
An Empirically Derived System
for High-Speed Shadow Rendering

by Pierre (HR) Rautenbach

Submitted in partial fulfilment of the requirements for the degree

Magister Scientiae (Computer Science)

in the Faculty of Engineering, Built-Environment

and Information Technology

University of Pretoria

Pretoria

November 21st 2008

©© UUnniivveerrssiittyy ooff PPrreettoorriiaa

 i

Abstract

Shadows have captivated humanity since the dawn of time; with the current age

being no exception – shadows are core to realism and ambience, be it to invoke a

classic Baroque interplay of lights, darks and colours as the case in Rembrandt van

Rijn’s Militia Company of Captain Frans Banning Cocq or to create a sense of

mystery as found in film noir and expressionist cinematography. Shadows, in this

traditional sense, are regions of blocked light – the combined effect of placing an

object between a light source and surface.

This dissertation focuses on real-time shadow generation as a subset of 3D

computer graphics. Its main focus is the critical analysis of numerous real-time

shadow rendering algorithms and the construction of an empirically derived system

for the high-speed rendering of shadows. This critical analysis allows us to assess

the relationship between shadow rendering quality and performance. It also allows

for the isolation of key algorithmic weaknesses and possible bottleneck areas.

Focusing on these bottleneck areas, we investigate several possibilities of improving

the performance and quality of shadow rendering; both on a hardware and software

level. Primary performance benefits are seen through effective culling, clipping, the

use of hardware extensions and by managing the polygonal complexity and

silhouette detection of shadow casting meshes. Additional performance gains are

achieved by combining the depth-fail stencil shadow volume algorithm with dynamic

spatial subdivision.

Using this performance data gathered during the analysis of various shadow

rendering algorithms, we are able to define a fuzzy logic-based expert system to

control the real-time selection of shadow rendering algorithms based on

environmental conditions. This system ensures the following: nearby shadows are

always of high-quality, distant shadows are, under certain conditions, rendered at a

lower quality and the frames per second rendering performance is always

maximised.

Key words and phrases: Shadow Algorithms, Spatial Subdivision, Stencil Shadow
Volumes, Shadow Mapping, Instruction Set Utilisation, Expert Systems, Fuzzy Logic.

Supervisors: Prof. D.G. Kourie, V. Pieterse
Department of Computer Science
Degree: Magister Scientiae

 ii

Acknowledgements

The author would like to thank the following:

• My gratitude and eternal thanks to Professor Derrick Kourie and Mrs. Vreda

Pieterse for their constant guidance, patience, support, encouragement and

inspiration throughout production of this work.

• My endless respect to industry pioneers like Mark Kilgard (NVIDIA), John

Carmack (id Software), Randy Fernando (NVIDIA) and Tim Sweeney (Epic

Games) for everlasting inspiration, groundbreaking research and ceaseless

innovation.

• Special thanks to some of the University of Pretoria’s best students; Nelis

Franken, Michael Kohn, Chris Schulz, Jaco Prinsloo, Morkel Theunissen and

Will van Heerden. Both as friends and colleagues they have made life at the

university a lot more enjoyable.

• Last but not least, special thanks to my family and friends for their love and

encouragement, especially my mom, Wilna, and dad, Ig, for their incessant

motivation and support through the years.

• The financial assistance of the National Research Foundation towards this
research is hereby acknowledged. Opinions expressed in this thesis and

conclusions arrived at, are those of the author and not necessarily to be

attributed to the National Research Foundation.

 iii

Table of Contents

Abstract i

Acknowledgements ii

Chapter 1: Introduction 1
 1.1 Research Domain 2
 1.2 Problem Statement 10
 1.3 Dissertation Structure 11

Chapter 2: Basic Concepts: Shadows and Light 13

2.1 Lighting 15
 2.1.1 Point Lights 17
 2.1.2 Spotlights 18
 2.1.3 Ambient Lights 19
 2.1.4 Parallel Lights 20
 2.1.5 Emissive Light 20
2.2 Reflection 21
 2.2.1 Ambient Reflection Model 21
 2.2.2 Specular Reflection Model 22
 2.2.3 Diffuse Reflection Model 24
 2.2.4 The Phong Reflection Model 26

 2.3 Introduction to Real-time Shadow Generation 27
 2.4 Shadow Rendering Algorithms 30
 2.4.1 Scan-Line Polygon Projection 30

 2.4.2 Blinn’s Shadow Polygons 31
 2.4.3 Shadow Mapping 32
 2.4.4 Shadow Volumes 34

- Depth-pass 36
- Depth-fail 38
- Soft-edged Shadows using Penumbra Wedges 39

 2.5 Summary 41

Chapter 3: Implementing Shadow Algorithms 43

3.1 The Stencil Shadow Volume Algorithm 44
 3.1.1 The Stencil Buffer 45

- Enabling Depth-Stencil Testing 46
 3.1.2 Implementing Stencil Shadow Volumes 55

3.2 The Shadow Mapping Algorithm 59
 3.2.1 Implementing Shadow Maps 60
3.3 Hybrid and Derived Approaches 62
 3.3.1 Shadow Volume Reconstruction from Depth Maps (McCool) 62
 3.3.2 Hybrid Algorithm for the Efficient Rendering of Hard-edged Shadows 63
 (Chan and Durand)
 3.3.3 Elimination of various Shadow Volume Testing Phases 64
 (Thakur et al)
 3.3.4 Shadow Volumes and Spatial Subdivision 66
 (Rautenbach et al)
3.4 Summary 67

Chapter 4: Benchmarking of Shadow Algorithms 68
 4.1 Benchmarking Mechanism 69
 4.2 Evaluation Criteria 69
 4.3 Experimentation and Results 70

 iv

 4.3.1 Basic Stencil Shadow Volume Algorithm 70
 4.3.2 Basic Hardware Shadow Mapping Algorithm 80
 4.3.3 Shadow Volume Reconstruction from Depth Maps 85
 4.3.4 Algorithm for the Efficient Rendering of Hard-edged Shadows 90
 4.3.5 Elimination of various Shadow Volume Testing Phases 95
 4.3.6 Shadow Volumes and Spatial Subdivision 100
 4.4 Succinct Algorithm Comparison 103
 4.5 Summary 107

Chapter 5: Expert Systems and Fuzzy Logic 109
 5.1 Introduction 110
 5.2 Expert Systems 110
 - Forward Chaining 113
 - Backward Chaining 114
 5.3 Fuzzy Reasoning and Fuzzy Expert Systems 115
 5.4 Summary 120

Chapter 6: An Empirically Derived System for High-Speed Shadow Rendering 121
 6.1 Introduction 122
 6.2 Expert Systems and Dynamic Shadow Selection 122
 6.3 Construction of the Algorithm Selection Mechanism 126
 6.4 Results 127
 6.5 Summary 131

Chapter 7: Summary and Conclusion 132
 7.1 Summary 133
 7.2 Concluding Remarks 135

References 137

 1

Chapter 1

Introduction

Chapter 1 presents the general research domain, research problem and

overall dissertation structure.

In this chapter we will introduce:

• The research domain

• The research problem

• A general outline of the work addressing the problem

 2

1.1 Research Domain

In order to contextualise shadow rendering within its historical context, this chapter

starts by offering a brief overview of computer gaming – the primary driving force

behind boundary defying real-time rendering algorithms such as those developed for

shadow generation. Also, please note, portions of this section are sourced from the

author’s textbook, 3D Game Programming Using DirectX 10 and OpenGL

(Rautenbach, 2008).

The first computer game ever was a crude noughts and crosses simulation written in

1952 (Winter, 2004). This game, called OXO, was developed by Sandy Douglas

using an EDSAC computer (one of the first stored program electronic computers).

The user used a rotary telephone dial for input with the output being generated on a

35 by 16 pixel cathode ray tube display (Campbell-Kelly, 2006). Figure 1.1 shows an

emulation of the original program.

Figure 1.1 A screenshot of the game OXO.

William Higinbotham, an American physicist, created Tennis for Two in 1958 using

an oscilloscope (OSTI, 1981). This game showed a side view of a tennis court and

the player was required to hit a gravity affected ball over a net. Tennis for Two is

considered by many as the first computer game due to the EDSAC computer being

mainly limited to the University of Cambridge Mathematical Laboratory in England.

Figure 1.2 shows Tennis for Two running on an oscilloscope.

Figure 1.2 A photograph of the game Tennis for Two.

 3

The 1960s saw the advent of computer gaming on mainframe computers. Most of

these games were text-based adventures with MUDs (Multi-User Dungeons)

appearing in the late 1970s (Klietz, 1992). These MUDs, existing to this very day,

were some of the first networked games, with the original MUDs requiring a

connection to an academic network. A MUD typically combines elements of role-

playing and chat room style social interaction. All actions and dialog in the

environment are text driven. Modern MMOGs such as World of Warcraft, Guildwars

and Dungeons & Dragons Online have several similarities to early MUDs and can

loosely be considered as graphical next-generation MUDs.

PONG, designed by Nolan Busnell, led to the birth of Atari Interactive and was mainly

distributed via coin-operated arcade machines and home consoles (Miller, 2005).

The original PONG was related to Higinbotham’s Tennis for Two, with the exception

of being based on the sport of table tennis and for having a top down view. PONG

made use of solid lines to represent paddles, a dotted line to represent the net and a

square to represent the ball. Many versions of the original Atari classic have been

made over the years and the entire genre of ball-and-bat video games have become

known as Pong games (note the lower case spelling). Figure 1.3 shows a clone of

the original classic using DirectDraw.

Figure 1.3 A PONG clone.

The Atari 2600 (Figure 1.4), released in 1977, allowed for the use of plug-in

cartridges (Yarusso, 2007). Dedicated consoles offering one or two games were the

norm before then and having one console supporting a theoretically unlimited

number of games, such as Breakout, Donkey Kong, Pac-Man and Space Invaders,

was extremely popular with the buying market and contributed heavily towards the

growth of computer gaming.

 4

Figure 1.4 The Atari 2600.

The term personal computer game or PC game surfaced with the release of the

Apple II (see Figure 1.5) in 1977 (Weyhrich, 2002). Although the Apple II offered

some productivity and business applications such as a spreadsheet and word

processor, it was designed specifically with educational and personal use in mind.

The Apple II was shipped with two well-documented and easy to learn BASIC

programming languages, Applesoft and Integer, resulting in the Apple II being used

by many computer enthusiasts learning how to program. Applesoft BASIC, created

by Microsoft, supported floating point arithmetic and was initially offered as an

upgrade to Integer BASIC and later included with the release of the Apple II Plus.

The Apple II enjoyed a phenomenal user base and grew into the most popular game

development platform of the time with hundreds of titles shipped. Two of the world’s

most respected and prolific game developers, John Romero and John Carmack

(responsible for genre-defining games such as Doom and Quake), started their

careers programming games for the Apple II (Kushner, 2003:23-24,33-37,41).

Figure 1.5 One of the first Apple II computers.

The 1980s saw the advent of the IBM PC (and compatibles), Commodore 64, Atari

ST, etc (Reimer, 2005). The general idea behind all these systems was ‘a personal

computer for the masses’. The original IBM PCs of the early 1980s were priced out of

the reach of most home users (an example is shown in Figure 1.6) but gained

significant market share in the business sector. IBM PCs featured Microsoft BASIC

as programming language and an open architecture allowing other manufacturers to

develop both peripherals and software for it. This open architecture is the primary

reason for the popularity of the PC today. The Commodore 64 featured impressive

 5

graphics and sound capabilities compared to the Apple II and IBM PCs of the time. It

was also priced much more aggressively than its counterparts. The Commodore 64

also competed against video game consoles such as the Atari 2600 by allowing

direct connectivity with a television set. The ‘video game crash of 1983’ led to the

bankruptcy of numerous video game, console and home computer manufacturers

(Taylor, 1982). This industry crash was the direct result of the video game market

being swamped by a large number of sub-quality games and the availability of

competitively priced personal computer systems fulfilling multiple educational,

business and entertainment roles. With video game console companies collapsing,

PC games quickly took the place of their console counterparts.

Figure 1.6 The IBM PC Junior released in 1983.

The Atari ST (see Figure 1-7) was released in 1985 and was especially suited for PC

gaming due to its colourful graphics, good sound, fast performance and good price

(Powell, 1985). 3D computer games such as Dungeon Master and notable classics

such as Peter Molyneux’s Populous (also released on the PC and various other

platforms) were created for it. The PC, although lagging behind at the beginning of

the 1980s, slowly gained popularity due to its open architecture, dropping price, easy

upgrading and usefulness as a business tool. The IBM PC compatible was at the

forefront of the personal computer race at the start of the 1990s, and the release of

Windows 3.0 in May 1990 in particular led to the PC becoming the computing

platform of choice to this very day.

 6

Figure 1.7 The Atari ST computer.

The introduction of high quality soundcards, high resolution displays and peripherals

such as the computer mouse and joystick really drove the adoption of computer

gaming but it wasn’t until 1992 that the real power of the PC as a gaming platform

was realised. The main game responsible for this was id Software’s shareware

mega-hit Wolfenstein 3D. Wolfenstein 3D popularized the first-person shooter genre

and the PC as a gaming platform by allowing the player to interact with a virtual

environment from a first-person perspective. Wolfenstein 3D was of course not the

first 3D computer game for the PC with id Software employing and refining the

technology that would become Wolfenstein 3D in Hovertank 3D and Catacomb 3D

during 1991. Other older PC games such as Elite also featured 3D environments but

never achieved the level of technical complexity of Wolfenstein 3D nor its cultural and

industry impact. Another breakthrough in the graphics of 3D games came with id

Software’s release of Doom in 1993. Doom, a screenshot of which is shown in Figure

1.8, really revolutionised the gaming industry (GameSpy, 2001) with its fast paced

network play and immersive graphics and companies like Microsoft started spending

millions of dollars on research and development to migrate gaming from MS-DOS to

their Windows platform (Craddock, 2007). This research and development

culminated in the DirectX Application Programming Interface (API).

Figure 1.9 id Software’s Doom released in 1993.

Following the release of Doom, Microsoft wanted to establish Windows 95 as the

gaming platform of choice, as opposed to MS-DOS still being used by the majority of

 7

games throughout 1995 and 1996. During a Microsoft Halloween media event at the

end of 1995, called Judgement Day, a 32-bit port of Doom was showcased featuring

a video address by Bill Gates superimposed inside the game proclaiming Windows

95, using the DirectX API, as “thee game platform” (Microsoft, 1995). Initial DirectX

versions were not unequivocally successful products but were nonetheless important

as technological building blocks. Most of the issues associated with these initial

DirectX releases were, however, resolved with the release of DirectX 5.0 in 1997 and

the era of MS-DOS based games was officially over. There were also a number of

developers using OpenGL due to it being a cross-platform graphics API unlike

Microsoft’s Direct3D. OpenGL has since had a strong footing in the science and

gaming’s first-person shooter genre, not only because of its cross-platform nature but

also much due to its minimalist design as opposed to Direct3D’s perceived

complexity. Direct3D’s (DirectX’s graphics library) inception and the standardisation

of its competitor, OpenGL, together with the advent of mainstream 3D accelerated

graphics hardware revolutionised computer gaming and led to a new era of ever

more realistic 3D graphics and constant improvements in graphics hardware. The

first-person shooter is generally considered the primary benchmark for graphics

complexity, realism and visual effects with Doom3 and the Quake, Unreal and Half-

Life series often setting the standard for other titles.

The progression of Direct3D and OpenGL is closely coupled with the development of

3D accelerated graphic cards. These libraries can be considered a series of

specifications that requires implementation by graphic hardware vendors. Hardware

support enables the rapid execution of graphics calls, functions, or effects – in the

process freeing the CPU to do other calculations. The GPU (graphics processing

unit), integrated into a video card, is a dedicated graphics rendering device and

controls the rendering quality and drawing performance depending on the number of

supported specifications. The first mainstream GPUs were released with the Atari

ST, the Commodore Amiga and some home computers of the 1980s (Knight, 2003).

These GPUs were nothing more than simple blitters responsible for moving bitmaps

around in memory. In 1991 S3 Graphics launched the first mainstream 2-D

accelerator for the PC and was soon followed by 2-D accelerators with added 3-D

features such as the ATI Rage and the S3 ViRGE (Bell, 2003). These basic graphics

accelerators soon evolved to include support for transform and lighting (translating

three-dimensional objects and calculating the effects of lighting on objects) with the

release of DirectX 5.0 and progressed to include programmable shaders in addition

to numerous other advancements with later releases of DirectX and OpenGL.

Computer gaming today is a multi-billion dollar industry with 2004’s U.S retail stales

set at more $9.9 billion. According to the NPD Group, there was a 4% increase in unit

sales as compared to the previous year. This highly-profitable situation is playing

itself out throughout the world. A report released by iResearch predicts China's online

game revenue to reach $970 million in 2008 – a 28% increase from last year.

According to the IDSA more than 60% of Americans age six and older (145 million

people) play computer and video games with the average game player being 28

years old. With the demand for new titles a constant factor and the number of

emerging developers always increasing, the market for games with boundary defying

 8

graphics are set to increase for quite some time to come – for example, Grand Theft

Auto IV broke sales records by selling about 3.6 million units on its first day of

release and grossing more than $500 million in its first week. As of 16 August 2008,

the game has sold over 10 million copies (Ortutay, 2008).

This ever constant push for “immersive and more realistic” computer games has

resulted in countless innovations over the years – the early 90s seeing the use of

spatial subdivision and multi-texturing techniques with games released in the mid-

2000s becoming known for their use of real-time shadows and advanced shader

techniques. A good example of such a game is id Software’s Doom3 which

specifically utilised stencil shadow volumes to add not only realism but also suspense

and atmosphere (Carmack, 2000). The problem with shadows is, simply put,

performance. Doom3, released in 2003, required high-end hardware to run as

intended; that said, the player had the option of deactivating performance

compromising elements such as shadows and specularity. However, disabling these

features resulted in a less than satisfactory gaming experience. Shadows and other

special effects such as specular highlights and real-time reflections have become

expected, and today’s mid-range hardware is more than adequate in handling each

of these effects separately. However, the performance impact remains an issue when

real-time shadows are coupled with AI sub-routines such as cognitive model based

Non-Player Character (NPC) interaction, input control, shader effects such as

reflective water, motion blur and specular bump mapping, 3D spatialisation and

material based distortion for sound, realistic object interaction based on Newton's

Laws, etc.

Mobile devices such as the iPhone also represent a vast untapped market for game

development and graphical applications (Apple’s projections estimate over 20 million

iPhones shipped by the end of 2008). The iPhone, as a mass mobile platform,

features powerful hardware, display and input technology – technology presenting

the user with a realistic gaming experience. The iPhone and iPod Touch have the

potential of not just cutting into the mobile gaming market, but to actually dethrone

the Sony PSP and Nintendo DS. With the iPhone SDK being the most talked about

release in recent times, there is already enormous interest to create applications and

especially games targeting this platform. This unparalleled interest has resulted in

more than 500 applications (with 241 in the game category) being available on the

same day as Apple’s delivery platform, the AppStore’s, launch. Games targeting this

platform have an even harder time when it comes to performance balancing, for

example, the iPhone features a 620 MHz ARM 1176 CPU underclocked to 412 MHz

with it’s Graphical Processing Unit (offering support for OpenGL ES) being a

PowerVR MBX Lite 3D unit (Apple, 2008). Running high-quality immersive games on

the iPhone is thus a classic example of the need for performance balancing,

especially when rendering shadows and other advanced special effects.

Research resulting in numerous shadow rendering algorithms has been conducted

since the late 1960s and has picked up great momentum with the evolution of high-

end dedicated graphics hardware. Some of these algorithms, like shadow mapping

and shadow volumes, are more successful than others. The success of an algorithm

 9

is dependent on the balance between speed and realism and techniques like shadow

mapping and stencil shadow volumes are particularly amenable to hardware

implementation – thus freeing the CPU of a substantial processing burden and

making the real-time rendering of shadows feasible (Kilgard, 1999).

The study of real-time shadow rendering is not new, and has involved numerous

industry leading researchers as well as professional practitioners in the past. The

most recent work includes techniques such as variance shadow mapping (Lauritzen,

2006) and cascaded shadow maps (Dimitrov, 2007). The former solves the problem

of shadow map aliasing (with minimal additional storage and computation) with the

latter being extremely amenable to shadows cast over large terrain-based areas.

These techniques extend the traditional shadow mapping algorithm introduced by

Williams (1978); they are also less sensitive to geometric complexity when compared

to the basic stencil shadow volume algorithm (Kilgard, 1999). The only problem is

their environmental dependencies. Cascaded shadow maps (Dimitrov, 2007) will, for

example, only be effective when large outdoor environments are to be shadowed

with variance shadow mapping (Lauritzen, 2006) reducing aliasing artefacts at the

cost of “light bleeding”.

Several shadowing algorithms, including the fundamentals and implementation of

shadow volumes and shadow mapping are investigated in subsequent chapters – a

brief summary is given here:

• A quite complex, and now mostly redundant shadow algorithm was introduced

by Appel (1968) and further developed by Bouknight and Kelley (1970). This

algorithm, commonly known as scan line polygon projection, adds shadow

generation to scan-line rendering.

• An extremely easy to use shadow generation technique was described by

Blinn (1988). This method simply calculates the projection of an object on

some base-plane.

• Lance Williams introduced the concept of shadow mapping in 1978. His

primary aim was the rendering of shadows on curved surfaces. Shadow

mapping adds shadows to a scene by testing whether a particular pixel is

hidden from a light source.

• The original shadow volume concept was introduced by Frank Crow in 1977.

Crow defined a shadow volume as three-dimensional area occluding objects

and surfaces from a light source. This original approach has since been

extended to incorporate the generation of soft-edged shadows, including

revision of the algorithm to utilise modern-day 3-D acceleration capabilities.

• The first feasible real-time shadow volume algorithm was introduced by Tim

Heidmann in 1991. His algorithm, building on Crow’s work, makes use of the

3-D accelerator’s stencil buffer – effectively limiting the render area (through a

process called stencilling).

 10

• Michael McCool (2000) proposed shadow volume reconstruction using depth

maps. His algorithm has a slight performance advantage over the traditional

approach without any loss in shadow quality.

• Soft-edged shadows using penumbra wedges was proposed by Akenine-

Möller and Assarsson (2002).

• Thakur et al (2003) developed a discrete algorithm for improving the

Heidmann original. Their algorithm is primarily based on the elimination of

various testing phases.

• Another interesting hybrid approach is the one developed by Eric Chan and

Frédo Durand (2004). Their approach combines the strengths of shadow

maps and shadow volumes to produce a hybrid algorithm for the efficient

rendering of pixel-accurate hard-edged shadows.

• Kolic et al (2004), in turn, developed a shadowing technique purely focussing

on the utilisation of current GPU advances. Their algorithm specifically deals

with the casting of shadows on concave complex objects such as trees.

• Rautenbach et al (2008) combined the depth-fail stencil shadow volume

algorithm with Octree-based spatial subdivision to improve the rendering

performance of polygonal environments with static light sources.

Several other shadow algorithms were also originally considered for inclusion.

However, the previously listed ones were chosen due to their overall spectrum of

coverage; that is, their utilisation of GPU advances and distinct improvements and/or

approach to the shadow rendering problem. Other approaches originally considered

include: Stefan Brabec and Hans-Peter Deidel’s (2002) single sample soft shadows

using depth maps, George Drettakis and Eugene Fiume’s (1994) fast shadow

algorithm for area light sources using back-projection, Randima Fernando et al’s

(2001) adaptive shadow mapping approach, Eric Haines’ (2001) soft planar shadows

using plateaus, Wolfgang Heidrich et al’s (2000) soft shadow maps for linear lights,

Hourcade and Nicolas’ (1985) algorithms for antialiased cast shadows, Daniel

Kersten et al’s (1994, 1997) approach to moving cast shadows, Florian Kirsch and

Juergen Doellner’s (2003) real-time soft shadows using a single light sample, Tom

Lokovic and Eric Veach’s (2000) deep shadow maps, William T. Reeves et al’s

(1987) antialiased shadows with depth maps algorithm and Mark Segal et al’s (1992)

fast shadows and lighting effects using texture mapping.

1.2 Problem Statement

The fast evolving computer gaming industry is governed by a constant need for

increased realism and total immersion (with the need for increased realism being

addressed by a number of shader techniques such as reflections, refraction,

 11

specularity and shadows). The presented research seeks to offer a state of the art

review of existing shadow rendering algorithms. The aim of this review is to describe

numerous issues related to real time shadow rendering, to identify gaps and to

suggest improvements to known algorithms as well as to discover directions for the

development of new ones.

When considering the existing algorithms, it can easily be observed that shadow

rendering solutions are implementation/requirement specific. Woo (1990) points out

that knowledge related to algorithms can be applied to choose an algorithm given

the type of rendering, primitives and effects desired. Hasenfratz et al. (2003) also

mention that algorithm selection is based on a particular application’s constraints.

Comprehensive knowledge about algorithms is needed for developers to select the

most ideal algorithm for a given situation. We realised that the collection and

presentation of such knowledge is needed, but that it will not suffice. It often

happens that parameters determining the ideal algorithm change from time to time

within one application. To assist developers, an automated system to control the

real-time selection of shadow rendering algorithms based on environmental

conditions is needed. We aim to present such a solution.

1.3 Dissertation Structure

The current chapter presents the general research domain, research problem and

overall dissertation structure with Chapter 2 presenting an analysis of various light

sources (point lights, spotlights, ambient lights and parallel lights) followed by a

discussion of different reflection models such as the empirical Phong model and the

ambient, specular and diffuse reflection models. Following this discussion, the

chapter investigates a number of shadow-generating algorithms, particularly focusing

on the rendering of shadows by means of stencil shadow volumes and depth stencil

testing. These elements are core to understanding subsequently discussed topics,

especially those dealing with the performance improvement and quality of shadow

rendering algorithms.

Chapter 3 extends this discussion to include implementation details for various

shadow rendering algorithms, specifically the stencil shadow volume algorithm, the

shadow mapping algorithm and a number of hybrid approaches such as McCool’s

shadow volume reconstruction using depth maps, Chan and Durand’s hybrid

algorithm for the efficient rendering of hard-edged shadows, Thakur et al’s

elimination of various shadow volume testing phases and Rautenbach et al’s shadow

volumes, hardware extensions and spatial subdivision approach.

Chapter 4 presents the critical analysis and detailed benchmarking of the previously

discussed shadowing techniques. The chapter also looks at the performance of

several optimised shadow volume and shadow mapping routines. The knowledge

base of our expert system draws heavily on these experimental results.

 12

Chapter 5 focuses on the theoretical aspects of expert systems, their architecture

and a number of advantages and disadvantages inherent to their use. Following this

discussion, it deals with the concept of fuzzy-logic and its use in the dynamic

selection of shadow rendering algorithms.

Chapter 6 discusses the previously mentioned expert system implementation in

much more detail. It also presents the critical analysis of our empirically derived

system for the high-speed rendering of shadows. This analysis highlights not only the

performance benefits inherent to the utilisation of this system, but also the practicality

of such an implementation.

The final chapter features an overall summary of our work. It closes by discussing

possible future work based on the presented research.

This discussion will thus analyse a vast number of shadow generation algorithms

with the aim of highlighting the need for a system to control the real-time selection of

shadow rendering algorithms based on environmental conditions. We present such a

solution through the critical analysis of numerous real-time shadow rendering

algorithms and the construction of an empirically derived system for the high-speed

rendering of shadows. This critical analysis allows us to assess the relationship

between shadow rendering quality and performance. It also allows for the isolation of

key algorithmic weaknesses and possible bottleneck areas. Focusing on these

bottleneck areas, we investigate several possibilities for improving the performance

and quality of shadow rendering; both on a hardware and software level. Primary

performance benefits are seen through effective culling, clipping, the use of

hardware extensions and by managing the polygonal complexity and silhouette

detection of shadow casting meshes. Additional performance gains are achieved by

combining the depth-fail stencil shadow volume algorithm with dynamic spatial

subdivision.

Using the gathered performance data, we are able to define a fuzzy logic-based

expert system to control the real-time selection of shadow rendering algorithms

based on environmental conditions. This system ensures the following: nearby

shadows are always of high-quality, distant shadows are, under certain conditions,

rendered at a lower quality and the frames per second rendering performance is

always maximised.

Please note, unless otherwise stated, that all screenshots and/or illustrative images

have been rendered using DirectX 10.0 based sample programs. The accompanying

CD contains many of these sample applications, implementation source code and

several videos (including a high-definition video showcasing the rendering

framework).

 13

Chapter 2

Basic Concepts: Shadows and Light

This chapter provides a brief overview of several foundational concepts needed

for the ensuing discussion of shadow rendering algorithms – knowledge

assumed in the remainder of this dissertation. It starts with an analysis of various

light sources (point lights, spotlights, ambient lights and parallel lights) followed

by a discussion of different reflection models such as the empirical Phong model

and the ambient, specular and diffuse reflection models. Following this

discussion, the chapter investigates a number of shadow-generating algorithms,

particularly focusing on the rendering of shadows by means of stencil shadow

volumes and depth stencil testing. Detailed coverage of these topics can be

found in a large number of textbooks such as Rabin (2005) or Harbour (2004).

Much of the material in this text has been taken from a recent textbook by the

author (Rautenbach, 2008); Pharr and Fernando (2005) and Nguyen (2007) also

serve as excellent texts for all the latest Graphics Processing Unit (GPU)

programming techniques.

This chapter, as mentioned, focuses on a number of concepts inherent to the

development of shadow rendering algorithms. We included this chapter with the

reader’s convenience and overall completeness in mind; individuals familiar with

these concepts may proceed to subsequent chapters.

In this chapter we will investigate:

• Light sources

• Point lights

• Spotlights

• Ambient lights

• Parallel lights

• Emissive light

• Reflection models

• The ambient reflection model

• The specular reflection model

• The diffuse reflection model

• The Phong reflection model

• Shadow rendering algorithms

• Scan-Line polygon projection

• Blinn’s shadow polygons

• Shadow mapping

 14

• Shadow volumes

• Depth-pass testing

• Depth-fail testing

• Soft-edged shadows using penumbra wedges

 15

2.1 Lighting

Before considering shadows, it’s very important to briefly discuss the concepts of

lighting and reflection (as there can be no shadows without light). The lack of lighting

results in dull, flat looking object surfaces. Texture mapping helps to enhance the

overall appearance of an object but fails to convey any real sense of depth. For

example, when looking at the two flat objects in Figure 2.1 (a), it is clear that the

three-dimensional nature of the scene, a wall positioned perpendicular on a floor,

isn’t being conveyed properly. Figure 2.1 (b) shows this same scene illuminated by a

properly defined light source.

Figure 2.1 (a) Two rendered rectangles, the one representing a floor, the other a

facing wall. (b) The same rectangles with lighting enabled.

This lack of depth is the result of uniform lighting, i.e. the equal illumination of all

surfaces. Figure 2.2 (a) shows a uniform lit sphere and Figure 2.2 (b) the same

sphere with basic lighting enabled. The shaded sphere is the result of graduations in

the sphere’s colour based on the colour of the light source. In this case the colour

grey is incrementally decreased from dark grey to white.

Figure 2.2 (a) A uniformly lit sphere and (b) a properly lit and shaded sphere.

Light can be emitted through either self-emission or reflection (Rautenbach, 2008).

When looking at a light bulb it is obvious that we are predominantly dealing with self-

emission. Light sources are categorised by their light emitting direction and the

energy emitted at each wavelength – determining the colour of the light.

As also mentioned previously, objects can absorb or reflect light emitted from a light

source depending on the reflecting object’s material properties. Light will thus only be

 16

“visible” when illuminated surfaces have the ability to reflect or absorb said light.

Objects in computer generated graphical scenes are assigned so-called Material

properties. These are user defined parameters built around rules determining the

amount of scattering or reflection of incident light. Some surfaces, like a mirror, might

reflect an incoming ray of light perfectly (hence appear shiny) while a carpet might

reflect light in so many directions that it appears matte.

The type of light source also plays an important role in addition to the object’s

material properties. A light type property specifies the type of light to place in a

scene. This property simply denotes a light source as a point light, spotlight or

directional light (also called a parallel light). Lighting can thus be described as the

interaction between a light source and an object’s surface based on a pre-defined set

of material properties. We will focus on each of these light source types in

subsequent sub-sections.

A light source can be considered a geometric object, i.e. a simple light emitting

surface. We can define a light emitting point on this surface (x, y, z) characterised by

a wavelength energy value)(λ and an emitting direction ()φθ , as shown in Figure

2.3.

Figure 2.3 A basic light source characterised via six elements.

By combining these variables, we are able to define the illumination

function),,,,,(λφθzyxI used to describe any light source in terms of six variables.

For example, say a surface is being illuminated by a light source; then we can

calculate the overall illumination on this surface by integrating across the surface of

the light source – thus incorporating the effect of the angle between the light source

and reflection surface as well as the falloff distance (the distance from the light

source to the reflecting surface). Figure 9.4 shows two distinct illumination functions

for a pair of points located on the surface of a light source.

 17

Figure 2.4 Two distinct illumination functions for a single light source.

Numerous colour intensities or shades can be described by additively combining

various intensities of red, green and blue. Building on this, light sources can be

defined using a similar red, green and blue colour component model. Each light

source component is subsequently used to calculate the corresponding colour

component of an illuminated surface. This three-component description is called

luminance or intensity, and can be written using standard matrix notation with each

component representing the intensity of either the red, green or blue colour

component of the light source:

Furthermore, the overall lighting effect can be characterised by a lighting model

(Whitted, 1980). A lighting model defines light-object interactions based on the type

of light source and the material properties of the object. There are a number of

commonly implemented lighting models and we will discuss several of these in

section 2.2. For now, it’s just important to note that the basic graphics pipeline is

constrained to the use of just one lighting model, namely, the fixed-function lighting

model. This lighting model is basically an extended version of the Phong lighting

model. The dawn of shader programming allows for full programmability of the

graphics pipeline, thus facilitating the implementation of custom user-specified

lighting models such as Lambertian lighting, anisotropic lighting, Fresnel lighting and

Blinn lighting.

2.1.1 Point Lights

A point light emits light uniformly in 360 degrees. Point lights have fixed colour and

position values and are omnidirectional in nature. The objects illuminated by this light

type appear either oversaturated (overly bright with a high contrast) or too dark – a

 18

side effect easily corrected through the addition of ambient lights. The primary factor

influencing brightness is the distance between the illuminated surface and the point

light. Point lights are the easiest of all light types to implement, resulting in their

widespread use regardless of their unrealistic simulation of real-life light sources.

Figure 2.5 illustrates the effect of a point light illuminating a surface.

Figure 2.5 Point light illumination.

Using the previously discussed luminance function, we can define a point light

located at point P1 as follows:

Using this luminance function, we can calculate the level of illumination at a specific

point, k, on a surface by multiplying the intensity of the light with the inverse square

distance between the light source and illuminated surface:

2.1.2 Spotlights

Spotlights are specified by a colour, spatial position and some specific direction and

range in which light is emitted. A spotlight is basically a point light with its emitting

light constrained within an angle range. This range is defined using two cones: a

bright inner cone and an encircling outer cone. The inner cone has a high intensity

(correlating to the user-defined luminescence of the light source), with the outer cone

used for fading or attenuating the light source’s intensity in an outwards direction.

This gradual reduction of light intensity is referred to as falloff. Falloff governs the

 19

decrease in light intensity from the inner cone to the outer cone and a falloff value of

1.0 generally denotes an evenly distributed light intensity decrease. Figure 2.6

illustrates this diminishing property.

Figure 2.6 Spotlight falloff.

The intensity of a spotlight can be calculated by considering the angle between the

direction of the light source and a vector to the point being illuminated. The simplest

way of formulating this intensity is to calculate the cosine, to the power of e, of the

direction angle:

We can also calculate the dot product of the spotlight’s direction vector and the

vector to the point being illuminated. This calculation results in the cosine of the

angle between these two vectors (shown in Figure 2.7):

Figure 2.7 The relationship between the direction vector and the vector to the point

being illuminated.

2.1.3 Ambient Lights

Ambient lighting provides a uniform level of illumination throughout a scene.

Numerous large light sources are generally positioned in such a way as to scatter

emitted light in all directions, thus making it impossible to determine the original

position of the light source. Even though ambient light hitting a surface is scattered

 20

equally in all directions, we can still determine the ambient intensity at each point on

the surface.

This type of illumination has a luminance, I, which is the same for all points in the

scene (with the manner of reflection being completely dependent on the material

properties of a surface):

2.1.4 Parallel Lights

A parallel or directional light illuminates objects through a series of parallel light rays.

These light sources can be considered as point lights located a significant distance

from the surface of an object. Moving from one closely located object to another has

little influence on the direction at which light hits the object. Sunlight can be

considered a parallel light source due to it illuminating closely located objects at the

same angle. Thus, the vector to the point being illuminated does not change a great

deal when moving from one object to the next. We also use this direction vector to

describe the light source. Figure 2.8 illustrates a parallel light source.

Figure 2.8 A parallel light.

Parallel lights do not exhibit attenuation or range properties. Consequently, they do

not require any calculations dealing with illumination effects such as falloff. They are

thus excellent light sources when computational overhead is being considered.

2.1.5 Emissive Light

Emissive light is radiated (can be considered self-reflecting) light originating from an

object’s surface. This type of light blends with our other light types, resulting in a

surface smoothly coloured through the combination of all global light colour

components. An object coloured using emissive light appears flat and unshaded; this

is due to emissive reflection not considering vertex normals or “incoming” light

 21

direction. We can describe emissive lighting using a three-component intensity

function:

2.2 Reflection

A surface is only visible when it has the ability to reflect or absorb light. This ability is

the result of the surface’s material properties, i.e. rules determining the amount of

scattering and/or reflection of incident light (Rautenbach, 2008). We can specify

material properties for any surface, the most common types being the Phong

reflection model, ambient reflection, diffuse reflection, specular reflection and

transparency.

The basic lighting model can be considered as a high-level equation summing an

ambient, diffuse and specular component to calculate the colour of an object’s

surface:

Surface colour = ambient lighting term + specular lighting term + diffuse lighting term.

This surface colour is actually equal to the overall amount of light present in a scene,

commonly called global illumination and extended to include an emissive lighting

term, resulting in the following lighting model equation used to simulate a wide range

of lighting conditions:

Global illumination = ambient lighting term

 + specular lighting term

 + diffuse lighting term

 + emissive lighting term.

We will now look at each of these lighting/reflectance components as functions of

material properties (e.g. surface reflectance, colour) and light source properties (e.g.

light direction, colour, position, attenuation).

2.2.1 Ambient Reflection Model

Ambient reflection, also called continuous reflection, occurs whenever light emitted

from a source is reflected so much that its origin is impossible to determine. Ambient

light is omnidirectional in nature. Omnidirectional light is radiated uniformly in all

directions, or more commonly, it is light scattered uniformly in all directions. This is

also the reason for ambient reflection being described as continuous reflection – it

being continuous in all directions, affecting the entire surface in an equal fashion.

 22

Thus, some of the light hitting a surface is absorbed while the rest is reflected –

resulting in ambient reflection. Also, every point in a scene receives the same

amount of ambient lighting, with only the reflection of this light varying. Figure 2.9

illustrates this concept.

Figure 2.9 Ambient reflection

The problem with ambient reflection is that illuminated objects appear rather flat and

unshaded; Figures 2.1 (a) and 2.2(a) show the classic appearance of ambient lit

surfaces.

This ‘flatness’ is the result of ambient lighting not factoring in vertex normals or the

direction, position, range, and additional light source properties such as attenuation

or falloff. Ambient reflection is thus the most computationally efficient of all the

reflection models. The ambient reflection coefficient is an indication of the reflected

amount and is comprised out of red, blue, and green ambient reflection coefficients

collectively. The equation for calculating ambient lighting factors in the material’s

ambient reflectance and the colour of the incoming ambient light:

Ambient lighting term = material’s ambient reflectance x incoming ambient light colour.

We can also define the intensity of ambient reflection using the ambient luminance

function (IA), the incoming ambient light colour (I) and the material’s ambient

reflectance consisting of three reflection coefficients – RAr, RAg and RAb,

representing the red, green, and blue ambient reflection coefficients, respectively:

2.2.2 Specular Reflection Model

Specular reflection occurs whenever light, from a single incoming direction, is
reflected at a single outgoing direction. Specular reflection is characterized by bright

 23

highlights on the surface of an object reflected in the direction of the view vector. This
concept is illustrated in Figure 2.10.

Figure 2.10 Specular reflection

Specularity can be defined the amount of shininess exhibited by an object with the

level of specular reflection attributed to a user definable value, namely, the shininess

coefficient. The bigger this coefficient, the smoother the object’s surface and the

closer we are to a perfect mirror. For example, values ranging from 100 to 500

represent most metallic surfaces while smaller values represent materials with

broader highlights such as plastic and wood. Figure 2.11 shows several spheres with

specular highlights.

Figure 2.11 Examples of specular highlights

To calculate specular reflection we need information about both the incoming light
direction and location of the viewer as well as the colour properties of the material,
light source and shininess of the surface. The equation for calculating specularity is:

Specular lighting term = material’s specular colour
 x colour of incoming specular light
 x geometryFacingFlag
 x (max(normalized surface normal
 • normalized halfway vector,0))

shininess

 24

The geometryFacingFlag element is a flag ensuring that specular highlights are

limited to geometry facing a light source – its value is calculated by taking the dot

product between the normalized surface normal and the normalized vector pointing

to the light source. If this dot product is greater than zero then the

geometryFacingFlag element is set to 1, otherwise 0. The normalized halfway vector

element is the vector halfway between the normalized vector pointing towards the

viewpoint and the normalized vector pointing in the direction of the light source.

Specular highlights are prominent when the angle between these two vectors is

small. Figure 2.12 shows the vectors used in the calculation of this specular term.

Figure 2.12 Vectors used in the calculation of the specular term

Alternatively we can define the intensity of specular reflection using the specular

luminance function (IS); the angle between the reflection vector (the direction of a

perfectly reflected ray) and the vector directed at the viewpoint; the intensity of the

specular light, I; the shininess coefficient, α; and Rs, the fraction of the incoming

specular light being reflected:

2.2.3 Diffuse Reflection Model

Diffuse reflections occur when incoming light is reflected in arbitrary directions. The
main contributing factor to this form of reflection is an uneven or rough surface. A
diffuse surface appears identical to all viewers, regardless of their respective point of
view. This type of reflection is common for matte or uneven surfaces (such as
carpets or brushed metal) and is used for shading surfaces in such a way as to
convey a sense of depth.

Diffuse reflection is a function of the incoming light direction and surface normal, in
other words, the reflection of incoming light is dependent on the surface roughness
and incoming light angle. The equation for calculating diffuse lighting is:

 25

Diffuse lighting term = material’s diffuse color
 x color of incoming diffuse light
 x max(normalized surface normal
 • normalized vector towards light,0)

The dot product between the normalized surface normal and normalized vector
pointing towards the light source gives the measure of incident light received by the
surface – the smaller the angle between these two vectors, the greater the dot
product result, and the greater the amount of incident light falling on the surface. The
max (normalized surface normal. normalized vector towards light, 0) element in the
equation ensures that only surfaces facing a light source reflect some diffuse lighting
– surfaces facing away from a light source result in a negative dot product. Figure
2.13 shows a diffuse surface with the normalized surface normal and normalized
vector pointing at the light source.

Figure 2.13 Diffuse reflections

We can also define perfect diffuse surfaces, i.e. surfaces reflecting light in no
particular direction. These surfaces, also called Lambertian surfaces, are generally
so rough that it is mathematically impossible to determine a preferred angle of
reflection. Also, Lambertian light has a consistent intensity regardless of the distance
between the reflecting surface and light source.

Perfect diffuse reflection can be modelled using Lambert’s cosine law. This law
states that the reflection or radiance observed from a perfect diffuse surface is
directly relative to the cosine of the angle between the vector directed at the light
source and the surface normal:

Simply put, Lambert’s law states that a perfectly diffuse surface always reflects the
same amount of light, regardless of the viewing angle. For example, say a surface is
being illuminated using a parallel light source, when this light is positioned
perpendicular to the surface; the surface will appear brightly lit. Placing this light
source at, say, a 135 degree angle will result in a more dimly lit surface due to the
light rays covering a larger surface area. Figure 2.14 illustrates Lambert’s cosine law.

 26

Figure 2.14 A perfect diffuse surface being illuminated by (a) a light source
positioned perpendicular to the surface and (b) a light source positioned at a 135
degree angle

2.2.4 The Phong Reflection Model

The Phong reflection model, also loosely called Phong shading, was developed in
1973 by Bui Tuong Phong (the late computer graphics researcher and pioneer) and
later extended to include a halfway vector in the calculation of the specular term by
Jim Blinn. The Phong model is an illumination model that controls the shading of
individual pixels; it is computationally efficient and leads to realistic looking
reflections. Phong’s goal was to create realistic looking objects in as close to real
time as possible. The Phong reflection model basically combines ambient, specular
and diffuse lighting components to closely approximate real world reflections. This
concept is shown in Figure 2.15. We can consequently write the combination of these
lighting terms as:

Figure 2.15 Combining the lighting terms, producing a Phong reflection

Mathematically, the Phong reflection model considers reflected light as a function of
the cosine between the surface normal and the incoming light direction. More
precisely, the colour value of a point on the surface being illuminated is a function of
four vectors, as shown in Figure 2.16: the normal vector at this point, the vector
directed at the viewpoint, a vector directed at the light source, and the reflection
vector (indicating the direction of a perfectly reflected ray).

 27

Figure 2.16 Vectors used in the calculation of the Phong reflection model

The following equation can be used to calculate the Phong reflection of a point on the
surface of an object:

with ka the material’s ambient reflectance, ia the colour of incoming ambient light, kd
the material’s diffuse reflectance, L the vector directed at light source, N the surface
normal, id the colour of incoming diffuse light, ks the material’s specular reflectance, R
the reflection vector, V the vector directed at the viewpoint, a the shininess coefficient
and is the colour of incoming specular light. The Phong reflection, using this
equation, is typically calculated for individual intensities of red, green, and blue. The
sum component in the above given equation defines a set of light sources. The effect
of each light source, on the point being illuminated, is thus considered by the
equation.

2.3 Introduction to Real-time Shadow Generation

Real-time shadow generation contributes heavily towards the realism and ambience

of any scene being rendered. Research dealing with the calculation of shadows has

been conducted since the late 1960s and has picked up great momentum with the

evolution of high-end dedicated graphics hardware. Shadows are produced by

opaque or semi-opaque objects obstructing light from reaching other objects or

surfaces. A shadow is a two-dimensional projection of at least one object onto

another object or surface (Crow, 1977). The size of a shadow is dependent on the

angle between the light vector and light blocking object. The intensity of a shadow is

in turn influenced by the opacity of the light-blocking object. An opaque object is

completely impenetrable to light and will thus cast a darker shadow than a semi-

opaque object. The number of light sources will also affect the number of shadows in

a scene (with the darkness of a shadow intensifying where multiple shadows

 28

overlap). Figure 2.17 illustrates shadow generation, specifically the implementation of

stencil shadow volumes – a popular shadow rendering technique.

Figure 2.17 Example of stencil shadowing – note the darkening of overlapping

shadows.

The drive towards realism has led to the development of many shadowing

algorithms. Some of these algorithms, like shadow mapping and shadow volumes,

are more successful than others. The success of an algorithm is dependent on the

balance between speed and realism and techniques like shadow mapping and stencil

shadow volumes are particularly amenable to hardware implementation – thus

freeing the CPU of a substantial processing burden and making the real-time

rendering of shadows feasible (Kilgard, 1999). Other shadowing approaches, such as

the one proposed by Boulanger et al (2003), have in turn focussed on visually

pleasing approximations for computationally expensive natural scenes.

Looking at shadows from a foundational perspective reveals them as a product of an

environment’s lighting. Shadows can have either hard or soft edges. This is

dependent on the type of light source used and the distance between the light source

and object. In the case of soft shadows we differentiate between both an umbra and

penumbra. The darkest area of a shadow, receiving no light at all, is referred to as

the umbra with the penumbra, receiving a small amount of light, indicating the

partially shadowed edge (Akenine-Möller et al, 2002). Figure 2.18 illustrates a

shadow’s umbra and penumbra.

 29

Figure 2.18 A soft shadow with related umbra and penumbra.

It should be noted that there is always a gradual intensity transformation from the

umbra to penumbra (Akenine-Möller et al, 2002). However, the fading of the shadow

(as its distance from the casting object increases) need not necessarily be gradual.

Point lights will, for example, produce non-fading hard-edged shadows, with ambient

light sources producing soft-edged shadows fading into the distance. The area of a

light source also affects the gradual softening of shadows. The larger the light

source’s area, the more quickly the shadow grades off. Figure 2.19 shows the

difference between shadows produced by point and ambient light sources.

Figure 2.19 (a) Hard-edged shadow produced by a point light source. (b) Soft-

edged shadow produced by an ambient light source.

We will now investigate several shadowing algorithms, including the fundamentals of

shadow volumes and shadow mapping. The first two algorithms, namely scan-line

polygon projection and Blinn’s shadow polygons, are historic in nature. We describe

these algorithms here not only for the sake of completeness but also since some of

the elements introduced by them form the basis of general shadow computation.

These first two techniques aren’t suited for real-time implementations. However,

more recent algorithms such as stencil shadow volumes and hardware shadow

 30

mapping remedy this situation by emphasising the balance between processor

efficiency and realism.

It is necessary to note, before continuing, that shadowing remains one of the most

processor intensive tasks and despite each technique’s limitations, it is important to

consider each algorithm with its intended application area in mind.

2.4 Shadow Rendering Algorithms

2.4.1 Scan-Line Polygon Projection

A quite complex, and now mostly redundant shadow algorithm was introduced by

Appel (1968) and further developed by Bouknight and Kelley (1970). This algorithm,

commonly known as scan line polygon projection, adds shadow generation to scan-

line rendering. A scan-line algorithm operates on a row-by-row basis, as opposed to

a pixel-by-pixel or polygon-by-polygon basis. A scan-line itself is a single line or row

composed of a series of successive pixels stored in an array or list. The overall

image is rendered as a result of the consecutive downwards repositioning of the

scan-line. To enable both pre-rendered and real-time shadow generation via scan-

line algorithms, it is necessary to append the original algorithm with a pre-processing

stage. This pre-processing stage builds up a secondary data structure linking all the

polygons that will cast a shadow on some other polygon.

The scan-line projection algorithm has an additional stage where all the polygons of a

scene are projected onto a sphere centred at the light source (the centre of

projection). This allows for the identification of all polygons casting shadows on other

polygons. It is important to remember that, in a scene with k polygons, one will have

at most k(k – 1) shadows – the detection and elimination of polygon groups not

interacting are thus of crucial importance. With all the shadow casting polygons

linked in a secondary data structure, we can now project the edges of these polygons

onto polygons intersecting the scan-line. A pixel’s colour value is modified wherever

the scan-line traverses one of these shadow edges. Hence, the light source (at the

centre of projection) and shadow polygon cast a shadow onto the polygon

intersected by the scan-line. The following cases denote whether a given pixel is in

shadow or not:

1) The scan-line algorithm continues normally if no shadow casting polygon

for the given pixel exists.

2) Decrease the brightness of the scan-line segment’s pixels if a shadow

casting polygon fully overlaps the intersected polygon.

3) If a shadow casting polygon partially overlaps the intersected polygon,

subdivide the intersecting scan-line segment recursively until condition 1

or 2 is reached.

Scan-line polygon projection only allows for the generation of hard-edged shadows

via point light sources. Figure 2.20 illustrates the above described process.

 31

Figure 2.20 Scan-line polygon projection.

2.4.2 Blinn’s Shadow Polygons

An extremely easy to use shadow generation technique was described by Blinn

(1988). This method simply calculates the projection of an object on some base-

plane. In short, a shadow cast by a point light and a polygon onto another polygon

can be rendered by projecting the first polygon onto the plane of the second polygon

(Blinn, 1988). The point light is in this case at the centre of projection and the

resulting shadow is referred to as a shadow polygon. Figure 2.21 illustrates the

projection of a shadow polygon (onto the xy-plane) with the light source located at

the centre of projection.

Figure 2.21 Shadow polygon with a point light source at the centre of projection.

The local illumination approximation states that if we have an infinitely positioned
point light source, then we can consider its light rays as parallel (Phong, 1975).

These rays, emanating from a light source located at the point ()lll zyx ,, , will cast a

shadow at the point ()sss zyx ,, based on the intersection of any point ()ooo zyx ,,

located on an object positioned between the light source and some plane.

Generally though, if we have some finitely positioned point light, then we can

translate the scene by some matrix, ()lll zyxT −−− ,, , so that the light source is

 32

positioned at the centre of projection. This translation yields the following projection
matrix:

.

00
1

0

0100

0010

0001

−

=

ly

M

After applying this projection matrix we have to translate the scene back to its original

position with the generic translation ()lll zyxT ,, . By concatenating the two

translation matrices with the projection matrix, we are able to define the shadow

projection),,(sss zyx of the original point ()ooo zyx ,, as:

).
/)(

,0,
/)(

(
ll

l
l

ll

l
l

yyy

zz
z

yyy

xx
x

−

−
−

−

−
−

The following steps outline the process of creating a shadow polygon:

1) Define and initialise the shadow projection matrix M.

2) Render the polygon normally.

3) Translate the light to the origin (centre of projection).

4) Calculate the projection of the object with the shadow projection matrix.

5) Translate everything back to their original positions.

6) Render the shadow polygon.

This method is often utilised to render the shadows of single polygons (Blinn, 1988).

It is, however, only useful for the projection of shadows on flat surfaces, not for inter-

object shadows. We will much rather implement an alternative method whenever

objects are expected to cast shadows on other objects. For example, we could create

a relatively uncomplicated shadow algorithm by simply modifying a hidden surface

removal algorithm. The premise behind our modification would be that shadows are

in fact areas hidden from light sources.

2.4.3 Shadow Mapping

Lance Williams introduced the concept of shadow mapping in 1978. His primary aim

was the rendering of shadows on curved surfaces. Shadow mapping adds shadows

to a scene by testing whether a particular pixel is hidden from a light source. It does

this by first constructing a separate shadow Z-buffer for every light source and then

storing the depth information of a scene in this buffer with the light source as view

point. This depth information leads to a depth image or shadow map consisting of all

the polygons not hidden from the light source. Hidden pixels are discovered through

 33

a comparison with this depth image (Everitt et al, 2001). The shadow map partitions

a light’s view volume into shadowed and non-shadowed regions and we store this

depth buffer image (shadow map) as a texture in the 3-D accelerator’s texture unit.

This texture is subsequently projected onto an area and/or object(s) for the shadow

effect.

Although the shadow map is now stored in the display adaptor’s texture memory, it

must still be updated every time changes are made to the scene’s light sources,

geometry or object positions. However, no updating of the shadow map is required

when altering the camera’s point of view. We will typically partition the scene when

implementing shadow maps, thus limiting the time it takes to update the depth image.

The final step of the algorithm is to render the scene via a Z-buffer algorithm. More

specifically, if a pixel is not hidden from the light source then the related vertex is

translated from the view point’s screen space to light space (screen space with the

light at the centre of projection). After all the vertices of an object have been

translated, we have the object’s spatial location from the light source’s point of view.

The x- and y- coordinates of a translated vertex are used to index the shadow Z-

buffer. Its z-component is used during the depth comparison test. This test simply

compares a vertex’s depth value to the corresponding value stored in the shadow

map, determining whether the specific vertex will be shadowed or not. More explicitly,

the vertex is in shadow if its depth value is greater than the value stored in the

shadow map. For all other cases we can say that the vertex is closer to the light

source than another arbitrary shadow casting surface and will thus be rendered

without a shadow. Figure 2.22 shows a 3-D object and its resulting shadow map.

Figure 2.22 (a) Object as seen from the light’s point of view (b) Object’s depth map

from the light’s point of view (c) Shadow polygon rendered via the horizontal

projection of the depth map.

Shadow mapping can be implemented as either a single- or multi-pass algorithm

(Everitt et al, 2001). That is, if a fragment shader is used to render shadows by

 34

performing the depth comparison test, then we will not require additional passes to

produce the shadow maps. However, if we do not make use of programmable

shaders (such as NVIDIA’s Cg or DirectX’s High Level Shader Language) then we

won’t have access to predefined lighting models (lit or shadowed) and will

consequently have to implement an additional shadow map generation pass for each

light source. In more complete terms, we can outline the dual-pass shadow mapping

process as follows:

1) Create the shadow map by rendering the Z-buffer with regard to the

light’s point of view.

2) Draw the scene from the viewer’s point of view.

3) For each rasterized fragment, calculate the fragment’s coordinate

position with regard to the light’s point of view.

4) Use the x- and y- coordinates of step 3’s translated vertex to index the

shadow Z-buffer.

5) Do the depth comparison test, if the translated vertex’s depth value (the

z-value of step 3’s translated vertex) is greater than the value stored in

the shadow Z-buffer, then the fragment is shadowed, else it is lit.

Shadow mapping suffers from aliasing errors due to the use of a projection

transformation mapping shadowed pixels to screen pixels, often causing changes in

a pixel’s screen size. This is a direct result of the Z-buffer algorithm’s use of point

sampling. The rendered shadow’s edges are often jagged due to point sampling

errors occurring during the calculation phase of the shadow Z-buffer. These errors

are further amplified when accessing the shadow Z-buffer for the projection of pixels

onto the shadow Z-buffer map. The only way of minimising the visibility of a shadow’s

jagged edges is to implement some form of pre-filtering and to use very large (high

resolution) shadow maps.

2.4.4 Shadow Volumes

A shadow volume is a volumetric area defined by light rays extending outwards about

the silhouette edge of an object (Crow, 1977). All the objects positioned within a

shadow volume are hidden from the light source and are thus in either full or partial

shadow. The contour of an object’s surface is defined as a silhouette edge when the

normal vector of the surface is perpendicular to the view vector (Everitt et al, 2002). A

silhouette edge can more generally be considered as an outline or edge separating a

front- and back-facing surface (Heidmann, 1991). The shape of the shadow volume

is determined by the shape of the object’s silhouette edge and a shadow volume is

made up of so-called “invisible” shadow polygons. We refer to these shadow

polygons as “invisible” since they are never rendered and only used to determine the

shadowed areas. Shadow volumes are theoretically infinite volumes produced by

polygons; however, for practical usability we intersect an infinite shadow volume with

the view volume to produce a finite front- and back-capped shadow volume. Figure

2.23 shows the silhouette edge of a cube with Figure 2.24 illustrating the capping of a

semi-infinite shadow volume.

 35

Figure 2.23 A simple silhouette edge.

Figure 2.24 Construction of finite shadow volume.

The original shadow volume concept was introduced by Frank Crow in 1977. He

defined a shadow volume as three-dimensional area occluding objects and surfaces

from a light source. This original approach has since been extended to incorporate

the generation of soft-edged shadows, including revision of the algorithm to utilise

modern-day 3-D acceleration capabilities. The advent of dedicated 3-D acceleration

hardware and the direct control of this hardware via APIs such as OpenGL and

Direct3D have significantly contributed to the use of shadow volumes in modern

computer games such as id Software’s Doom 3 and Bioware’s Neverwinter Nights

(Carmack, 2000).

The first feasible real-time shadow volume algorithm was introduced by Tim

Heidmann in 1991. His algorithm made use of the 3-D accelerator’s stencil buffer –

effectively limiting the render area (called stencilling). The stencil buffer controls

rendering by enabling or disabling drawing to a specific pixel. Heidmann discovered

that the stencil buffer could be used to count the number of front- and back-facing

shadows in front of an object if we rendered the shadow surfaces in two passes. By

 36

counting these shadow surfaces we are able to determine whether an object’s

surface is in shadow or not. Heidmann’s technique became known as the depth-pass

stencil mask generation algorithm.

The general Heidmann stencil shadow volume process is summarised by the

following phases:

1) Assume the scene in entirely shadowed.

2) Render the shadowed scene.

3) Calculate the shadowed scene’s depth information.

4) Use this depth information to define a mask via the stencil buffer to

indicate the lit areas.

5) Assume the scene is entirely lit.

6) Render the lit scene, applying the stencil buffer mask to cast the

shadows.

There are two variations to the depth-pass technique, namely, depth-fail and

exclusive-or (the latter of which is omitted due to its failure in dealing with intersecting

shadow volumes). All shadow volume algorithms follow the above described shadow

generation process and differ only in their approach of calculating the stencil mask.

The depth-pass and depth-fail stencil shadow volume algorithms are described in

detail below.

2.4.4.1 Depth-pass

Shadow volume algorithms operate on a per-pixel basis, performing a shadow test

for every pixel in the frame buffer. We refer to all the data needed for the rendering of

a pixel (stored in the frame buffer) as a fragment. Our algorithms will thus focus on all

rasterized fragments to determine whether a specific fragment is in shadow or not. In

more complete terms, we can write the above outlined stencil shadow volume

process as follows:

1) For each rasterized fragment, render the fragment using ambient lighting,

updating the Z-buffer after each fragment has been rendered.

2) Now we have to compute which fragments are in shadow. We once again

look at each rasterized fragment, rendering the fragment as lit if not

shadowed.

We can use the depth-pass method to test whether a fragment is in shadow or not.

This method computes the fragments in shadow by generating a stencil mask. Using

the stencil buffer, we count the number of front- and back-facing shadows in front of

an object by rendering the front- and back-faces of the shadow surfaces in two

passes. By counting these shadow surfaces we are able to determine whether an

object’s surface is in shadow or not. If there are more front-facing shadow surfaces

than back-facing ones, then we can conclude that a shadow is projected onto an

 37

object. The following process is used to compute the number of fragments in

shadow:

1) For each rasterized fragment, render the fragment using ambient lighting,

updating the Z-buffer after each fragment has been rendered.

2) Determine the silhouette edges of a shadow casting object. Following this

the shadow volume polygons (shadow surfaces) are calculated (from the

light source using the silhouette edges of the shadow casting object).

These two steps are performed for each shadow casting object.

3) Now deal with the front- and back-facing shadow surfaces with regard to

the point of view, incrementing the stencil buffer value for each front

facing shadow surface if the depth-test passes (depth-pass using the Z-

buffer) – counting the shadows in front of the object. Following the test for

front-facing shadow surfaces, we focus on each back-facing shadow

surface with regard to the view point – decrementing the stencil buffer

value if the depth-test for a specific shadow surface passes.

Following the above process, we simply have to check the stencil buffer value for

each fragment to identify the fragments in shadow. If a fragment’s stencil buffer value

is greater than zero then we need not draw this fragment during the second

rendering pass – hence causing the fragment to be in shadow. Figure 2.25 illustrates

the above described process:

Figure 2.25 Testing whether a fragment is in shadow.

The described depth-pass process is extremely efficient; however, certain issues

become apparent upon implementation. The most common problem occurs

whenever the point of view (camera or viewer) is positioned within a shadow volume.

This leads to visibility of the shadow’s back-face. The depth-test will pass in this

case, causing the stencil buffer value to be decremented, thus becoming -1 due to a

back-face being visible prior to any front-facing shadow surfaces. This problem is

referred to as stencil counting inversion and it can be resolved by capping the front of

the shadow volume. Alternatively we can initialise the stencil buffer to 2K-1, with K the

 38

precision of the stencil buffer. These approaches are, however, less than efficient

and the depth-fail technique is generally implemented as an alternative.

2.4.4.2 Depth-fail

The depth-pass approach computes the stencil buffer values by incrementing for

front- and decrementing for back-facing shadow surfaces. The depth-fail approach

modifies this calculation process (originally counting from the point of view) by

counting from infinity. So, by reversing the depth and counting the shadow surfaces

behind an object instead of those in front of it, we no longer face the stencil counting

inversion issue. The only general issue with this approach is that we must cap the

end of the shadow volume to avoid the condition where shadows point to infinity. The

following process is used to compute the number of fragments in shadow:

1) For each rasterized fragment, render the fragments using ambient

lighting, updating the Z-buffer after each fragment has been rendered.

2) Determine the silhouette edges of a shadow casting object. Following this

the shadow volume polygons (shadow surfaces) are calculated (from the

light source using the silhouette edges of the shadow casting object).

These two steps are performed for each shadow casting object.

3) Now deal with the front- and back-facing shadow surfaces with regard to

the point of view, decrementing the stencil buffer value for each front

facing shadow surface if the depth-test fails (depth-fail using the Z-

buffer). Following the test for front-facing shadow surfaces, we focus on

each back-facing shadow surface with regard to the view point –

incrementing the stencil buffer value if the depth-test for a specific

shadow surface fails.

Although the depth-fail method effectively avoids the stencil counting inversion issue

it still requires the additional back-capping of shadow volumes. This results in some

extra rasterization time which can lead to considerable performance slowdowns

under certain conditions. It is thus in some cases more advantageous to use the

depth-pass method while explicitly dealing with the cases where the point of view is

located within a shadow volume. It is also often possible to increase the performance

of a stencil shadow volume implementation by utilising some hardware extension

such as NVIDIA’s depth bounds test enabling the culling of shadow volume sections

not affecting the visible area.

It is interesting to mention though that Kolic el al (2004) developed a shadowing

technique purely focussing on the utilisation of current GPU advances. Their

algorithm specifically deals with the casting of shadows on concave complex objects

such as trees. Koloc et al (2004) formally state that “for those objects, silhouette

calculation that is usually preformed by other shadow volume algorithms is

complicated and poorly justified. Instead of calculations, it is better to assume a worst

case scenario and use all of the edges for construction of the shadow volume mesh,

skipping silhouette determination entirely. The achieved benefit is that all procedures,

 39

i.e. the object and shadow calculation and rendering, could be done on GPU. The

proposed solution for shadow casting allows open edges. Indexed vertex blending is

used for shadow projections, and the only calculation required is determining

projection matrices. Once created, shadow volume is treated like any other mesh.”

When Crow implemented and defined the original shadow volume model back in

1977, he simply did not have access to any of these modern hardware acceleration

aids and hence did not develop the now commonly used stencil shadow volume

algorithm with modern day graphics accelerators in mind.

Thakur et al (2003) also developed a discrete algorithm for improving the Heidmann

original. Chapter 3 deals with this algorithm in detail. Another significant algorithmic

improvement over the Heidmann original was made by Chan and Durand (2004).

They specifically combined the strengths of shadow maps and shadow volumes to

produce a hybrid algorithm for the efficient rendering of pixel-accurate hard-edged

shadows. Their method uses a shadow map to identify pixels located near shadow

discontinuities, using the stencil shadow volume algorithm only at these pixels. This

approach is also dealt with in Chapter 3.

2.4.4.3 Soft-edged Shadows using Penumbra Wedges

Implementation of the above discussed shadow volume techniques always result in

pixel-accurate hard-edged shadows. Soft-edged shadows can be simulated through

the construction of several shadow volumes by translating the original light source to

various positions close to that of the original. Following this we simply have to

combine the resulting shadows. The problem with this approach is rendering

performance due to shadow volume construction taking up a substantial amount of

processor time. One solution is the calculation of penumbra wedges as proposed by

Akenine-Möller and Assarsson (2002). A penumbra wedge is defined in place of a

shadow polygon for each silhouette edge of an object – combining a series of these

penumbra wedges result in the creation of a soft-edged shadow.

The penumbra wedge algorithm calculates the amount of light that reaches a certain

point p. This amount of light intensity ranges from ‘0’ to ‘1’. When the light intensity is

‘0’ we can define the point p as fully shadowed or conversely as fully lit with a light

intensity of ‘1’. For all other values we can define point p located within the penumbra

region. The light intensity inside the penumbra region is calculated using a signed 16-

bit buffer. This light intensity buffer is simply a high precision stencil buffer. The lower

the number of bits used for the buffer, the higher the implementation’s performance

and the lower the number of shades in the penumbra region. The varying shade

levels in the penumbra region are created by multiplying each light intensity value

stored in this buffer with some value s. This value is normally chosen as ‘255’ since

colour buffers allow for 8-bits per component, leading to at least ‘256’ on-screen

penumbra wedges. The following process is used for calculation of the penumbra

wedges (illustrated in Figure 2.28):

 40

1) Initialise the light intensity buffer to ‘255’ – indicating that the viewer is

now positioned outside of the shadow volume.

2) Draw the scene using both specular and diffuse lighting.

3) Draw the penumbra wedges using the following algorithm:

a. For some light ray, compute the entry and exit points on the

outside penumbra wedge. This must be done for each visible

fragment. The entry point is defined by an x- and y-coordinate,

with the corresponding z-value stored in the Z-buffer.

b. Transform this point to world space coordinates (the point’s

independent local coordinate system has now been transformed

into a global coordinate system. This provides all the points with a

shared global coordinate space – i.e. one point’s position can be

described in terms of another’s and all user defined points can

now be positioned within the same scene).

c. Test whether the point is located within the penumbra region.

i. If the point is located within the penumbra region, compute

the light intensity of this point and the entry point, scaling

the light intensity by subtracting the computed light intensity

of the point located within the wedge from the entry point

and multiplying this result by ‘255’.

ii. Add the above calculated light intensity to the light intensity

buffer.

4) Add ambient lighting to the rendered scene.

Figure 2.28 Locating a point within the penumbra region.

The possibility of overlapping penumbra wedges exists in situations where the

volume is entered more than once. Such cases result in negative light intensity

values, thus requiring the clamping of the values stored in the light intensity buffer to

the range [0, 255]. It is also possible to leave the volume more than once whenever

the viewer is located within the volume. By setting the maximum possible light

intensity value to ‘255’, we effectively avoid higher light intensities than that of the

areas outside the volume – which clearly isn’t possible.

 41

Akenine-Möller and Assarsson’s penumbra wedges algorithm (Akenine-Möller and

Assarsson, 2002) can be implemented using either OpenGL or Direct3D. The main

problem is the large vertex and pixel shader programs required, making true real-

time performance only achievable on extremely high-end hardware. The following

steps outline a hardware-accelerated implementation of the penumbra wedge

algorithm:

1) Render the scene using either OpenGL or Direct3D.

2) Implement the wedge rasterization, initialising the Z-buffer prior to

rasterization.

3) Rasterize the front facing triangles of the penumbra wedges – the entry

point’s plane is now identified.

4) Identify the exit point by calculating the ray’s intersection with the back

facing planes and picking the one closest to the ray.

5) Specify the point in world space coordinates via a transformation based

on the Z-value.

6) Determine whether this currently selected point falls within a penumbra

wedge or not by substituting the point’s coordinates into the plane

equations:

a. If the point falls within a wedge, calculate the intersection

distances from the point to the planes.

Brotman and Badler (1984) developed a similar algorithm for the generation of soft-

edged shadows (adding penumbras to hard-edged shadows). They proposed the use

of an enhanced Z-buffer algorithm, thus retaining the benefits inherent to the Z-buffer

rendering approach. They extended the Z-buffer to represent a pixel location as a

record of five fields. During the shadow polygon rendering phase, these pixel records

are modified based on whether a point is lit or not. The penumbras are created by

representing a distributed light source as a series of point light sources. This

approach is processor intensive due to the combination of shadow volume

calculations with Z-buffer memory access costs. Crowe’s ideas were also extended

by Bergeron (1985) to include non-planar polygons and objects.

2.5 Summary

In this chapter we focussed on the fundamentals of lighting and real-time shadow

generation in detail. Light sources were introduced at hand of the role they play in the

creation of properly lit and shaded objects. Building on this we presented the

illumination function as a way to describe any light source in terms of six variables.

We also discussed how a lighting model can be used to define light-object

interactions based on the type of light source and the material properties of the

object.

We subsequently investigated a number of light source types, specifically looking at

point lights as light sources emitting light uniformly in 360 degrees, spotlights as point

 42

lights emitting light within an angle range, ambient lighting as a way to provide a

uniform level of illumination throughout a scene, parallel lights as sources illuminating

objects through a number of parallel light rays and emissive light as self-reflecting

light originating from an object’s surface.

Following this we looked at several reflection models, namely, the ambient reflection

model, the specular reflection model, diffuse reflection and the Phong reflection

model. We specifically investigated these reflection models as functions of material

properties (e.g. surface reflectance, colour, etc) and light source properties (e.g. light

direction, colour, position, attenuation, etc).

Next we investigated real-time shadow generation and its contribution to the realism

and ambience of rendered environments. We started by defining a shadow as the

two-dimensional projection of at least one object onto another object or surface,

subsequently looking at the physical properties of shadows and the technique of

shadow casting in general.

Following this introduction we investigated a number of shadowing algorithms,

specifically scan-line polygon projection, Blinn’s shadow polygons, shadow mapping

and stencil shadow volumes. Our discussion of Blinn’s shadow polygons revealed it

as an extremely easy to use shadow generation technique often utilised to render the

shadows of single polygons on flat surfaces. We also considered the quite complex,

and now mostly redundant scan-line polygon projection algorithm historically used for

the generation of hard-edged shadows.

The chapter concluded by presenting the fundamentals of shadow mapping and

stencil shadow volumes. Our shadow mapping discussion highlighted the general

dual-pass shadow mapping technique. The shadow volume section presented the

theory behind the construction of finite shadow volumes as well as the stencilling

process, differentiating between the depth-pass and depth-fail methods used to test

whether a fragment is in shadow or not. We also briefly touched on the generation of

soft-edged shadows using penumbra wedges.

The discussion of these topics, as mentioned, was included to familiarise the reader

with the basic concepts of real time scene rendering. The realism of rendered scenes

is, of course, enhanced through the addition of shadows. The next chapter presents

the implementation of various shadow rendering algorithms, specifically the stencil

shadow volume algorithm, the shadow mapping algorithm and a number of hybrid

approaches.

 43

Chapter 3

Implementing Shadow Algorithms

Chapter 2 presented the theory behind numerous real-time shadow rendering

algorithms and techniques with its particular focus being on the rendering of

shadows by means of stencil shadow volumes and depth stencil testing.

Chapter 3 extends this discussion to include implementation details for

various shadow rendering algorithms, specifically the stencil shadow volume

algorithm, the shadow mapping algorithm and a number of hybrid approaches

such as McCool’s shadow volume reconstruction using depth maps, Chan

and Durand’s hybrid algorithm for the efficient rendering of hard-edged

shadows, Thakuret al’s elimination of various shadow volume testing phases

and Rautenbach et al’s shadow volumes, hardware extensions and spatial

subdivision approach as well as other documented enhancements. It

specifically focuses on implementation details such as shadow volume and

shadow map construction, the counting of front- and back-facing surfaces and

the creation of silhouette and cap triangles, etc. All shadow generation

techniques are implemented in C++ using Direct3D 10.0 and Microsoft’s High

Level Shading Language 4.0. The chapter illuminates selected portions of the

code with the aim of providing the reader with a feel for the kind of coding

needed and to illustrate the implementation details of these algorithms more

clearly.

We discuss the implementation of these algorithms with the aim of

incorporating them into a fuzzy-based expert system framework for the high

speed rendering of shadows (discussed in Chapter 5).

In this chapter we will investigate:

• The Stencil Shadow Volume Algorithm

• The Stencil Buffer

• Enabling Depth-Stencil Testing

• Implementing Stencil Shadow Volumes

• The Shadow Mapping Algorithm

• Implementing Shadow Maps

• Shadow Volume Reconstruction from Depth Maps

• A Hybrid Algorithm for the Efficient Rendering of Hard-edged Shadows

• Elimination of various Shadow Volume Testing Phases

• Shadow Volumes and Spatial Subdivision

 44

3.1 The Stencil Shadow Volume Algorithm

The stencil shadow volume benchmarking program consists of a relatively simple

static cubic environment, a movable/interchangeable three-dimensional mesh object

and a variable number of light sources (Figure 3.1, Figure 3.2).

Figure 3.1 Top-down representation of the shadow volume evaluation
environment.

Figure 3.2 Rendering a shadow by means of stencil shadow volumes (using one

light source and three-dimensional mesh) – accurately cropped and skewed to fit the

surrounding area.

The depth-fail stencil shadow volume algorithm is implemented using the following

method (described in Chapter 2):

1) For each rasterised fragment, render the fragments using ambient

lighting, updating the Z-buffer after each fragment has been rendered.

2) Determine the silhouette edges of a shadow casting object. Following this

the shadow volume polygons (shadow surfaces) are calculated (from the

 45

light source using the silhouette edges of the shadow casting object).

These two steps are performed for each and every shadow casting

object.

3) Now deal with the front- and back-facing shadow surfaces with regard to

the point of view, decrementing the stencil buffer value for each and

every front facing shadow surface if the depth-test fails (depth fail using

the Z-buffer). Following the test for front-facing shadow surfaces, we

focus on each back-facing shadow surface with regard to the view point –

incrementing the stencil buffer value if the depth-test for a specific

shadow surface fails.

We will now look at the stencil buffer and the depth-stencil testing process; two

concepts crucial for the implementation of stencil shadow volumes. Building on this,

we examine the implementation of stencil shadow volumes.

3.1.1 The Stencil Buffer

The stencil buffer is a buffer located on the 3-D accelerator that controls the

rendering of selected pixels. Stencilling is the associated per-pixel test controlling the

stencil value of each pixel via the addition of several bit-planes (one byte per pixel).

These bit-planes, in association with depth-planes and colour-planes, allow for the

storage of extra data – specifically the pixel’s stencil value in the case of the stencil

buffer. Stencilling is thus the process of selecting certain pixels during one rendering

pass and subsequently manipulating them during another.

Stencilling can thus be described as the processes of defining a mask via the stencil

buffer to indicate shadowed and lit pixel areas. With this information we apply the

stencil buffer mask to update all the lit pixels, thus rendering shadows in the process.

The stencil buffer allows for the manipulation of individual pixels, a property

commonly used to create extremely accurate shadows. Use of the stencil buffer is,

however, not limited to only the generation of shadows; it is also extensively used for

reflections and has been widely supported since NVIDIA’s RIVA TNT and the ATI

RAGE 128 (circa 1998).

It is important to note the close relation between the stencil buffer and depth buffer.

These two buffers are firstly located in physical proximity to each other (both

commonly share the same physical area in the graphics hardware’s memory).

Secondly, the depth buffer is required to control whether a certain pixel’s stencil

value is increased or decreased based on the result of a depth test (pass/fail). The

stencil buffer stores a stencil value for each pixel, similarly to the depth buffer storing

the depth value of every pixel – both the stencil buffer and depth buffer values are

required for rejecting or accepting rasterized fragments.

 46

Enabling Depth-Stencil Testing

Before initialising the stencil buffer it is important to set the format of the depth stencil

to DXGI_FORMAT_D24_UNORM_S8_UINT (previously D3DFMT_S8D24 in DirectX 9).

This DirectX Graphics Infrastructure (DXGI) component is responsible for defining

the memory layout of each pixel making up an image.

DXGI_FORMAT_D24_UNORM_S8_UINT is simply a DXGI enumeration type required

by the DXUTDeviceSettings DXUT structure. DXUT simplifies the creation of a

Direct3D device, the specification of windows and the handling of Windows

messages. We set the AutoDepthStencilFormat member of the

DXUTDeviceSettings structure as follows:

DXUTDeviceSettings* pDXUTDeviceSettings;

pDXUTDeviceSettings-> d3d10.AutoDepthStencilFormat =
 DXGI_FORMAT_D24_UNORM_S8_UINT;

It is customary to clear the stencil buffer at the start of the rendering process (to

erase previous changes). This is accomplished via the ClearDepthStencilView

ID3D10Device (pID3D10Device) interface. ClearDepthStencilView clears

the depth stencil using four parameters. Its first parameter is a pointer to the depth

stencil we wish to clear, the second is a clear flag indicating the parts of the buffer to

clear (D3D10_CLEAR_STENCIL for the stencil buffer and D3D10_CLEAR_DEPTH for

the depth buffer), the third is the value we are clearing the depth buffer with (any

value between ‘0’ and ‘1’) with the fourth parameter the value to clear the stencil

buffer with. To initialise the first parameter (the depth stencil to be cleared), we

simply call the DXUTGetD3D10DepthStencilView interface, resulting in a pointer

to the ID3D10DepthStencilView interface for the current Direct3D 10 device:

ID3D10DepthStencilView* pDepthStencilView =
 DXUTGetD3D10DepthStencilView();

pID3D10Device->ClearDepthStencilView(pDepthStencilView,
 D3D10_CLEAR_STENCIL,
 1.0, 0);

In addition to clearing the stencil buffer, we also have to clear the depth buffer. The

exact same process is used with ClearDepthStencilView’s second parameter

being set to D3D10_CLEAR_DEPTH:

pID3D10Device->ClearDepthStencilView(pDepthStencilView,
 D3D10_CLEAR_DEPTH,
 1.0, 0);

The depth test’s result is also needed in addition to that of the stencil test. As

previously mentioned, the depth test result is required for controlling whether a

certain pixel’s stencil value is increased or decreased. If the depth test passes then

 47

the tested pixel’s depth value is overwritten by that of the incoming fragment. Both

the depth test and stencil test results are combined for certain effects. The stencil

test can simply fail, requiring no additional information, however, when the stencil test

passes then the depth test can either fail or pass.

We can enable or disable both depth testing and stencil testing via the first

(DepthEnable) and fourth (StencilEnable) parameters of Direct3D 10’s

D3D10_DEPTH_STENCIL_DESC structure. Furthermore, this structure allows us to

specify the depth write mask (which controls the area of the depth-stencil buffer) that

can be modified by depth data (DepthWriteMask), the depth function for comparing

depth data against current depth data (DepthFunc), the stencil read mask specifying

the area of the depth-stencil buffer for the reading of stencil data

(StencilReadMask), the stencil write mask identifying the writeable depth-stencil

buffer area (StencilWriteMask) and the stencil operations for both front-facing

(FrontFace) and back-facing pixels (BackFace). These stencil testing operations

(defined using the D3D10_DEPTH_STENCILOP_DESC structure) include the state

when stencil testing fails, stencil testing passes and depth testing fails or when both

stencil testing and depth testing passes.

The D3D10_DEPTH_STENCIL_DESC and D3D10_DEPTH_STENCILOP_DESC

structures are defined as follows in the d3d10.h header file:

typedef struct D3D10_DEPTH_STENCIL_DESC {
 BOOL DepthEnable;
 D3D10_DEPTH_WRITE_MASK DepthWriteMask;
 D3D10_COMPARISON_FUNC DepthFunc;
 BOOL StencilEnable;
 UINT8 StencilReadMask;
 UINT8 StencilWriteMask;
 D3D10_DEPTH_STENCILOP_DESC FrontFace;
 D3D10_DEPTH_STENCILOP_DESC BackFace;
} D3D10_DEPTH_STENCIL_DESC;

typedef struct D3D10_DEPTH_STENCILOP_DESC {
 D3D10_STENCIL_OP StencilFailOp;
 D3D10_STENCIL_OP StencilDepthFailOp;
 D3D10_STENCIL_OP StencilPassOp;
 D3D10_COMPARISON_FUNC StencilFunc;
} D3D10_DEPTH_STENCILOP_DESC;

The default values, including the alternatives, for the members of the

D3D10_DEPTH_STENCIL_DESC structure are given in the table below (Microsoft,

2008):

Default Depth-stencil state

Alternative

DepthEnable TRUE

 48

FALSE

D3D10_DEPTH_WRITE_MASK_ALL

(enables writing to the depth-stencil buffer)

DepthWriteMask

D3D10_DEPTH_WRITE_MASK_ZERO
(disables writing to the depth-stencil buffer)

D3D10_COMPARISON_LESS

(the test passes if the new data < existing data)

D3D10_COMPARISON_NEVER
(no depth test is performed)

D3D10_COMPARISON_EQUAL
(the depth test passes if the new data == existing data)

D3D10_COMPARISON_LESS_EQUAL
(the depth test passes if new data <= existing data)

D3D10_COMPARISON_GREATER
(the depth test passes if new data > existing data)

D3D10_COMPARISON_NOT_EQUAL
(the depth test passes if new data != existing data)

D3D10_COMPARISON_GREATER_EQUAL
(the depth test passes if new data >= existing data)

DepthFunc

D3D10_COMPARISON_ALWAYS
(the depth test is always performed and always passes)

FALSE StencilEnable

TRUE

StencilReadMask D3D10_DEFAULT_STENCIL_READ_MASK

StencilWriteMask D3D10_DEFAULT_STENCIL_WRITE_MASK

Table 3.1 Default and alternative depth-stencil states.

Table 3.2 lists the D3D10_DEPTH_STENCILOP_DESC structure’s possible stencil

operations. These operations can be specified depending on the outcome of the

stencil test. The D3D10_DEPTH_STENCILOP_DESC structure is a member of depth-

stencil description which is specified using the D3D10_DEPTH_STENCIL_DESC

structure.

Stencil Operation Description

D3D10_STENCIL_OP_KEEP Do not modify the existing stencil buffer data.

D3D10_STENCIL_OP_ZERO Reset the stencil buffer data to zero.

D3D10_STENCIL_OP_REPLACE Set the stencil buffer data to a reference value.

D3D10_STENCIL_OP_INCR_SAT Increment the stored stencil buffer value by 1

(won’t exceed the maximum clamped value).

D3D10_STENCIL_OP_DECR_SAT Decrement the stored stencil buffer value by 1

(won’t decrease below 0).

D3D10_STENCIL_OP_INVERT Do a bitwise invert of the sorted stencil buffer

data.

D3D10_STENCIL_OP_INCR Increment the stored stencil buffer value by 1

(wrapping the result if required)

D3D10_STENCIL_OP_DECR Decrement the stored stencil buffer value by 1

 49

(wrapping the result if required)

Table 3.2 Possible stencil operations.

A depth-stencil state (depthstencilDesc), specifying the details of the depth and

stencil testing operations, is defined by first initialising the depth testing members,

namely, DepthEnable, DepthWriteMask and DepthFunc:

D3D10_DEPTH_STENCIL_DESC depthstencilDesc;

depthstencilDesc.DepthEnable = true;
depthstencilDesc.DepthWriteMask = D3D10_DEPTH_WRITE_MASK_ALL;
depthstencilDesc.DepthFunc = D3D10_COMPARISON_LESS;

Following the above initialisation, the members required by the stencil test

(StencilEnable, StencilReadMask and StencilWriteMask) must be

initialised:

depthstencilDesc.StencilEnable = true;
depthstencilDesc.StencilReadMask = 0xFFFFFFFF;
depthstencilDesc.StencilWriteMask = 0xFFFFFFFF;

Next we have to setup the stencil operations for both back-facing and front-facing

pixels via the D3D10_DEPTH_STENCILOP_DESC structure’s members. For example,

if StencilFailOp is set to D3D10_STENCIL_OP_KEEP and the stencil test fails

then the current stencil buffer value is saved. Similarly, if StencilDepthFailOp is

set to D3D10_STENCIL_OP_DECR with a failing stencil test, then the stencil buffer

value is decremented by 1. Alternatively, the passing functions such as

StencilPassOp only perform a stencil buffer operation on a passing stencil test and

can have a different result depending on whether a pixel is back-facing or front-

facing:

depthstencilDesc.BackFace.StencilFailOp =
 D3D10_STENCIL_OP_KEEP;
depthstencilDesc.BackFace.StencilDepthFailOp =
 D3D10_STENCIL_OP_DECR;
depthstencilDesc.BackFace.StencilPassOp =
 D3D10_STENCIL_OP_KEEP;
depthstencilDesc.BackFace.StencilFunc =
 D3D10_COMPARISON_ALWAYS;

depthstencilDesc.FrontFace.StencilFailOp =
 D3D10_STENCIL_OP_KEEP;
depthstencilDesc.FrontFace.StencilDepthFailOp =
 D3D10_STENCIL_OP_INCR;
depthstencilDesc.FrontFace.StencilPassOp =
 D3D10_STENCIL_OP_KEEP;
depthstencilDesc.FrontFace.StencilFunc =

 50

 D3D10_COMPARISON_ALWAYS;

Now we simply have to set the depth stencil state to encapsulate all the above

defined information for the pipeline stage determining the visible pixels. We do this

using the CreateDepthStencilState ID3D10Device interface. This interface

takes two parameters, the first a pointer to the depth-stencil state description

(D3D10_DEPTH_STENCIL_DESC) structure and the second, the address of the

depth-stencil state object (ID3D10DepthStencilState):

ID3D10Device * pID3D10Device;

ID3D10DepthStencilState * pDepthStencilState;

pID3D10Device->CreateDepthStencilState (depthstencilDesc,
 &pDepthStencilState);

With the depth stencil state set, we still have to create a depth-stencil buffer

resource. This can be accomplished using a texture resource. Texture resources can

be described as structured collections of data – specifically texture data. These

structured data collections, as opposed to buffers, allow for the filtering of textures via

texture samplers; with the exact filtering method determined by the texture resource

type. Specifically, to create a depth-stencil buffer we require a texture resource

(defined using the ID3D10Texture2D interface) consisting of a two-dimensional

grid of texture elements (specified via the D3D10_TEXTURE2D_DESC structure

describing a two-dimensional texture resource):

ID3D10Texture2D* pDepthStencilBuffer = NULL;
D3D10_TEXTURE2D_DESC depthResource;

The members of the texture resource (D3D10_TEXTURE2D_DESC) are initialised as

follows, with the BindFlags member set to the D3D10_BIND_DEPTH_STENCIL

enumeration to identify the texture resource as a depth-stencil buffer (refer to the

DirectX SDK documentation (Microsoft, 2008) for a description of the

D3D10_TEXTURE2D_DESC structure and each of its members):

depthResource.Width = backBufferSurfaceDescription.Width;
depthResource.Height = backBufferSurfaceDescription.Height;
depthResource.MipLevels = 1;
depthResource.ArraySize = 1;
depthResource.Format = pDeviceSettings ->
 d3d10.AutoDepthStencilFormat;
depthResource.SampleDesc.Count = 1;
depthResource.SampleDesc.Quality = 0;
depthResource.Usage = D3D10_USAGE_DEFAULT;
depthResource.BindFlags = D3D10_BIND_DEPTH_STENCIL;
depthResource.CPUAccessFlags = 0;
depthResource.MiscFlags = 0;

 51

The ID3D10Device method, CreateTexture2D, is used to create a two-

dimensional array – the depth-stencil buffer. This method takes three parameters

where the first parameter is a pointer to the above defined two-dimensional texture

resource structure (D3D10_TEXTURE2D_DESC), the second is a pointer to a texture

subresource (‘NULL’ in our case) and the third is the address of a pointer to the

specified texture (pDepthStencilBuffer):

pID3D10Device->CreateTexture2D(&depthResource, NULL,
 &pDepthStencilBuffer);

The finial step in configuring depth and stencil functionality is to bind the previously

defined depth and stencil data to the output-merger stage. The output-merger stage

is the final pipeline step dealing with pixel visibility. This step controls pixel visibility

by incorporating pixel shader data with depth and stencil testing results. We start by

binding the depth stencil state, pDepthStencilState, to the output-merger stage

using the OMSetDepthStencilState method. This method takes two parameters

with the first being a pointer to the depth-stencil state interface

(pDepthStencilState). This depth-stencil state interface was previously created

using the CreateDepthStencilState ID3D10Device interface. The second

parameter, an unsigned integer, is the reference value we are doing the depth-stencil

test against:

pID3D10Device->OMSetDepthStencilState(pDepthStencilBuffer, 1);

Next the view mechanism is used to describe how the depth-stencil resource will be

handled (viewed) by the pipeline. In this case we use a depth stencil view, thus

defining the resource as a depth stencil. The D3D10_DEPTH_STENCIL_VIEW_DESC

structure, given here, is used for this purpose and is contained within the DirectX 10

d3d10.h header file:

typedef struct D3D10_DEPTH_STENCIL_VIEW_DESC {
 DXGI_FORMAT Format;
 D3D10_DSV_DIMENSION ViewDimension;
 union
 {
 D3D10_TEX1D_DSV Texture1D;
 D3D10_TEX1D_ARRAY_DSV Texture1DArray;
 D3D10_TEX2D_DSV Texture2D;
 D3D10_TEX2D_ARRAY_DSV Texture2DArray;
 D3D10_TEX2DMS_DSV Texture2DMS;
 D3D10_TEX2DMS_ARRAY_DSV Texture2DMSArray;
 };
} D3D10_DEPTH_STENCIL_VIEW_DESC;

The first member, Format, controls the data resource interpretation and it can range

from a typeless, unsigned-interger or signed-interger to floating-point format. The

given code example uses the DXGI_FORMAT_D32_FLOAT format (a 32-bit floating-

 52

point format). The second member, ViewDimension, is used to determine the

depth-stencil access method. This member is set to the

D3D10_DSV_DIMENSION_TEXTURE2D constant, indicating the depth-stencil

resources access type as a two-dimensional texture (due to the depth-stencil

resource being defined as a two-dimensional texture resource). Alternative constants

include:

• D3D10_DSV_DIMENSION_TEXTURE1D (for a one-dimensional depth-stencil

resource)

• D3D10_DSV_DIMENSION_TEXTURE1DARRAY (for accessing the depth-stencil

resource as an array consisting of one-dimensional textures)

• D3D10_DSV_DIMENSION_TEXTURE2DARRAY (for accessing the depth-stencil

resources as an array consisting of two-dimensional textures)

• D3D10_DSV_DIMENSION_TEXTURE2DMS (for a two-dimensional depth-stencil

resource with multisampling support)

• D3D10_DSV_DIMENSION_TEXTURE2DMSARRAY (for accessing the depth-

stencil resources as an array consisting of two-dimensional textures with

multisampling support) and

• D3D10_DSV_DIMENSION_UNKNOWN (for depth-stencil resources where the

access method is to be determined dynamically during depth-stencil view

creation).

Only one member contained within the union are to be initialised. Texture1D is

initialised by setting the D3D10_TEX1D_DSV structure’s MipSlice member to an

integer value when a one-dimensional texture is required as a depth-stencil view (‘0’

indicates the first mipmap level in the depth-stencil view). Texture1DArray

specifies the texture and related mipmap level when a one-dimensional texture array

is required as a depth-stencil view. This member is of the type

D3D10_TEX1D_ARRAY_DSV and requires the initialisation of three members, namely,

MipSlice (the depth-stencil view’s mipmap level, with ‘0’ indicating the first mipmap

level in the depth-stencil view), FirstArraySlice (the texture, stored in the array,

to use in the depth-stencil view) and ArraySize (the number of textures, stored in

the array, to use in the depth-stencil view). Similarly, Texture2D is initialised by

setting the D3D10_TEX2D_DSV structure’s MipSlice member to an integer value

when a two-dimensional texture is required as a depth-stencil view (‘0’ indicates the

first mipmap level in the depth-stencil view). Texture2DArray specifies the texture

and related mipmap level when a two-dimensional texture array is required as a

depth-stencil view. This member is of the type D3D10_TEX2D_ARRAY_DSV, and just

as with Texture1DArray requires the initialisation of three members, namely,

MipSlice (the depth-stencil view’s mipmap level, with ‘0’ indicating the first mipmap

level in the depth-stencil view), FirstArraySlice (the texture, stored in the array,

to use in the depth-stencil view) and ArraySize (the number of textures, stored in

the array, to use in the depth-stencil view). The final two members, Texture2DMS

and Texture2DMSArray, are initialised when using a multisampled two-dimensional

texture and a multisampled two-dimensional texture array as a depth-stencil

respectively. The D3D10_TEX2DMS_DSV structure’s UnusedField_Nothing
ToDefine member can be initialised to any integer value with the

 53

D3D10_TEX2DMS_ARRAY_DSV structure having two members, namely,

FirstArraySlice (the texture, stored in the array, to use in the depth-stencil view)

and ArraySize (the number of textures, stored in the array, to use in the depth-

stencil view). The following code sample defines the depth stencil resource as a

view:

D3D10_DEPTH_STENCIL_VIEW_DESC depthstencilviewDescription;

depthstencilviewDescription.Format = DXGI_FORMAT_D32_FLOAT;
depthstencilviewDescription.ResourceType =
 D3D10_RESOURCE_TEXTURE2D;

depthstencilviewDescription.Texture2D.FirstArraySlice = 0;
depthstencilviewDescription.Texture2D.ArraySize = 1;
depthstencilviewDescription.Texture2D.MipSlice = 0;

Following this, we simply have to create and bind the depth stencil view to the output-

merger stage using the CreateDepthStencilView and OMSetRenderTargets
ID3D10Device interfaces. The CreateDepthStencilView method, creating the

depth-stencil view, takes three parameters, namely a pointer to an

ID3D10Texture2D object (pDepthStencilBuffer) used for storing the resource

data, a pointer to the D3D10_DEPTH_STENCIL_VIEW_DESC structure and the

address of a pointer to an ID3D10DepthStencilView interface

(pDepthStencilView) used for controlling the texture resource utilised during the

depth-stencil test:

ID3D10DepthStencilView* pDepthStencilView;

pID3D10Device->CreateDepthStencilView(pDepthStencilBuffer
 &depthstencilviewDescription,
 &pDepthStencilView);

The OMSetRenderTargets method binds this depth stencil view to the output-

merger stage. It takes three parameters, with the first identifying the number of

render targets, the second a pointer to a render target view array, and the third a

pointer to the to the ID3D10DepthStencilView interface. A render target is written

to by the output-merger stage, containing the pixel colour information:

ID3D10RenderTargetView* pRenderTargetView;

pID3D10Device->OMSetRenderTargets(1, &pRenderTargetView,
 pDepthStencilView);

The OMSetDepthStencilState ID3D10Device interface is used to update the

depth stencil state. This update is performed by setting the output-merger stage’s

depth-stencil state. The OMSetDepthStencilState method takes two parameters

with the first parameter a pointer to an ID3D10DepthStencilState interface

 54

(pDepthStencilState) and the second the reference value we are doing the

depth-stencil test against:

pID3D10Device->OMSetDepthStencilState(pDepthStencilState, 0);

As an alternative to the above described process, we can initialise the depth and

stencil states using the DirectX FX system. The FX system also allows us to view the

contents of a stencil buffer, something not possible via the Direct3D 10 API. The final

chapter’s stencil shadow volume implementation makes use of FX techniques to set

the stencil and depth testing states as well as to do the physical stencil rendering. It

is, however, important to remember that the depth-stencil testing process is always

conducted in the same manner, regardless of the implementation details. This

complete depth testing process (used to determine the pixels positioned closest to

the camera) and stencil testing process (controlling, via a mask, which pixels to

update) are outlined in Figure 3.3 and Figure 3.4 respectively.

Figure 3.3 The stencil testing process.

 55

Figure 3.4 The depth testing process.

3.1.2 Implementing Stencil Shadow Volumes

The first step of a shadow volume implementation is to construct the shadow volume

itself. This process starts with the calculation of silhouette edges followed by the

generation of the shadow volume geometry. We use a shader to calculate the

silhouette edges of an object with respect to a light source (we could alternatively

calculate these edges on the CPU). The given geometry shader calculates the

silhouette edges by determining the normal of each triangle face followed by the

normals of the adjacent triangles. Thus, if the current triangle normal is facing the

light source, with the adjacent triangle normal facing away, then we can flag their

shared edge as a silhouette.

Our shader programs starts with the declaration of three structures for the storage of

vertex and normal coordinate parameters.

 56

struct VERTEXSHADER_INPUT
{
 float4 Loc : POSITION;
 float3 Norm : NORMAL;
};

struct PIXELSHADER_OUTPUT
{
 float4 Loc : SV_POSITION;
};

struct GEOMETRYSHADER_INPUT
{
 float4 Loc: POSITION;
 float3 Norm : NORMAL;
};

The first structure, VERTEXSHADER_INPUT, holds our vertex information as received

from the Direct3D application and is used to pass input data to a vertex shader that

transforms the input vertex position to clip space. It also transforms the input vertex

normal to world space, finally returning the transformed vertex data via the

GEOMETRYSHADER_INPUT structure:

/* vertex shader for sending the vertex data to the shadow
 volume geometry shader */
GEOMETRYSHADER_INPUT ShadowVertexShader(VERTEXSHADER_INPUT IN)
{
 GEOMETRYSHADER_INPUT output = (GEOMETRYSHADER_INPUT)0;

 /* transforms the input vertex position to world space */
 output.Loc = mul(float4(IN.Loc,1), WorldMatrix);

 /* transforms the input vertex normal to world space */
 output.Norm = mul(IN.Norm, (float3x3)WorldMatrix);

 return output;
}

Next we write a geometry shader to determine an object’s silhouette edges using

groups of vertices, each group consisting of two shared vertices and one adjacent

vertex. This shader function also receives an un-normalised triangle normal

(normal) as input; returning a TriangleStream containing the extruded shadow

volume as a series of triangles. The shader starts by calculating the light vector

pointing from the triangle towards the light source. This is followed by the calculation

of the dot product between the triangle normal and the light vector. This dot product

value is greater than ‘0’ for triangles facing towards the light source. Following the

initialisation of the shadow volume extrusion amount, shadowExtrusionAmount,

 57

and bias, shadowExtrusionBias (for extending the shadow volume silhouette

edges) we iterate through the adjacent triangles, calculating the silhouette edges and

extruding the volumes out of the determined silhouettes. The geometry shader’s final

operation is to create the front- and back-cap of the newly defined shadow volume.

Before listing this shader we need to look at a new input primitive type,

triangleadj. This newly supported geometry shader type flags every other vertex

as an adjacent vertex, in other words simplifying the work required to find the

silhouette edges:

[maxvertexcount(18)]
void SilhouetteEdgeAndVolumeGS(
 triangleadj GEOMETRYSHADER_INPUT vertex[6],
 float3 normal,
 inout TriangleStream<PIXELSHADER_INPUT> ExtrudedVolume)
{
 /* determine the light vector from the triangle to light
 source */
 float lightVector = LightPosition – In[0].Loc;

 /* calculate the triangle normal */
 float triangleNormal = cross(In[2].Loc - In[0].Loc,
 In[4].Loc - In[0].Loc);

 /* calculate the dot product between the triangle normal
 and the light vector – if this value (the length of
 triangleNormal projected onto the lightVector) is
 greater than ‘0’ then the triangle is facing the light
 */
 float3 projectionLength = dot(triangleNormal,
 lightVector);

PIXELSHADER_OUTPUT Output;

/* set the amount and bias to extrude the shadow
 volume from the silhouette edge */
float shadowExtrusionAmount = 119.9f;
float shadowExtrusionBias = 0.1f

 /* iterate through the adjacent triangles – where:

- vertex[0], vertex[1] and vertex[6] are adjacent
- vertex[2], vertex[3] and vertex[4] are adjacent
- vertex[4], vertex[5] and vertex[0] are adjacent */

 58

 for(int i = 0; i < 6; i += 2)
 {
 /* calculate the adjacency triangle normal */
 float triangleNormal = cross(vertex[i].Loc –
 vertex[i+1].Loc,
 vertex[i+2].Loc –
 vertex[i+1].Loc);

 /* calculate the silhouette edges and extrude for
 triangles facing the light source */
 if(projectionLength > 0.0f)
 {
 float3 silhouette[4];

 /* extrude the silhouette edges */
 //////////////////////////////////
 silhouette[0]= vertex[i].Loc +
 shadowExtrusionBias *
 normalize(vertex[i].Loc –
 LightPosition);

 silhouette[1]= vertex[i].Loc + shadowExtrusionAmount*
 normalize(vertex[i].Loc –
 LightPosition);

 silhouette[2]= vertex[i+2].Loc + shadowExtrusionBias*
 normalize(vertex[i+2].pos –
 LightPosition);

 silhouette[3] = vertex[i+2].Loc +
 shadowExtrusionAmount *
 normalize(vertex[i+2].Loc –
 LightPosition);

 /* create two new triangles for the extruded
 silhouette */

 Output.Loc=mul(float4(silhouette[v],1),ViewMatrix);

 //append shader-output data to an existing stream
 TriangleStream.Append(Output);
 }

 //end the current-primitive strip and start a new one
 TriangleStream.RestartStrip();

 }

 59

 /* create the front- and back-cap for the newly created
 triangles */

 //start with the nearest cap
 for(int k = 0; k < 6; k += 2)
 {
 float3 nearCapPosition = vertex[k].Loc +
 shadowExtrusionBias *
 normalize(vertex[k].Loc -
 LightPosition);

 Output.Loc = mul(float4(nearCapPosition,1), ViewMatrix);
 TriangleStream.Append(Output);
 }
 TriangleStream.RestartStrip();

 //now calculate the furthest cap
 for(int k = 4; k >= 0; k -= 2)
 {
 float3 farCapPosition = vertex[k].Loc +
 shadowExtrusionAmount *
 normalize(vertex[k].Loc -
 LightPosition);

 Output.Loc = mul(float4(farCapPosition,1), ViewMatrix);
 TriangleStream.Append(Output);
 }
 TriangleStream.RestartStrip();
}

We can test whether a fragment is in shadow or not using either the previously

discussed depth-fail or depth-pass technique. The chosen depth-stencil test can be

implemented using native Direct3D 10 structures and functions as listed in section

3.1.1. The final step is to render the scene, resulting in the update of the pixels

located inside the shadow volume and thus leading to the generation of shadowed

regions.

3.2 The Shadow Mapping Algorithm

The shadow mapping evaluation environment is identical to our stencil shadow

volume example’s with only the shadow generation algorithm differing. Figure 3.5

illustrates this environment with a cast shadow.

 60

Figure 3.5 Rendering a shadow by means of a shadow map (via one light source

and three-dimensional mesh) – accurately cropped and skewed to fit the surrounding

area.

The shadow mapping algorithm is implemented using the following method

(described in Chapter 1):

1) Create the shadow map by rendering the Z-buffer with regard to the

light’s point of view.

2) Draw the scene from the viewer’s point of view.

3) For each rasterised fragment, calculate the fragment’s coordinate

position with regard to the light’s point of view.

4) Use the x- and y- coordinates of step 3’s translated vertex to index the

shadow Z-buffer.

5) Do the depth comparison test, if the translated vertex’s depth value (the

z-value of step 3’s translated vertex) is greater that the value stored in

the shadow Z-buffer, then the fragment is shadowed, else it is lit.

3.2.1 Implementing Shadow Maps

Shadow mapping, unlike shadow volumes, doesn’t require any geometry-processing

or mesh generation. We can thus, when using shadow maps, maintain a high level of

performance regardless of the scene’s geometric complexity.

The first step of a shadow mapping implementation is to render the scene from the

light source’s point of view. This is a trivial operation since the scene is already

rendered to begin with – we simply have to reposition our camera. Following this, we

can create the shadow map using the following call (Direct3D 8 or better):

pD3DDevice->CreateTexture(textureWidth, textureHeight,
 1, D3DUSAGE_DEPTHSTENCIL,
 D3DFMT_D24S8, D3DPOOL_DEFAULT,
 &pTexture);

 61

Basic shadow mapping in Direct3D is dependent on modification of the existing

texture format – so we will, in essence, be making use of Direct3D’s render-to-texture

capabilities. These render-to-texture capabilities allow us to render directly to the

shadow map texture [Everitt et al, 2001].

With the shadow map created, we simply have to texture it onto the scene. This

operation requires a projection transformation followed by the alignment of shadowed

and screen pixels. This alignment often causes changes in a pixel’s screen size

(which is, as mentioned, responsible for aliasing errors).

Also, Direct3D’s SetRenderTarget operation requires the creation of a colour

surface as it combines the depth surface with the colour surface. Everitt et al (2001)

explains the actual rendering process best: “you render from the point of view of the

light to the shadow map you created, then set the shadow map texture in a texture

stage and set the texture coordinates in that stage to index into the shadow map at

(s/q, t/q) and use the depth value (r/q) for the comparison.” (s/q, t/q) is the fragment’s

location within the depth texture with (r/q) the window-space depth of the fragment in

relation to the light source’s frustum. The following texture matrix can be used post-

projection to setup our texture coordinates [Everitt et al, 2001]:

float fOffsetX = 0.5f + (0.5f / fTexWidth);
float fOffsetY = 0.5f + (0.5f / fTexHeight);

D3DXMATRIX texScaleBiasMat(0.5f, 0.0f, 0.0f, 0.0f,
 0.0f, -0.5f, 0.0f, 0.0f,
 0.0f, 0.0f, fZScale, 0.0f,
 fOffsetX, fOffsetY, fBias, 1.0f);

fZScale is set to (2bit-planes – 1) with fBias set to any small arbitrary value.

All that remains now is to do the actual shadow test. We basically compare the depth

of the window-space fragment against the depth texture fragment location. The result

of this test can be either one (indicating a lit pixel) or zero to indicate a shadowed

one. The easiest way to implement the shadow mapping process is via basic HLSL

pixel and vertex shaders:

/* vertex shader for shadow mapping vertex processing */
void VertexShadow(float3 Normal : NORMAL,
 float4 Pos : POSITION,
 out float2 depth : TEXCOORD0,
 out float4 outputPos : POSITION)

{

/* calculate the projected coordinates */
 outputPos = mul(Pos, viewMatrix);
 outputPos = mul(outputPos, projMatrix);

 62

/* store the z- and w-coordinates using the available
 coordinates*/

 depth.xy = outputPos.zw;
}

/* shadow map pixel shader – processes shadow map pixels */

void PixelShadow(out float4 colour : COLOR,
 float2 depth : TEXCOORD0)
{
 /* the depth is actually x/y

colour = Depth.x / Depth.y;
}

3.3 Hybrid and Derived Approaches

We now present the implementation details for a number of hybrid stencil shadow

volume/shadow mapping approaches. Several documented enhancements are also

highlighted.

3.3.1 Shadow Volume Reconstruction from Depth Maps

The first approach that should be mentioned is McCool’s (2000) shadow volume

reconstruction through the use of depth maps. Michael McCool (2000) describes this

approach as follows: “Current graphics hardware can be used to generate shadows

using either the shadow volume or shadow map techniques. However, the shadow

volume technique requires access to a representation of the scene as a polygonal

model, and handling the near plane clip correctly and efficiently is difficult;

conversely, accurate shadow maps require high-precision texture map data

representations, but these are not widely supportedZ [The algorithm is] a hybrid of

the shadow map and shadow volume approaches which does not have these

difficulties and leverages high-performance polygon rendering. The scene is

rendered from the point of view of the light source and a sampled depth map is

recovered. Edge detection and a template-based reconstruction technique are used

to generate a global shadow volume boundary surface, after which the pixels in

shadow can be marked using only a one-bit stencil buffer and a single-pass

rendering of the shadow volume boundary polygons. The simple form of our

template-based reconstruction scheme simplifies capping the shadow volume after

the near plane clip.”

McCool’s hybrid algorithm is implemented as follows (McCool, 2000):

1) Render the shadow map by drawing the scene from the light source’s

point of view.

 63

2) Draw the scene from the viewer’s point of view.

3) Reconfigure the frame buffer by clearing the stencil buffer and disabling

writing to the colour and depth buffers.

4) Enable depth testing.

5) Set the stencil buffer to toggle when a shadow polygon fragment passes

the depth test.

6) Render the shadow volume.

a. The shadow volume is constructed from the shadow map’s depth

coordinates (z[x, y]) – these coordinates are translated to world

space and projected through the same viewing transformation as

the rest of the scene.

b. The shadow volume’s front- and back faces are rendered

simultaneously as it is unnecessary to distinguish between them.

7) Generate shadow volume cap polygons (to ensure proper enclosure of

the shadow volume).

8) Render the darkened pixels (where the stencil bit is set to 1)

9) Render the shadow using one of the following modes:

a. Ambient mode – the stencil buffer isn’t used and the scene is re-

rendered using ambient illumination (masked to modify all pixels in

shadow).

b. Black mode – a single black polygon is drawn over the entire scene

and all pixels in shadow are blackened.

c. Composite mode – a semi-transparent black polygon is drawn over

the entire scene and all pixels in shadow are darkened.

The most interesting part of McCool’s algorithm is perhaps its use of multiple shadow

maps. This is due to single shadow maps being limited to a field of view. Multiple

shadow maps can be used to cast shadows omnidirectionally. McCool’s approach

assigns each spatial area a specific shadow map (the viewing frustum is adjusted to

render extra depth samples around the edges when rendering the shadow maps).

3.3.2 Hybrid Algorithm for the Efficient Rendering of Hard-edged Shadows

Another interesting hybrid approach is the one developed by Chan and Durand

(2004). Their approach, as previously mentioned, combines the strengths of shadow

maps and shadow volumes to produce a hybrid algorithm for the efficient rendering

of pixel-accurate hard-edged shadows. Their method uses a shadow map to identify

pixels located near shadow discontinuities, using the stencil shadow volume

algorithm only at these pixels. This approach ensures accurate shadow edges while

actively avoiding the edge aliasing artefacts associated with standard shadow

mapping as well as the high fillrate consumption of standard shadow volumes. The

algorithm, in their own words “relies on a hardware mechanism for rapidly rejecting

non-silhouette pixels during rasterization. Since current graphics hardware does not

directly provide this mechanism, we simulate it using available features related to

occlusion culling and show that dedicated hardware support requires minimal

changes to existing technology”.

 64

The hybrid algorithm of Chan and Durand (2004) is implemented as follows:

1) Create the shadow map by placing the camera at the light source and

rendering the nearest depth values to a buffer.

2) Find all the shadow silhouette pixels by rendering the scene from the

viewer’s point of view.

a. Transform each test sample to light space and compare its depth

against the four nearest depth samples from the shadow map.

i. If the comparison results disagree, then we classify the sample

as a silhouette pixel else we classify it as a non-silhouette pixel

(which is in turn shaded according to the depth comparison test).

b. Perform z-buffering to prepare the depth buffer for the shadow

volume drawing in step 3.

3) Render the shadow volumes using the depth-fail stencil shadow volume

algorithm.

4) Render and shade all the pixels with stencil values equal to zero.

The following pixel shader, as given by Chan and Durand (2004), illustrates the

silhouette detection process:

void main (out half4 color : COLOR,
 half diffuse : COL0,
 float4 uvProj : TEXCOORD0,
 uniform sampler2D shadowMap)

{
// Use hardware’s 2x2 filter: 0 <= v <= 1.
fixed v = tex2Dproj(shadowMap, uvProj).x;

// Requirements for silhouette pixel: front-facing and
// depth comparison results disagree.
color = (v > 0 && v < 1 && diffuse > 0) ? 1 : 0;

}

The exact silhouette detection process is based on the depth comparison between

image samples and the four nearest depth samples as found in the shadow map. If

this comparison returns a “0” or “1”, then we can say that the depth comparison

results agree (the pixel is thus not a silhouette pixel). A disagreeing result indicates a

silhouette pixel.

3.3.3 Elimination of various Shadow Volume Testing Phases

Thakur et al (2003), as previously mentioned, developed a discrete algorithm for

improving the Heidmann original. Their algorithm was primarily based on the

elimination of various testing phases which resulted in an overall performance gain

when compared to the original. Thakur et al (2003) formally describe this technique

 65

as follows: “[it] does not require (1) extensive edge/edge intersection tests and

intersection angle computation in shadow polygon construction, or (2) any

ray/shadow-polygon intersection tests during scan-conversion. The first task is

achieved by constructing ridge edge (RE) loops, an inexact form of silhouette,

instead of the silhouette. The RE loops give us the shadow volume without any

expensive computation. The second task is achieved by discretizing the shadow

volume into angular spans. The angular spans, which correspond to scan lines, are

stored in a lookup table. This lookup table enables us to mark the pixels that are in

shadow directly, without the need of performing any ray/shadow-polygon intersection

tests. In addition, the shadow on an object is determined on a line-by-line basis

instead of a pixel-by-pixel basis. The new technique is efficient enough to achieve

real time performance, without any special hardware, while being scalable with scene

size”.

The hybrid algorithm of Thakur et al (2003) is implemented as follows:

1) Construct a Lookup Table by:

a. Finding the ridge edges.

b. Connecting the ridge edges to form loops.

c. Determining the angular coordinates),,(φθr of all vertices

positioned on ridge edge loops.

d. Identifying the vertices with local peaks in θ (ridge edge loops are

sliced along θ with local peaks being specific points in the loop).

e. Appending all the points of edges to the lookup table until a

minimum in θ is reached (by starting from the identified peaks).

f. Inserting the hidden edges in the lookup table.

g. Performing a pair-wise sorting of all entries in the lookup table (in

terms ofφ).

2) Perform scan conversion and generate a query at each point (x, y, z) to

determine whether the point’s in shadow or not (this is done for each

scan line) – see Figure 3.6.

3) Calculate the Maximum Run Length (the distance on a scan line for

which θ stays the same).

4) Depending on the return value of step 2’s function, create or don’t create

a shadow up to nextX or x+MRL (which ever comes first).

5) Perform the subsequent shadow query.

It’s interesting to note the contrast between Thakur et al’s algorithm as compared to

traditional stencil shadow volume methods, that is; shadow determination stops when

the first instance of a shadow is found (the actual shadow is a logical OR of all cast

shadows). It is thus unnecessary to traverse the entire list; an insight that results in

an overall performance increase. Shadow volumes conversely require the

interception and counting of each and every shadow polygon.

 66

Figure 3.6 The query function as given by Thakur et al (2003).

3.3.4 Shadow Volumes and Spatial Subdivision

Another noteworthy solution, as presented in Rautenbach et al (2008), combines the

depth-fail stencil shadow volume algorithm with spatial subdivision – an approach

researched and developed as part of the author’s postgraduate studies. This

approach, as a unification that results in real-time frame rates for rather complex

scenes, primarily deals with statically lit environments and is an apt shadowing model

and improvement over the traditional Heidmann (1991) algorithm.

This algorithm enhances the current depth-fail and depth-pass stencil shadow

volume algorithms by enabling more efficient silhouette detection, thus reducing the

number of unnecessary surplus shadow polygons. It also includes a technique for the

efficient capping of polygons, thus effectively handling situations where shadow

volumes are being clipped by the point-of-view near clipping plane.

Crucial to this implementation is the Octree data structure. Relying on this data

structure, an Octree algorithm sorts the collections of polygons that make up the

shadow volumes into a specific visibility order. This order is pre-determined by the

viewpoint. Our approach uses the Octree to calculate the shadow volume unification

by traversing the tree in a front-to-back order, thus in effect subdividing the surface

(endpoint) polygons for each element/object.

The approach basically uses the resulting Octree to calculate the shadow volume

unification by traversing the tree in a front-to-back order, thus in effect subdividing the

surface (endpoint) polygons for each element/object. Chapter 4 presents this

approach in more detail.

 67

3.4 Summary

In the chapter we started by presenting a basic stencil shadow volume benchmarking

program consisting of a relatively simple static cubic environment, a

movable/interchangeable three-dimensional mesh object and a variable number of

light sources. Next we introduced the stencil buffer as a buffer used for controlling the

rendering of selected pixels. The associated per-pixel test, namely stencilling, was

also looked at in detail. We then investigated the depth-stencil testing process

followed by a discussion detailing the shadow volume implementation (with specific

focus being on the shadow volume construction process and calculation of silhouette

edges).

Following this we looked at a shadow mapping evaluation environment as well as the

implementation of shadow maps. We then dealt with the implementation details of

various hybrid approaches such as McCool’s shadow volume reconstruction using

depth maps, Chan and Durand’s hybrid algorithm for the efficient rendering of hard-

edged shadows, Thakur et al’s elimination of various shadow volume testing phases

and Rautenbach, Pieterse and Kourie’s shadow volumes, hardware extensions and

spatial subdivision approach.

The next chapter focuses on the critical analysis and benchmarking of the presented

shadow rendering algorithms – the data to be used by our fuzzy-based expert system

for the real-time selection of these algorithms (see Chapter 5).

 68

Chapter 4

Benchmarking of Shadow Algorithms

Chapter 4 presents the critical analysis and detailed benchmarking of the

previously discussed shadowing techniques. The chapter also looks at the

performance of several optimised shadow volume and shadow mapping

routines. The knowledge base of our expert system draws heavily on these

experimental results.

In this chapter we will investigate:

• Benchmarking Mechanism

• Evaluation Criteria

• Scalability

• Construction Complexity

• Rendering Accuracy and Detail

• Instruction Set Utilisation

• Evaluation of the Basic Stencil Shadow Volume Algorithm

• Evaluation of the Basic Hardware Shadow Mapping Algorithm

• Evaluation of Shadow Volume Reconstruction from Depth Maps

• Evaluation of a Hybrid Algorithm for the Efficient Rendering of Hard-edged

Shadows

• Elimination of various Shadow Volume Testing Phases

• Performance Analysis of Shadow Volumes and Spatial Subdivision

 69

4.1 Benchmarking Mechanism

Benchmarking entails running a computer program with the aim of assessing its

performance. This action is normally hardware-centric and intended to measure the

performance of numerous subsystems and/or execution routines. We use such a

system to evaluate the previously discussed shadow rendering algorithms. This

benchmarking system basically functions as a plug-in where real-time performance

data are streamed to a file-based database for post-processing and analysis.

Each evaluated algorithm was plugged into a base Direct3D 10 rendering framework.

This framework, specifically written for this study, offers conventional first-person

perspective input control (via DirectInput and later XInput for Xbox 360 controllers),

mesh loading and support for shader model 4.0 shaders (via Microsoft’s High Level

Shader Language). The algorithms were benchmarked without special effects such

as normal and displacement mapping or the later added motion blur effect (see

accompanying video). The test framework also supports the dynamic placement,

movement and elimination of light sources. The critical analysis was performed via

scripted camera movement and light source additions – this was done not only to

ensure consistent testing, but also to ease future validation and replication of results.

4.2 Evaluation Criteria

We now present a set of criteria which was used to evaluate the depth-fail stencil

shadow volume, shadow mapping and hybrid shadow generation techniques. The

given evaluation criteria were selected with the aim of assessing the relationship

between shadow rendering quality and performance – in turn allowing us to isolate

key algorithmic weaknesses and possible bottleneck areas. Table 4.1 lists the

proposed evaluation criteria in the first column, indicating in parenthesis whether its

focus is on quality, performance or both. The second column provides motivation for

the criterion’s inclusion.

Evaluation Criteria Motivation

Scalability

(performance)

Evaluating the performance of an
algorithm based on the intensifying
complexity of the rendered scene
allows for the identification of
algorithmic limits and the maximum
threshold for scene and model
complexity. (Analyse the overall
performance impact due to an
increase in the number of light
sources and the shadow casting
model’s polygonal complexity).

Construction Complexity

Assessing the total number of clock

 70

(performance) cycles and the number of clock
cycles for every routine of the
shadow rendering algorithm allows
us to identify not only the processor
intensive operations, but also the
areas where the algorithmic
improvements can lead to the
biggest overall performance gain.

Rendering Accuracy and Detail

(quality)

Determining whether a shadow is
cropped and/or skewed properly,
and accurately projected onto other
models and surfaces, allows for the
evaluation of shadow rendering
quality.

Instruction Set Utilisation

(performance/quality)

Comparing a standard C/Direct3D
10 implementation to one extended
through the utilisation of Intel’s SSE
and AMD’s 3DNow! instruction set
allows for the evaluation of
maximized parallelism (offered by
these instruction sets) versus
conventionally executed routines.

Table 4.1 Evaluation criteria.

4.3 Experimentation and Results

We will now evaluate a number of shadow rendering algorithms, specifically the

stencil shadow volume algorithm, the shadow mapping algorithm and a number of

hybrid approaches such as McCool’s shadow volume reconstruction using depth

maps, Chan and Durand’s hybrid algorithm for the efficient rendering of hard-edged

shadows, Thakur et al’s elimination of various shadow volume testing phases and

Rautenbach et al’s shadow volumes, hardware extensions and spatial subdivision

approach. Evaluation of the previously mentioned scan-line polygon projection as

well as Blinn’s shadow polygons are excluded due to these algorithms being historic

in nature.

4.3.1 Basic Stencil Shadow Volume Algorithm

To gather the necessary results, we implemented the depth-fail stencil shadow

volume algorithm for a number of scenes. In each case, the scene was a relatively

simple cubic environment featuring a single movable 3D model and a variable

number of light sources. The 3D models utilised are those provided as samples by

the Microsoft DirectX SDK. The test system had the following configuration:

NVIDIA GeForceTM8800 GTX 768 MB GDDR3 (Video Card),

 71

AMD AthlonTM3000+ (Processor),

2.0GB (Memory),

1280x1024 (Screen Resolution).

Scalability

In order to accurately benchmark the scalability of the shadow volume algorithm, we

render a somewhat simple scene consisting of a relatively modest polygon model

(599 faces) and one light source. Figure 4.1 illustrates this scene with the rendered

shadow and constructed shadow volume. Figures 4.2, 4.3 and 4.4 illustrate the

shadows and constructed shadow volumes for the other models. Increasing the

number of light sources will lead to additional shadows as shown in Figure 4.5.

Figure 4.1 (a) Shadow generated by the “tiger” model (1 light source).

(b) Constructed shadow volume.

Figure 4.2 (a) Shadow generated by the “car” model (1 light source).

(b) Constructed shadow volume.

 72

Figure 4.3 (a) Shadow generated by the “shapes” model (1 light source).

(b) Constructed shadow volume.

Figure 4.4 (a) Shadow generated by the “battleship” model (1 light source).

(b) Constructed shadow volume.

 73

Figure 4.5 (a) Shadows generated by the “tiger” model (2 light sources).

(b) Constructed shadow volumes.

Following this initial rendering, we systematically increase the number of light

sources while varying the model complexity. Figure 4.6 summarises the resulting

performance data. By analysing these results, it is clear that both the number of light

sources and mesh complexity have an influence on the performance of the stencil

shadow volume algorithm. The primary bottleneck is in fact the shadow volume

construction process. Increasing the number of light sources results in an additional

shadow volume being created for each light source. Also, the greater the number of

faces, the greater the number of silhouette edges considered during the shadow

volume construction process.

 74

Figure 4.6 The correlation between the number of light sources and FPS rendering
performance for polygonal meshes with varying number of faces using the basic
stencil shadow volume algorithm.

Construction Complexity

Assessing the total number of clock cycles and the number of clock cycles for every

routine of the shadow volume construction process allows us to isolate the processor

intensive operations and possible areas of improvement. The results shown in Figure

4.7 compare the processor dependence of our 599-face ‘tiger’ mesh. These tests

were executed on the same system as the one used for scalability testing. We also

employed an Intel Pentium 4 ‘Northwood’ 2.8 GHz – based test system (with all its

hardware components corresponding to that of our AMD test machine). The data

obtained from this machine is also shown in Figure 4.7. These results will be used

when comparing the standard C/Direct3D implementation to the utilisation of Intel’s

SSE2 and AMD’s 3DNow! instruction sets.

 75

Figure 4.7 Comparing clock cycle iterations with and without culling for shadow

volume construction of the tiger mesh (599 faces) using different hardware

configurations.

We investigated the number of clock cycle iterations for each of the shadow volume

construction phases. The first phase in this process is to calculate the number of light

source facing triangles. The second phase involves construction of the silhouette

polygons (also referred to as the silhouette plane polygons); with the third phase

responsible for the construction of the shadow volume’s capping triangles. The fourth

phase is the actual construction of the shadow volume. We also modified this phase

to construct shadow volumes while at the same time culling polygons located outside

of the volume. We can similarly modify the first shadow volume construction phase to

calculate the number of light source facing triangles with the culling of polygons

outside of the volume. As can be seen in Figure 4.7, the difference between the two

hardware configurations is minimal. The culling of polygons located outside of the

volume involves more work initially, thus resulting in some performance loss.

We repeated the same experiment on the AMD machine using higher polygon

models. As can be seen in Figure 4.8, the total number of clock cycles increases

drastically when the number of faces increase, but the relation between the work

done during the different phases does not differ significantly. The increasing clock

cycle measurements are mostly due to the numerous conditional branches executed

during the shadow volume creation process. Translating and/or rotating a mesh also

impacts heavily on the clock cycle count due to the recalculation of the light source

facing polygons and subsequently the shadow volume. Calculation of the number of

light source facing polygons is the primary performance bottleneck and the only

 76

foreseeable performance enhancement would be to execute all the current

sequential-conditional code in parallel – the section on “Instruction Set Utilisation”

deals with this in detail.

Figure 4.8 Comparing clock cycle iterations for shadow volume construction of the

tiger (599 faces) and the battleship (9664 faces) – shown here with and without

culling respectively.

Rendering Accuracy and Detail

The rendering accuracy and detail of projected shadows can be determined by way

of visual observation. A model is translated and rotated within a scene and the detail

of the projected shadow is investigated. Stencil shadow volumes, being per-pixel

based, are by default of high quality. Figure 4.9 and 4.10 show a properly cropped

and skewed shadow.

 77

Figure 4.9 A properly cropped and skewed shadow.

Figure 4.10 Close-up showing pixel-perfect quality edges.

Although the generated shadow is of high quality, the shadow volume algorithm

suffers from some artefacts in situations where the mesh casts shadows onto itself,

as shown in Figure 4.11.

Figure 4.11 The encircled areas show the artefacts near the silhouette edges.

 78

These commonly encountered and frequently discussed artefacts are the result of

the shadow volume’s lighting computation phase. An object’s faces are rendered as

shadowed or lit depending on whether a face normal points towards the light source

or not. Thus, an entire face will be rendered as shadowed although only part of it is

actually in shadow (something the algorithm doesn’t consider). Shadow mapping

doesn’t suffer from this and these artefacts can only be reduced by increasing the

mesh complexity – thus resulting in less noticeable artefacts near the silhouette

edges.

Instruction Set Utilisation

Comparing a standard C/Direct3D implementation to the utilisation of Intel’s SSE2

and AMD’s 3DNow! instruction sets allow for the evaluation of maximised parallelism

(as offered by these instruction sets) versus conventionally sequentially executed

routines. The 3D Now! instruction set is a multimedia extension created by AMD for

the improvement of vector processing and floating-point-intensive tasks as required

by graphic-intensive and multimedia applications (AMD, 2000). Intel’s SSE is similar

in nature and stands for Streaming Single Instruction, Multiple Data Extensions. It is

based on the principle of carrying out multiple computations with a single instruction

in parallel (Intel, 2002). The SEE instruction set (specifically SSE2 found on the

Pentium 4 architecture) also adds 64-bit floating point and 8/16/32-bit integer

support. As can be seen in Figure 4.12, there is significant gain especially in the first

phase. It is also noticeable that the second phase (i.e. the construction of the

silhouette polygons) did not lend itself to any gain. The difference between the

utilised hardware offerings is negligible.

 79

Figure 4.12 Comparing Clock cycle gains when using hardware instruction sets.

Figure 4.13 illustrates the comparison between pure SSE2 vs. 3DNow! Performance

data and the results obtained by combining these instruction sets with culling.

To understand the concept of maximised parallelism, consider the following for-loop

used to count the number of facing polygons:

int facing_triangles = 0;

for(int n = 0; n < numberOfTriangles; n++)
{
 if(triangleIsFacing(n))
 {
 facing_triangles = facing_trangles + 1;
 }
}

The given loop can be subdivided and parallelised via either SSE or 3DNow!, with

each individual loop processing a portion of the triangle faces. This parallelised face

counting results in a performance increase from 10841 clock cycles to 149 clock

cycles for the SSE2 implementation and 10224 to 157 clock cycles for the 3DNow!

implementation.

 80

Figure 4.13 Comparing clock cycle results of SSE2 vs. 3DNow! with and without the

use of culling.

Partitioning and parallelising these loops via SSE2 or 3DNow! lead to substantial

performance increases (about 42%). The slight architectural differences between the

Intel and AMD instruction sets lead to slightly varying results. The AMD architecture

barely outperforms the Intel architecture when surfaces outside of the light volume

aren’t culled. One reason for this could be the AMD processor’s clock speed - the

Athlon64 3000+ operates at a substantially lower frequency than its Intel counterpart

(2.8GHz). The AMD processor rating system (3000+ in this case) indicates that the

processor is comparable to a 3.0GHz processor although operating at roughly

1.8GHz. This rating system is the result of AMD processors executing a greater

number of instructions during each clock cycle than Intel’s offerings (Rau, 2002). It is,

however; patently clear that usage of either SSE or 3DNow! results in considerable

performance gains.

4.3.2 Basic Hardware Shadow Mapping Algorithm

To gather the necessary results, we implemented the shadow mapping algorithm for

a number of scenes. In each case, the scene was a relatively simple cubic

environment featuring a single movable 3D model and a variable number of light

sources. The 3D models utilised are those provided as samples by the Microsoft

DirectX SDK. The test system had the following configuration:

NVIDIA GeForceTM8800 GTX 768 MB GDDR3 (Video Card),

 81

AMD AthlonTM3000+ (Processor),

2.0GB (Memory),

1280x1024 (Screen Resolution).

Scalability

In order to accurately benchmark the scalability of the shadow mapping algorithm, we

render a somewhat simple scene consisting of a relatively modest polygon model

(599 faces) and one light source. Figure 4.14 shows this scene with the rendered

shadow. Figures 4.15, 4.16 and 4.17 illustrate the shadows for the other models.

Increasing the number of light sources will lead to additional shadows as shown in

Figure 4.18.

Figure 4.14 Shadow generated by the “tiger” model (1 light source).

Figure 4.15 Shadow generated by the “car” model (1 light source).

 82

Figure 4.16 Shadow generated by the “shapes” model (1 light source).

Figure 4.17 Shadow generated by the “battleship” model (1 light source).

Figure 4.18 Shadows generated by the “tiger” model (2 light sources).

Following this initial rendering, we systematically increase the number of light

sources while varying the model complexity. Figure 4.19 summarises the resulting

performance data. Increasing the number of light sources has a clear influence on

the performance of the shadow mapping algorithm. The mesh complexity is,

however, a less important factor when computing shadow maps due to the absence

of any silhouette detection. The resolution of the shadow map has the biggest

influence on the overall rendering speed. The technique is clearly less accurate than

stencil shadow volumes. It is also much faster due to the stencil buffer not being

utilised and no shadow volume polygons being rendered.

 83

Figure 4.19 The correlation between the number of light sources and FPS rendering

performance for polygonal meshes with varying number of faces using the basic

hardware shadow mapping algorithm.

Construction Complexity

Shadow mapping, as previously mentioned, doesn’t require any silhouette detection.

There is also no need to calculate the number of light source facing triangles or to

construct any silhouette polygons. The previous shadow volume construction

complexity analysis looked at the clock cycles involved in the construction of shadow

volume capping triangles as well as the construction of the shadow volume – these

steps, and the related critical analysis, are thus no longer applicable.

Shadow mapping simply projects the Z-buffer with regard to the point of view of some

light source followed by the scene being drawn from the viewer’s point of view. The

only real computationally intensive part is the calculation of the fragment coordinate

position for every rasterised fragment based on the light’s point of view. These

fragment coordinates are then simply translated to Z-buffer indexes. Z-buffer indexes

are subsequently used to determine whether the fragment’s in shadow or not (using

the previously described depth comparison test). The advent of the NVIDIA

GeForceTM 3 series GPUs greatly improved shadow mapping via the addition of three

hardware extensions, specifically the SGIX_depth_texture,

GL_ARB_shadow_ambient and SGIX_shadow OpenGL extensions as well as a

special Direct3D texture format (Everitt et al, 2002).

 84

Rendering Accuracy and Detail

The rendering accuracy and detail of projected shadows can be determined by way

of visual observation. A model was translated and rotated within a scene and the

detail of the projected shadow was investigated. Shadow mapping, as previously

mentioned, suffers from aliasing errors due to the use of a projection transformation

mapping shadowed pixels to screen pixels, often causing changes in a pixel’s screen

size. This is a direct result of the Z-buffer algorithm’s use of point sampling. The

rendered shadow’s edges are often jagged due to point sampling errors occurring

during the calculation phase of the shadow Z-buffer. These errors are further

amplified when accessing the shadow Z-buffer for the projection of pixels onto the

shadow Z-buffer map. The only way of minimising the visibility of a shadow’s jagged

edges is to implement some form of pre-filtering and to use very large (high

resolution) shadow maps. Figure 4.20 shows a properly cropped and skewed

shadow.

Figure 4.20 A properly cropped and skewed shadow.

Instruction Set Utilisation

Shadow mapping, as opposed to stencil shadow volumes, doesn’t require the CPU

for the creation of shadow geometry or for the counting of facing triangles.

Consequently, the performance gains resulting from the use of Intel's SSE2 or AMD's

3DNow! instruction sets are trivial (as opposed to conventional sequentially executed

routines). We decided that it would be redundant to conduct experiments to confirm

this.

 85

4.3.3 Shadow Volume Reconstruction from Depth Maps (McCool)

Michael McCool (2000) proposed shadow volume reconstruction using depth maps.

We were interested in determining the performance advantage of this algorithm over

the traditional approach. To gather the necessary results, we implemented McCool’s

algorithm for a number of scenes. In each case, the scene was a relatively simple

cubic environment featuring a single movable 3D model and a variable number of

light sources. The 3D models utilised are those provided as samples by the Microsoft

DirectX SDK. The test system had the following configuration:

NVIDIA GeForceTM8800 GTX 768 MB GDDR3 (Video Card),

AMD AthlonTM3000+ (Processor),

2.0GB (Memory),

1280x1024 (Screen Resolution).

Scalability

In order to accurately benchmark the scalability of McCool’s algorithm, we render a

somewhat simple scene consisting of a relatively modest polygon model (599 faces)

and one light source. Figure 4.21 shows a properly cropped and skewed shadow

generated using this algorithm.

Figure 4.21 Shadow generated using McCool’s (2000) algorithm.

Following this initial rendering, we systematically increase the number of light

sources while varying the model complexity. Figure 4.22 summarises the resulting

performance data. By analysing these results, it is clear that both the number of light

sources and mesh complexity have an influence on the performance of McCool’s

algorithm. McCool’s (2000) algorithm has a slight performance advantage over the

traditional approach without any loss in shadow quality – this is primarily due to

elimination of the dot product computation previously utilised to find the silhouette

edges of an object. The algorithm extrudes the silhouette edges via use of a depth

map and vision technique. This results in an overall performance gain when

compared to the traditional stencil shadow volume algorithm.

 86

Figure 4.22 The correlation between the number of light sources and FPS rendering

performance for polygonal meshes with varying number of faces using McCool’s

hybrid approach.

Construction Complexity

Assessing the total number of clock cycles and the number of clock cycles for every

routine of McCool’s shadow construction process allows us to isolate the processor

intensive operations and possible areas of improvement. The results shown in Figure

4.23 compare the processor dependence of our 599-face ‘tiger’ mesh. These tests

were executed on the same system as the one used for scalability testing. We also

employed an Intel Pentium 4 ‘Northwood’ 2.8 GHz – based test system (with all its

hardware components corresponding to that of our AMD test machine). The data

obtained from this machine is also shown in Figure 4.23. These results will be used

when comparing the standard C/Direct3D implementation to the utilisation of Intel’s

SSE2 and AMD’s 3DNow! instruction sets.

 87

Figure 4.23 Comparing clock cycle iterations with and without culling for the tiger

mesh (599 faces) using McCool's algorithm with different hardware configurations.

We investigated the number of clock cycle iterations for each of the shadow volume

construction phases. The first phase in this process is to calculate the number of light

source facing triangles. The second phase involves construction of the silhouette

polygons (also referred to as the silhouette plane polygons) using the shadow map’s

depth coordinates (z[x, y]); with the third phase responsible for the construction of the

shadow volume’s capping triangles. The fourth phase is the actual construction of the

shadow volume. We can also modify this phase to construct shadow volumes while

at the same time culling polygons located outside of the volume. We can similarly

modify the first shadow volume construction phase to calculate the number of light

source facing triangles with the culling of polygons outside of the volume. As can be

seen in Figure 4.23, the difference between the two hardware configurations is

minimal. The culling of polygons located outside of the volume involves more work

initially, thus resulting in some performance loss.

We repeated the same experiment on the AMD machine using higher polygon

models. As can be seen in Figure 4.24, the total number of clock cycles increases

drastically when the number of faces increase, but the relation between the work

done during the different phases does not differ significantly. The increasing clock

cycle measurements are mostly due to the numerous conditional branches executed

during the shadow volume creation process. Translating and/or rotating a mesh also

impacts heavily on the clock cycle count due to the recalculation of the light source

facing polygons, the shadow map and subsequently the shadow volume.

 88

Figure 4.24 Comparing clock cycle iterations with McCool's algorithm for the tiger

(599 faces) and the battleship (9664 faces) – shown here with and without culling

respectively.

Rendering Accuracy and Detail

The rendering accuracy and detail of projected shadows can be determined by way

of visual observation. A model is translated and rotated within a scene and the detail

of the projected shadow is investigated. Shadow quality is heavily dependent on the

depth map’s resolution (compare the jaggedness of the shadow in Figure 4.20,

rendered via a low resolution depth map, with Figure 4.25’s smooth edges) and

shadow edges can easily be anti-aliased (a technique used to reduce image

distortion artefacts – jaggedness, known as aliasing) without any need to recapture

the shadow map (McCool, 2000). Figure 4.25 shows a properly cropped and skewed

shadow.

 89

Figure 4.25 A properly cropped and skewed shadow.

Instruction Set Utilisation

McCool’s algorithm, as stencil shadow volumes, requires the CPU for the creation of

shadow geometry and for the counting of facing triangles. We will thus observe

nearly identical performance gains by utilising Intel’s SSE2 or AMD’s 3DNow!

instruction set (as opposed to conventional sequentially executed routines). There is

significant gain especially in the first phase. It is also noticeable that the second

phase did not lend itself to any gain. The difference between the utilised hardware

offerings is negligible.

To understand the concept of maximised parallelism, consider the same for-loop

used to count the number of facing polygons:

int facing_triangles = 0;

for(int n = 0; n < numberOfTriangles; n++)
{
 if(triangleIsFacing(n))
 {
 facing_triangles = facing_trangles + 1;
 }
}

The given loop can be subdivided and parallelised via either SSE or 3DNow!, with

each individual loop processing a portion of the triangle faces. This parallelised face

counting results in a performance increase from 8325 clock cycles to 98 clock cycles

for the SSE2 implementation and 9005 to 103 clock cycles for the 3DNow!

implementation.

All the other shadow volume construction phases use similar loops with either the

culling or the filling of triangle indices added. Partitioning and parallelising these

loops via SSE2 or 3DNow!, as previously discussed, lead to substantial performance

increases. The AMD architecture, as observed in our other experiments, barely

 90

outperforms the Intel architecture when surfaces outside of the light volume aren’t

culled. It is, however, clear that usage of either SSE or 3DNow! results in

considerable performance gains (bar charts aren’t given as the performance gains

are nearly identical to those given in section 4.3.1).

4.3.4 Algorithm for the Efficient Rendering of Hard-edged Shadows
(Chan and Durand)

Eric Chan and Frédo Durand (2004) combine the strengths of shadow maps and

shadow volumes to produce a hybrid algorithm for the efficient rendering of pixel-

accurate hard-edged shadows. To gather information about the relative performance

gains of this approach, we implemented Chan and Durand’s (2004) hybrid algorithm

for a number of scenes. In each case, the scene was a relatively simple cubic

environment featuring a single movable 3D model and a variable number of light

sources. The 3D models utilised are those provided as samples by the Microsoft

DirectX SDK. The test system had the following configuration:

NVIDIA GeForceTM8800 GTX 768 MB GDDR3 (Video Card),

AMD AthlonTM3000+ (Processor),

2.0GB (Memory),

1280x1024 (Screen Resolution).

Scalability

In order to accurately benchmark the scalability of Chan and Durand’s (2004) hybrid

algorithm, we start by rendering a somewhat simple scene consisting of a relatively

modest polygon model (599 faces) and one light source.

Following this initial rendering, we systematically increase the number of light

sources while varying the model complexity. Figure 4.26 summarises the resulting

performance data. By analysing these results, it is clear that both the number of light

sources and mesh complexity have an influence on the performance of Chan and

Durand’s algorithm. The actual performance gains are extremely hardware

dependent with an average speedup of x1.4 observed on GeForceTM 8 hardware. A

test Direct3D 9 implementation running on a high-end GeforceTM 6 showed similar

results. Our results correlate with those obtained by the original authors, as stated in

Chan and Durand: “Actual performance gains will depend on the effectiveness of

hardware culling. In our tests on NVIDIA hardware, the GeForce 6 (NV40) can

rasterize z/stencil (color writes disabled) at 32 pixels/clock, but it can reject pixels at

64 pixels/clock. Similarly, we observed that the GeForce FX 5950 (NV38) can

rasterize z/stencil at 8 pixels/clock, but it can reject at 16 pixels/clock. Both

measurements represent peak performance. In either case, the relative speedup is a

factor of 2”.

 91

Figure 4.26 The correlation between the number of light sources and FPS rendering

performance for polygonal meshes with varying number of faces using Chan and

Durand’s hybrid approach.

Construction Complexity

Assessing the total number of clock cycles and the number of clock cycles for every

routine of Chan and Durand’s hybrid shadow construction process allows us to

isolate the processor intensive operations and possible areas of improvement. The

results shown in Figure 4.27 compare the processor dependence of our 599-face

‘tiger’ mesh. These tests were executed on the same system as the one used for

scalability testing. We also employed an Intel Pentium 4 ‘Northwood’ 2.8 GHz –

based test system (with all its hardware components corresponding to that of our

AMD test machine). The data obtained from this machine is also shown in Figure

4.27. These results will be used when comparing the standard C/Direct3D

implementation to the utilisation of Intel’s SSE2 and AMD’s 3DNow! instruction sets.

 92

Figure 4.27 Comparing clock cycle iterations with and without culling for the tiger

mesh (599 faces) using different hardware configurations.

We investigated the number of clock cycle iterations for each of the shadow volume

construction phases. The first phase in this process is to use a shadow map to find

pixels in the image that lie near shadow silhouettes. The second phase involves

construction of the silhouette polygons (also referred to as the silhouette plane

polygons); with the third phase responsible for the construction of the shadow

volume’s capping triangles. The fourth phase is the actual construction of the shadow

volume. We can also modify this phase to construct shadow volumes while at the

same time culling polygons located outside of the volume. We can similarly modify

the first shadow volume construction phase to calculate the number of light source

facing triangles with the culling of polygons outside of the volume. As can be seen in

Figure 4.27, the difference between the two hardware configurations is minimal. The

culling of polygons located outside of the volume involves more work initially, thus

resulting in some performance loss.

We repeated the same experiment on the AMD machine using higher polygon

models. As can be seen in Figure 4.28, the total number of clock cycles increases

drastically when the number of faces increase, but the relation between the work

done during the different phases does not differ significantly. The increasing clock

cycle measurements are mostly due to the numerous conditional branches executed

during the shadow volume creation and silhouette detection process. Translating

and/or rotating a mesh also impacts heavily on the clock cycle count due to the

recalculation of the light source facing polygons, the shadow map and subsequently

the shadow volume.

 93

Figure 4.28 Comparing clock cycle iterations for the tiger (599 faces) and the

battleship (9664 faces) – shown here with and without culling respectively.

Rendering Accuracy and Detail

The rendering accuracy and detail of projected shadows can be determined by way

of visual observation. A model is translated and rotated within a scene and the detail

of the projected shadow is investigated. Shadow quality is once again somewhat

dependent on the depth map’s resolution and shadow edges can, as with McCool’s

approach, be anti-aliased without any need to recapture the shadow map. Also, the

use of a lower resolution shadow map is acceptable due to the shadow volumes

being responsible for reconstructing the shadow silhouette. Figure 4.29 (a) shows a

properly cropped and skewed shadow rendered using a high resolution depth map

with Figure 4.29 (b) showing a portion of the same shadow rendered via a low

resolution depth map.

 94

 (a) (b)

Figure 4.29 (a) A properly cropped and skewed shadow rendered using a high
resolution depth map and (b) showing a portion of the same shadow rendered via a
low resolution depth map.

Instruction Set Utilisation

Chan and Durand’s hybrid shadow algorithm, as stencil shadow volumes and

McCool’s approach, requires the CPU for the creation of shadow geometry and for

the counting of facing triangles. We will thus observe nearly identical performance

gains when utilising Intel’s SSE2 or AMD’s 3DNow! instruction set (as opposed to

conventional sequentially executed routines). There is once again a significant gain,

especially in the first phase. It is also noticeable that the second phase did not lend

itself to any gain. The difference between the utilised hardware offerings is negligible.

The previously discussed loop counting the number of facing polygons can be

subdivided and parallelised via either SSE or 3DNow!, with each individual loop

processing a portion of the triangle faces. This parallelised face counting results in a

performance increase from 9556 clock cycles to 83 clock cycles for the SSE2

implementation and 8051 to 101 clock cycles for the 3DNow! implementation.

All the other shadow volume construction phases use similar loops with either the

culling or the filling of triangle indices added. Partitioning and parallelising these

loops via SSE2 or 3DNow! lead to substantial performance increases. The slight

architectural differences between the Intel and AMD instruction sets lead to slightly

varying results. The AMD architecture barely outperforms the Intel architecture when

surfaces outside of the light volume aren’t culled. One reason for this could be the

AMD processor’s clock speed - the Athlon64 3000+ operates at a substantially lower

frequency than its Intel counterpart (2.8GHz). It is, however; patently clear that usage

of either SSE or 3DNow! results in considerable performance gains.

 95

4.3.5 Elimination of various Shadow Volume Testing Phases (Thakur et
al).

To gather the necessary results, we implemented Thakur et al’s (2003) algorithm for

a number of scenes. In each case, the scene was a relatively simple cubic

environment featuring a single movable 3D model and a variable number of light

sources. The 3D models utilised are those provided as samples by the Microsoft

DirectX SDK. The test system had the following configuration:

NVIDIA GeForceTM8800 GTX 768 MB GDDR3 (Video Card),

AMD AthlonTM3000+ (Processor),

2.0GB (Memory),

1280x1024 (Screen Resolution).

Scalability

In order to accurately benchmark the scalability of Thakur et al’s (2003) algorithm, we

start by rendering a somewhat simple scene consisting of a relatively modest

polygon model (599 faces) and one light source.

Following this initial rendering, we systematically increase the number of light

sources while varying the model complexity. Figure 4.30 summarises the resulting

performance data. By analysing these results, it is clear that both the number of light

sources and mesh complexity have an influence on the performance of Thakur et al’s

algorithm. Performance testing of this technique leads to the same conclusions as

originally documented by Thakur et al (2003). That is, the method’s “storage

requirement (like other Shadow Volume methods) grows with the number of objects.

However, this method may become more amenable in storage management than its

peers. As pointed out earlier, the actual shadow is a logical OR of shadows from all

objects. Using this fact greatly reduces the number of lookup calls and so the

processing time. Similarly, this concept can also be applied to storage.” This

technique, to summarise, shows some performance gains over traditional stencil

shadow volumes when rendering large geometrically complex scenes with a great

number of light sources while allowing for a number of trade offs between speed and

quality.

 96

Figure 4.30 The correlation between the number of light sources and FPS rendering

performance for polygonal meshes with varying number of faces using Thakur et al’s

algorithm.

Construction Complexity

Thakur et al’s algorithm constructs ridge edge loops (an inexact form of silhouette

edges) to determine the shadow volume (without any expensive computations). The

silhouette detection process is thus “automatic” in a sense. There is also no need to

perform any edge intersection tests or shadow-polygon intersection tests as shadows

are discretised into angular spans (corresponding to scan-lines which are in turn

stored in a lookup table – data used to directly mark shadowed pixels).

Assessing the total number of clock cycles and the number of clock cycles for every

routine of the Thakur et al ridge edge loop construction process allows us to isolate

the processor intensive operations and possible areas of improvement. The results

shown in Figure 4.31 compare the processor dependence of our 599-face ‘tiger’

mesh. These tests were executed on the same system as the one used for scalability

testing. We also employed an Intel Pentium 4 ‘Northwood’ 2.8 GHz – based test

system (with all its hardware components corresponding to that of our AMD test

machine). The data obtained from this machine is also shown in Figure 4.31.

 97

Figure 4.31 Comparing clock cycle iterations of the tiger mesh (599 faces) using

different hardware configurations.

We investigated the number of clock cycle iterations for each of the ridge edge loop

construction phases. The first phase in this process is to find the ridge edges. The

second phase represents the connection of ridge edges to form loops; with the third

phase dealing with the calculation of angular coordinates (of vertices positioned on

ridge edge loops). The fourth phase is the process where vertices with local peaks in

θ (ridge edge loops are sliced along θ with local peaks being specific points in the

loop) are identified and where edge points are appended to the lookup table until a

minimum in θ is reached (by starting from the identified peaks).

We repeated the same experiment on the AMD machine using higher polygon

models. As can be seen in Figure 4.32, the total number of clock cycles increases

drastically when the number of faces increase, but the relation between the work

done during the different phases does not differ significantly. The increasing clock

cycle measurements are mostly due to the numerous conditional branches executed

during the ridge edge loop creation process. Translating and/or rotating a mesh also

impacts heavily on the clock cycle count due to the recalculation of the light source

facing polygons and subsequently the shadow volume.

 98

Figure 4.32 Comparing clock cycle iterations of the tiger (599 faces) and battleship

(9664 faces) mesh respectively.

Rendering Accuracy and Detail

The rendering accuracy and detail of projected shadows can be determined by way

of visual observation. A model is translated and rotated within a scene and the detail

of the projected shadow is investigated. Shadow quality is heavily dependent on s'θ

resolution, however, increasing the resolution beyond the native screen resolution

has no effect – the screen resolution poses an upper limit. Figure 4.33 shows a

properly cropped and skewed shadow with Figure 4.34 (taken from Thakur et al,

2003) illustrating the effect of s'θ resolution on image quality.

 99

Figure 4.33 A properly cropped and skewed shadow.

Figure 4.34 The effect of s'θ resolution on image quality.

 100

Instruction Set Utilisation

Thakur et al’s algorithm utilises the CPU to construct not only the lookup table (see

section 3.3.3) but also to perform scan-line conversion and generate a query at each

point (x, y, z) to determine whether the point’s in shadow or not (and to perform the

subsequent shadow query). We will thus observe some performance gains when

utilising Intel’s SSE2 or AMD’s 3DNow! instruction set (as opposed to conventional

sequentially executed routines).

4.3.6 Shadow Volumes and Spatial Subdivision

We now present the results obtained from combining the depth-fail stencil shadow

volume algorithm with spatial subdivision. This unification results, as previously

mentioned, in real-time frame rates for rather complex scenes.

Our approach, as discussed, uses the Octree to calculate the shadow volume

unification by traversing the tree in a front-to-back order, thus in effect subdividing the

surface (endpoint) polygons for each element/object. This arrangement results in

performance gains where the rendered scene contains several concealed shadow

volumes. However, the Octree structure does require some processing time to build

and the non-Octree enhanced shadow volume algorithm performs much better where

there are few concealed shadow volumes or in situations where light sources are

dynamically added or removed.

To gather the necessary results, we implemented our algorithm for a number of

scenes. In each case, the scene was a relatively simple cubic environment featuring

a single movable 3D model and a variable number of light sources. The 3D models

utilised are those provided as samples by the Microsoft DirectX SDK. The test

system had the following configuration:

NVIDIA GeForceTM8800 GTX 768 MB GDDR3 (Video Card),

AMD AthlonTM3000+ (Processor),

2.0GB (Memory),

1280x1024 (Screen Resolution).

Scalability

In order to accurately benchmark the scalability of our algorithm, we render a

somewhat simple scene consisting of a relatively modest polygon model (599 faces)

and one light source.

Following this initial rendering, we systematically increase the number of light

sources while varying the model complexity. Figure 4.35 shows the frame rates

obtained when using our technique with a varying number of light sources and

 101

models of differing complexity. Similar to the depth-fail stencil shadow volume

algorithm, both the number of faces and number of light sources have a negative

impact on the overall frame rate.

Figure 4.35 The correlation between the number of light sources and FPS rendering
performance for polygonal meshes with varying number of faces using our approach.

Construction Complexity and Instruction Set Utilisation

Our shadow algorithm, as stencil shadow volumes and McCool’s approach, requires

the CPU for the creation of shadow geometry and for the counting of facing triangles.

It also utilises CPU power to populate the octree data structure. The next step is thus

to extend this spatial subdivision approach by combining it with the utilisation of the

SSE2 instruction set (the data obtained from the use of 3DNow! is nearly identical).

Figure 4.36 shows the results obtained from this hybrid technique. The improvement

is in the order of about 10%.

 102

Figure 4.36 The correlation between the number of light sources and FPS rendering
performance for polygonal meshes with varying number of faces using our extended
approach.

Rendering Accuracy and Detail

The rendering accuracy and detail of projected shadows can be determined by way

of visual observation. A model was translated and rotated within a scene and the

detail of the projected shadow was investigated. Since the algorithm only adds an

underlying data structure to speed up calculation, and does not alter any of the

techniques applied by the basic stencil shadow volume algorithm to determine the

shadowed pixels, the shadow quality is identical to that of the original stencil shadow

volume algorithm (shown in Figure 4.37).

Figure 4.37 A properly cropped and skewed shadow.

 103

4.4 Succinct Algorithm Comparison

This section presents a comparison between the results documented in section 4.3

(see Figure 4.40 for the mean performance of each algorithm). It also summarises

these results with specific emphasis on the most appropriate application areas.

It is important to note that our spatial subdivision algorithm was analysed in a

statically lit environment. This results in its relatively high performance when

compared to the other algorithms. Its performance was found to be comparable to

the basic stencil shadow volume algorithm in situations where dynamic lighting is

implemented. Our algorithm will thus outperform all other algorithms where light

sources aren’t added, moved or removed.

In Figure 4.38 the frame rates achieved (for the 1638 faces model) via the

implementation of spatial subdivision is compared to that obtained using the

Heidmann algorithm. It is clear from the data that our approach results in significantly

better performance than the original stencil shadow volume algorithm (40% better for

one light source and 200% better for eight).

Figure 4.38 Comparison of our approach with the depth-fail stencil shadow volume
approach.

In Figure 4.39, the frame rates attained from using spatial subdivision combined with

the utilisation of the SSE2 instruction set is compared to that obtained from using the

Heidmann algorithm.

 104

Figure 4.39 Comparison of our extended approach with the depth-fail stencil

shadow volume approach.

From the results given in Figure 4.40, it is clear that our spatial subdivision approach

combined with hardware extensions offers the best performance for statically lit

scenes. This algorithm does, however, require processing time for Octree-

construction and the non-Octree enhanced shadow volume algorithms perform much

better in situations where light sources are dynamically added, moved or removed.

We will use the spatial subdivision approach coupled with SSE2/3DNow! utilisation

for all environmental areas lit using static light sources.

 105

Figure 4.40 Comparison of all the previously listed algorithms (1-8 light sources).

Chan and Durand’s (2004) algorithm is the second best algorithm when rendering

high-quality shadows with only a single dedicated light source. This algorithm shows

significant performance degradation when more light sources are added. It does,

however, outperform all the remaining shadow volume-based algorithms for up to

eight light sources. We will use Chan and Durand’s algorithm for all scenes

consisting of eight or less dynamic light sources when high-quality shadows are

required.

The shadow mapping algorithm performs only slightly worse than Chan and Durand’s

(2004) algorithm (when rendering scenes consisting of just one light source). That

said, our critical analysis implementation does render low-resolution shadow maps.

However, increasing this shadow map resolution will have a net-negative impact on

our overall rendering performance. We will use shadow mapping (with average

shadow resolution) for all scenes consisting of two or more dynamic light sources

and where the shadow casting objects are located a significant distance from the

point-of-view.

 106

McCool’s (2000) algorithm is the second best choice when dealing with scenes

featuring one to eight light sources and when high-quality shadows are required. We

won’t be utilising this algorithm, rather opting for Chan and Durand’s hybrid

approach. The same goes for the classic stencil shadow volume algorithm and

Thakur et al’s (2003) algorithm.

The previous comparison (given in Figure 4.40) only deals with a limited number of

light sources. The choice between the most appropriate algorithms is, however,

mostly superficial due to 200 frames per second and 60 frames per second

displaying similar to the human eye. It is only when frame rates fall below 30 per

second that we start to notice. Running the same simulations (but with the light

source count ranging from nine to sixteen) shows a rapid decrease in our frames per

second performance. Figure 4.41 shows these results.

Figure 4.41 Comparison of all the previously listed algorithms (9-16 light sources) –

please note; our spatial subdivision algorithm was analysed in a statically lit

environment, thus resulting in its high performance (its performance is comparable to

the basic stencil shadow volume algorithm in situations where dynamic lighting is

implemented).

 107

Considering Figure 4.41, we can once again see our spatial subdivision approach

coupled with the SSE2/3DNow! instruction set outperforming all the other algorithms.

This algorithm is, as mentioned, only amenable to environments utilising static

lighting – making the comparison a bit bias. We will, however, continue to use this

algorithm for all environmental areas lit using static light sources.

The Basic shadow mapping algorithm remains the best choice when dealing with

dynamically lit environments, at least when working with fourteen or less light

sources and when shadow rendering quality isn’t as important (see Figure 4.40 and

4.41). We will continue to use shadow mapping for all scenes consisting of more than

two and less than fourteen dynamic light sources and where the shadow casting

objects are located a significant distance from the point-of-view. Chan and Durant’s

algorithm will, however, prove a better choice for both close range and distant objects

when rendering scenes consisting of fourteen or more dynamic light sources. We will

also use Chan and Durrand’s algorithm for all scenes consisting of nine or more

dynamic light sources when high-quality shadows are required.

4.5 Summary

In the chapter we started by presenting our benchmarking mechanism and a set of

criteria for the evaluation of shadow generation techniques. The given evaluation

criteria were selected with the aim of assessing the relationship between shadow

rendering quality and performance – in turn allowing us to isolate key algorithmic

weaknesses and possible bottleneck areas.

Specific algorithms benchmarked and analysed include: the basic stencil shadow

volume algorithm, the basic hardware shadow mapping algorithm, McCool’s shadow

volume reconstruction using depth maps, Chan and Durand’s hybrid algorithm for the

efficient rendering of hard-edged shadows, Thakur el al’s algorithm based on the

elimination of various shadow volume testing phases and our own algorithm based

on shadow volumes, spatial subdivision and instruction set utilisation. We found the

spatial subdivision approach combined with hardware extensions to offer the best

performance when rendering statically lit scenes. We subsequently identified Chan

and Durand’s algorithm to be the best algorithm when rendering scenes consisting of

eight or less dynamic light sources when high-quality shadows are required and

where shadow casting objects are located near the point-of-view. Shadow mapping

was, in turn, identified as the best approach when rendering scenes consisting of

more than two and less than fourteen dynamic light sources and where the shadow

casting objects are located a significant distance from the point-of-view. Chan and

Durant’s algorithm is, however, a better choice for both close range and distant

objects when rendering scenes consisting of fourteen or more dynamic light sources.

We will also use Chan and Durrand’s algorithm for all scenes consisting of nine or

more dynamic light sources when high-quality shadows are required. McCool’s

algorithm is the second best choice when dealing with scenes featuring one to eight

light sources and when high-quality shadows are required. We will not be utilising this

 108

algorithm, rather opting for Chan and Durand’s hybrid approach. The same goes for

the classic stencil shadow volume algorithm and Thakur et al’s algorithm.

The chapter concluded with a comparison between the results obtained; we also

summarised these results with specific emphasis on the most appropriate application

area. The next chapter provides an overview of expert systems and fuzzy-logic – two

elements incremental to the implementation of our high speed shadow rendering

framework.

 109

 Chapter 5

Expert Systems and Fuzzy Logic

This chapter provides a brief overview of a number of basic concepts pertaining to

expert systems and fuzzy logic. This overview is included to illuminate the

utilisation of these concepts with regards to designing and implementing a system

for high-speed shadow rendering (discussed in Chapter 6). Detailed discussions

of these topics can be found in a large number of textbooks such Nilsson (1986)

and Coppin (2004) to name a few.

Chapter 5 focuses on the theoretical aspects of expert systems, their architecture

and a number of advantages and disadvantages inherent to their use (as far as it

applies to the design of our system). Following this discussion, it deals with the

concept of fuzzy-logic and its use in the dynamic selection of shadow rendering

algorithms.

It is not the intention of this dissertation to contribute to the domain knowledge of

artificial intelligence. It is merely applying well established techniques to the

terrain of real time shadow rendering. It was decided to include this textbook

knowledge for the sake of the reader’s convenience and may be skipped by

individuals who are familiar with these concepts.

In this chapter we will investigate:

• The architecture of a basic rule-based expert system

• Rule-based decision making

• Fuzzy reasoning and the concept of fuzzy expert systems

• Linguistic variables

• Fuzzy sets

• Membership functions

• Mamdani inference

 110

5.1 Introduction

A technique often employed to facilitate the storage of and access to human

expertise, accumulated through training and experience, is that of expert systems

(also called knowledge systems). An expert system is based on three concepts,

namely, the knowledge of facts, data about the relationship among these facts and a

method to store and access this data (Ignizio, 1991:127). An expert system is

created by extracting facts from human knowledge such as routines, historic events,

relationships, etc and transforming this data so that it can be used to influence the

reasoning of a computer controlled opponent playing against the user, for example

(Giarratano et al, 2005 :28).

The most basic expert system is defined by a set of production rules in turn used to

analyse information (Salton, 1987). This mathematical analysis yields a

recommendation with regards to the course of action that should be taken by the

user, a subsystem or algorithm.

Expert systems can, for example, be used in games to implement the reasoning of

computer controlled opponents. When used in such a way, the knowledge system is

defined to extract and store facts about the human players. Production rules (simple

if-conditionals) can subsequently be used to reason and take certain actions based

on processed human knowledge.

An expert system, as mentioned, analyses a dataset to determine the best solution to

a given problem. Our real-time shadow generation framework employs such a

system. This system specifically consists of an empirically ascertained dataset and a

collection of rules to analyse the data and information of various elements pertaining

to the scene currently being rendered.

We will now investigate the theoretical aspects of expert systems, their architecture

and a number of advantages and disadvantages inherent to their use. Following this

discussion, we will look at the extension of expert systems to include fuzzy logic

based reasoning.

5.2 Expert Systems

The knowledge stored in an expert system is obtained via training, empirical

experimentation and prior human experience. Raw real-world knowledge is

subsequently transformed into an expert system during a process called knowledge

engineering. This process or task, performed by a knowledge engineer, encapsulates

the construction of an expert system. The finalised expert system consists of the

following elements: a set of facts, the relationship among these facts and a

mechanism for the storage and rapid retrieval of this information (Ignizio, 1991:59).

 111

Expert systems are commonly constructed via a series of production rules (common

if-then-else structures). These production rules are used to select an appropriate

action based on the truthfulness of a certain condition; for example, in the most basic

terms: if some condition is true, take some action. A condition is known as the

antecedent with the action called the consequent. The antecedent expresses some

fact stored in the expert system’s knowledge base with the consequent triggering

some event. This event can either be an action to perform or the addition or removal

of a stored fact.

Expert systems differ from simple conditional programming with regard to the order of

execution. For example, a common sequence of if-else statements, as found in the C

programming language, is executed in a predefined order. Expert systems make use

of an inference engine to select conditionals based on current real-time data. The

action taken is only governed by the current facts and rules, not by any predefined

execution order.

Expert systems are frequently encountered in human resources departments, the

medical world, banking and process control environments. For example, a human

resources department might use such a system to calculate an individual’s salary

bracket or a medical centre might employ an expert system to diagnose a certain

health condition based on a number of symptoms.

We will use an expert system to control the real-time selection of shadow rendering

algorithms. The knowledge base of this expert system consists of experimental

results obtained through the critical analysis of numerous real-time shadow rendering

algorithms (and the improvements made through the use of various hardware

extensions and hybrid approaches). Production rules are implemented via an

inference engine. This inference engine is in turn used to select the most appropriate

algorithm based on certain properties of the scene being rendered. For instance, our

system could contain the following production rule: if there are a lot of light sources in

a scene and the scene has a high geometric complexity, then enable a hybrid stencil

shadow volume/shadow mapping algorithm. The notions “a lot of light sources” and

“high geometric complexity” are not quantitative facts. Fuzzy logic provides a solution

to this problem by assigning quantitative values and/or ranges to these concepts.

The concepts “a lot of light sources” and “high geometric complexity” can also be

combined into the new one “overly complex”, resulting in a new production rule. Our

framework combines production rules with fuzzy logic to explicitly symbolise data.

This is followed by the selection of the most efficient shadow rendering algorithm. It is

important to note that this framework is also adaptable for use with other rendering

algorithms such as real-time reflections and particle systems.

A basic rule-based expert system consists of the following modules:

• An inference engine or interpreter.

• A fact database.

• A knowledge base.

• A User Interface.

• An Explanation System.

 112

• A Knowledge Base Interface.

The knowledge base is nothing more than a database of rules. These rules

symbolise the stored knowledge. The fact database embodies the expert system

inputs which are subsequently used to make decisions and/or to take certain actions.

The inference engine makes the actual decision by combining these expert system

rules and facts. The explanation system generates information about the manner in

which a decision was made with the knowledge base interface. It also gives the user

access to it and allows the user to edit information stored in the knowledge base

(Salton, 1987). Figure 5.1 illustrates the architecture of a typical expert system.

Fig 5.1 Architecture of an expert system.

An expert system’s inference engine, explanation system, knowledge base interface

and user interface are contained within a “shell”. The knowledge base and fact

database are connected to this shell in a plugin-like fashion. An expert system shell

is thus used to define a generic expert system, with the expert system’s functionality

controlled by the connected fact database and knowledge base. Well-known expert

system shells include CLIPS (C Language Integrated Production System), the Java

Expert System Shell (a Java implementation of CLIPS), LogicNets (a web-based

expert system modelling environment), the SHINE (Spacecraft Health INference

Engine) real-time expert system and PyKe (a knowledge based expert system) –

Table 5.1 gives a short description of each of these.

Expert System Shell Description

CLIPS CLIPS is a productive development and

delivery expert system tool which

provides a complete environment for the

construction of rule and/or object based

expert systems. Created in 1985, CLIPS

is now widely used throughout the

government, industry, and academia.

(http://clipsrules.sourceforge.net/).

Java Expert System Shell A CLIPS engine implemented in Java

used in the development of expert

 113

systems (http://www.jessrules.com/).

LogicNets A web-based expert system modelling

environment (http://www.logicnets.com/).

SHINE A software-development tool for

knowledge-based systems and has been

created as a product for research and

development by the Artificial Intelligence

Group, Information Systems Technology

Section at NASA/JPL (http://trs-

new.jpl.nasa.gov/dspace/bitstream/2014/

14039/1/00-0425.pdf).

PyKe A knowledge-based inference

engine/expert system

(http://pyke.sourceforge.net/).

Decisions are generally made in one of two ways: forward chaining or backward

chaining. Forward chaining utilises deduction to reach a result or conclusion.

Backward chaining, on the other hand, starts at the end-result or conclusion from

where it backtracks to determine whether the system has any data which will satisfy

this goal or result.

Forward Chaining

An expert system employing a forward chaining strategy will start from a set of facts

and, based on a number of rules, attempt to make an accurate decision. The

following outlines the steps of such an expert system:

1) Read the expert system inputs from the fact database.

2) Compare the read inputs to the rules in the rule database.

3) If an input fact matches all the antecedents of a rule:

a. Trigger the rule and add its conclusion to the fact database.

i. If the conclusion is an action:

� Execute the action.

For example, consider the following set of rules that is used to select a shadow

algorithm based on the number of light sources in a scene:

 Rule #1

 If there are more than twenty light sources,

 Then render all shadows via the depth-pass stencil shadow volume

algorithm.

 Rule #2

 If there are less than twenty light sources,

 Then render all shadows via the hardware-accelerated shadow mapping

algorithm.

 114

Say we have loaded the following fact into our expert system:

 Fact

 The scene contains 39 light sources.

The expert system can now examine the rule database, upon which the loaded fact

will be matched with rule #1. Hence, rule #1 fires with its result being selection of the

depth-pass stencil shadow volume algorithm.

Our expert system implementation utilises a forward chaining strategy to determine

results from a collection of rules and facts. Chapter 4 discusses this implementation

in much more detail.

Backward Chaining

Forward chaining does, in some cases, suffer from inefficiency due to a number of

irrelevant conclusions being reached or more than one rule for a given fact being

triggered. Conflict resolution is often needed to determine the rule that should be

fired. The simplest way of dealing with conflicts is to assign each rule a priority level

(Ignizio, 1991:85). The rule with the highest priority is thus fired whenever a conflict

occurs. Another solution to this problem is backward chaining. Backward chaining, as

mentioned, starts from the end-result or conclusion. From there it backtracks to

determine how the given goal or result can be reached given the rules and facts in

the system. The following outlines the steps of an expert system utilising such a

backward chaining strategy:

1) Start at the goal state – the desired condition.

2) Examine the goal state and analyse the expert system’s rules and facts

to identify the action(s) that might lead to this goal.

3) Terminate when the start state is reached – at which point a plan would

be formulated.

Our expert system implementation operates on a readily available set of facts without

the need to prove the validity of specific conclusions. A backward chaining strategy is

thus not appropriate in our situation.

There are several advantages inherent to the use of expert systems, specifically;

generated results are always consistent, regardless of variations in the input data, a

large volume of data can be stored and processed in real-time and decision making

occurs in a logical fashion. That said, expert systems will never demonstrate the

same “common sense” as human beings with regard to decision making or problem

solving. The knowledge base might also contain errors which will, in turn, result in

flawed reasoning and skewed results.

 115

5.3 Fuzzy Reasoning and Fuzzy Expert Systems

Fuzzy logic, introduced in the 1960s by LA Zadeh, is an extension of traditional

predicate/Boolean logic. Boolean logic, bivalent in nature (true or false), was

broadened by this superset to include half-truths (values between “absolutely true”

and “absolutely false”) (Zadeh, 1965).

Fuzzy logic reasons about so-called fuzzy sets (Chen, 1996). Fuzzy sets, introduced

by LA Zadeh in 1965, extends traditional sets (where an element can either be

present or absent from a set) to define a set based on partial membership (Zadeh,

1965). An element can thus be a member of a set to some degree while at the same

time not being a member of the set to some degree. For example, consider a set of

colours, C = {Yellow, Orange, Red, Purple}, and the colour elements

Burgundy and Gold. Burgundy is of course a shade of red with a touch of purple

with Gold being a yellowish orange colour. Burgundy and Gold are thus part of set

C to some degree but they are also non-members of the set to some degree – Gold

can be considered “fairly yellow” with Burgundy being “fairly red”. Fuzzy logic is thus

based on the extent of truth of a statement with regard to its degree of membership

to the set. Figure 5.2 shows the degree of membership of the colour Gold with

regards to the set element Yellow.

Fig 5.2 The degree of membership of the colour Gold (in terms of the amount of

orange present) with regards to the set element Yellow.

A membership function is used to define a fuzzy set. Such a function assigns a value

from an interval to a criteria/element collection (Zadeh, 1965). For instance, the

membership function for a fuzzy set C can be written as follows:

 ≤+

>=
159

1515
)(

xforx

xfor
x

C
M

A fuzzy logic based expert system utilises a set of linguistic variables (related to the

problem) and several membership functions. Fuzzy rules are derived from these

variables as well as the knowledge base. These rules are applied by means of

Mamdani fuzzy inference. Mamdani inference, as proposed in 1975 by Ebrahim

 116

Mamdani, applies a set of fuzzy rules on a set of traditional precise inputs to obtain a

precise output value (such as an action recommendation) (Mamdani et al, 1975).

To understand Mamdani inference, consider the following example (please note, this

example does not represent the rules that were actually used, the given sets and

functions are simply examples). Say we have the following rules:

 Rule #1

 If there are few light sources,

 Then render all shadows via the hardware-accelerated shadow mapping

algorithm.

 Rule #2

 If there are many light sources,

 And the polygon complexity of the scene is average,

 And the frame rate is low,

 Then render all shadows via the depth-pass stencil shadow volume

algorithm.

 Rule #3

 If there is an average number of light sources,

 And the polygon complexity of the scene is high,

 And the frame rate is medium,

 Then render all shadows via the hardware-accelerated shadow mapping

algorithm.

The first step of Mamdani inference is to “fuzzify” all precise input values via the

definition of fuzzy sets. To do this, assume representation of the number of light

sources through the range [0, 100] and definition of the following linguistic variables:

Few, Average and Many. We can now define the following three fuzzy sets (the

values are arbitrarily chosen):

)}0,50(),1,0{(=F

)}0,70(),1,50(),0,30{(=A

)}1,100(),0,50{(=M

A scene consisting of 60 light sources will, for example, result in the following fuzzy

membership values for each of the three sets (Figure 5.3 shows the membership

functions for these three fuzzy sets):

2.0)60(

5.0)60(

0)60(

=

=

=

M
M
A

M
F

M

 117

Fig 5.3 Membership functions.

We also have to factor in the frame rate performance and polygonal complexity of the

scene being rendered. Both of these will have a number of membership functions

and linguistic variables (Low, Average and High, respectively). For instance, our

frame rate performance, ranging from 0 to 80, is given by the following membership

functions (the values were again arbitrarily chosen):

)}0,30(),1,0{(=L

)}0,60(),1,40(),0,20{(=A

)}1,80(),0,50{(=H

A scene with a frame rate of 28 frames per second will, for example, result in the

following fuzzy membership values for each of the three sets (via linear

extrapolation):

0)28(

7.0)28(

067.0)28(

=

=

=

H
M
A

M
L

M

All that remains now are the polygonal complexity membership functions ranging

from 0 to 1000 (defined using the previous Low, Average and High linguistic

variables):

)}0,600(),1,0{(=L

)}0,800(),1,500(),0,200{(=A

)}1,1000(),0,600{(=H

A scene with a polygonal complexity of 550 will, for example, result in the following

fuzzy membership values for each of the three sets:

 118

0)550(

83.0)550(

083.0)550(

=

=

=

H
M
A

M
L

M

These fuzzy values can now be applied to the previously listed rules. For example,

the first rule deals with the number of light sources. Hence, a scene featuring an

average number of light sources (60) will result in a membership value of 0.5. Next

we can factor in rule 2:

 If there are many light sources,

 And the polygon complexity of the scene is average,

 And the frame rate is low,

 Then render all shadows via the depth-pass stencil shadow volume

algorithm.

Rule 2’s membership values are given here:

)(067.0)28(

)(83.0)550(

)(2.0)60(

rateframeL
M
A

M

sourceslight
M

M

countpolygonaverage

=

=

=

When working with multiple fuzzy variables, we always take the minimum

membership value of a conjunction as the fuzzy value. Rule 2, governing the

rendering of shadows using the depth-pass stencil shadow volume algorithm, will

thus have a fuzzy membership value of 0.067.

Rule 3 can be evaluated similarly, resulting in the following membership values:

)(0)28(

)(0)550(

)(5.0)60(

rateframeM
M
H

M

sourceslight
A

M

countpolygon

=

=

=

Rule 3, governing the rendering of shadows via the hardware-accelerated shadow

mapping algorithm, will thus have a fuzzy membership value of 0.

For example, say we take our three fuzzy values as: 0.5 for rule 1 (to render all

shadows via the hardware-accelerated shadow mapping algorithm), 0.067 for rule 2

(to render all shadows via the depth-pass stencil shadow volume algorithm) and 0 for

rule 3 (to render all shadows via the hardware-accelerated shadow mapping

algorithm).

 119

The next step is to combine the calculated fuzzy values. We thus have 0.5 (rule 1)

and 0 (rule 2) for hardware shadow mapping and 0.067 for stencil shadow volumes.

The easiest method to combine these values is summation – giving us 0.5 for

hardware shadow mapping and 0.067 for stencil shadow volumes.

The final step is defuzzification – the calculation of an exact value from a set of fuzzy

values. Defuzzification can be performed by calculating the centroid of the area

defined by a set of fuzzy values. A centroid is the intersection of all the lines dividing

an object into equal parts. The centroid of an object can be considered its centre of

mass. Figure 5.4 shows the centroid of a triangle.

Figure 5.4 The centroid of a triangle.

We can calculate the centroid (the exact system output value) of an area using the

following formula:

.),(;
)(

)(
areafunctionmemberinclusivethexMwith

xM

xxM
Centroid

∑

∑=

Thus, the centre of gravity of the combined fuzzy output (the area created by clipping

the membership function for hardware shadow mapping at 0.5 and for stencil shadow

volumes at 0.067) can be calculated as follows:

2.68

10.517

717.585

1...2.015.01.0067.0

)1100(...)2.020()0.1515()1.010()067.05(

=

=

+++++
×++×+×+×+×

=Centroid

The calculated crisp value of 68.2 indicates the amount, on a scale of 0 to 100, by
which selection of the hardware shadow mapping algorithm is certain.

Mamdani inference is thus an integral part of fuzzy expert systems, with the

functionality of these expert systems summarised as follows:

 120

1) Load expert data.

2) Define the fuzzy sets and rules.

3) Associate observed data with the fuzzy sets.

4) Run through each case for each and every fuzzy rule.

5) Calculate the rule-based fuzzy values.

6) Combine the calculated fuzzy values.

7) Calculate an exact value from the set of fuzzy values.

Our fuzzy logic based expert system uses Mamdani inference to apply a set of fuzzy

rules on a set of traditional precise inputs to obtain a precise output value, specifically

an action recommendation (the shadow algorithm to utilise).

5.4 Summary

In this chapter we focussed on expert systems as an AI technique often employed to

store and access human expertise. We also looked at fuzzy logic based expert

systems and the combination of production rules with fuzzy logic to explicitly

symbolise data.

We started by discussing expert systems as an artificial knowledge system defined

by means of training, empirical experimentation and prior human experience. We

also described a functioning expert system as a collection of elements, specifically as

a system combining a set of facts, the relationship among these facts and a

mechanism for the storage and rapid retrieval of this information.

Following this introduction, we investigated basic expert system architecture and two

decision making techniques, namely forward chaining and backward chaining. We

also looked at the advantages inherent to the use of expert systems.

The final section dealt with fuzzy reasoning and fuzzy expert systems. It specifically

focussed on fuzzy logic as an extension to traditional predicate/Boolean logic and

fuzzy sets as an extension to traditional sets. The concept of membership functions

and their use in the definition of fuzzy sets as well as Mamdani inference was also

presented in detail.

In the next chapter, we apply these techniques in the discussion of our empirically

derived system for high-speed shadow rendering.

 121

Chapter 6

An Empirically Derived System for High-
Speed Shadow Rendering

Chapter 6 discusses the previously mentioned expert system implementation in

much more detail. It also presents the critical analysis of our empirically derived

system for the high-speed rendering of shadows. This analysis highlights not only

the performance benefits inherent to the utilisation of this system, but also the

practicality of such an implementation.

In this chapter we will investigate:

• Expert systems and dynamic shadow selection

• Rules for selection of shadow rendering algorithms

• Fuzzy rules for selection of the most appropriate shadow rendering algorithm

• Mamdani implementation

• Construction of the algorithm selection mechanism

• Results obtained from our benchmarking environment

 122

6.1 Introduction

An expert system, as mentioned, analyses a dataset to determine the best solution to

a given problem. Our real-time shadow generation framework employs such a

system. This system specifically consists of an empirically ascertained dataset, a

collection of rules to analyse the data and information of various elements pertaining

to the scene currently being rendered.

We use an expert system, as previously discussed, to control the real-time selection

of shadow rendering algorithms. The knowledge base of this expert system consists

of experimental results obtained through the critical analysis of numerous real-time

shadow rendering algorithms (and the improvements made through the use of

various hardware extensions and hybrid approaches). Production rules are

implemented via an inference engine. This inference engine is in turn used to select

the most appropriate algorithm based on certain properties of the scene being

rendered. For instance, our system could contain the following production rule: if

there are a lot of light sources in a scene and the scene has a high geometric

complexity, then enable a hybrid stencil shadow volume/shadow mapping algorithm.

The notions “a lot of light sources” and “high geometric complexity” are not

quantitative facts. Fuzzy logic provides a solution to this problem by assigning

quantitative values and/or ranges to these concepts. The concepts “a lot of light

sources” and “high geometric complexity” can also be combined into the new one

“overly complex”, resulting in a new production rule. Our framework combines

production rules with fuzzy logic to explicitly symbolise data. This is followed by the

selection of the most efficient shadow rendering algorithm.

We will now look at the previously mentioned expert system implementation in much

more detail. We will also perform a critical analysis of our empirically derived system

for the high-speed rendering of shadows. This analysis will convey not only the

performance benefits inherent to the utilisation of this system, but also the practicality

of such an implementation.

6.2 Expert Systems and Dynamic Shadow Selection

Our empirically derived system for high-speed shadow rendering consists of a fuzzy

logic based expert system and several shadow rendering algorithms. The expert

system controls, as mentioned, the selection of these algorithms by correlating the

properties of the scene being rendered with the previously obtained algorithmic

performance data.

The expert system consists of the following modules:

• An inference engine.

• A fact database.

• A knowledge base.

• An explanation/debugging system.

 123

The expert system’s knowledge base consists of experimental results obtained

through the critical analysis of numerous real-time shadow rendering algorithms (and

the improvements made through the use of various hardware extensions and hybrid

approaches). Production rules are implemented via an inference engine. This

inference engine is in turn used to select the most appropriate algorithm based on

certain properties of the scene being rendered. The knowledge base, as previously

mentioned, is nothing more than a database of rules. These rules symbolise the

stored knowledge. The fact database embodies the expert system inputs which are

subsequently used to make decisions and/or to take certain actions (properties and

statistics of the scene being rendered). The inference engine makes the actual

decision by combining these expert system rules and facts. The explanation system

generates information about the manner in which a decision was made. Figure 6.1

illustrates the architecture of our expert system.

Fig 6.1 Architecture of our expert system.

Our expert system’s inference engine and explanation system are contained within a

“shell”. The knowledge base and fact database are connected to this shell in a

plugin-like fashion. The expert system shell is used to define a generic expert

system, with the expert system’s functionality controlled by the connected fact

database and knowledge base.

Our expert system implementation utilises a forward chaining strategy to determine

results from a collection of rules and facts. We basically start by reading the expert

system inputs from the fact database followed by a comparison between the read

inputs and the rules within the rule database. Now, if an input fact matches all the

antecedents of a rule, then the rule is triggered with its conclusion added to the fact

database.

Shadow selection is based on the maximisation of the rendering frame rate and

shadow quality. The implemented expert system will thus select shadow generation

algorithms by taking not only the scene’s frames per second performance data into

account but also by factoring in the viewer’s position in relation to the shadow being

rendered. The rendering accuracy and detail of distant shadows will thus carry less

weight than those rendered relatively close to the viewer. Table 6.1 summarises the

algorithms of choice based on the algorithmic comparison given in Section 3.5 and

scene conditions such as view distance, dynamic/static light conditions and number

of light sources.

 124

Most Appropriate Algorithm Conditions

The spatial subdivision

approach coupled with

SSE2/3DNow! utilisation.

All environmental areas lit using static light

sources.

Chan and Durand’s (2004)

algorithm.

Scenes consisting of eight or less dynamic light

sources when high-quality shadows are required

and where shadow casting objects are located

near the point-of-view.

Scenes consisting of more than two and less than

fourteen dynamic light sources and where the

shadow casting objects are located a significant

distance from the point-of-view.

Shadow mapping.

Chan and Durant’s algorithm will, however, prove

a better choice for both close range and distant

objects when rendering scenes consisting of

fourteen or more dynamic light sources. We will

also use Chan and Durrand’s algorithm for all

scenes consisting of nine or more dynamic light

sources when high-quality shadows are required.

McCool’s (2000) and Thakur et

al’s (2003) algorithm.

The second best choice when dealing with

scenes featuring one to eight light sources and

when high-quality shadows are required. We

won’t be utilising this algorithm, rather opting for

Chan and Durand’s hybrid approach. The same

goes for the classic stencil shadow volume

algorithm and Thakur et al’s (2003) algorithm.

Table 6.1 Algorithms of choice based on the analysis given in Section 3.5.

Returning to our expert system, we can create the following rules for selection of the

most appropriate shadow rendering algorithm (these rules are derived from the

algorithmic comparison given Section 3.5 and Table 4.1):

 Rule #1

 If the environment/sub-environment consists of only static light sources,

 Then render all shadows via our spatial subdivision/SSE2/3DNow!

algorithm.

 Rule #2

 If the scene consists of eight or less dynamic light sources,

 And high-quality shadows are required (shadow casting objects are located

near the point-of-view),

 Then render all shadows via Chan and Durand’s (2004) algorithm.

 125

 Rule #3

 If the scene consists of more than two and less than fourteen dynamic light

sources,

 And low-quality shadows are required (shadow casting objects are located

a significant distance from the point-of-view),

 Then render all shadows via the basic Shadow mapping algorithm.

 Rule #4

 If the scene consists of fourteen or more dynamic light sources,

 And either low- or high-quality shadows are required (for both close range

and distant objects),

 Then render all shadows via Chan and Durand’s (2004) algorithm.

 Rule #5

 If the scene consists of nine or more dynamic light sources,

 And high-quality shadows are required (shadow casting objects are located

near the point-of-view),

 Then render all shadows via Chan and Durand’s (2004) algorithm.

A subsequent aspect of our expert system implementation is its fuzzy logic-based

nature. As a fuzzy logic based expert system, it utilises a set of linguistic variables

(related to the problem) and several membership functions. Fuzzy rules are derived

from these variables as well as the knowledge base. These rules are applied by

means of Mamdani fuzzy inference. Mamdani inference, as previously mentioned,

applies a set of fuzzy rules on a set of traditional precise inputs to obtain a precise

output value (such as an action recommendation).

Our fuzzy logic based expert system will thus contain the following fuzzy rules for

selection of the most appropriate shadow rendering algorithm (these rules are screen

resolution independent, lower resolutions will simply imply faster overall graphics

performance with the shadow generation phases remaining consistent):

 Rule #1

 If the environment/sub-environment consists of stationary light sources,

 Then render all shadows via our spatial subdivision/SSE2/3DNow!

algorithm.

 Rule #2

 If the scene consists of an average number of dynamic light sources,

 And high-quality shadows are required (shadow casting objects are located

near the point-of-view),

 Then render all shadows via Chan and Durand’s (2004) algorithm.

 126

 Rule #3

 If the scene consists of few or and less than an above average number of

dynamic light sources,

 And low-quality shadows are required (shadow casting objects are located

a significant distance from the point-of-view),

 Then render all shadows via the basic Shadow mapping algorithm.

 Rule #4

 If the scene consists of many dynamic light sources,

 And either low- or high-quality shadows are required (for both close range

and distant objects),

 Then render all shadows via Chan and Durand’s (2004) algorithm.

 Rule #5

 If the scene consists of an average or greater than average number of

dynamic light sources,

 And high-quality shadows are required (shadow casting objects are located

near the point-of-view),

 Then render all shadows via Chan and Durand’s (2004) algorithm.

We use Mamdani inference, as explained in Chapter 5, to “fuzzify” all precise input

values via the definition of fuzzy sets. As in our Chapter 5 example, we assume a

representation of the number of light sources through the range [0, 20], the nature of

a scene’s light sources via the values 1 for dynamic and 0 for static and the distance

from the viewer via the range [0, 90] (in world units). Our implementation also defines

the following linguistic variables: Stationary, Dynamic, Average, Few and

Many. The system is thus based on Mamdani inference to apply a set of fuzzy rules

on a set of traditional precise inputs to obtain a precise output value, specifically an

action recommendation (the shadow algorithm to utilise).

Our Mamdani implementation will thus load the critical analysis performance data,

read the pre-programmed fuzzy sets and rules, associate the observed data with the

fuzzy sets, run through each case for each and every fuzzy rule, calculate the rule-

based fuzzy values, combine the calculated fuzzy values and finally calculate an

exact value from the set of fuzzy values.

6.3 Construction of the algorithm selection mechanism

Our algorithm selection mechanism basically consists of a fuzzy-logic based expert

system and a number of shadow rendering algorithms. The knowledge base of this

expert system, as previously discussed, consists of experimental results obtained

through the critical analysis of numerous real-time shadow rendering algorithms (and

the improvements made through the use of various hardware extensions and hybrid

approaches). Production rules are implemented via an inference engine. This

inference engine is in turn used to select the most appropriate algorithm based on

 127

certain properties of the scene being rendered. Our framework combines production

rules with fuzzy logic to explicitly symbolise data. This is followed by the selection of

the most efficient shadow rendering algorithm.

The data gathered during the previously discussed critical analysis allows for the

construction of a fuzzy logic-based expert system. This system, as mentioned,

controls the real-time selection of shadow rendering algorithms based on

environmental conditions. We basically store the gathered data in a comma-delimited

format with the rendering framework loading it into memory upon execution (by

utilising a number of sorted associative arrays or maps). Each implemented shadow

rendering algorithm is, in turn, loaded into our framework via a dynamic link library.

DLLs are based on Microsoft’s shared library concept and can contain source code,

data and resources. These libraries are generally loaded at runtime, a process

referred to as run-time dynamic linking – thus allowing us to replace or change DLLs

without recompiling the main executable. The shadow rendering DLL contains the

implementation details of the basic stencil shadow volume algorithm, the basic

hardware shadow mapping algorithm, McCool’s shadow volume reconstruction using

depth maps, Eric Chan and Frédo Durand’s hybrid algorithm for the efficient

rendering of hard-edged shadows, Thakur et al’s algorithm based on the elimination

of various shadow volume testing phases and our algorithm based on shadow

volumes, spatial subdivision and instruction set utilisation.

6.4 Results

By dynamically cycling through shadow generation algorithms to compensate for

performance-impacting changes in our rendering environment, we are able to bridge

an existing gap between shadow quality and high-speed shadow rendering. We will

now highlight the performance gains inherent to our system’s use when compared to

traditional approaches.

Our benchmarking environment consisted of an initial number of static light sources.

We then added a number of dynamic light sources (six) with shadow casting objects

positioned relatively close to the viewer. This allowed us to analyse the transition

from the spatial subdivision/SSE2/3DNow! algorithm to Chan and Durand’s (2004)

algorithm. Following this we increased the number of dynamic light sources to

thirteen with the shadow casting objects translated to a significant distance from the

point-of-view. All shadows previously rendered using Chan and Durand’s (2004)

algorithm were now rendered via shadow mapping. Next we systematically increased

the number of light sources to sixteen while leaving the shadow casting objects at

their previous position – this caused a reselection of Chan and Durand’s (2004)

algorithm. The shadow casting objects were subsequently translated back to their

previous position (relatively close to the viewer) with the scene’s lighting reset to nine

dynamic light sources (with shadow casting objects located near the point-of-view) –

Chan and Durand’s (2004) algorithm was successfully selected. Figure 6.2 shows the

performance data obtained (for this specific instance) for up to eight light sources

with Figure 6.3 showing the results obtained for nine to sixteen light sources.

 128

Figure 6.2 Performance data for up to eight light sources.

Figure 6.3 Performance data for nine to sixteen light sources.

We can repeat the experiment in reverse order – that is, by starting with nine

dynamic light sources (with shadow casting objects located near the point-of-view).

Our benchmarking environment will thus select Chan and Durand’s (2004) algorithm

as its initial shadow rendering algorithm. Next we systematically increased the

number of light sources to sixteen while leaving the shadow casting objects at their

previous position – Chan and Durand’s (2004) algorithm will still be the algorithm of

choice and no alternative shadow rendering algorithms will be selected. Following

this we decreased the number of dynamic light sources to thirteen with the shadow

casting objects translated to a significant distance from the point-of-view. All shadows

previously rendered using Chan and Durand’s (2004) algorithm were now rendered

 129

via shadow mapping. We now decreased the number of dynamic light sources to six

with the shadow casting objects positioned relatively close to the viewer. This

allowed us to analyse the transition from Chan and Durand’s (2004) algorithm to the

spatial subdivision/SSE2/3DNow! algorithm. Our final action was to set all the

dynamic light sources to static. Figure 6.4 shows the performance data obtained for

sixteen to nine light sources with Figure 6.5 showing the results obtained for eight to

a single light source. Figure 6.6 shows the interactive testing environment.

Figure 6.4 Performance data for sixteen to nine light sources.

Figure 6.2 Performance data for eight to a single light source.

 130

Figure 6.6 Various screenshots of our interactive testing environment.

 131

6.5 Summary

This chapter presented the general architecture of our empirically derived system for

high-speed shadow rendering – the expert system component being the main focus.

We also looked at fuzzy logic-based reasoning for the explicit symbolisation of data.

The final section summarised the results obtained by dynamically cycling through

shadow generation algorithms to compensate for performance-impacting changes in

a rendering environment. These results illustrated the performance gains inherent to

our system’s use. The next chapter gives an overall summary of our work. It closes

by discussing possible future work based on the presented research.

 132

Chapter 7

Summary and Conclusion

Chapter 7 features an overall summary of our work. It closes by discussing

possible future work based on the presented research.

In this chapter we will present:

• An overall summary of our work

• Concluding remarks

 133

7.1 Summary

We initially focussed on the fundamentals of lighting and real-time shadow

generation in detail. Light sources were introduced with regard to the role they play in

the creation of properly lit and shaded objects. Building on this we presented the

illumination function as a way to describe any light source in terms of six variables.

We also discussed how a lighting model can be used to define light-object

interactions based on the type of light source and the material properties of the

object.

We subsequently investigated a number of light source types, specifically looking at

point lights as light sources emitting light uniformly in 360 degrees, spotlights as point

lights emitting light within an angle range, ambient lighting as a way to provide a

uniform level of illumination throughout a scene, parallel lights as sources illuminating

objects through a number of parallel light rays and emissive light as self-reflecting

light originating from an object’s surface.

Following this we looked at several reflection models, namely, the ambient reflection

model, the specular reflection model, diffuse reflection and the Phong reflection

model. We specifically investigated these reflection models as functions of material

properties (e.g. surface reflectance, colour, etc) and light source properties (e.g. light

direction, colour, position, attenuation, etc).

Next we investigated real-time shadow generation and its contribution to the realism

and ambience of rendered environments. We started by defining a shadow as the

two-dimensional projection of at least one object onto another object or surface,

subsequently looking at the physical properties of shadows and the technique of

shadow casting in general.

Following this introduction we investigated a number of shadowing algorithms,

specifically scan-line polygon projection, Blinn’s shadow polygons, shadow mapping

and stencil shadow volumes. Our discussion of Blinn’s shadow polygons revealed it

as an extremely easy to use shadow generation technique often utilised to render the

shadows of single polygons on flat surfaces. We also considered the quite complex,

and now mostly redundant scan-line polygon projection algorithm historically used for

the generation of hard-edged shadows.

We subsequently discussed the fundamentals of shadow mapping and stencil

shadow volumes, our shadow mapping discussion highlighting the general dual-pass

shadow mapping technique. The shadow volume section presented the theory

behind the construction of finite shadow volumes as well as the stencilling process,

differentiating between the depth-pass and depth-fail methods used to test whether a

fragment is in shadow or not. We also briefly touched on the generation of soft-edged

shadows using penumbra wedges.

Next we discussed the implementation details of various shadow rendering

algorithms, specifically the stencil shadow volume algorithm, the shadow mapping

 134

algorithm and a number of hybrid approaches such as McCool’s shadow volume

reconstruction using depth maps, Chan and Durand’s hybrid algorithm for the

efficient rendering of hard-edged shadows, Thakur et al’s elimination of various

shadow volume testing phases and Rautenbach et al’s shadow volumes, hardware

extensions and spatial subdivision approach. We also proceeded by presenting a

stencil shadow volume benchmarking program consisting of a relatively simple static

cubic environment, a movable/interchangeable three-dimensional mesh object and a

variable number of light sources.

We then introduced the stencil buffer as a buffer used for controlling the rendering of

selected pixels. The associated per-pixel test, namely stencilling, was also looked at

in detail. We then investigated the depth-stencil testing process followed by a

discussion detailing the shadow volume implementation (with specific focus being on

the shadow volume construction process and calculation of silhouette edges).

Following this we looked at a shadow mapping evaluation environment as well as the

implementation of shadow maps. Following this we looked at a shadow mapping

evaluation environment as well as the implementation of shadow maps. We then

dealt with the implementation details of various hybrid approaches such as McCool’s

shadow volume reconstruction using depth maps, Chan and Durand’s hybrid

algorithm for the efficient rendering of hard-edged shadows, Thakur et al’s

elimination of various shadow volume testing phases and Rautenbach et al’s shadow

volumes, hardware extensions and spatial subdivision approach.

Building on this, we presented our benchmarking mechanism and a set of criteria for

the evaluation of shadow generation techniques. The given evaluation criteria were

selected with the aim of assessing the relationship between shadow rendering quality

and performance – in turn allowing us to isolate key algorithmic weaknesses and

possible bottleneck areas. We also investigated several possibilities for improving the

performance and quality of shadow rendering algorithms; both on a hardware and

software level.

Specific algorithms benchmarked and analysed include: the basic stencil shadow

volume algorithm, the basic hardware shadow mapping algorithm, McCool’s shadow

volume reconstruction using depth maps, Chan and Durand’s hybrid algorithm for the

efficient rendering of hard-edged shadows, Thakur et al’s algorithm based on the

elimination of various shadow volume testing phases and our algorithm based on

shadow volumes, spatial subdivision and instruction set utilisation.

Our critical analysis concluded with a comparison between the results obtained; we

also summarised these results with specific emphasis on the most appropriate

application area.

Following this we focussed on expert systems as an AI technique often employed to

store and access human expertise. We also looked at fuzzy logic based expert

systems and the combination of production rules with fuzzy logic to explicitly

symbolise data.

 135

We started by discussing expert systems as an artificial knowledge system defined

by means of training, empirical experimentation and prior human experience. We

also described a functioning expert system as a collection of elements, specifically as

a system combining a set of facts, the relationship among these facts and a

mechanism for the storage and rapid retrieval of this information.

Following this introduction, we investigated basic expert system architecture and two

decision making techniques, namely forward chaining and backward chaining. We

also looked at the advantages inherent to the use of expert systems.

The final section of our expert system literature study dealt with fuzzy reasoning and

fuzzy expert systems. It specifically focussed on fuzzy logic as an extension to

traditional predicate/Boolean logic and fuzzy sets as an extension to traditional sets.

The concept of membership functions and their use in the definition of fuzzy sets as

well as Mamdani inference was also presented in detail.

The final chapter presented the general architecture of our empirically derived

system for high-speed shadow rendering – the expert system component being the

main focus. We also looked at fuzzy logic-based reasoning for the explicit

symbolisation of data.

The dissertation closed by presenting the results obtained from dynamically cycling

through shadow generation algorithms to compensate for performance-impacting

changes in a rendering environment. These results illustrated the performance gains

inherent to our system’s use.

7.2 Concluding Remarks

The computer graphics industry has developed immensely during the past decade.

Looking at the area of computer games one can easily see technological leaps being

made on a yearly basis. However, most of the currently available shadow rendering

algorithms are only amenable to specific rendering conditions and/or situations. For

example, the “vanilla” depth-fail/depth-pass stencil shadow volume algorithm is

based on a series of processor intensive conditionally executed branches with its

silhouette detection and shadow volume construction process taking up a significant

amount of processing time (especially in scenes where more light sources and

shadow casting objects are added). We replaced these conditionally executed

branches with SSE and 3DNow! instructions, forcing their parallel execution during

each rendering cycle and achieving a significant performance increase. Considering

this improvement, we went even further by combining the depth-fail stencil shadow

volume algorithm with spatial subdivision. The implementation of this method

resulted in significant performance gains, especially where a statically lit scene

consisted of several concealed objects. That said; our own algorithm was also limited

to a specific condition – static light sources.

 136

The only viable solution was to perform a critical analysis of numerous shadow

rendering algorithms with the aim of assessing the relationship between shadow

rendering quality and performance – in turn allowing us to isolate key algorithmic

weaknesses and possible bottleneck areas. Using this performance data, we were

able to construct a fuzzy logic-based expert system to control the real-time selection

of shadow rendering algorithms based on environmental conditions (as discussed in

Chapter 6). This system ensured the following: nearby shadows were always of high-

quality, distant shadows would, under certain conditions, be rendered at a lower

quality and the frame rate would always run at a maximum. It is important to note that

this framework is also adaptable for use with other rendering algorithms such as real-

time reflections and particle systems. Adapting this framework for use on 3D capable

mobile devices (such as the iPhone and iPod Touch) will give these devices the

ability to render shadows (and other special effects) not previously possible without

overburdening the processor.

We have also demonstrated the use of expert system technology as a viable solution

to the problem of selecting between competing algorithms in real-time. This resulted

in the reduction/optimisation of processor usage by ensuring that the quality of

rendered shadows is appropriately tuned, for example, GPU/processor usage is

never wasted to accurately render distant shadows.

It is also important to note that, despite all the algorithms available for the

implementation of shadows, a lot of work remains in the field. More algorithms could,

for example, be benchmarked and added to our expert system’s knowledge base.

Alternate algorithmic performance improvements can also be pursued.

Traditionally rendered shadows used in conjunction with AI subsystems, game

networking and logic, physics processing and other rendering effects (such as real-

time reflections, refraction, etc) is immensely processor intensive and can only be

successfully implemented on high-end hardware. Only by cycling shadow algorithms

based on environmental conditions and through the exploitation of algorithmic

strengths can high-quality real-time shadow generation become as common as

texture mapping.

 137

References

Akenine-Möller T. and Assarsson U. (2002) Approximate Soft Shadows on

Arbitrary Surfaces using Penumbra Wedges. Proceedings of the 13th

Eurographics Workshop on Rendering. Aire-la-Ville: Eurographics

Association.

ADVANCED MICRO DEVICES, INC. (2000) AMD 3DNow! Technology

Manual. Published online at: www.amd.com.

Appel A. (1968) Some Techniques for Machine Rendering of Solids.

AFIPS Conference Proceedings, 32.

 Apple, INC. IPhone Technical Specifications. Published online at:

http://www.apple.com/iphone/specs.html

 Bell B. (2003) S3: From Virge to Savage 2000. Published online at:

http://www.firingsquad.com/hardware/s3_deltachrome/default.asp

 Bergeron, P. (1985) Shadow volumes for non-planar polygons. Canadian

Information Processing Society Graphics Interface 1985, 417-418, (SEE

N85-34523 23-61), Canada.

 Blinn J. (1988) Me and My (Fake) Shadow. IEEE Computer Graphics and

Applications, 8(1):82-86.

 Bouknight W. and Kelly K. (1970) An Algorithm for Producing Half-tone

Computer Graphics Presentations with Shadows and Moveable Light

Sources. Proceedings of the AFIPS, Spring Joint Computer Conference,

36.

 Boulanger K., Pattanaik S. and Bouatouch K. (2006) Rendering Grass in

real-time with Dynamic Light Sources and Shadows, ISSN: 1166-8687.

Technical Report no. 1809, July, IRISA, Rennes, France.

Brabec S. and Seidel H. (2002) Single sample soft shadows using depth

maps. Graphics Interface.

 Brotman L.S. and Badler N.I. (1984) Generating Soft Shadows with a

Depth Buffer Algorithm. IEEE Computer Graphics and Applications,

4(10):5-12.

 138

 Campbell-Kelly M. (2006) Edsac Simulator: An emulator of the EDSAC,

including the code for OXO. Published online at:

http://www.dcs.warwick.ac.uk/~edsac/

Carmack J. (2000) Carmack on shadow volumes. Personal

correspondence between Mark Kilgard and John Carmack.

 Chan E. and Durand F. (2004) An Efficient Hybrid Shadow Rendering

Algorithm. Proceedings of the Eurographics Symposium on Rendering,

185-195.

 Chen C. H. (1996) The Fuzzy Logic and Neural Network handbook. ISBN:

0-07-011189-8

Choppin B. (2004) Artificial Intelligence Illuminated, ISBN-13: 978-

0763732301. Jones & Bartlett Publishers; 1 edition.

 Craddock D. (2007) Alex St. John Interview. Published online at:

http://www.shacknews.com/featuredarticle.x?id=283

Crow F. (1977) Shadow Algorithms for Computer Graphics. SIGGRAPH

Proceedings 1977. New York: ACM.

 Dimitrov R. (2007) Cascaded Shadow Maps. Published online at:

www.developer.nvidia.com.

Drettakis G. and Fiume E. (1994) A fast shadow algorithm for area light

sources using backprojection. Computer Graphics (SIGGRAPH 1994),

Annual Conference Series, ACM SIGGRAPH, pp. 223–230.

 Everitt C., Rege A. and Cebenoyan C. (2001) Hardware Shadow Mapping.

NVIDIA white paper published online at:

http://developer.nvidia.com/object/hwshadowmap_paper.html.

Everitt C. and Kilgard M. (2002) Practical and Robust Stenciled Shadow

Volumes for Hardware-Accelerated Rendering. NVIDIA white paper

published online at: http://developer.nvidia.com/object/

robust_shadow_volumes.html.

 139

Fernando R., Fernandez S., Bala K. and Greenberg D. (2001) Adaptive

shadow maps. Computer Graphics (SIGGRAPH 2001), Annual

Conference Series, ACM SIGGRAPH, 387–390.

 GameSpy (2001) GameSpy's Top 50 Games of All Time. Published online

at: http://archive.gamespy.com/articles/july01/top501aspe/index4.shtm

 Giarratano J., Riley G. (2005) Expert Systems, Principles and

Programming, ISBN 0-534-38447-1

Haines E. (2001) Soft planar shadows using plateaus. Journal of Graphics

Tools, 6(1):19–27.

Harbour J.S. (2004) Game Programming All in One (second edition),

ISBN: 1598632892, Boston, MA: Thomson Course Technology.

 Heidmann T. (1991) Real shadows real time. IRIS Universe, 18:28–31.

Heidrich W., Brabec S. and Seidel H. (2000) Soft shadow maps for linear

lights high-quality. Rendering Techniques 2000 (11th Eurographics

Workshop on Rendering), Springer-Verlag, 269–280.

Hourcade J.-C. and Nicolas A. (1985) Algorithms for antialiased cast

shadows. Computers & Graphics, 9(3):259–265.

 Ignizio J. (1991) Introduction to Expert Systems, ISBN 0-07-909785-5

 Intel. (2002) Getting Started with SSE/SSE2 for the Intel® Pentium® 4.

Published online at: www.intel.com/cd/ids/developer/asmo-

na/eng/popular/20240.htm

 Kilgard M. J. (1999) Improving shadows and reflections via the stencil

buffer. Published online at: www.developer.nvidia.com.

Kersten D., Mamassian P. and Knill D. (1994) Moving cast shadows and

the perception of relative depth. Technical Report no 6, Max-Planck-

Institut fuer biologische Kybernetik.

Kersten D., Mamassian P. and Knill D. (1997) Moving cast shadows and

the perception of relative depth. Perception, 26(2):171–192.

 140

Kirsch F. and Doellner J. (2003) Real-time soft shadows using a single

light sample. Journal of WSCG (Winter School on Computer Graphics

2003), 11(1).

 Klietz A. (1992) Scepter - the first MUD? Published online at:

http://groups.google.com/group/rec.games.mud/msg/e423bcf6cf93d73b?p

li=1

 Knight G. (2003) The Twists and Turns of the Amiga Saga. Published

online at: http://www.amigahistory.co.uk/ahistory.html

 Kolic I., Mihajlovic Z., Budin L. (2004) Stencil shadow volumes for complex

and deformable objects. Proceedings of the 2004 11th IEEE International

Conference on 13-15 Dec. 2004, 314–317

 Kushner, D. (2003) Masters of Doom: How Two Guys Created an Empire

and Transformed Pop Culture, ISBN 0-375-50524-5. Random House.

 Lauritzen A. (2006) Variance Shadow Maps. Published online at:

www.developer.nvidia.com.

Lokovic T. and Veach E. (2000 Deep shadow maps. Computer Graphics

(SIGGRAPH 2000), Annual Conference Series, ACM SIGGRAPH, 385–

392.

 Mamdani E. H., Assilian S. (1975) An Experiment in Linguistic Synthesis

with a Fuzzy Logic Controller. International Journal of Man-Machine

Studies, 7, 1, 1-15, Jan 75

 McCool M. D. (2000) Shadow volume reconstruction from depth maps,

ISSN 0730-0301. ACM Transactions on Graphics 19, 1 (January), 1–26.

 Microsoft. (1995) Microsoft’s Judgement Day video Promoting Windows

95 as a Platform that could deliver Cutting-edge Multimedia Experiences

like Doom. Available online at: http://home.comcast.net/%7Ereelsplatter/

BillDoomTitles.wmv (also provided on the back cover CD).

 Miller M. (2005) A History of Home Video Game Consoles. Published

online at: http://www.informit.com/articles/article.aspx?p=378141

 141

 Nguyen H. (2007) GPU Gems 3, ISBN: 0321515269. Reading, MA:

Addison-Wesley.

Nilsson J. (1986) Principles of Artificial Intelligence, ISBN-13: 978-

0934613101. Morgan Kaufmann Publishers.

 Office of Scientific and Technical Information (OSTI). (1981) Video Games

– Did They Begin at Brookhaven? Published online at:

http://www.osti.gov/accomplishments/videogame.html

 Ortutay B. (2008) Take-Two's 'Grand Theft Auto IV' tops $500M in week 1

sales". Associated Press. Retrieved on 2008-05-08.

Pharr M. and Fernando R. (2005) GPU Gems 2: Programming

Techniques for High-Performance Graphics and General-Purpose

Computation, ISBN: 0321335597. Reading, MA: Addison-Wesley.

 Phong B. (1975) Illumination for Computer-Generated Pictures.

Communications of the ACM, 18(6).

Powell, J. (1985) ST Product News: First ST review. Published online at:

http://www.atarimagazines.com/v4n6/STproductnews.html

Rabin S. (ed.) (2005) Introduction to Game Development. ISBN:

1584503777. Hingham, MA: Charles River Media.

 Rau S. (2002) AMD PR Rating. Published online at: www.amd.com/us-

en/assets/content_type/white_papers_and_tech_docs/AMD_White_Paper

_-_Final_Version_11.15.02.pdf

Rautenbach P. (2008) 3D Game Programming using DirectX 10 and

OpenGL, ISBN-13: 978-1-84480-877-9. Cengage Learning (formerly

Thomson Learning EMEA), London.

Rautenbach P., Pieterse V., Kourie D., (2008) Stencil Shadow Volume

Algorithms: An Analysis and Enhancement. 9e Colloque Africain sur la

Recherche en Informatique et en Mathématiques Appliquées (October).

Reeves W., Salesin D. and Cook R. (1987) Rendering antialiased

shadows with depth maps. Computer Graphics (SIGGRAPH 1987),

21(4):283–291.

 142

 Reimer J. (2005). Total share: 30 years of personal computer market

share figures. Published online at: http://arstechnica.com/articles/

culture/total-share.ars/4

 Salton G. (1987) Expert systems and information retrieval. SIGIR Forum

21:3-4, 3-9.

Segal M., Korobkin C., van Widenfelt R., Foran J. and Haeberli P. (1992)

Fast shadows and lighting effects using texture mapping. Computer

Graphics (SIGGRAPH 1992), 26(2):249–252.

 Taylor A. (1982) Pac-Man Finally Meets His Match. Published online at:

http://www.time.com/time/magazine/article/0,9171,923197,00.html

 Thakur K., Cheng F. and Miura K.T. (2003) Shadow generation using

discretized shadow volume in angular coordinates. Computer Graphics

and Applications Proceedings. 11th Pacific Conference on 8-10 Oct. 2003,

224-233

Weyhrich S. (2001) Apple II History. Published online at:

http://apple2history.org/history/ah03.html

Whitted T. (1980) An Improved Illumination Model for Shaded Display.

Communications of the ACM. 23(6): 343-349.

 Williams L. (1978) Casting Curved Shadows on Curved Surfaces.

Computer Graphics, 12(3).

Winter D. (2004) PONG-Story: A.S. Douglas' 1952 Noughts and Crosses

game. Published online at: http://www.pong-story.com/1952.htm

Yarusso A. (2007) AtariAge - 2600 Consoles and Clones. Published online

at: http://www.atariage.com/2600/archives/consoles.html

 Zadeh L. (1965) Fuzzy sets, Information Control 8, 338-353

 Zadeh L. (1998) Knowledge representation in fuzzy logic. IEEE

Transactions on Knowledge and Data Engineering 1, 89-100.

