2,531 research outputs found

    Algorithms for optimising heterogeneous Cloud virtual machine clusters

    Get PDF
    This research was supported by an Amazon Web Services Education Research grant.It is challenging to execute an application in a heterogeneous cloud cluster, which consists of multiple types of virtual machines with different performance capabilities and prices. This paper aims to mitigate this challenge by proposing a scheduling mechanism to optimise the execution of Bag-of-Task jobs on a heterogeneous cloud cluster. The proposed scheduler considers two approaches to select suitable cloud resources for executing a user application while satisfying pre-defined Service Level Objectives (SLOs) both in terms of execution deadline and minimising monetary cost. Additionally, a mechanism for dynamic re-assignment of jobs during execution is presented to resolve potential violation of SLOs. Experimental studies are performed both in simulation and on a public cloud using real-world applications. The results highlight that our scheduling approaches result in cost saving of up to 31% in comparison to naive approaches that only employ a single type of virtual machine in a homogeneous cluster. Dynamic reassignment completely prevents deadline violation in the best-case and reduces deadline violations by 95% in the worst-case scenario.Postprin

    Energy-Efficient Management of Data Center Resources for Cloud Computing: A Vision, Architectural Elements, and Open Challenges

    Full text link
    Cloud computing is offering utility-oriented IT services to users worldwide. Based on a pay-as-you-go model, it enables hosting of pervasive applications from consumer, scientific, and business domains. However, data centers hosting Cloud applications consume huge amounts of energy, contributing to high operational costs and carbon footprints to the environment. Therefore, we need Green Cloud computing solutions that can not only save energy for the environment but also reduce operational costs. This paper presents vision, challenges, and architectural elements for energy-efficient management of Cloud computing environments. We focus on the development of dynamic resource provisioning and allocation algorithms that consider the synergy between various data center infrastructures (i.e., the hardware, power units, cooling and software), and holistically work to boost data center energy efficiency and performance. In particular, this paper proposes (a) architectural principles for energy-efficient management of Clouds; (b) energy-efficient resource allocation policies and scheduling algorithms considering quality-of-service expectations, and devices power usage characteristics; and (c) a novel software technology for energy-efficient management of Clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 12 pages, 5 figures,Proceedings of the 2010 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2010), Las Vegas, USA, July 12-15, 201

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Task Scheduling on the Cloud with Hard Constraints

    Full text link
    Scheduling Bag-of-Tasks (BoT) applications on the cloud can be more challenging than grid and cluster environ- ments. This is because a user may have a budgetary constraint or a deadline for executing the BoT application in order to keep the overall execution costs low. The research in this paper is motivated to investigate task scheduling on the cloud, given two hard constraints based on a user-defined budget and a deadline. A heuristic algorithm is proposed and implemented to satisfy the hard constraints for executing the BoT application in a cost effective manner. The proposed algorithm is evaluated using four scenarios that are based on the trade-off between performance and the cost of using different cloud resource types. The experimental evaluation confirms the feasibility of the algorithm in satisfying the constraints. The key observation is that multiple resource types can be a better alternative to using a single type of resource.Comment: Visionary Track of the IEEE 11th World Congress on Services (IEEE SERVICES 2015

    Energy-Efficient Virtual Machine Placement using Enhanced Firefly Algorithm

    Get PDF
    The consolidation of the virtual machines (VMs) helps to optimise the usage of resources and hence reduces the energy consumption in a cloud data centre. VM placement plays an important part in the consolidation of the VMs. The researchers have developed various algorithms for VM placement considering the optimised energy consumption. However, these algorithms lack the use of exploitation mechanism efficiently. This paper addresses VM placement issues by proposing two meta-heuristic algorithms namely, the enhanced modified firefly algorithm (MFF) and the hierarchical cluster based modified firefly algorithm (HCMFF), presenting the comparative analysis relating to energy optimisation. The comparisons are made against the existing honeybee (HB) algorithm, honeybee cluster based technique (HCT) and the energy consumption results of all the participating algorithms confirm that the proposed HCMFF is more efficient than the other algorithms. The simulation study shows that HCMFF consumes 12% less energy than honeybee algorithm, 6% less than HCT algorithm and 2% less than original firefly. The usage of the appropriate algorithm can help in efficient usage of energy in cloud computing

    DALiuGE: A Graph Execution Framework for Harnessing the Astronomical Data Deluge

    Full text link
    The Data Activated Liu Graph Engine - DALiuGE - is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both data sets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry data sets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.Comment: 31 pages, 12 figures, currently under review by Astronomy and Computin

    A survey and taxonomy of resource optimisation for executing Bag-of-Task applications on public clouds

    Get PDF
    Cloud computing has been widely adopted due to the flexibility in resource provisioning and on-demand pricing models. Entire clusters of Virtual Machines (VMs) can be dynamically provisioned to meet the computational demands of users. However, from a user’s perspective, it is still challenging to utilise cloud resources efficiently. This is because an overwhelmingly wide variety of resource types with different prices and significant performance variations are available. This paper presents a survey and taxonomy of existing research in optimising the execution of Bag-of-Task applications on cloud resources. A BoT application consists of multiple independent tasks, each of which can be executed by a VM in any order; these applications are widely used by both the scientific communities and commercial organisations. The objectives of this survey are as follows: (i) to provide the reader with a concise understanding of existing research on optimising the execution of BoT applications on the cloud, (ii) to define a taxonomy that categorises current frameworks to compare and contrast them, and (iii) to present current trends and future research directions in the area.PostprintPeer reviewe

    A manifesto for future generation cloud computing: research directions for the next decade

    Get PDF
    The Cloud computing paradigm has revolutionised the computer science horizon during the past decade and has enabled the emergence of computing as the fifth utility. It has captured significant attention of academia, industries, and government bodies. Now, it has emerged as the backbone of modern economy by offering subscription-based services anytime, anywhere following a pay-as-you-go model. This has instigated (1) shorter establishment times for start-ups, (2) creation of scalable global enterprise applications, (3) better cost-to-value associativity for scientific and high performance computing applications, and (4) different invocation/execution models for pervasive and ubiquitous applications. The recent technological developments and paradigms such as serverless computing, software-defined networking, Internet of Things, and processing at network edge are creating new opportunities for Cloud computing. However, they are also posing several new challenges and creating the need for new approaches and research strategies, as well as the re-evaluation of the models that were developed to address issues such as scalability, elasticity, reliability, security, sustainability, and application models. The proposed manifesto addresses them by identifying the major open challenges in Cloud computing, emerging trends, and impact areas. It then offers research directions for the next decade, thus helping in the realisation of Future Generation Cloud Computing
    • …
    corecore