
Algorithms for Optimising Heterogeneous Cloud Virtual Machine Clusters

Long Thai
School of Computer Science

University of St Andrews
Fife, UK

Email: ltt2@st-andrews.ac.uk

Blesson Varghese
School of EEE and Computer Science

Queens University Belfast
Belfast, United Kingdom

Email: varghese@qub.ac.uk

Adam Barker
School of Computer Science

University of St Andrews
Fife, UK

Email: adam.barker@st-andrews.ac.uk

Abstract—It is challenging to execute an application in a
heterogeneous cloud cluster, which consists of multiple types
of virtual machines with different performance capabilities and
prices. This paper aims to mitigate this challenge by proposing
a scheduling mechanism to optimise the execution of Bag-
of-Task jobs on a heterogeneous cloud cluster. The proposed
scheduler considers two approaches to select suitable cloud
resources for executing a user application while satisfying pre-
defined Service Level Objectives (SLOs) both in terms of exe-
cution deadline and minimising monetary cost. Additionally, a
mechanism for dynamic re-assignment of jobs during execution
is presented to resolve potential violation of SLOs.

Experimental studies are performed both in simulation and
on a public cloud using real-world applications. The results
highlight that our scheduling approaches result in cost saving
of up to 31% in comparison to naive approaches that only
employ a single type of virtual machine in a homogeneous
cluster. Dynamic reassignment completely prevents deadline
violation in the best-case and reduces deadline violations by
95% in the worst-case scenario.

I. INTRODUCTION

With the advent of cloud computing, users can use
on-demand resources offered by cloud providers to build
clusters, defined as cloud virtual machine (VM) clus-
ter. Such clusters can be dynamically reconfigured by
adding/removing resources, such as VMs, in order to ac-
commodate the demands of the workload and to achieve
desired performance. However, this task can be challenging
since cloud providers offer a wide variety of VM types with
different performance capabilities. This challenge is further
complicated by the monetary cost incurred by renting VMs.

This paper aims to address the challenge of building a
heterogeneous cloud VM cluster by determining the number
and type of VMs to achieve the desired performance while
minimising the incurred monetary cost. We focus on Bag-
of-Tasks (BoT) applications, which consist of independent
tasks that are widely used by scientific communities [1]
and commercial organisations [2]. The desired performance
of the application is represented as a deadline, a user
defined time constraint within which the application needs
to complete execution; this is a commonly reported Service
Level Objective (SLO) [3].

We address the above challenge in two steps. Firstly, we
determine the number of VMs required to execute a newly

submitted workload. Secondly, we monitor the actual exe-
cution on the VMs and dynamically reallocate the workload
to prevent deadline violations.

The first contribution of this paper is the development of
two approaches that construct a cost-effective heterogeneous
Cloud VM cluster in order to execute BoT applications
within user specified deadlines while minimising the overall
execution cost. The first approach achieves an optimal
solution that has minimum monetary costs, but can take
a considerable amount of time. The second approach is
faster but generates sub-optimal solutions. Our approaches
are compared against existing approaches that use a single
instance type for developing a homogeneous cluster. The
experimental results show that when using the proposed
approaches there is a cost saving of 4% to 31%.

The second contribution is a novel mechanism for dy-
namic reassignment which detects and resolves potential
deadline violations during runtime. Experiments highlight
that deadline violations that are likely to occur due to
estimation errors can be reduced by at least 95%.

This remainder of this paper is structured as follows.
Section II presents related work. Section III proposes a
mathematical model for selecting resources for single and
multiple jobs. Mechanisms for handling job submissions are
presented in Section IV. Section V proposes a dynamic as-
signment mechanism. Our research is evaluated in section VI
using simulation and real-world jobs on the cloud. Section
VII concludes this paper by considering future work.

II. RELATED WORK

Optimising heterogeneous cloud VM clusters based on
objectives, such as a user defined deadline for executing a
workload or minimising cost of execution when multiple
VMs with varying performance are available, has been
investigated by the research community due to the popularity
of both the application and resource models.

There is research that has focused on maximising perfor-
mance while minimising cost of executing BoT application
on the cloud [4], [5], [6]. These approaches require the trade-
off between performance and cost to be represented as a
numerical value which is often not easy to be calculated as
it needs to in turn consider two different metrics.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/76986518?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scheduling multiple BoT applications on the cloud so
that both deadline and budget constraints can be satisfied
has been proposed [7]. However, the focus is on resource
selection to determine the number of VMs of each type
under the assumption that workload distributions are known
in advance. On the other hand, our proposed approaches
support both resource selection and workload allocation
without making an assumption on the workload distribution.

Since computing on cloud resources incurs costs there
is a need to satisfy the given budget constraint while
maximising performance [8] [9]. In this paper, we argue
that performance constraints, such as the execution deadline,
which represents the desired performance that users want to
achieve and is directly related to user experience is equally
important as budget constraints. In existing research, we also
note users are only able to schedule a single job, which is
not the case in the research presented in this paper.

Finally, there is research in optimising the execution
of BoT applications on the cloud focusing on satisfying
deadline constraint while minimising the cost, which is also
the objective of this paper. Bossche et al. [10] proposed to
offload workload from private cloud to public cloud when
necessary in order to satisfy execution deadlines. However,
the proposed approach only supported a single application.
Menache et al. [11] proposed an approach to calculate the
number of on-demand and spot instances in order to execute
all BoT jobs within their deadline while reducing the cost.
However, the authors only considered one type of instance
type, i.e. homogeneous cloud VM cluster, which does in
reality harness the potential of building clusters with a wide
variety of options provided by cloud providers. In our previ-
ous work [12], we presented an approach for scheduling BoT
jobs with a deadline on the cloud. This paper significantly
extends our previous work by proposing different scheduling
approaches, investigating the trade-off between the solving
time and a solution’s optimality, and performing extensive
experiments to present the benefits of using heterogeneous
cloud VM cluster instead over homogeneous clusters. This
paper also highlights the benefit of dynamic reassignment.

III. RESOURCE SELECTION MODEL

In this section, we propose two models to address the
problem of i) determining the number and type of VMs in
a heterogeneous Cloud VM cluster consisting of instances
of different types, and ii) allocating workload to each VM.

A. Environment Model

Let IT = {it1...itm} be the list of instance types, which
are the prototypes to create instances or virtual machines
(VMs). Cost per hour of an instance type is denoted as cit.

Let A = {a1...an} denote the list of applications executed
on the cloud. In this paper, we assume prior knowledge of
all applications based on the fact that most applications exe-
cuted in data centres are recurring [3], [13]. Task execution

time ea,it is the average time (in seconds) to execute one
task of an application a on an instance of type it.

Let J denote the list of jobs to be scheduled. Each job
j belongs to an application aj and contains a number of
tasks nj . Its deadline is dj . We assume prior knowledge
of applications but not individual jobs; we know which
applications are executed but not when they are executed
and the number of tasks.

Let V denote the list of instances or VMs. An instance
type of an instance v is denoted as itv . As each instance
needs a certain amount of time to be booted, let β be the
average boot time. Let ej,v be the amount of time that an
instance v executes tasks of a job j, which also means that
ej,v = 0 if v does not execute any tasks of j.

Let rv be the running time of an instance v, which can
be calculated by adding the sum of the execution times of
all jobs on v with the average boot time. However, rv is 0
if it does not execute any task at all:

rv =

{
β +

∑
j∈J ej,v, if

∑
j∈J ej,v > 0

0, otherwise
(1)

B. Multiple and Single Job Approaches

We propose two approaches to determine the number of
VMs within a cloud VM cluster for executing the job(s).
The first approach aims to find the optimal solution for all
submitted jobs while the second approach achieves a local
optimal for each job.

1) Approach 1: Resource Selection for Multiple Jobs:
First, let X be a list of binary values which indicate whether
instances are created or not. In other words, for v ∈ V ,
xv = 1 if an instance is created and a user has to pay for
it. Otherwise, xv = 0.

We assume that execution of jobs on an instance is ordered
in a similar manner to how jobs are ordered within J . For
instance, if j1 is ordered before j2 in J , then j1 must be
executed before j2 on all instances. In this paper, we use a
pre-defined priority of jobs for ordering.

Since jobs are sequentially executed based on predefined
order, on any given instance, the sum of the boot time β
and all job execution times cannot exceed the deadline of
the last executed job, i.e.:∑

j∈J
ej,v ≤ dj − β (2)

Given the execution time of a job on an instance and the
time it takes to execute one task, it is possible to calculate
the number of tasks executed on an instance:

nj,v = xv × b
ej,v
ej,itv

c (3)

The right hand side of the Equation 3 is multiplied with
the indicator x since an instance needs to be created in order
to execute any tasks. Thus, if an instance v is not created,

then the number of tasks of any job executed by v must be
0, since xv = 0. Moreover, a floor function is applied since
each task must be fully executed on an instance.

In order to make sure all tasks of a job are executed an
additional constraint is imposed which is:∑

v∈V
nj,v = nj (4)

The cost of using one instance can be calculated by
multiplying the cost of one hour to the actual using time
rounded up to the nearest hour:

cv = drv × xv
3600

e × citv (5)

Notably, as a user only has to pay for instances that are
created, i.e. x = 1. Hence, the running time of each instance
needs to be multiplied to the indicator x.

The total cost is the sum of costs of all instances:

COST =
∑
v∈V

cv (6)

The optimisation problem is presented as follows:

minimise COST =
∑
v∈V

cv

subject to
∑
j∈J

ej,v ≤ dj − β∑
v∈V

nj,V = nj

(7)

2) Approach 2: Resource Selection for Single Job:
Instead of selecting resources for executing multiple jobs,
in the second approach resources are selected for executing
one job, which is hypothesised to be faster, since it aims to
find a local optimal over a global optimal solution. However,
since only one job is considered at a time, the solution may
not be optimal. The comparison between the two approaches
is presented in a later section.

Let nj,it be the number of tasks of job j that one instance
of type it can execute before a deadline:

nj,it = b
dj − β
ej,it

c (8)

Let niit be the number of instances of type it. The total
number of tasks executed by instances of type it are niit ×
nj,it. The following constraint is used to execute all tasks
of a job before its deadline:

nj =
∑
it∈IT

(niit × nj,it) (9)

The problem of selecting resource for executing one job
within its deadline is modelled as:

minimise COST =
∑
v∈V

cv

subject to nj =
∑
it∈IT

(niit × nj,it)
(10)

The above model is solved for each job since it finds the
resource to only execute one job.

IV. HANDLING JOB(S)

The submission handling process selects the optimal num-
ber of resources required for the jobs and assigns tasks to
each instance such that they are executed within deadlines.

There may be existing VMs when a batch of jobs arrives.
It is possible for existing VMs to execute new tasks if it does
not result in deadline violations (the execution of a job fin-
ishes after its deadline). If existing VMs can execute all tasks
of the newly submitted jobs, then no additional VMs are
required. The assignment process is presented by Algorithm
1 which loops through each job and given instance. First,
the finish time of an instance is calculated (Line 4). The
finish time on an instance is when it has finished executed
assigned tasks and is ready to start executing new tasks.

Then, the execution time of a job on an instance is the
difference between its deadline and an instance’s finish time
(Line 5). If the execution time is positive, some tasks of
a job to an instance (from Line 6 to Line 8). It should be
noted that we try not to prolong an instance’s finish time.
The reason is that instead of extending an instance’s finish
time for another hour, and pay for it, we can just create a
new one with the same type.

Notably, Algorithm 1 tries to assign as much tasks as
possible to the given list of existing instances. As a result,
it does not guarantee that all tasks will be assigned. New
instances need to be created in order to accommodate tasks
which cannot be assigned to the existing VMs.

Algorithm 1 Assignment

1: function ASSIGN(J, V)
2: for j ∈ J do
3: for v ∈ V do
4: fiv ← finish time of v
5: ej,v ← dj − fiv
6: if ej,v > 0 then
7: nj,v ← ej,v

eaj,itv

8: Assign nj,v of j to v

We propose two algorithms for handling job submissions
corresponding to two approaches presented in Section III-B.

A. Approach 1: Assigning Resources for Multi Jobs

Algorithm 2 uses the model shown in Equation 7 to select
resources for the submitted jobs.

As shown in Line 2, jobs are firstly assigned to a list of
existing instances, denoted as Ve.

If there are any jobs with tasks left, then a list of new
resources denoted as Vn are acquired by solving Model 7
as shown in Line 4. Finally, new instances are added to the
list of existing instances in Line 5.

Algorithm 2 Submission Handling

1: function SUBMISSION HANDLING(J, Ve)
2: ASSIGN(J, Ve)
3: if There are jobs with remaining tasks in J then
4: Vn ← solution of Model 7
5: Ve ← Ve ∪ Vn

B. Approach 2: Assigning Resources to Single Job

Algorithm 3 Submission Handling

1: function SUBMISSION HANDLING(J, Ve)
2: for j ∈ J do
3: ASSIGN(j, Ve)
4: if There are remaining tasks in j then
5: Vn ← solution of Model 10
6: ASSIGN(v, Vn)
7: Ve ← Ve ∪ Vn

Algorithm 3 presents the selection of resources when
only one job at a time is considered. It is an iterative
process which performs the following steps for each job: (i)
assigning tasks to existing instances (Line 3) and (ii) creating
and assigning remaining tasks to new instances if necessary
(Line 5 and Line 6). New instances created to execute a job
are added to the list of existing instances (Line 7).

V. DYNAMIC REASSIGNMENT

In the previous section, static scheduling approaches were
presented that are employed before the actual execution
based on the estimated performance of VMs and jobs, such
as task execution time. However, runtime performance is
not guaranteed and it is likely that there may be tasks that
take more (or less) time to be executed than estimated.
This performance variation is not considered when handling
submissions and can result in unexpected delays which lead
to deadline violations. The delay of one job on an instance
leads to a cascading effect whereby all jobs scheduled on
that instance may be delayed.

In this section, we propose a dynamic monitoring and
reassignment mechanism, which aims to prevent deadline
violations by moving tasks from an instance that cannot meet
the specified deadline to another one that can accommodate
extra workload without a risk of deadline violation.

A. Monitoring Progress

Monitoring is periodically performed to retrieve the
progress information of instances. This information for each
instance contains the currently executed job and the number
of tasks that have already executed.

Algorithm 4 Dynamic Reassignment

1: function REASSIGNMENT(V)
2: Vg ← ∅
3: Vr ← ∅
4: for v ∈ V do
5: if v is still executing then
6: w ←current job
7: fe ← w′s estimated finish time
8: if fe > dw then
9: Vg ← Vg ∪ {v}

10: else
11: if v has no remaining job(s) then
12: Vr ← Vr ∪ {v}
13: else
14: st←start time of the next job
15: if NOW < st then
16: Vr ← Vr ∪ {v}
17: Order Vg by estimated violating time
18: Order Vr by allowed receiving time
19: for vg ∈ Vg do
20: for vr ∈ Vr do
21: tr ← receiving time of vr
22: nr ← b tr

evr,aw
c

23: ng ← d
fng−dng

evg,aw
e

24: nr ← min(ng, nr)
25: if nr > 0 then
26: Move nr tasks from vg to vr
27: Vr ← Vr\{vr}

B. Dynamic Reassignment Algorithm

Algorithm 4 presents the dynamic reassignment process,
which takes place after the monitoring process and consists
of two parts.

The first part (from Line 2 to Line 16) aims to create
two lists: (i) of potentially violating instances and (ii) of
recipient instances that can receive more tasks. Potentially
violating instances are those whose estimated finish times
are after the deadlines (from Lines 6 to Line 9). On the
other hand, a recipient instance is either idle or has finished
current execution but the start time of the next execution
is in the future (Lines 11 and 16. A recipient instance can
execute extra tasks from the current time to the expected
start time of the next job.

In the second part, tasks are moved from violating in-
stances to recipient instances; the sets of violating and
recipient instances are ordered based on violation time and
allowed receiving time respectively (Lines 17 and 18). The
violation time is calculated as the difference between an
estimated finish time and a deadline. The allowed receiving
time is the amount of time from the current time to the
minimum value of (i) a deadline, (ii) a start time of the next

job (if an instance is not idle), and (iii) the termination time
(if an instance is idle).

For each violating instance, the number of tasks that
need to be moved is calculated based on the violating time,
which is the difference between estimated finish time and the
deadline, and the task execution time (Line 23). The number
of tasks a recipient instance can receive is calculated based
on its allowed receiving time (Line 22). If an instance can
receive tasks from a violating instance, then reassignment is
performed (Line 25 and Line 26).

After receiving tasks, the recipient instance is removed
from the list, since it cannot receive more tasks (Line 27).
This is done in order to avoid aggressive reassignment of
tasks from many instances onto an instance.

It should be noted that Algorithm 4 does not guarantee
complete resolution of potential deadline violations, i.e.
when there are not enough recipient instances to receive
tasks from violating ones. This may be resolved by adding
additional instances, which requires further investigation and
will be reported elsewhere.

VI. EVALUATION

This section compares the two proposed approaches
against others that use the same type of instance in a
homogeneous cloud cluster. We use Gurobi1, a commercial
mathematical programming environment to solve the models
represented by Equation 7 and Equation 10.

Our evaluation framework consists of a centralised master
which schedules BoT job execution on the cloud, periodi-
cally monitors and performs dynamic reassignment.

A. Submission Handling Evaluation

In this section, experiments were performed to compare
the single and multi-job submission approaches presented in
Section IV. The effect of four environmental and workload
factors, namely the number of tasks, jobs, instance types
and deadlines, on two metrics - (i) runtime of an approach
to find a solution, and (ii) monetary cost for executing the
submitted jobs - were considered. Four sets of experiment
were performed to evaluate the effect of the above four fac-
tors on the runtime and cost metrics. All sets of experiment
started with 3 instance types, 3 jobs, each comprising 100
tasks, and an average deadline of 1000 seconds.

1) Comparing Runtime: Figure 1 presents the solving
time using single-job and multi-job approaches in different
scenarios. In all cases, the runtime of the single-job approach
is below one second and lower than the multi-job approach.

Figure 1a and Figure 1b shows that as the number of tasks
and jobs increase, the runtime of the multi-job approach
increases to more than a minute. This is because as the
workload size increased, more resources were required to
meet the increased workload demand. Consequently, the

1http://www.gurobi.com

2000 4000 6000 8000
Number of tasks

Ru
ntim

es
(mi

lise
con

ds)
0

10
100

100
00

1e+
06

1 second

1 minute

Multi Single

(a) Varying number of tasks

2 4 6 8 10 12
Number of jobs

Ru
ntim

es
(mi

lise
con

ds)
0

10
100

100
00

1e+
06

1 second

1 minute

Multi Single

(b) Varying number of jobs

2 4 6 8 10
Number of instance types

Ru
ntim

es
(mi

lise
con

ds)
0

10
100

100
00

1e+
06

1 second

1 minute
Multi Single

(c) Varying number of instance types

200 400 600 800 1000 1400
Average deadlines

Ru
ntim

es
(mi

lise
con

ds)
0

10
100

100
00

1e+
06

1 second

1 minute
Multi Single

(d) Varying job deadlines

Figure 1: Runtime of multi-job and single-job submission
approaches

multi-job approach needs to traverse through a larger search
space than the single job approach requiring more time.
Hence, the multi-job approach may not be ideal if a fast
scheduling decision is required given a large workload.

Occasionally, the multi-job approach was able to find a
solution faster when a workload increased (refer Figure 1a).
We believe this is because the Gurobi solver was able to find

a quick path to traverse the search space and find a solution.
However, the general trend is that the solving time increases
as the workload increases.

The number of instance types did not noticeably affect the
runtime of both approaches as shown in Figure 1c. This can
be explained as the Gurobi solver found a subset of the most
cost effective instances, thereby reducing the search space
without requiring to consider all possible instance types.

Figure 1d shows that as the deadline for a job was
increased (minimising the urgency to be completed) the
runtime of the approaches decreased. This is because fewer
instances were required when a deadline was increased since
more tasks could be assigned to an instance. Consequently,
the search space is smaller, thus reduced runtimes.

2) Comparing Cost: Figure 2 shows cost saving that can
be achieved by using the multi-job approach in comparison
to the single-job approach. It is inferred that the multi-
job approach was a cheaper solution most of the time and
achieves savings up to 6%. This is because the multi-job
approach found the resources suited for all the jobs which
was a global optimal. On the other hand, the single job
approach found the best set of instances for one job at a time
which was a local optimal. However, there were a few cases
in which the multi-job approach offered no cost savings as
both approaches provided the same scheduling decision.

B. Amazon Cloud-based Experiments

1) Experimental Setup: Experiments were performed on
the Amazon Web Service (AWS) cloud to compare the
proposed approaches on real-world applications in order
to evaluate both submission handling and dynamic reas-
signment. For the experiments reported in this paper three
instances shown in Table I were selected.

Three real-world applications with different workload
characteristics were employed. The first is a Molecular Dy-
namics Simulation (MDS) of a 250 particle system in which
the trajectory of the particles and the forces they exert are
solved using a system of differential equations [14]. MDS is
embarrassingly parallel and CPU intensive. The second one
uses SVM light2 to classify data sets provided as input files
ranging from 100MB to 500MB. This application only uses
one core on a machine. The third one uses lbzip23, a parallel
compression utility, to compress files ranging from 500MB
to 1GB. It supports multiple CPU cores which communicate
with each other.

Prior to the experiment, a sampling process to generate
the average task execution time of all applications on the
instance types was performed as shown in Figure 3. The
results indicate that MDS benefited from parallel execution;
increasing the number of CPU cores resulted in significant
performance improvement. The communication overhead

2http://svmlight.joachims.org/
3http://lbzip2.org/

2000 4000 6000 8000

0
4

8

Number of tasks

Co
st

Sa
vin

g (
%

)

(a) Varying number of tasks

2 4 6 8 10 12

0
4

8

Number of jobs

Co
st

Sa
vin

g (
%

)

(b) Varying number of jobs

2 4 6 8 10

0
4

8

Number of instance types
Co

st
Sa

vin
g (

%
)

(c) Varying number of instance types

200 400 600 800 1000 1400

0
4

8

Average deadlines

Co
st

Sa
vin

g (
%

)

(d) Varying deadlines

Figure 2: Cost comparison of multi-job and single-job ap-
proaches

Table I: AWS Instance Types

Name vCPU ECU Mem Storage Price
m3.medium 1 3 3.75 4 $0.073
m3.large 2 6.5 7.5 32 $0.146
m3.xlarge 4 13 15 80 $0.293

between the parallel cores in lbzip2 degrades performance.
There is minimal gain for SVM light since it relies on
sequential execution.

2) Evaluated Approaches: The following approaches
were evaluated: (i) single-job resource selection with (sin-
gle.dyna) and without (single.nodyna) dynamic reassign-
ment, (ii) multi-job resource selection with (multi.dyna) and
without (multi.nodyna) dynamic reassignment.

The proposed approaches were compared to commonly
used approaches that only use one instance type to create a
homogeneous cloud VM cluster. As mentioned earlier, nj,it
is the number of tasks of job j that one instance of type it

0
10

30
50

Ru
ntim

es
(se

con
ds)

Medium Large XLargeMedium Large XLargeMedium Large XLarge

MDS
SVMlight
lbzip2

Figure 3: Task execution time

can execute before a deadline. Hence, the number of VM of
it required to execute all tasks of j is nj

nj,it
.

In total, there are 6 different homogeneous approaches
resulting from 3 instance types and the support for dynamic
reassignment: medium.dyna, medium.nodyna, large.dyna,
large.nodyna, xlarge.dyna, and xlarge.nodyna.

The jobs were submitted in two batches. The first batch
was submitted at the beginning of the experiment, compris-
ing 3 jobs corresponding to each application, and each job
consisted of 100 tasks requiring to meet a deadline of 1200
seconds. The second batch also had 3 jobs, each of which
had the same deadlines as the former batch but had 150
tasks, was submitted 300 seconds after experiment started.
Finally, based on the sampling experiment, the booting time
β, was set to 100 seconds.

3) Cost Comparison: Figure 4 shows the total cost in-
curred from using different approaches. In general, using
heterogeneous cloud VM clusters achieved lower cost in
comparison to use homogeneous ones. The cost saving
ranges from 4% to 31%. The multi-job approach found a
cheaper solution ($1.606) in comparison to the single-job
approach ($1.679).

To
ta

l C
os

t (
$)

0.0
0.5
1.0
1.5
2.0
2.5

m3.medium
m3.large
m3.xlarge

1.971 1.752
2.344

1.679 1.606

Med
ium Lar

ge
XLa

rge Sin
gle Mul

ti

Figure 4: Cost incurred for each approaches

Both approaches did not employ instances of m3.xlarge
type. The single-job approach tended to use more instances
of m3.medium type and fewer instances of m3.large type
(5 m3.medium and 4 m3.large instances) compared to the
multi-job approach (6 m3.medium and 8 m3.large instances).

Figure 5 shows the assignment ratio between jobs and
instance types, which is the amount of workload of the job

SINGLE MULTI

0

25

50

75

100

COMPR MOLEC SVM COMPR MOLEC SVM
Applications

As
si

gn
m

en
t R

at
io

Instance Types
m3.large

m3.medium

Figure 5: Assignment ratio of applications on instances

assigned to each instance type. For instance, the single-job
resource selection approach assigned all tasks of SVM light

and lbzip2 to m3.medium instances and MDS to m3.large
instances. The reason is that only one job at a time was
considered and the most cost effective instance type for
executing each job was selected. On the other hand, the
multi-job resource selection approach distributed a signifi-
cant proportion of lbzip2 and MDS and some of SVM light

workload to m3.large instances. Here all jobs were taken
into account and the combination of resources most cost
effective for all jobs were selected.

Figure 6: Deadline violation of the four approaches

4) Violation Comparison: In this research, we measure
violation as (i) the number of tasks finishing after their job
deadlines and (ii) the delay of all job executions, which is the
difference in seconds between the finish times of violating
jobs and their deadlines.

Figure 6 presents the violation of all approaches for the
batch of jobs considered in the above section. In is evident
that dynamic reassignment greatly reduces the violation for
all approaches. In fact, there was only one case in which
violation happened in the homogeneous cluster of medium
VMs. However, the violation time was 23 seconds, which
was 95% lower compared to 438 seconds when dynamic
reassignment was not used.

Without dynamic reassignment, the multi-job resource
selection approach resulted in lower execution time when

compared to the single-job resource selection approach. This
can be explained by Figure 7 highlighting the average total
execution time (from when the first job is submitted until
the finish time of the last job) of each approach. Using the
multi-job resource selection approach resulted in lower total
execution time in comparison to the single-job approach
thereby reducing the chances of violation.

14
00

14
50

15
00

15
50

Av
er

ag
e

To
ta

l E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

single.nodyna multi.nodyna single.dyna multi.dyna

Figure 7: Total execution time using the four approaches

VII. CONCLUSIONS AND FUTURE WORK

This paper aimed to address the problem of cost-
effectively building a heterogeneous cloud VM cluster to
execute BoT jobs within a user specified deadline. Two
approaches were proposed for handling multiple and single
jobs. In the first approach, all jobs were taken into account
for deriving a scheduling decision. In the second approach,
one job was considered at a time and scheduled onto a
cloud instance. Experimental studies evaluating the two
approaches highlighted that the multi-job approach reduced
both the total monetary cost and the overall execution time
by up to 6%. The single job approach managed to take less
than one second for making a scheduling decision for all
submitted jobs. The single-job approach is suitable for a
system that handles a large workload while the multi-job
approach can maximise cost savings on the cloud. When
compared to naive approaches the proposed approach is
able to achieve cost savings from 4% to 31%. A dynamic
re-assignment mechanism was proposed and developed to
handle unexpected delays during the execution of the BoT
application. Our evaluation highlighted that violation of
deadlines was greatly reduced using the proposed mecha-
nism. In the worst case scenario, using dynamic reassign-
ment the approach reduced deadline violation by 95% and
no deadlines were violated in the best case.

In the future, we will investigate how additional instances
can be added to the cluster during dynamic re-assignment
in order to completely resolve potential violation. The effect
of the order of jobs in scheduling will be investigated.

ACKNOWLEDGMENT

This research was supported by an Amazon Web Services
Education Research grant.

REFERENCES

[1] A. Iosup and D. Epema, “Grid Computing Workloads,” IEEE
Internet Computing, vol. 15, no. 2, 2011.

[2] A. Goder, A. Spiridonov, and Y. Wang, “Bistro: Scheduling
Data-Parallel Jobs Against Live Production Systems,” in
USENIX Annual Technical Conference, 2015.

[3] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca, “Jockey: Guaranteed Job Latency in Data Parallel
Clusters,” in Proceedings of the ACM European Conference
on Computer Systems, 2012.

[4] R. Duan, R. Prodan, and X. Li, “Multi-Objective Game
Theoretic Scheduling of Bag-of-Tasks Workflows on Hybrid
Clouds,” IEEE Transactions on Cloud Computing, vol. 2,
no. 1, 2014.

[5] M. R. H. Farahabady, Y. C. Lee, and A. Y. Zomaya, “Pareto-
Optimal Cloud Bursting,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 10, 2014.

[6] L. Thai, B. Varghese, and A. Barker, “Executing Bag of
Distributed Tasks on the Cloud: Investigating the Trade-Offs
between Performance and Cost,” in IEEE Conference on
Cloud Computing Technology and Science, 2014.

[7] M. Mao, J. Li, and M. Humphrey, “Cloud Auto-Scaling with
Deadline and Budget Constraints,” in IEEE/ACM Interna-
tional Conference on Grid Computing, 2010.

[8] L. Thai, B. Varghese, and A. Barker, “Task Scheduling on
the Cloud with Hard Constraints,” in IEEE World Congress
on Services, 2015.

[9] A. Oprescu and T. Kielmann, “Bag-of-Tasks Scheduling
under Budget Constraints,” in IEEE International Conference
on Cloud Computing Technology and Science, 2010.

[10] R. Van Den Bossche, K. Vanmechelen, and J. Broeckhove,
“Online Cost-efficient Scheduling of Deadline-constrained
Workloads on Hybrid Clouds,” Future Generation Computer
Systems, vol. 29, no. 4, 2013.

[11] I. Menache, O. Shamir, and N. Jain, “On-demand, Spot, or
Both: Dynamic Resource Allocation for Executing Batch Jobs
in the Cloud,” in International Conference on Autonomic
Computing, 2014.

[12] L. Thai, B. Varghese, and A. Barker, “Minimising the Exe-
cution of Unknown Bag-of-Task Jobs with Deadlines on the
Cloud,” in ACM International Workshop on Data-Intensive
Distributed Computing.

[13] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou, “Apollo: Scalable and Coordinated
Scheduling for Cloud-Scale Computing,” in USENIX Sym-
posium on Operating Systems Design and Implementation,
2014.

[14] K. Bowers, E. Chow, H. Xu, R. Dror, M. Eastwood,
B. Gregersen, J. Klepeis, I. Kolossvary, M. Moraes, F. Sacer-
doti, J. Salmon, Y. Shan, and D. Shaw, “Scalable Algorithms
for Molecular Dynamics Simulations on Commodity Clus-
ters,” in ACM/IEEE Supercomputing Conference, 2006.

	Introduction
	Related Work
	Resource Selection Model
	Environment Model
	Multiple and Single Job Approaches
	Approach 1: Resource Selection for Multiple Jobs
	Approach 2: Resource Selection for Single Job

	Handling Job(s)
	Approach 1: Assigning Resources for Multi Jobs
	Approach 2: Assigning Resources to Single Job

	Dynamic Reassignment
	Monitoring Progress
	Dynamic Reassignment Algorithm

	Evaluation
	Submission Handling Evaluation
	Comparing Runtime
	Comparing Cost

	Amazon Cloud-based Experiments
	Experimental Setup
	Evaluated Approaches
	Cost Comparison
	Violation Comparison

	Conclusions and Future Work
	References

