tilted plane. Figure 6.6 (a) was rendered with percentage

closer filtering and illustrates the inability of PCF to reconstruct a thin branch

close to the tree root due to shadow map aliasing. Figure 6.6 (b) shows that CSM

renders the same result when bi-linear filtering is used for both mini- and mag-

nification. In contrast, CSMs (see Figure 6.6 (c)-(f)) drastically increase image

quality when using standard tri-linear filtering. Various convolution kernels can

6.3 Results 71

(a) PCF (b) CSM Bi-linear (c) CSM Tri-linear

(d) CSM Tri-linear 3x3 Gauss (e) CSM Tri-linear 5x5 Gauss (f) CSM Tri-linear 7x7 Gauss

Figure 6.6: Different filter techniques applied to a scene with high depth complex-

ity. (a) was rendered using PCF. (b) shows that bi-linear filtering for CSMs gives

the same result as PCF. In contrast, CSMs (c)-(f) use better reconstruction filters

and improve the image quality significantly.

be used to additionally hide shadow map discretization errors. In this example

the shadow map resolution was 2048×2048 to capture fine details. Therefore the

7× 7 convolution has limited extend in screen space. 16× anisotropic filtering

was enabled for tri-linear filtering.

Figures 6.7 (a)-(h) present CSM examples of different shadow map resolutions

and filter widths. As can be seen, even small shadow map resolution can produce

nice shadows without visible discretization artifacts, if a large enough blur size is

chosen. This can also be used as a crude approximation to soft shadows.

Figure 6.9 compares Variance Shadow Maps [Donnelly & Lauritzen, 2006]

to our approach. VSMs are based on a statistical method to compute a filtered

shadow test. However, when the variance increases within a filter region due to

high depth complexity, light leaking artifacts appear, as illustrated in Figure 6.9

(a). Please note, that the fence itself does dot have high depth complexity, thus

light leaks only appear where addition objects behind the fence add more depth

72 Chapter 6: Convolution Shadow Maps

(a) SM=1282 C=3x3 (b) SM=2562 C=3x3 (c) SM=5122 C=3x3 (d) SM=10242 C=3x3

(e) SM 1282 C=7x7 (f) SM=2562 C=7x7 (g) SM=5122 C=7x7 (h) SM=10242 C=7x7

Figure 6.7: Our method can reduce discretization artifacts of the shadow map by

applying a convolution kernel to the CSM. This can even be used to render a crude

approximation to soft shadows.

(a) Complex Geometry (PCF) (b) Complex Geometry (CSM)

Figure 6.8: Standard percentage closer filtering does not support tri-linear fil-

tering and suffers from severe aliasing artifacts during minification. In con-

trast, Convolution Shadow Maps (CSM) enable tri-linear filtering of shadows and

thereby achieve effective screen-space anti-aliasing. Additional convolution can

hide shadow map discretization artifacts.

6.4 Discussion 73

(a) Variance Shadow Maps (VSM) (b) Convolution Shadow Maps (CSM)

Figure 6.9: Comparison of VSMs (a) and CSMs (b). Scenes with high depth

complexity such as this fence in front of other objects cause high variance in the

convolution kernel. In such cases VSMs suffer from light leaking artifacts. (b)

shows that CSMs correctly reconstruct the shadow function and render shadows

without artifacts.

complexity and therefore increase the variance within the filter kernel. Convolu-

tion Shadow Maps do not suffer from these artifacts and can deal with high depth

complexity.

The final example emphasizes that filtering Shadow Maps drastically reduces

aliasing due to minification, e.g., when a scene moves further away. The top row

in Figure 6.10 shows aliasing (spatial and temporal) in the PCF renderings. The

bottom row show the same scene rendered with CSMs. Note how the shadow is

anti-aliased (again spatial, as well as temporal).

6.4 Discussion

We have considered two other possible expansions: Taylor expansion and lo-

cally supported functions. The Heaviside step function can be approximated by a

smooth analytic function (e.g. the sigmoid function), and subsequently expanded

around (d− z) = 0. With some algebraic manipulation, it is possible to group

terms in a factorized sum like Equation 5.6. But, the approximation error will not

be constant with respect to (d−z). Moreover, it often happens that |d−z| is large,

in which case the approximation diverges.

Locally supported functions like the block or hat basis, also produce a variable

error because they lack shift-invariance. Furthermore, they are prone to severe

temporal artifacts (popping). In general, any basis expansion always incurs an

74 Chapter 6: Convolution Shadow Maps

Figure 6.10: Tri-linear filtering is especially important when a scene is moved far

away from the camera and minification occurs. Here we compare PCF (top row)

to CSMs using regular tri-linear filtering with a 5x5 filter kernel (lower row).

(a) Loosely packed clipping planes (b) Tightly packed clipping planes

Figure 6.11: Influence of the distance between near- and far-clipping planes on

the depth sampling rate. A tightly fitted frustum maximizes the accuracy.

error due to truncation and may need to be accounted for. The Fourier series

serves our purpose well, but it is conceivable that other viable solutions exist as

well.

We would further like to discuss the impact the near- and far-clipping planes

have on the z-value resolution in the depth buffer, and the resulting basis image

frequency content. As an example were we compare a teapot enclosed by a loosely

and tightly fitted light view frustum show in Figure 6.11 (a) and (b) respectively.

The depth values are linearly distributed between the near- and far-planes, where

the near-plane maps to 0 and the far plane maps to 1.

This affects the precision up to which two depth samples can be discriminated

from each other on one hand. As for the example in Figure 6.11 (a), the teapot can

6.4 Discussion 75

(a) Loose near-/far plane (b) Resulting z-values (c) Depth sampling rate

(d) Tight near-/far plane (e) Resulting z-values (f) Depth sampling rate

Figure 6.12: Two example setups to illustrate the effect of tightly fitted clipping

planes. (a) and (d) show the scene and clip plane setup. (b) and (e) show the

resulting depth map. (c) and (f) visualize the difference in the basis images.

(a) Shadows for loose clipping planes (b) Shadows for tight clipping planes

Figure 6.13: The quality of the shadow test reconstruction depends on the depth

sampling rate. The tighter the frustum, the higher the frequency content of the

basis images, which yields a better shadow reconstruction.

76 Chapter 6: Convolution Shadow Maps

only be sampled at three locations, whereas a tight view frustum shown in Figure

6.11 (b) allows for a much higher sampling rate. On the other hand, this directly

relates to the frequency which we will receive in the basis images. The larger

the depth range for the geometry (equal to the tighter the clipping planes are), the

more frequencies are sampled, hence resulting in better quality. A visualization

of the scene setup, the Shadow Map, and the resulting basis images are presented

in Figure 6.12. The quality difference is shown in Figure 6.13.

Chapter 7

Exponential Shadow Maps

We now present Exponential Shadow Maps (ESMs) [Annen et al., 2008b], our

second solution to the shadow test linarization we proposed in Chapter 5. We

introduce a simple and efficient approach by approximating the shadow test us-

ing an exponential function. ESMs are inspired by CSMs, but use a single-term

approximation, whereas CSMs use more (typically 16) terms. Compared to Con-

volution Shadow Maps, this technique is therefore faster, consumes less memory,

and shows better behavior for close contact shadows. In order to achieve these

goals we treat shadow quality in certain configurations for speed and memory

savings. More precisely, our exponential approximation assumes that the support

of a filter kernel does not contain surface samples (i.e., z-values) that lie beyond

the distance from each screen pixel’s world-space position to the light source.

This approximation holds for many cases, e.g., for rendering a shadow on a large

receiver, like a floor. When the assumption does not hold, we fall back to PCF,

which typically only happens for a small fraction of pixels on the screen.

7.1 Exponential Approximation

We outline the theory behind ESMs in this section, and discuss a practical imple-

mentation. ESMs are based on a simple observation related to the domain of the

shadow test, in other words, the d and z parameters in f (d,z). Consider a point x

seen by the camera, we know that the distance to the light source must be larger

than or equal to the corresponding z-value read from the Shadow Map, because

a depth map always stores the closest surface to the light source and therefore,

d(x)− z(xl)≥ 0 holds. However, in practice, this is not always true.

Before discussing when this happens, we will first outline how we can exploit

this assumption in order to simplify the shadow test. Finally, we discuss how to

deal with cases that violate the assumption.

78 Chapter 7: Exponential Shadow Maps

(a) Shadow test domain (b) CSM16 vs ESM80

Figure 7.1: ESMs assume that the domain of the shadow test is always positive

[(d− z) ≥ 0] (a). As a result the shadow test can be approximated by an expo-

nential decay. A larger factor c yields a better approximation. (b) shows that an

ESM80 achieves better quality than a CSM16 (with an offset of −0.032). (The

abscissa in (b) has been scaled to emphasize the difference.)

Let us for now assume that d ≥ z. In that case we can define the shadow test

f (d,z) as:

f (d,z) = lim
α→∞

e−α(d−z)

which can be approximated by filling in a large positive constant c for α . This

exponential function can be separated into factors depending on d and z:

f (d,z) = e−c(d−z)

= e−cdecz. (7.1)

We now continue by filtering the shadow function s, to yield the filtered shadow

value value s f . We represent the filtering operation in the same way we did in the

previous chapter, and we fill in the exponential approximation:

s f (x) =
[

w∗ f
(

d(x),z
)]

(xl)

=
[

w∗
(

e−cd(x)ecz
)]

(xl)

= e−cd(x)
[

w∗ ecz
]

(xl) (7.2)

We see that shadow filtering now has become equivalent to applying a filter di-

rectly to the exponent-transformed depth values, which can be done beforehand.

7.2 Violation of Assumption 79

(a) Failure case 1 (b) Failure case 2 (c) Correct filtering

Figure 7.2: ESM filtering. Red dots denote a camera sample and blue a shadow

map sample. (a) shows a failure case where x should be darkened by 50% but its

intensity is incorrectly increased because z(xl) > d(x). This violates our assump-

tion. (b) illustrates a similar case but here x is lit anyway and therefore does not

cause artifacts. In both cases however a failure is detected and we enable PCF. (c)

depicts a setup where our assumption holds and correct filtering is applied.

7.1.1 Choice of Exponent

A higher value c results in a steeper fall-off, and thus a better approximation of

the shadow test; see Figure 7.1 (a). If c is not high enough, we will observe light

leaking artifacts, similar to those we observed for Convolution Shadow Maps.

However, there is an upper bound for c, depending on the precision of the floating

point representation. We empirically determined an optimal value of c = 80 for

32-bit floating point numbers, which is unaffected by precision issues. It even

gives a better approximation than CSMs with 16 basis functions (Figure 7.1 (b)).

We abbreviate the reconstruction order M of CSMs and parameter c of ESMs as

lower script values (e.g. CSM16 and ESM80).

7.2 Violation of Assumption

Let ∆x = d(x)− z(xl). In the previous section, we assumed that ∆x ≥ 0. If not,

the shadow test returns an arbitrarily large number as the new expansion does not

converge to 1.0 but grows exponentially. We will discuss how this affects the re-

sults in the following two cases.

Without Filtering. We first analyze the case when the Shadow Map is not filtered

(nearest neighbor sampling). In unshadowed areas, d(x) should ideally be equal

to z(xl). However, the precision of the Shadow Map is finite due to the limited

spatial and numerical resolution. Consequently, d(x) will only be approximately

equal to z(xl), especially for slanted surfaces. In standard Shadow Mapping, this

80 Chapter 7: Exponential Shadow Maps

leads to the well-known “shadow acne” problem. In our case, the reduced preci-

sion may incur negative ∆x values, yielding an overflow of the shadow function

(i.e., a value larger than one). To overcome this problem, we can simply clamp

the exponential to one.

With Filtering. Similar to CSMs and VSMs, ESMs can be filtered prior to using

it for rendering the actual shadows. However, z-values under the support of the

filter will not necessarily be smaller than a given d(x). For instance, this happens

at slanted surfaces, or possibly at depth discontinuities. Consequently, we will

get an erroneous filter response due to an overflow of the exponential. Clamping

the values for each individual sample, would require us to resort to a PCF-style

method, which defeats the purpose of pre-filtering. Figure 7.2 (a) and (b) illustrate

two common failure cases when ∆x becomes negative.

7.2.1 Frequency of Violation

In most cases, the filter support contains z-values that are smaller than d(x); see

Figure 7.2 (c). When sampling points that are far away from shadow borders, the

z-values are either all blockers (fully in shadow), or represent the sampled surface

itself (fully illuminated) and our assumption holds. This occurs quite often, as

most of the pixels are either fully in shadow or fully illuminated. Furthermore,

the assumption holds for large receivers (e.g., a floor), in which case all blockers

lie in front of the receiver, with respect to the light source.

Even if the assumption is violated, the effect may not be visible. For exam-

ple, unoccluded slanted surfaces (see Figure 7.4 (a)), may be sampled above the

stored z-value (denoted by b in the figure), and therefore overflow. However, this

overflow can be easily clamped to one (i.e., fully visible), not introducing arti-

facts. Since this surface is actually supposed to be fully visible, the violation goes

unnoticed. In Section 7.3, we introduce two methods to classify pixels where the

assumption is violated. For these pixels, we (can) fall back to a custom filtering

solution in order to avoid artifacts.

Polygon Offset Regular shadow mapping suffers from the so-called “shadow

acne” artifact which we have seen in the Chapter on shadow algorithms, and pro-

duces erroneous self-shadowing due to precision issues and is illustrated in Figure

7.3 (a). Note that we describe the polygon offset in OpenGL terms where an off-

set o is computed by o = m · f actor + r ·units, where m is the maximum polygon

depth slope and r is the smallest value that ensures a resolvable offset. This can

be solved by slightly offsetting the z-values away from the light source (see Fig-

ure 7.2 (d) and 7.3 (b)). In practice, polygon offsetting is not required for ESMs,

because the exponential does not decay fast enough over such small distances.

7.3 Classification and Fall Back Solution 81

(a) PCF (F=0, U=0) (b) PCF (F=2, U=1) (c) ESM (F=0, U=0)

Figure 7.3: Shadow acne and polygon offset (F=factor, U=units in OpenGL for-

mat). (a) without polygon offset numerical imprecision generates incorrect self-

shadowing. (b) ESMs are less prone to numerical inaccuracies because the expo-

nential decay is not steep enough over such small distances.

(a) Polygon and Z-Max Offset (b) Classification

Figure 7.4: (a) describes the difference between polygon offset and Z-Max offset

which is important during failure classification. (b) shows ESM failure classifica-

tion and fall back to PCF. We illustrate the artifacts and the difference in Z-Max

and Threshold classification.

However, we still employ an additional offsetting but for another reason, namely

for failure classification, which we will be detailed in the next section.

7.3 Classification and Fall Back Solution

The previous section explained in which situations our initial assumption of d(x)−
z(xl) ≥ 0 will be violated. This section presents two methods to check for such

failure cases, and how to fix them. If a given pixel is classified as invalid, we

fall back to a customized filtering which we refer to as custom filtering or custom

82 Chapter 7: Exponential Shadow Maps

(a) Offset: 0.001 (b) Threshold: 0.020

Figure 7.5: (a) The influence of the offset, which is added to d(x) for Z-Max

classification. (b) The threshold on intensities shown in (b). (a) shows that the

offset is underestimated and needs to be larger.

PCF. For performance reasons we opt to only use a 2× 2 filter kernel similar to

the bilinear version of PCF implemented in hardware Reeves et al. [1987] which

we cannot use as we don’t want to use the Shadow Map in addition to an 32-bit

ESM (this would increase the memory consumption by 24- or even 32-bit times

the shadow map resolution). Fortunately, we can simulate a filtered shadow test

simply by evaluating the ESM at the four nearest neighbors followed by a bilinear

interpolation on the clamped results.

7.3.1 Z-Max Classification

This approach relies on an additional texture in which we maintain the maximum

z-values in a given neighborhood for the current shadow map. When we convert

the z-values into the exponential basis, we simultaneously copy the z-values into

the base level of the Z-Max texture. A max-filter is then used to build a mip-map

structure, effectively storing maximum z-values for mip-mapped neighborhoods.

Classification of the pixel x works as follows. First d(x) is computed and the

zmax for the current filter kernel is fetched from the mip-mapped Z-Max texture (an

appropriate LOD is selected to match the filter kernel). Checking if d(x) < zmax

gives a conservative answer whether the assumption is violated for d(x) or not.

To avoid misclassification of fully lit surfaces we have to add a small offset

to d(x). Note that this is problem is similar to the original polygon offsetting but

7.4 Implementation 83

it works in the exact opposite direction (see Figure 7.4 (a). We want zmax to be

slightly smaller so that a lit surface is not incorrectly flagged. The effect of the

offset can be seen in Figure 7.5 (a).

7.3.2 Threshold Classification

A second option to check if our assumption holds for a given pixel is to first

evaluate the ESM result and then check if it exceeds 1 + ε where ε is a given

threshold. This essentially checks if a large ESM value contributed to the result

indicating that the assumption is violated (then large values occur to exponential

growth depicted in Figure 7.1). The effect of Thresholding compared to the Z-

Max method is depicted in Figure 7.5 (b).

7.4 Implementation

Integrating ESMs into an existing rendering pipeline is straightforward. To gener-

ate exponential basis images we use a 32-bit floating point depth texture available

through the NV depth buffer float OpenGL extension by writing exp(cz) instead

of regular z values. In our implementation we also use a linear depth buffer.

Any additional convolution is applied to the exponential basis image in the same

manner as for Convolution Shadow Map. Rendering shadows with ESMs is now

trivial. Instead of performing an explicit shadow test against d and z we simply

evaluate Equation 7.1. Failure cases are detected by either one of the methods

described in Section 7.3 and should incorporate the current polygon offset for

shadow map generation for faithful detection.

7.5 Results

This section demonstrates the quality and efficiency of Exponential Shadow Maps.

All examples have been implemented in OpenGL 2.0 and rendered on a Dual-Core

AMD Opteron PC with 2.6GHz and 2.75GB RAM equipped with an NVIDIA

GeForce 8800 GTX graphics card. We have used the Thresholding approach as

failure classifier. Rendering performance for various shadow algorithms are com-

pared in Table 7.1. All memory statistics already contain the mip-map overhead

(a factor of 1.3).

Figure 7.6 visualizes the impact additional convolutions have on the failure

classification. The larger the filter kernel the more often our assumption fails and

we have to perform custom filtering for all pixels indicated in red. Table 7.2 lists

the exact numbers (for this measurement anti-aliasing was turned off).

84 Chapter 7: Exponential Shadow Maps

(a) No conv. (3.0%) (b) 3x3 Gauss (6.1%) (c) 5x5 Gauss (7.9%) (d) 7x7 Gauss (9.3%)

(e) No conv. (2.8%) (f) 3x3 Gauss (4.9%) (g) 5x5 Gauss (6.1%) (h) 7x7 Gauss (7.1%)

Figure 7.6: Failure case classification. (a)–(d) uses Z-Max and (e)–(h) Threshold-

ing. An increasing filter kernel size also increases the number of pixels for which

ESMs cannot reconstruct a valid shadow test. For all red pixel we perform custom

PCF filtering. The ratio of the total number of screen-space pixels (800× 800)

and failure cases is given in brackets.

Table 7.3 gives the performance timings (for Figure 7.4 (b)) regarding the

failure detection and offers information for choices when one or the other classi-

fication approach is more applicable depending on the shadow map size.

A crucial situation for ESMs is minification, where the filtering size can be

very large and thus the probability increases that the z-values within the kernel are

larger than the current d(x). Figure 7.7 shows how custom PCF avoids artifacts.

We compare ESMs with regular tri-linear filtering without custom PCF, ESMs

with custom PCF, and ESMs with anisotropic filtering and again no custom PCF.

It is interesting to note, that the fixed 2× 2 PCF filter is sufficient to remove

visible artifacts, which is most likely due to the fact that only very few pixels are

filtered with PCF. Furthermore, the figure shows that when anisotropic filtering is

turned on, the more expensive custom filtering is not really necessary. However,

in situations where the filter kernel becomes very large, our custom PCF as well as

anisotropic filtering may yield slightly less temporal coherence than the original

CSM algorithm, which is due to our limiting the number of samples of our filter

to 2×2 samples.

Figure 7.8 demonstrates that the filtering quality between ESMs and CSMs

is virtually not distinguishable especially for scenes with high depth complexity

7.5 Results 85

Figure 7.7: Anisotropic filtering. (a) without custom filtering camera pixels are

incorrectly lit (red rectangle), (b) trilinear with custom PCF can prevent artifacts,

and 10× anisotropic filtering without custom filtering often handles such failure

cases properly.

owing to the surrounding fence. This examples illustrates the quality that ESMs

achieve with 8× less memory and a significantly better performance. We also

compare ESMs against VSMs showing less light leaking and better performance.

The latest variant of VSMs, Summed-Area VSMs Lauritzen [2007a] also reduce

light leaking but cannot completely avoid it and still have higher memory cost.

The memory consumption for both sets of images was ESMs 21 MB, VSMs 42

MB, CSMs 170 MB.

In Figure 7.9 we evaluate how many samples an adaptive PCF filter would

have to use to achieve anti-aliasing of similar quality as ESMs provide. To reach

regular tri-linear ESM filtering quality, PCF has to use at least 16 or up to 36

samples which reduces the framerate significantly compared to ESMs. To match

ESMs with an additional 5x5 Gauss convolution PCF needs at least 64 samples.

86 Chapter 7: Exponential Shadow Maps

C = no ESM−T. ESM−Z. VSM CSM

S : 5122 145 fps 132 fps 152 fps 83 fps

S : 10242 140 fps 123 fps 140 fps 68 fps

S : 20482 119 fps 101 fps 106 fps 40 fps

C = 3x3 ESM−T. ESM−Z. VSM CSM

S : 5122 141 fps 127 fps 149 fps 75 fps

S : 10242 132 fps 113 fps 131 fps 56 fps

S : 20482 102 fps 78 fps 87 fps 27 fps

C = 7x7 ESM−T. ESM−Z. VSM CSM

S : 5122 138 fps 119 fps 146 fps 71 fps

S : 10242 124 fps 100 fps 125 fps 46 fps

S : 20482 86 fps 61 fps 78 fps 19 fps

Table 7.1: Frame rates for the backyard scene from Figure 6.8. We compare

ESMs (Thresholding and Z-Max) against VSMs and CSMs. Measurements in-

clude varying Shadow Map resolution and additional convolution (Gauss) kernel

sizes. S and C denote the shadow map and convolution size.

Failure No Conv. 3x3 5x5 7x7

Z−Max 3.0% 6.1% 7.9% 9.3%

T hreshold 2.8% 4.9% 6.1% 7.1%

Table 7.2: Failure classification for the backyard scene from Figure 6.8. Even

for an additional 7× 7 convolution only 7.1% (or 9.3% for Z-Max test) of the

screen-space pixels require special treatment.

7.5.1 Discussion

We have shown that the performance gain and memory reduction achieved by

Exponential Shadow Maps is the result of a restriction on the parameter space of

the shadow test function, which is motivated by the fact that the Fourier basis is

hard to beat without any further assumptions. Usually, this assumption holds for

the vast majority of screen-space pixel. Pixels for which the assumption does not

hold are easy to detect and we have presented two alternative solutions to such

failure scenarios. In the remainder of this discussion we would like to point out

the difference between our classification schemes and addresses issues regarding

the overall temporal coherence of ESMs.

Z-Max Classification is a conservative method and achieves more accurate

results, but requires an additional texture map, which needs to be down-sampled

using a max-filter. In case where additional convolutions are applied, the Z-Max

texture also requires a max-filter of the same size reducing the overall frame rate.

7.5 Results 87

C = no S : 1282 S : 2562 S : 5122 S : 10242

Z−Max 410 fps 393 fps 374 fps 347 fps

T hreshold 569 fps 556 fps 527 fps 438 fps

C = 3x3 S : 1282 S : 2562 S : 5122 S : 10242

Z−Max 369 fps 357 fps 345 fps 273 fps

T hreshold 547 fps 536 fps 495 fps 374 fps

C = 5x5 S : 1282 S : 2562 S : 5122 S : 10242

Z−Max 358 fps 351 fps 338 fps 237 fps

T hreshold 544 fps 527 fps 474 fps 342 fps

Table 7.3: Failure detection performance for Z-Max and Thresholding (800×800

viewport) for the scene from Figure 7.4 (b).

Threshold Classification does not require any additional resources and renders

efficiently, but may suffer from small artifacts due to false negative classification

errors. This can occur because thresholding is not a safe method to determine

if the initial assumption is valid for all pixels within the filter kernel, as only

the resulting filtered ESM value is checked. The visual quality and classification

result is shown in Figure 7.4 (b).

Temporal Coherence for ESMs is, independent of the classification, superior

to regular shadow mapping methods. However, due to the assumption we make

and the resulting need for custom filtering, ESMs exhibit slightly less temporal

coherence in a small neighborhood of pixels as CSMs can achieve. As this usually

only happens for a very small amount of screen space pixels we did not recognize

noticeable differences between ESMs and CSMs.

Both quality and performance comparison show that the benefit of Z-Max de-

creases with texture size whereas its performance penalty increases at the same

time. Figure 7.4 (b). According to this observation we opted to use thresholding

for all results. It should be noted that our current custom PCF cannot remove arti-

facts that occur when additional convolutions are used, as the custom filter kernel

size would be too large to be applicable in real-time applications.

88 Chapter 7: Exponential Shadow Maps

(a) ESM 66 FPS) (b) ESM (94 FPS)

(c) CSM (21 FPS) (d) CSM (22 FPS)

(e) VSM (60 FPS) (f) VSM (84 FP)

Figure 7.8: A complex fence scene (left), and a backyard scene (right), both ren-

dered with a 2k×2k Shadow Map and 5×5 Gauss filtering. Like CSMs, ESMs

also avoid the high frequency light leaking artifacts seen with VSMs.

7.5 Results 89

(a) ESM trilinear (248 FPS) (b) ESM 3x3 (182 FPS) (c) ESM 5x5 (155 FPS)

(d) PCF (409 FPS) (e) PCF 4x4 (224 FPS) (f) PCF 6x6 (142 FPS)

(g) ESM 7x7 (136 FPS) (h) PCF 8x8 (95 FPS)

Figure 7.9: Quality and performance comparison between regular PCF with mul-

tiple samples and ESMs with additional convolutions. We compare bilinear, 4×4,

6× 6, and 8× 8 PCF versus trilinear ESMs, and trilinear ESMs with additional

convolutions applied. At least 36 samples are necessary for PCF to match regular

trilinear ESMs and 64 samples are required to achieve similar quality to ESMs

with an additional 5x5 Gauss filter.

90 Chapter 7: Exponential Shadow Maps

Part III

Pre-filtered Soft Shadows

.

Chapter 8

Convolution Soft Shadow Maps

So far we have only been concerned with shadow anti-aliasing. In this chapter

we introduce Convolution Soft Shadow Maps (CSSMs) [Annen et al., 2008a], an

extension to our mathematical framework to take our pre-filtering capabilities one

step farther to generate plausible soft shadows efficiently. Our new method does

not require any pre-computation, naturally handles dynamic objects regardless of

their topology, and renders all-frequency shadows in real-time.

The Background chapter has shown that rendering soft shadows for area light

sources is challenging. Our goal is to render several area light sources in real-time

without having to sacrifice visual quality. We argue that computing penumbrae

at full physical accuracy is intractable in this case. Instead, reducing shadow

accuracy slightly enables us to achieve very high frame rates while keeping the

visual error at a minimum.

8.1 Plausible Soft Shadows Using Convolution

We build on convolution-based methods which simulate penumbrae by filtering

shadows depending on the configuration of blocker, receiver, and light source

[Soler & Sillion, 1998; Fernando, 2005]. These methods are approximate in gen-

eral, but produce an exact solution if the light source, blocker, and receiver are

planar and parallel [Soler & Sillion, 1998]. Fortunately, deviating from this geo-

metric configuration still produces plausible results.

The advantage of computing shadows using convolution is two-fold: it is com-

patible with image-based representations, in particular Shadow Mapping, and thus

scales well to scenes with a high polygon count. Second, convolutions can be

computed efficiently using a Fourier transform [Soler & Sillion, 1998], or even

in constant time if the shadows have been pre-filtered using mipmaps or summed

area tables [Lauritzen, 2007a].

94 Chapter 8: Convolution Soft Shadow Maps

However, applying convolution to Shadow Maps in order to produce soft shad-

owing is not trivial. The size of the convolution kernel needs to be estimated based

on the blocker distance as described by Soler & Sillion [1998], but when multiple

blockers at different depths are involved there is no single correct blocker distance.

To get a reasonable approximation of blocker depth we compute the average depth

of the blockers over the support of the filter. This approach was taken by Fernando

[2005], as well as Lauritzen [2007a].

Unfortunately, estimating this average is expensive since it seemingly requires

to average depths from the shadow map in a brute force fashion. The strength of

our technique is that it allows for both efficient filtering of the shadows as well

as efficient computation of the average blocker depth. Both of these operations

can be expressed with the same mathematical framework, and will be described

in Section 8.2.

The main visual consequence of the average blocker depth approximation is

that the penumbra width may not be estimated exactly (it is correct for the parallel-

planar configuration described above though). We show that this approximation

does not produce offensive artifacts, and even closely approximates the ground

truth solution.

Figure 8.1 presents an overview of our soft shadow method and will be detailed

in the following section. First, we determine an initial filter size according to the

cone defined by the intersection of the area light source, the Shadow Map plane,

and the current receiver point (a). This filter size shown in green is used to fetch

the zavg value from the pre-filtered average z-textures. We then virtually place

the shadow map plane at the zavg and compute the final filter width marked in

red for soft shadow computation as shown in (c). The last part of our algorithm

then reconstructs the visibility value for this point by a constant number of CSM

texture lookups (d).

8.2 Convolution for Soft Shadows

As indicated above, soft shadows can be rendered efficiently through shadow map

filtering and we therefore build on our previous approach Convolution Shadow

Maps. As will be shown, CSMs can be extended to also compute the average

blocker depth, which is required to estimate penumbra widths. We also introduce

extensions that allow us to safely reduce the approximation order to further push

rendering performance.

Review. In order to keep the discussion self-contained, we briefly review the

theory from Chapter 5 again. We defined the shadow function s(x), which encodes

8.2 Convolution for Soft Shadows 95

(a) Intersection with SM (b) Average z computation

(c) Move SM to average z (d) Filter shadow test

Figure 8.1: Overview. (a) determine initial filter size (green) to fetch the zavg.

Then virtually place Shadow Map zavg (b) and compute final filter width (red) (c).

In the last step the incoming visibility is looked up from the CSM texture (d).

the shadow test, as:

s(x) := f (d(x),z(xl)) =

{

1 if d(x)≤ z(xl)

0 if d(x) > z(xl),

and we saw when f () is expanded into a separable series:

f (d(x),z(xl)) =
∞

∑
i=1

ai(d(x))Bi(z(xl)),

96 Chapter 8: Convolution Soft Shadow Maps

we were able to spatially convolve the result of the shadow test through pre-

filtering:

s f (x) ≈
[

w∗ f
(

d(x),z
)]

(xl)

≈
N

∑
i=1

ai

(

d(x)
)[

w∗Bi(z)
]

(xl) (8.1)

where the basis images Bi are pre-filtered with the kernel w, which in practice is

achieved through mipmapping each Bi or computing summed area tables Crow

[1984]. At run-time, one only needed to weight the pre-filtered basis images by

ai(d(x)) and sum them up. The next section derives an extension that allows to

also employ this theory for the average blocker z computation.

8.2.1 Estimating Average Blocker Depth

The above pre-filtering of the shadow test results allows us to apply convolutions

to soften shadow boundaries. However, for real soft shadows the size of the con-

volution kernel needs to vary based on the geometric relation of blockers and

receivers [Soler & Sillion, 1998]. We follow Fernando [2005] and use the average

depth value zavg of all blockers that are above the current point x to adjust the size

of the kernel.

Estimating the average blocker depth appears to be a very expensive opera-

tion. The obvious solution of sampling a large number of shadow map texels in

order to compute the average depth value zavg is very costly, and achieving good

frame rates for large convolution kernels is not only difficult [Fernando, 2005] but

also counterproductive for constant time filtering methods [Donnelly & Lauritzen,

2006; Annen et al., 2007; Lauritzen, 2007a].

The key insight into making this step efficient is that this selective averaging

can be expressed as convolution and can therefore be rendered efficiently. To see

this, let us first compute a simple local average of the z-values in the Shadow Map:

zavg(x) =
[

wavg ∗ z
]

(xl) (8.2)

Here, wavg is a (normalized) averaging kernel. However, we only want to average

values that are smaller than d(x). Let us therefore define a “complementary”

shadow test f̄ :

f̄ (d(x),z(xl)) =

{

1 if d(x) > z(xl)

0 if d(x)≤ z(xl).
(8.3)

which returns 1 if the shadow map z-value z(xl) is smaller than the current depth

d(x), and 0 otherwise. We can now use this function to “select” the appropriate z

8.2 Convolution for Soft Shadows 97

samples by weighting them:

zavg(x) =

[

wavg ∗
[

f̄
(

d(x),z
)

× z
]

]

(xl)
[

wavg ∗ f̄
(

d(x),z
)]

(xl)
(8.4)

The denominator normalizes the sum such that it remains an average and is simply

equal to the complementary filtered shadow lookup: 1− s f (x). For the numerator

we can approximate the product of the complementary shadow test and z using

the same expansion as used in regular CSM:

f̄
(

d(x),z
)

z≈
N

∑
i=1

āi

(

d(x)
)

B̄i

(

z(xl)
)

× z(xl) (8.5)

Here, coefficients āi are coefficients and B̄i basis images for f̄ . We can now ap-

proximate the average as:

zavg(x)≈
1

1− s f (x)

N

∑
i=1

āi

(

d(x)
)

[

wavg ∗
[

B̄i(z)× z
]

]

(xl). (8.6)

We will therefore compute new basis images
[

B̄i(z)× z
]

alongside the regular

CSM basis images. We refer to this new approach for computing the average

blocker depth as CSM-Z. As our zavg computation also uses the Fourier series to

approximate f̄ () we need to insert the Fourier series into Equation 8.6 to fully

resolve all data sets which we have to compute. Therefore, we approximate f̄ ()
as:

f̄ (d(x),z(xl))≈
1

2
+2

M

∑
k=1

1

ck

sin
[

ck(d(x)− z(xl))
]

, (8.7)

with ck = π(2k− 1). Inserting this term into the convolution from Equation 8.6

yields the following:

zavg(x) ≈
1

1− s f (x)

[

wavg ∗
(1

2
+

M

∑
k=1

2

ck

sin [ck(d(x)− z)]
)

z
]

(xl)

≈
1

1− s f (x)

[

wavg ∗
z

2
+

2

ck

M

∑
k=1

sin
(

ckd(x)
)(

wavg ∗ z cos(ckz)
)

−

2

ck

M

∑
k=1

cos
(

ckd(x)
)(

wavg ∗ z sin(ckz)
)]

(xl). (8.8)

This reveals an important fact. It means there is an additional basis image contain-

ing z/2 values basically corresponding to a Shadow Map, see Figure 8.4, which

needs to be filtered too. We now turn to the average-z computation and discuss

some approaches to reduce the reconstruction order M.

98 Chapter 8: Convolution Soft Shadow Maps

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

CSM 16 terms

CSM 4 terms

(a) M=4 and 16 terms

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

CSM CSM−Z

(b) CSM vs CSM-Z

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

regular

streched

(c) Shift and Scale

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(d−z)

(d) Final Clamp

Figure 8.2: Fourier series expansion. (a) depicts the difference between a 16- and

4-term reconstruction. (b) CSM and CSM-Z are exactly opposite to each other.

Ringing suppression is possible with appropriate scaling and shifting (c), followed

by clamping the function to [0,1] (d).

8.2.2 Initializing Average Depth Computation

When we want to estimate or approximate the penumbra size for a given camera

sample we have to do this by finding the area over the Shadow Map over which we

will perform the zavg computation. A first idea is to intersect the frustum formed

by the camera sample x in 3D and the virtual area light source geometry with the

Shadow Map plane (as depicted in Figure 8.1(a)). Unfortunately, there is no clear

definition of such a plane as the Shadow Map itself only represents a height field

and does not have a certain plane location. We have found the near plane to work

well for all our results. However, an iterative procedure is possible where one

re-adjusts the location after an initial zavg has been found. An other alternative

is to initially take the nearest z-value from the Shadow Map as it represents the

first possible occluder sample. However, this would require a z-min computation

which we would like to avoid in favor for a better performance behavior.

8.2.3 CSM Order Reduction

In the previous chapter we proposed to expand f using a Fourier series. Unfor-

tunately, this series is prone to ringing artifacts and the shadows at contact points

may appear too bright unless a high order approximation is used as shown in Fig-

ure 8.2(a). We propose two changes that allow us to reduce the order significantly.

First, we notice that with appropriate scaling, shifting, and subsequent clamping,

ringing can be avoided completely. Figure 8.2 illustrates this. Scaling and shifting

f (d,z) such that ringing only occurs above 1 and below 0 is shown in (c). When-

ever the function f (d,z) is reconstructed we clamp its result to [0,1] avoiding any

visible artifacts (d).

A second problem with a low order series is that the slope of the reconstructed

shadow test is not very steep when (d− z) ≈ 0, as can be seen in Figure 8.2(d),

and yields shadows that are too bright near contact points. A simple solution

8.3 Illumination with Soft Shadows 99

Figure 8.3: An illustration of the impact of sharpening parameters A and B. A is

fixed to 30.0 whereas B is set to 5.0, 10.0, and 20.0 showing how B changes the

spatial extend of the sharpening.

is to apply a non-linear transformation G(v) = vp to the filtered shadow value

s f (x) with p ≥ 1. This tends to darken the shadows and thus hides light leaking.

If p = 1, nothing changes. On the downside, darkening also removes smooth

transitions from penumbra regions, so we want to only apply it where necessary.

When d(x)−zavg(x) is small, we know that x is near a contact point where leaking

will likely occur. Fortunately, this is also where penumbra should be hard anyway.

We therefore compute an adaptive exponent p based on this difference:

p = 1 + A exp
(

−B
(

d(x)− zavg(x)
))

. (8.9)

A controls the strength of the darkening, and B determines the maximal distance

of zavg from the receiver point for which darkening is applied to. Figure 8.3 shows

this effect for a varying parameter B.

8.3 Illumination with Soft Shadows

8.3.1 Rendering Prefiltered Soft Shadows

Generating soft shadows with our new algorithm is similar to rendering anti-

aliased shadows with Convolution Shadow Maps. First, the scene is rasterized

from the center of the area light source and the z-values are written to the shadow

map. Based on the current depth map two sets of images are produced: the Fourier

series basis and its complementary basis images multiplied by the the shadow map

z-values.

After we have generated both data structures we can run the pre-filter process.

Note that when the convolution formula from Equation 8.6 is evaluated using a

Fourier series, it also requires pre-filtering the Shadow Map due to the constant

factor when multiplying f̄ () by z(xl) (see Equation 8.8). In our implementation

we support image pyramids (mip-maps) and summed-area-tables. Other linear

100 Chapter 8: Convolution Soft Shadow Maps

Figure 8.4: Convolution soft shadows pipeline. Stage 1 reconstructs a pre-filtered

zavg. The zavg is passed to the 2nd stage for normalization. Thereafter, the final

filter size is computed as described in 8.1(c), and the visibility is evaluated by a

regular CSM reconstruction.

filtering operations are applicable as well. When filtering is complete, we start

shading the scene from the camera view and employ convolution soft shadows for

high-performance visibility queries. An overview of the different steps is given in

Figure 8.4.

For each camera pixel we first determine an initial filter kernel width as pre-

viously shown in Figure 8.1 (a) to estimate the level of filtering necessary for the

pixel’s 3D position and feed this to stage one and two. Stage one reconstructs

the average blocker depth based on the pre-filtered CSM-Z textures and the pre-

filtered Shadow Map, which is then passed to the second stage for normalization.

After normalization, the final filter kernel width fw is adjusted according to the

spatial relationship between the area light source and the current receiver. In par-

ticular, the triangle equality tells us the filter width: fw = ∆
d
·

(d−zavg)
zavg

· zn, where ∆

is the area light source width, d is the distance from x to the light source, and zn is

the light’s near plane. The filter width fw is then mapped to the shadow map space

by dividing it by 2 · zn · tan(f ovy
2

). A final lookup into the CSM textures yields the

approximate visibility we wish to compute for the current pixel. All three stages

together require only six RGBA and one depth texture access (for a reconstruction

order M = 4). W

8.4 Applications and Results 101

Figure 8.5: The difference in filter quality when using a summed-area-table (left)

and a mipmap (right). Successive down sampling with a 2×2 box-filter introduces

aliasing at higher mipmap levels.

8.4 Applications and Results

In this section we report on the quality and performance of our method. Our

technique was implemented in DirectX 10 and all results were rendered on a Dual-

Core AMD Opteron with 2.2GHz using an NVIDIA GeForce 8800 GTX graphics

card. Our performance timings are listed in Table 8.1.

The overall performance of our technique and its image quality depend on the

choice of pre-filtering, the number of area lights, and the individual light’s shadow

map size. The next results illustrate the impact of these individual factors.

We begin with a side-by-side comparison between mip-map and SAT-based

soft shadows in Figure 8.5. Mip-maps produce less accurate results compared

to summed-area-tables for rendering single lights, due to aliasing artifacts. For

complex lighting environments, however, shadows from many light sources are

averaged, which makes mip-mapping artifacts less noticeable (Figure 8.8).

Figure 8.6 shows that our method can easily deal with complex geometry

while delivering high quality renderings. The closeups show how shadows soften

as the area light size is increased. To capture fine geometric details we used a

1K×1K shadow map.

Figure 8.7 compares the shadow quality of several different algorithms to a

reference rendering. We analyze two situations in particular, large penumbrae and

close-contact shadows (see close-ups). Shadows rendered with our new technique

102 Chapter 8: Convolution Soft Shadow Maps

Figure 8.6: A very complex model illuminated by 1 AL with varying light source

sizes from left (small) to right (large).

are very close to the reference, bitmask soft shadows perform slightly better at

contact shadows and backprojection methods tend to overdarken shadows when

the depth complexity increases. Percentage closer soft shadows produce banding

artifacts in larger penumbra regions due to an insufficient number of samples.

In Figure 8.8 we show an example where an environment map is decomposed

into a number of area light sources [Annen et al., 2008a]. Below the renderings

we show the fitted area light sources and a difference plot. Rendering with 30

lights (Figure 8.8 (d)) already looks quite similar to the reference but some dif-

ferences are noticeable. With 45 area lights, the differences to the reference are

significantly reduced and the result is visually almost indistinguishable. This ex-

ample illustrates that mip-mapping produces adequate results, while offering a

more than threefold speedup compared to summed-area tables. The reference

images in Figure 8.8 has been generated with 1000 environment map samples

Ostromoukhov et al. [2004] using ray tracing.

Figure 8.9 shows the influence of the reconstruction order and sharpening. We

render a foot bone model of high depth complexity and demonstrate the effect of

the sharpening function G(). While contact shadows (toe close-up) are darkened

and slightly sharper than the results rendered with M = 16, their larger penumbra

areas are not influenced, which maintains the overall soft shadow quality.

8.5 Discussion 103

Area Lights

SM Type 1 10 20 40

MM: 1282 258 fps 48 fps 28 fps 18 fps

MM: 2562 228 fps 44 fps 25 fps 15 fps

MM: 5122 189 fps 38 fps 20 fps 13 fps

MM: 1K2 110 fps 24 fps 5 fps -

SAT: 1282 128 fps 15 fps 8.8 fps -

SAT: 2562 110 fps 13 fps 7.5 fps -

SAT: 5122 89 fps 11 fps 6.0 fps -

SAT: 1K2 52 fps 3 fps 1.5 fps -

Table 8.1: Frame rates for the Buddha scene with 70k faces from Figure 8.8,

rendered using reconstruction order M = 4. For many lights and high resolution

shadow maps, our method may require more than the available texture memory

(reported as missing entries).

Concerning memory consumption, mip-maps (SATs) with M = 4 require two

8bit (32bit) RGBA textures for storing the CSM and two 16bit (32bit) RGBA

textures for storing the CSM-Z basis values.

8.5 Discussion

Failure Cases Our technique shares the same failure cases as PCF-based soft

shadowing Fernando [2005]. We assume that all blockers have the same depth

within the convolution kernel (essentially flattening blockers), similar to Soler

and Sillion’s method Soler & Sillion [1998]. This assumption is more likely to be

violated for larger area lights. Nevertheless, shadows look qualitatively similar to

the reference rendering, as shown in see Figure 8.7. The use of a single shadow

map results in incorrect shadows for certain geometries. This problem is com-

monly referred to as ”single silhouette artifacts”, which we share with many other

techniques Assarson & Akenine-Möller [2003]; Guennebaud et al. [2006].

Average Z Computation Computing the average z-value as described is prone

to inaccuracies due to the approximations introduced by CSM-Z and CSM. These

possible inaccuracies may lead to visible artifacts due to the division by 1−s f (x).
Care must be taken to use the very same expansion for CSM-Z and CSM in order

to avoid such artifacts.

104 Chapter 8: Convolution Soft Shadow Maps

Ringing Suppression Our proposed ringing suppression using scaling and

shifting followed by clamping does indeed reduce ringing and improves shadow

darkness near contact points, but also sharpens shadows slightly as can be seen in

Figure 8.9. However, this process is necessary to keep frame rates high as it allows

the use of fewer terms in the expansion and the differences are barely noticeable.

See the comparisons in the results section, all of which are rendered using ringing

suppression.

Mipmaps vs. Summed Area Tables The quality that our method can achieve

depends on the pre-filtering process. Mipmaps are computationally inexpensive,

but their quality is inferior compared to SATs as they re-introduce aliasing again

at higher mipmap levels. However, SATs require more storage due to the need

to use floating point textures Hensley et al. [2005] especially when using many

area lights. In the case of multiple area lights, as used for environment mapping,

artifacts are masked and mipmapping is a viable option. Figure 8.5 compares both

solutions.

Textured Light Sources Our method cannot handle textured light sources

as the pre-filtering step cannot be extended to include textures. Nevertheless,

we show how to decompose complex luminaires such as environment maps into

uniform area lights.

Rectangular Area Lights Rectangular lights are supported, which is espe-

cially easy when using SATs. They can also be used in conjunction with mipmap-

ping if the GPU supports anisotropic filtering. The aspect ratio of the area lights

is limited by the maximum anisotropy the GPU allows. The increased cost of

anisotropic filtering might warrant the use of several square area lights instead.

The fitting process described in the last section can also be modified to fit square

area lights instead of rectangular ones. In fact, this is what we have used for our

results.

BRDFs We do not support integrating the BRDF across the light source do-

main, similar to most other fast soft shadowing techniques. However, for envi-

ronment map rendering we do evaluate the BRDF in the direction of the center of

each area light and weight the contribution accordingly.

8.5 Discussion 105

(a) Ground Truth (Ray-Traced) (b) Our Method – SAT 4 Terms (60 fps)

(c) Our Method – SAT 16 Terms (23 fps) (d) Percentage Closer Soft Shadows (18 fps)

(e) Backprojection (41 fps) (f) Bitmask Soft Shadows (19 fps)

Figure 8.7: Shadow quality comparison of several methods (SM was set to

512× 512, scene consists of 212K faces): ray-tracing (a), our method using

SATs – 4 terms (b) and 16 terms (c), percentage closer soft shadows (d), back-

projection Guennebaud [Guennebaud et al., 2006] (e), and bitmask soft shadows

[Schwarz & Stamminger, 2007] (f).

106 Chapter 8: Convolution Soft Shadow Maps

R
N

L
 E

n
v

m
a

p

(a) RT SMs (b) 60 ALs, t = 0.035 (9.8 fps)

(c) 45 ALs, t = 0.025 (14.1 fps) (d) 30 ALs, t = 0.015 (18.4 fps)

Figure 8.8: Comparison between ray-tracing 1000 point lights (a), our technique

with mip-maps using 60 (b), 45 (c), and 30 (d) area light sources. Each image

shows the environment map with the the fitted light sources in green. SM resolu-

tion was set to 256×256.

8.5 Discussion 107

Figure 8.9: Influence of reconstruction order M and sharpening. The close-ups

show that shadow darkening is restricted to contact points whereas larger penum-

bra areas remain unaffected and smooth.

108 Chapter 8: Convolution Soft Shadow Maps

Chapter 9

Summary and Conclusions

Main topic of this dissertation are new shadow algorithms for real-time and inter-

active applications such as games, virtual reality software, and animation studio

tools. As the feedback-loop is a crucial factor in these environments, compro-

mises regarding the image quality are inevitable to achieve real-time image up-

dates. This dissertation contributes new algorithms to narrow this gap to afford

high-quality shadow renderings in real-time. We choose to build on top of today’s

most popular real-time shadow method, Williams’ Shadow Mapping approach,

because it delivers high flexibility, scales well with the geometric scene complex-

ity, and is simple to implement. To overcome the major limitation of Shadow

Maps we develop the following new methods: Convolution Shadow Maps, Expo-

nential Shadow Maps, and Convolution Soft Shadow Maps.

9.1 Summary

Linearization

We introduced a new mathematical framework which proposes to express the

shadow test function as a sum instead of a piecewise function. This new the-

ory allows us to translates ordinary depth maps into a new representation called

basis images. We have shown that filtering the shadow test result is equivalent

to filtering these basis images. Thus, pre-filtering basis images becomes possible

and thereby we circumvent the limitation on regular Shadow Maps that they can

only be filtered at run-time.

110 Chapter 9: Summary and Conclusions

Anti-aliasing of Shadows

We presented Convolution Shadow Maps, a first solution to the linearization the-

ory, which enables linear filtering of shadows by using a Fourier series expansion.

In contrast to previous methods like Variance Shadow Maps, we do not have prob-

lems with high frequency light leaking, yet, our technique is very efficient and

generally applicable.

In order to reduce memory consumption and improve the performance of Con-

volution Shadow Maps, we presented Exponential Shadow Maps, which incorpo-

rate an assumption to simplify the problem of Shadow Map filtering. Enforc-

ing this assumption enables a single term exponential formulation. Compared to

Convolution Shadow Maps, the quality trade-offs are very low compared to the

increase in performance and memory savings. Due to these characteristics we

believe that ESMs are beneficial for real-time applications such as games where

resources are limited.

Pre-filtered Soft Shadows

We presented a highly efficient soft shadow algorithm that enables rendering of

all-frequency shadows at very high framerates. It is based on convolution, which

does not require explicit multiple samples and can therefore be carried out in

constant time. It is fast enough to render many area light sources simultaneously.

We have shown examples where environment map lighting for dynamic objects

can be incorporated by decomposing the lighting into a collection of area lights,

which are then rendered using our fast soft shadowing technique. The efficiency

of our algorithm is in part due to some sacrifices in terms of accuracy. However,

our new soft shadow method achieves plausible results, even though they are not

entirely physically correct.

9.2 Conclusions

Visibility and shadow evaluation is a long standing problem in the Computer

Graphics community. As one of the most expensive, but also most important

parts of rendering, fast visibility queries are key to efficient image synthesis.

Image-based approaches such as Shadow Mapping are popular for performance

and simplicity reasons, however they suffer from aliasing artifacts as do all sam-

pling based approaches. In this dissertation we focused on a particular problem

related to Shadow Map filtering and believe that our new linearization process

bears many desirable advantages.

The Shadow Map filtering support of our theoretical framework is two-fold. It

9.2 Conclusions 111

provides an efficient constant-time lookup for shadow discontinuities anti-aliasing.

Convolution Shadow Maps and Exponential Shadow Maps presented two possi-

ble expansion to reconstructing a pre-filtered shadow test, but our framework is

general enough to allow for other solutions. We have looked into many possi-

ble directions such as the Gompertz growth function, and analytic functions such

as the Sigmoid function. These functions would allows single term expansion,

however they are unfortunately not separable with respect to the shadow function

parameters. Therefore, they can not be used to render pre-filtered shadows.

The second advantage of out theory is that it is general enough to be extended

to render plausible high-quality all-frequency shadows. This is a difficult prob-

lem especially in dynamic environments with fine details such as trees or even

geometries subject to topology changes. We can save valuable computation re-

sources with on our constant-time filtering to improve the quality and speed of

percentage-closer based soft rendering.

Due to the linearity of the new filtering process, both categories naturally ex-

ploit graphics hardware filtering facilities including mip-mapping and anisotropic

filtering.

112 Chapter 9: Summary and Conclusions

Bibliography

Agrawala, M., Ramamoorthi, R., Heirich, A., & Moll, L. (2000). Efficient image-

based methods for rendering soft shadows. In Proceedings of SIGGRAPH ’00,

Computer Graphics Proceedings, Annual Conference Series, (pp. 375–384).

New York, NY, USA: ACM SIGGRAPH. 32, 43, 47

Aila, T., & Akenine-Möller, T. (2004). A hierarchical shadow volume algo-

rithm. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop

on Graphics Hardware. ACM Press. 46

Aila, T., & Laine, S. (2004). Alias-free shadow maps. In Proceedings of Euro-

graphics Symposium on Rendering 2004, (pp. 161–166). Eurographics Associ-

ation. 42, 43

Annen, T., Dong, Z., Mertens, T., Bekaert, P., Seidel, H.-P., & Kautz, J. (2008a).

Real-time, all-frequency shadows in dynamic scenes. ACM Transactions on

Graphics (Proceedings of SIGGRAPH 2008), 27(3). 8, 93, 102

Annen, T., Mertens, T., Bekaert, P., Seidel, H.-P., & Kautz, J. (2007). Convolution

shadow maps. In J. Kautz, & S. Pattanaik (Eds.) Rendering Techniques 2007,

vol. 18 of Eurographics / ACM SIGGRAPH Symposium Proceedings, (pp. 51–

60). Eurographics. 7, 63, 96

Annen, T., Mertens, T., Seidel, H.-P., Flerackers, E., & Kautz, J. (2008b). Ex-

ponential shadow maps. In C. Shaw, & L. Bartram (Eds.) Graphics Interface,

ACM International Conference Proceeding Series, (pp. 155–161). ACM. 7, 77

Appel, A. (1968). Some techniques for shading machine renderings of solids. In

Proceedings of the Spring Joint Computer Conference, (pp. 37–45). 26

Arvo, J. (2007). Alias-free shadow maps using graphics hardware. Journal of

Graphics Tools, 12(1), 47–59. 43

Ashdown, I. (1995). Near-Field Photometry: Measuring and Modeling Complex

3-D Light Sources. In SIGGRAPH ’95 Course Notes - Realistic Input for Real-

istic Images, (pp. 1–15). ACM. 20

114 BIBLIOGRAPHY

Assarson, U., & Akenine-Möller, T. (2002). Approximate soft shadows on arbi-

trary surfaces using penumbra wedges. In Rendering Techniques ’02 (Proceed-

ings of the 13th EG Workshop on Rendering, Springer Computer Science, (pp.

297–306). Eurographics, Eurographics Association. 46

Assarson, U., & Akenine-Möller, T. (2003). A geometry-based soft shadow vol-

ume algorithm using graphics hardware. ACM Transactions on Graphics (Pro-

ceedings of SIGGRAPH 2003). 46, 103

Assarson, U., Dougherty, M., Mounier, M., & Akenine-Möller, T. (2003). An

optimized soft shadow volume algorithm with real-time performance. In Pro-

ceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics

Hardware. ACM Press. 46

Atty, L., Holzschuch, N., Lapierre, M., Hasenfratz, J.-M., Hansen, C., & Sillion,

F. (2006). Soft shadow maps: Efficient sampling of light source visibility. Com-

puter Graphics Forum, 25(4). 43

Blinn, J. F. (1977). Models of light reflection for computer synthesized pic-

tures. In SIGGRAPH ’77: Proceedings of the 4th annual conference on Com-

puter graphics and interactive techniques, (pp. 192–198). New York, NY, USA:

ACM. 22

Brabec, S., Annen, T., & Seidel, H.-P. (2003). Practical shadow mapping. Journal

of Graphics Tools, 7(4), 9–18. 42, 67

Brabec, S., & Seidel, H.-P. (2002). Single sample soft shadows using depth maps.

In Proceedings of Graphics Interface. 43, 46

Brabec, S., & Seidel, H.-P. (2003). Shadow volumes on programmable graph-

ics hardware. Computer Graphics Forum (Proceedings of Eurographics ’03),

25(3). 46

Brotman, L. S., & Badler, N. I. (1984). Generating soft shadows with a depth

buffer algorithm. In IEEE Computer Graphics & Applications, (pp. 71–81). 43

Burt, P. (1981). Fast filter transforms for image processing. CGIP, 16(1), 20–51.

30

Catmull, E. E. (1974). A Subdivision Algorithm for Computer Display of Curved

Surfaces. Ph.D. thesis, Dept. of CS, U. of Utah. 27, 37

Chan, E., & Durand, F. (2003). Rendering fake soft shadows with smoothies.

In Proceedings of the Eurographics Symposium on Rendering, (pp. 208–218).

Eurographics Association. 43

BIBLIOGRAPHY 115

Chan, E., & Durand, F. (2004). An efficient hybrid shadow rendering algorithm.

In Proceedings of the Eurographics Symposium on Rendering, (pp. 185–195).

Eurographics Association. 47

Chen, S. E., & Williams, L. (1993). View interpolation for image synthesis.

In SIGGRAPH ’93: Proceedings of the 20th annual conference on Computer

graphics and interactive techniques, (pp. 279–288). New York, NY, USA:

ACM. 43

Cook, R. L., Porter, T., & Carpenter, L. (1984). Distributed ray tracing. In Proc.

of ACM SIGGRAPH, (pp. 137–145). Minneapolis, Minnesota. 46

Crow, F. C. (1977). Shadow algorithms for computer graphics. Computer Graph-

ics (Proceedings of SIGGRAPH ’77), (pp. 242–248). 5, 45

Crow, F. C. (1984). Summed-area tables for texture mapping. Computer Graphics

(Proc. of SIGGRAPH ’84), (pp. 207–212). 50, 96

da Vinci, L. (1970). The Notebooks of Leonardo da Vinci. Dover. 3, 33

Dachsbacher, C., Stamminger, M., Drettakis, G., & Durand, F. (2007). Implicit

visibility and antiradiance for interactive global illumination. ACM Transac-

tions on Graphics (SIGGRAPH Conference Proceedings), 26(3). 48

Debevec, P. E., & Malik, J. (1997). Recovering high dynamic range radiance

maps from photographs. In SIGGRAPH ’97: Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, (pp. 369–378).

New York, NY, USA: ACM Press/Addison-Wesley Publishing Co. 18

Donnelly, W., & Lauritzen, A. (2006). Variance shadow maps. In SI3D ’06:

Proceedings of the 2006 symposium on Interactive 3D graphics and games,

(pp. 161–165). New York, NY, USA: ACM Press. 50, 63, 71, 96

Drettakis, G., & Fiume, E. (1994). A fast shadow algorithm for area light sources

using backprojection. In Proceedings of SIGGRAPH ’94, Computer Graphics

Proceedings, Annual Conference Series, (pp. 223–230). ACM SIGGRAPH. 44

Durand, F. (1999). 3D Visibility: analytical study and applications. Ph.D. thesis,

Université Joseph Fourier, Grenoble I. Http://www-imagis.imag.fr. 36

Everitt, C., & Kilgard, M. J. (2002). Practical and robust stenciled shadow vol-

umes for hardware-accelerated rendering. Tech. rep., NVIDIA Corporation.

46

116 BIBLIOGRAPHY

Fernando, R. (2005). Percentage-closer soft shadows. In ACM SIGGRAPH 2005

Sketches, (p. 35). 50, 51, 93, 94, 96, 103

Fernando, R., Fernandez, S., Bala, K., & Greenberg, D. P. (2001). Adaptive

shadow maps. In SIGGRAPH ’01: Proceedings of the 28th annual conference

on Computer graphics and interactive techniques, Computer Graphics Proceed-

ings, Annual Conference Series, (pp. 387–390). New York, NY, USA: ACM.

42

Glassner, A. S. (1994). Principles of Digital Image Synthesis. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc. 22

Gösele, M. (2004). New Acquisition Techniques for Real Objects and Light

Sources in Computer Graphics. Ph.d. dissertation, Max-Planck-Institut Infor-

matik. 20

Gösele, M., Lensch, H. P. A., Lang, J., Fuchs, C., & Seidel, H.-P. (2004). Disco:

acquisition of translucent objects. In SIGGRAPH ’04: ACM SIGGRAPH 2004

Papers, (pp. 835–844). New York, NY, USA: ACM. 23

Greene, N., Kass, M., & Miller, G. (1993). Hierarchical z-buffer visibility. In SIG-

GRAPH ’93: Proceedings of the 20th annual conference on Computer graphics

and interactive techniques, (pp. 231–238). New York, NY, USA: ACM. 37

Guennebaud, G., Barthe, L., & Paulin, M. (2006). Real-time Soft Shadow Map-

ping by Backprojection. In Rendering Techinques 2006 (Proc. of EGSR), (pp.

227–234). 43, 103, 105

Guennebaud, G., Barthe, L., & Paulin, M. (2007). High-quality adaptive soft

shadow mapping. Computer Graphics Forum (Proc. of Eurographics 2007),

26(3). 44

Günther, J., Friedrich, H., Wald, I., Seidel, H.-P., & Slusallek, P. (2006). Ray trac-

ing animated scenes using motion decomposition. Computer Graphics Forum,

25(3), 517–525. Proceedings of Eurographics. 47

Hasenfratz, J.-M., Lapierre, M., Holzschuh, N., & Sillion, F. (2003). A survey of

real-time soft shadows algorithms. Computer Graphics Forum (Proceedings of

Eurographics ’03), 22(3). 33

Heckbert, P. S. (1989). Fundamentals of Texture Mapping and Image Warping.

Master’s thesis. 49

Heidmann, T. (1991). Real shadows, real time. Iris Universe, 18, 23–31. 46

BIBLIOGRAPHY 117

Hensley, J., Scheuermann, T., Singh, M., & Lastra, A. (2005). Interactive

summed-area table generation for glossy environmental reflections. In ACM

SIGGRAPH 2005 Sketches, (p. 34). 104

Hourcade, J.-C., & Nicolas, A. (1985). Algorithms for antialiased cast shadows.

Computer & Graphics, (pp. 259–265). 42

Hullin, M. B., Fuchs, M., Ihrke, I., Seidel, H.-P., & Lensch, H. P. A. (2008).

Fluorescent immersion range scanning. ACM Trans. on Graphics (Proc. of

SIGGRAPH 2008). 23

Im, Y.-H., & Han, C.-Y. (2005). A method to generate soft shadows using a

layered depth image and warping. IEEE Transactions on Visualization and

Computer Graphics, 11(3), 265–272. 47

Immel, D. S., Cohen, M. F., & Greenberg, D. P. (1986). A radiosity method for

non-diffuse environments. In SIGGRAPH ’86: Proceedings of the 13th annual

conference on Computer graphics and interactive techniques, (pp. 133–142).

New York, NY, USA: ACM. 25

Jensen, H. W., & Christensen, P. H. (1998). Efficient simulation of light transport

in scences with participating media using photon maps. In SIGGRAPH ’98:

Proceedings of the 25th annual conference on Computer graphics and interac-

tive techniques, (pp. 311–320). New York, NY, USA: ACM. 23

Johnson, G. S., Lee, J., Burns, C. A., & Mark, W. R. (2005). The irregular z-

buffer: Hardware acceleration for irregular data structures. ACM Trans. Graph.,

24(4), 1462–1482. 43

Johnson, G. S., Mark, W. R., & Burns, C. A. (2004). The irregular z-buffer and

its application to shadow mapping. Tech. rep. Technical Report TR-04-09. 43

Kajiya, J. T. (1986). The rendering equation. In SIGGRAPH ’86: Proceedings of

the 13th annual conference on Computer graphics and interactive techniques,

(pp. 143–150). New York, NY, USA: ACM. 25

Kaufman, J. E. (1987). IES Lighting handbook: application volume. New York:

Illuminating Engineering Society of North America. 18

Kautz, J. (2002). Realistic, Real-Time Shading and Rendering of Objects with

Complex Materials. Ph.d. dissertation, Max-Planck-Institut Informatik. 22

Kautz, J. (2003). Realistic, Real-Time Shading and Rendering of Objects with

Complex Materials. Göttingen, Germany: Cuvillier. 23

118 BIBLIOGRAPHY

Kautz, J., Lehtinen, J., & Aila, T. (2004). Hemispherical rasterization for self-

shadowing of dynamic objects. In Rendering Techniques 2004 (Proc. of EGSR),

(pp. 179–184). 48

Keating, B., & Max, N. (1999). Shadow penumbras for complex objects by depth-

dependent filtering of multi-layer depth images. In Rendering Techniques ’99

(Proceedings of the 10th EG Workshop on Rendering, Springer Computer Sci-

ence, (pp. 205–220). Eurographics, Eurographics Association. 47

Kersten, D., Mamassian, P., & Knill, D. C. (1994). Moving cast chadows and the

perception of relative depth. Tech. rep. 30

Kim, T., & Neumann, U. (2001). Opacity shadow maps. In Proceedings of the

12th Eurographics Workshop on Rendering, (pp. 177–182). 50

Koenderink, J. J., van Doorn, A. J., & Stavridi, M. (1996). Bidirectional reflection

distribution function expressed in terms of surface scattering modes. In ECCV

’96: Proceedings of the 4th European Conference on Computer Vision-Volume

II, (pp. 28–39). London, UK: Springer-Verlag. 22

Kozlowski, O., & Kautz, J. (2007). Is accurate occlusion of glossy reflections

necessary? In APGV ’07: Proceedings of the 4th symposium on Applied per-

ception in graphics and visualization, (pp. 91–98). New York, NY, USA: ACM.

31

Laine, S., Aila, T., Assarson, U., Lehtinen, J., & Akenine-Möller, T. (2005). Soft

shadow volumes for ray tracing. ACM Transactions on Graphics (Proceedings

of SIGGRAPH 2005), (pp. 1156–1165). 48

Lauritzen, A. (2007a). Summed-Area Variance Shadow Maps. In H. Nguyen

(Ed.) GPU Gems 3. 50, 85, 93, 94, 96

Lauritzen, A. (2007b). Summed-area variance shadow maps. In H. Nguyen (Ed.)

GPU Gems 3. 51

Lefohn, A., Sengupta, S., Kniss, J., Strzodka, R., & Owens, J. D. (2005). Dy-

namic adaptive shadow maps on graphics hardware. In SIGGRAPH ’05: ACM

SIGGRAPH 2005 Sketches, (p. 13). New York, NY, USA: ACM. 42

Lensch, H. P. A. (2003). Efficient, Image-Based Appearance Acquisition of Real-

World Objects. Ph.d. dissertation, Max-Planck-Institut Informatik. 22

Lensch, H. P. A., Gösele, M., Chuang, Y.-Y., Hawkins, T., Marschner, S., Matusik,

W., & Müller, G. (2005). Siggraph course: Realistic materials in computer

graphics. 22

BIBLIOGRAPHY 119

Lloyd, D. B. (2007). Logarithmic Perspective Phadow Maps. Ph.D. thesis, Chapel

Hill, NC, USA. Adviser-Dinesh Manocha. 42

Lokovic, T., & Veach, E. (2000). Deep shadow maps. In Proceedings of SIG-

GRAPH ’00, Computer Graphics Proceedings, Annual Conference Series, (pp.

385–392). ACM SIGGRAPH. 50

McCool, M. D. (2000). Shadow rolume reconstruction from depth maps. ACM

Trans. Graph., 19(1), 1–26. 47

McGuire, M., Hughes, J. F., Egan, K., Kilgard, M., & Everitt, C. (2003). Fast,

practical and robust shadows. Tech. rep., NVIDIA Corporation, Austin, TX. 46

Mertens, T., Kautz, J., Bekaert, P., & Reeth, F. V. (2004). A self-shadow algorithm

for dynamic hair using density clustering. In Rendering Techniques, (pp. 173–

178). 50

Mertens, T., Kautz, J., Bekaert, P., Reeth, F. V., & Seidel, H.-P. (2003a). Efficient

rendering of local subsurface scattering. In PG ’03: Proceedings of the 11th Pa-

cific Conference on Computer Graphics and Applications, (p. 51). Washington,

DC, USA: IEEE Computer Society. 23

Mertens, T., Kautz, J., Bekaert, P., Seidel, H.-P., & Van Reeth, F. (2003b). Inter-

active rendering of translucent deformable objects. Eurographics Symposium

on Rendering 2003, 27(3). 23

Murdoch, J. B. (1981). Inverse square law approximation of illuminance. Journal

of the Illuminating Engineering Society, 11(2), 96–106. 20

Nave, C. R. (2006). The hyper physics website. Georgia State University, De-

partment of Physics and Astronomy, Website URL: http://hyperphysics.phy-

astr.gsu.edu/hbase/hph.html. 15

Newell, M. E., Newell, R. G., & Sancha, T. L. (1972). A solution to the hidden

surface problem. In ACM’72: Proceedings of the ACM annual conference, (pp.

443–450). New York, NY, USA: ACM. 44

Ng, R., Ramamoorthi, R., & Hanrahan, P. (2003). All-frequency shadows using

non-linear wavelet lighting approximation. ACM Trans. Graph., 22(3), 376–

381. 48

Nicodemus, F. E. (1965). Directional reflectance and emissivity of an opaque

surface. Appl. Opt., 4(7), 767–773. 21, 22

120 BIBLIOGRAPHY

Nishita, T., & Nakamae, E. (1983). Half-tone representation of 3-d objects il-

luminated by area sources or polyhedron sources. Proceedings of The IEEE

Computer Society’ s International Computer Software and Applications Con-

ference (COMPSAC), (pp. 237–241). 18, 48

Nishita, T., Okamura, I., & Nakamae, E. (1985). Shading models for point and

linear sources. ACM Transactions on Graphics, 4(2), 124–146. 18

Ostromoukhov, V., Donohue, C., & Jodoin, P.-M. (2004). Fast hierarchical impor-

tance sampling with blue noise properties. ACM Trans. Graph., 23(3), 488–495.

102

Parker, S., Shirley, P., & Smits, B. (1998). Single sample soft shadows. Tech.

Rep. UUCS-98-019, University of Utah. 46

Plato (1968). The Republic of Plato. New York: Basic Books. Translated with

notes and an interpretive essay by Allan Bloom. 3

Porter, T., & Duff, T. (1984). Compositing digital images. SIGGRAPH ’84: Pro-

ceedings of the 11th annual conference on Computer graphics and interactive

techniques, 18(3), 253–259. 27

Poulin, P. (1993). Shading and Inverse Shading from Direct Illumination. Ph.d.

dissertation, University of British Columbia. 20

Reeves, W. T., Salesin, D., & Cook, R. L. (1987). Rendering antialiased shadows

with depth maps. Computer Graphics (Proceedings of SIGGRAPH ’87), (pp.

283–291). 40, 49, 57, 58, 82

Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan, P.-P., Bao, H.,

Peng, Q., & Guo, B. (2006). Real-time soft shadows in dynamic scenes using

spherical harmonic exponentiation. ACM Trans. Graph., 25(3), 977–986. 48

Ritschel, T., Grosch, T., Kautz, J., & Mueller, S. (2007). Interactive illumina-

tion with coherent shadow maps. In J. Kautz, & S. Pattanaik (Eds.) Rendering

Techniques 2007, vol. 18 of Eurographics / ACM SIGGRAPH Symposium Pro-

ceedings. Eurographics. 44

Ritschel, T., Grosch, T., Kautz, J., & Seidel, H.-P. (2008a). Interactive global il-

lumination based on coherent surface shadow maps. In GI ’08: Proceedings of

graphics interface 2008, (pp. 185–192). Toronto, Ont., Canada, Canada: Cana-

dian Information Processing Society. 44

BIBLIOGRAPHY 121

Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., & Kautz, J.

(2008b). Imperfect shadow maps for efficient computation of indirect illumi-

nation. ACM Transactions on Graphics (Proc. SIGGRAPH ASIA 2008), 27(5),

to–appear. 44

Roth, S. D. (1982). Ray Casting for Modeling Solids. Computer Graphics and

Image Processing, 18(2), 109–144. 26

Salvi, M. (2008). Rendering filtered shadows with exponential shadow maps. In

ShaderX 6.0 - Advanced Rendering Techniques. Charles River Media. 50

Schmittler, J., Wald, I., & Slusallek, P. (2002). Saarcor: A hardware ar-

chitecture for ray tracing. In HWWS ’02: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, (pp. 27–36).

Aire-la-Ville, Switzerland, Switzerland: Eurographics Association. 47

Schwarz, M., & Stamminger, M. (2007). Bitmask soft shadows. Computer Graph-

ics Forum (Proc. of Eurographics 2007), 26(3), 515–524. 44, 105

Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., & Haeberli, P. (1992).

Fast shadows and lighting effects using texture mapping. SIGGRAPH Comput.

Graph., 26(2), 249–252. 32, 39

Sen, P., Cammarano, M., & Hanrahan, P. (2003). Shadow silhouette maps. ACM

Transactions on Graphics (Proceedings of SIGGRAPH 2003), (pp. 521–526).

42, 47

Sloan, P.-P., Kautz, J., & Snyder, J. (2002). Precomputed radiance transfer for

real-time rendering in dynamic, low-frequency lighting environments. ACM

Trans. Graph., 21(3), 527–536. 48, 65

Sloan, P.-P., Luna, B., & Snyder, J. (2005). Local, Deformable Precomputed

Radiance Transfer. ACM Trans. Graph., 24(3), 1216–1224. 48

Soler, C., & Sillion, F. (1998). Fast calculation of soft shadow textures using con-

volution. In Proceedings of SIGGRAPH ’98, Computer Graphics Proceedings,

Annual Conference Series, (pp. 321–332). ACM SIGGRAPH. 50, 57, 93, 94,

96, 103

Stamminger, M., & Drettakis, G. (2002). Perspective shadow maps. SIGGRAPH

’02: Proceedings of the 29th annual conference on Computer graphics and

interactive techniques, (pp. 557–562). 42

122 BIBLIOGRAPHY

Stewart, A. J., & Ghali, S. (1994). Fast computation of shadow boundaries using

spatial coherence and backprojections. In Proc. of SIGGRAPH ’94, (pp. 231–

238). 43

Stoichita, V. I. (1997). A Short History of the Shadow. Reaktion Books Ltd. 3

Takahashi, T., & Tanaka, T. (1997). Fast analytic shading and shadowing for area

light sources. Computer Graphics Forum (Proceedings of Eurographics ’97),

16(3). 48

Timothy J. Purcell, W. R. M., Ian Buck, & Hanrahan, P. (2002). Ray tracing

on programmable graphics hardware. ACM Transactions on Graphics, 21(3),

703–712. 47

Verbeck, C., & Greenberg, D. (1984). A comprehensive light-source description

for computer graphics. IEEE Computer Graphics and Applications, 4(7), 66–

75. 18

Wald, I. (2004). Realtime Ray Tracing and Interactive Global Illumination. Ph.D.

thesis, Saarland University, Germany. 47

Wald, I., Benthin, C., & Slusallek, P. (2003). Interactive Global Illumination in

Complex and Highly Occluded Environments. In Proc. of EGSR, (pp. 74–81).

47

Wald, I., Boulos, S., & Shirley, P. (2007). Ray Tracing Deformable Scenes using

Dynamic Bounding Volume Hierarchies. ACM TOG, 26(1). 47

Wang, Y., & Molnar, S. (1994). Second-depth shadow mapping. Tech. rep.,

Chapel Hill, NC, USA. 42

Wanger, L. (1992). The effect of shadow quality on the perception of spatial

relationships in computer generated imagery. In SI3D ’92: Proceedings of the

1992 symposium on Interactive 3D graphics, (pp. 39–42). New York, NY, USA:

ACM. 30

Warn, D. R. (1983). Lighting controls for synthetic images. In SIGGRAPH ’83:

Proceedings of the 10th annual conference on Computer graphics and interac-

tive techniques, (pp. 13–21). New York, NY, USA: ACM. 17

Whitted, T. (1979). An improved illumination model for shaded display. In SIG-

GRAPH ’79: Proceedings of the 6th annual conference on Computer graphics

and interactive techniques, (p. 14). New York, NY, USA: ACM. 26, 46

Williams, L. (1978). Casting curved shadows on curved surfaces. In SIGGRAPH

’78: Proceedings of the 5th annual conference on Computer graphics and in-

teractive techniques, (pp. 270 – 274). New York, NY, USA: ACM. v, vii, 5,

38

Williams, L. (1983). Pyramidal parametrics. In SIGGRAPH ’83: Proceedings of

the 10th annual conference on Computer graphics and interactive techniques,

(pp. 1–11). New York, NY, USA: ACM Press. 30, 40

Wimmer, M., Scherzer, D., & Purgathofer, W. (2004). Light space perspective

shadow maps. In A. Keller, & H. W. Jensen (Eds.) Rendering Techniques 2004

(Proceedings Eurographics Symposium on Rendering), (pp. 143–151). Euro-

graphics Association. 42

Wolff, L. B., Shafer, S. A., & Healey, G. (Eds.) (1992). Radiometry. USA: Jones

and Bartlett Publishers, Inc. 21, 22

Woo, A., Poulin, P., & Fournier, A. (1990). A survey of shadow algorithms. IEEE

Computer Graphics & Applications, (pp. 13–32). 33

Wyckoff, C. W., & Feigenbaum, S. A. (1962). An experimental extended exposure

response film. SPIE Newsletter, (pp. 117–125). 18

Wyman, C., & Hansen, C. (2003). Penumbra maps: Approximate soft shadows

in real-time. In Proceedings of the EG Symposium on Rendering, Springer

Computer Science, (pp. 202–207). Eurographics, Eurographics Association. 43

Xie, F., Tabellion, E., & Pearce, A. (2007). Soft shadows by ray tracing multilayer

transparent shadow maps. In Eurographics Symposium on Rendering, (pp. 265–

276). Grenoble, France: Eurographics Association. 47

Zhang, H. (1998). Forward shadow mapping. In Rendering Techniques ’98 (Pro-

ceedings of the 9th EG Workshop on Rendering, Springer Computer Science,

(pp. 131–138). Eurographics, Eurographics Association. 39

Zhou, K., Hu, Y., Lin, S., Guo, B., & Shum, H.-Y. (2005). Precomputed Shadow

Fields for Dynamic Scenes. ACM Trans. Graph., 24(3), 1196–1201. 48

Curriculum Vitae – Lebenslauf

Curriculum Vitae
1976 born in Merzig (Saar), Germany

1983 – 1987 Grundschule am Kreuzberg, Merzig (Saar)

1987 – 1994 Christian-Kretzschmar-RealSchule Merzig (Saar)

1994 – 1996 TGBBZ for Electrical Engineering, Merzig (Saar)

1996 – 1997 Civil Service, German Red Cross, Merzig (Saar)

1997 – 1998 Internship in construction and electrical engineering

1998 – 2002 Study of Computer Science, Saarland University

for Applied Science, Saarbrücken, Germany

2002 Bachelor of Science (Diplom-Informatiker (FH), Dipl.-Inf (FH))

2002 – 2004 Study of Computer Science, Saarland University,

Saarbrücken, Germany

2004 Master of Science (MSc.)

2004 – 2008 Ph.D. Student at the Max-Planck-Institute Informatik,

Saarbrücken, Germany

Lebenslauf
1976 geboren in Merzig (Saar)

1983 – 1987 Grundschule am Kreuzberg, Merzig (Saar)

1987 – 1994 Christian-Kretzschmar-RealSchule Merzig (Saar)

1994 – 1996 TGBBZ für Elektrotechnik, Merzig (Saar)

1996 – 1997 Zivildienst, Deutsches Rotes Kreuz, Merzig (Saar)

1997 – 1998 Praktikum im Bautenschutz und Elektrotechnikbereich

1998 – 2002 Informatikstudium, Hochschule für Technik und Wirtschaft

des Saarlandes, Saarbrücken

2002 Abschluss als Diplom-Informatiker (FH) (Dipl.-Inf(FH))

2002 – 2004 Informatikstudium, Universität des Saarlandes,

Saarbrücken

2004 Abschluss als Master of Science (MSc.)

2004 – 2008 Promotion am Max-Planck-Institut Informatik,

Saarbrücken, Germany

	Introduction
	Problem Statement
	Main Contributions
	Chapter Overview

	Background
	Notation
	Radiometry and Photometry
	Radiometric Quantities
	Photometric Quantities

	Sources of Light
	Light Source Models
	Discussion
	Near-Field and Far-Field Theory

	Concepts of Surface Reflections
	Bidirectional Reflectance Distribution Function
	Material Properties

	The Rendering Equation
	The Framebuffer: Final Image Assembly
	Hardware Accelerated Rendering
	Shadows and Human Perception
	Assumptions
	Visibility Computation

	Shadow and Visibility Techniques
	Shadow Classification
	Image-Space Methods
	Z-Buffer Algorithm
	Shadow Maps

	Object-Space Methods
	Painter's Algorithm
	Shadow Volumes
	Shadow Rays

	Hybrid Methods
	Pre-computation

	Related Work on Shadow Map Filtering
	Anti-aliasing
	Soft Shadows.

	I Linearization
	Shadow Test Linearization
	Shadow Test Function
	Convolution

	II Anti-aliasing of Shadows
	Convolution Shadow Maps
	Convolution Shadow Maps
	Fourier Expansion
	Discussion of Fourier Expansion

	Anti-aliasing Using CSMs
	GPU Implementation

	Results
	Conclusions

	Exponential Shadow Maps
	Introduction
	Exponential Shadow Maps
	Exponential Approximation
	Violation of Assumption
	Failure Classification and Fall Back Solution
	Discussion

	Implementation
	Results
	Conclusions
	Conclusions

	III Pre-filtered Soft Shadows
	Convolution Soft Shadow Maps
	Introduction
	Plausible Soft Shadows Using Convolution
	Convolution Soft Shadows
	Estimating Average Blocker Depth
	CSM Order Reduction

	Illumination with Soft Shadows
	Rendering Prefiltered Soft Shadows
	Generation of Area Lights for Environment Maps

	Limitations and Discussion
	Applications and Results
	Conclusions and Future Work
	Appendix

	Discussion and Conclusions
	Alternative Expansions and Bases
	Polynomials and Pade Approximation
	Gompertz
	Indicator functions
	Wavelets
	Rotation

