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Abstract:  
The consolidation of the virtual machines (VMs) helps to optimise the usage of resources and hence 
reduces the energy consumption in a cloud data centre. VM placement plays an important part in the 
consolidation of the VMs. The researchers have developed various algorithms for VM placement 
considering the optimised energy consumption. However, these algorithms lack the use of 
exploitation mechanism efficiently. This paper addresses VM placement issues by proposing two 
meta-heuristic algorithms namely, the enhanced modified firefly algorithm (MFF) and the 
hierarchical cluster based modified firefly algorithm (HCMFF), presenting the comparative analysis 
relating to energy optimisation. The comparisons are made against the existing honey bee (HB) 
algorithm, honeybee cluster based technique (HCT) and the energy consumption results of all the 
participating algorithms confirm that the proposed HCMFF is more efficient than the other 
algorithms. The simulation study shows that HCMFF consumes 12% less energy than honeybee 
algorithm, 6% less than HCT algorithm and 2% less than original Firefly. The usage of the 
appropriate algorithm can help in the efficient usage of energy in cloud computing. 
 
Keywords: Energy Efficiency; VM Placement; Hierarchical clustering; Modified Firefly 
algorithm. 
 
1.   Introduction 
 
The cloud being the fastest growing service providers impose increased the cost of maintenance and 
energy demand. To minimise the energy consumption in a cloud data center, the Virtualization 
Technology (VT) is considered [1]. VT supports the data centers to run with fewer physical servers, 
optimising the usages of server and hence reduces the cost of the hardware and operation. However, 
it brings new challenges for the management of Virtual Machines (VMs), which must be provisioned 
and managed productively and hence, must pave the way for optimising the energy and performance 
trade-off. Proper allocation of VMs reduces the energy consumption and minimises the Service level 
agreements (SLAs). In clouds, dynamic VM consolidation is important since present-day service 
applications frequently experience variable workloads. When an application increases its demand, it 
results in an unexpected rise of the resource usage, which may lead to performance degradation if 
VM consolidation is not constrained. Many a time the application may encounter increased response 
times, timeouts or failures if the application’s resource requirement is not met. One of the important 
agreements in SLAs made between cloud providers, and their users are to provide quality of service. 
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For meeting the quality of service in SLAs, the performance degradation is a major concern, which is 
further explained in this paper. The dynamic VM consolidation problem has four sub-problems:  
 

(a) To determine when a host is considered as being overloaded (host overloading detection)  
(b) To determine when a host is considered as being under-loaded.  
(c) To determine which VMs must be selected to migrate from overloaded host; 
(d) To determine which hosts must be selected to place migrated VMs.  

 
This work mainly focuses on Infrastructure-as-a-service (IaaS) environments in cloud data centres to 
provide an energy-efficient VM placement and quality of services inminimising the SLAs. It is 
essential to manage the heterogeneous mixed type of workloads since numerous distinctive users 
provision VMs in a dynamic fashion and dispose of diversified applications on shared physical 
resources. While the resource provider is oblivious and uninformed of the types of application that 
are deployed in the system and hence the system must be application skeptic, that is, must be capable 
of dealing with unknown mixed workloads effectively and efficiently. Another essential factor that 
needs to be handled is the quality of service guarantees, which are settled in the SLAs made between 
cloud providers and cloud consumers. Since numerous applications exist together in the system, 
therefore, it is essential to use an independent workload quality of service metric to measure the 
performance delivered to those applications. To establish system-wide quality of service, it is 
necessary to use such quality of service metric. IaaS only has been recognised as the most promising 
model, and it uses various virtualization technologies for instance Xen hypervisor [2], which 
efficiently manages the computing workload by assigning them in a proper manner. The problem of 
VM placement becomes crucial [3, 4, 5] as virtualization is the crux of cloud computing and the VM 
placement is usually pertaining to server consolidation [6]. Many metal-heuristic algorithms were 
used by different researchers in cloud computing.  
 
Each of the afore-stated sub-problems must operate in an optimisedway, and this study tries to 
address the VM placement problem as it is necessary to manage the mapping of VMs to the 
appropriate physical machines (PMs) in the cloud data centres to avoid too many migrations that 
may lead to performance degradation. In order to perform the mapping of VMs correctly onto a PM, 
it is important to know the PM’s capacity and whether it can fulfil the VMs resource demand without 
having resource conflicts, which aligns with the data center’s policies. However, it is not only 
adequate to make good VM placement choices initially but also it is necessary to change the initial 
VM mapping in a dynamic way that is suitable for the changing conditions in the data center’s VM 
load. To address the issue, this work proposes two meta-heuristic algorithms – (a) the modified 
firefly algorithm and (b) the hierarchical cluster based modified firefly algorithm (HCMFF). The 
performance of the proposed algorithms is evaluated by using CloudSim simulation toolkit and is 
compared with earlier work in [7]. Firefly algorithm (FA) is a meta-heuristic algorithm, which is 
used for optimisation problems. This gives an assurance of finding near-optimal solutions within a 
remarkable decline in the amount of time. Henceforth, the use of meta-heuristics is acquiring 
considerable attention. The sequence of the study is as follows:  

 
(a) A comparison study between Firefly and honeybee algorithms: The firefly algorithm gives a 

better result because it has the following advantages: (i) automatic subdivision of the whole 



 
 
 
 
 

E. Barlasker et al. 
 

population into subgroups (ii) the natural capability of dealing with multi-modal 
optimisation (iii) high ergodicity and diversity in the solutions. All these advantages make 
FA unique and very efficient. The details impact of the all participating parameters is also 
shown.  

(b) Comparison of Honeybee cluster based technique (HCT) and hierarchical cluster based 
modified firefly algorithm (HCMFF): The HCMFF gives a better result as the searching 
time of the most appropriate PM for placing a particular VM is reduced, and it has been 
observed that by combining hierarchical clustering with firefly algorithm the total number 
of VM migrations had been reduced to a great extent. This isbecause the VMs will be sent 
to a specific cluster of PMs (which can provide the amount of resource required by the 
VMs) instead of sending the VMs randomly. Thus the advantages of Firefly along with that 
of the hierarchical clustering show a nearly optimal result. 

(c) An overall comparison between all participating algorithms: The overall results of all four 
algorithms are analysed. The HCMFF gives better than the entire participating algorithm. 
The results show that both modified firefly algorithm and HCMFF algorithm reduces energy 
consumption and some SLA violations. 

 
The HCMFF performed better than other algorithms because it is competent in finding the best 
cluster among the different clusters of PMs that will be most capable and efficient for any VM 
placement. Firefly algorithm is swarm-intelligence-based, so it has the same type of advantages that 
other swarm intelligence-based algorithms have. However, Firefly algorithm has two prime benefits 
over other algorithms: automatic subdivision and the ability to deal with multimodality. First, Firefly 
algorithm is based on attraction and attractiveness decreases with distance. This leads to the fact that 
the whole population can automatically subdivide into subgroups, and each group can swarm around 
each mode or local optimum. Among all these modes, the best global solution can be found. Second, 
this subdivision allows the fireflies to be able to find all optima simultaneously if the population size 
is substantially higher than the number of modes. This automatic subdivision ability makes it 
particularly suitable for highly nonlinear, multimodal optimisation problems. All these advantages of 
firefly algorithm make it even more efficient when combined with hierarchical clustering algorithm’s 
merits stated above, thereby outperforming all the algorithms that HCMFF is compared with. 

 
The rest of the paper is organised as follows. Section 2 presents the related work. Section 3 provides 
an introduction and explanation of the proposed algorithms. Section 4 shows the experimental result. 
Finally, Section 5 provides the summary of the study and concludes the paper 

2.   Literature Review 
The cloud computing provides resources based on SLA created through negotiation between the 
service provider and users [8]. It is necessary to minimise energy consumption and thus it is very 
difficult to maintain the trade-off between energy and performance. To overcome this problem, many 
researchers proposed different methods. Bobroff et. al. [9] proposed a new algorithm for preserving 
performance. Their algorithm remaps the VM to PM for future resource demand. Barbagallo et al. 
[10] described a bio-inspired algorithm hinged on the scout-worker migration method where some of 
the scouts are professed to move from one physical node to another so that they can cooperatively 
find a suitable destination for the migrated VMs.  
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Metaheuristic algorithms have been widely studied for VMP in the literature [11]. The study [12] 
shows performance of various Swarm Intelligence (SI) approaches including Genetic algorithm 
(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Differential Evolution 
(DE), Artificial Bee Colony (ABC), Glow-worm Swarm Optimization (GSO), and Cuckoo Search 
Algorithm (CSA).Such algorithms are widely used for solving the problem of VM placement, along 
with the Genetic Algorithm (GA), Honeybee algorithm (HB), Ant Colony Optimization algorithm 
(ACO) as listed in [13]. 
 
2.1. Ant Colony Algorithm 
The study in [14] proposes an approach based on ant colony algorithm to effectively balance power 
consumption among nodes. However, they have only focused on overload, under load and idle host 
detection but didn’t consider VM-migration in their work. Several studies hardly consider historical 
data and system fluctuations which lead to load inequality of the system. In [15] a multi-objective ant 
colony system algorithm was proposed for the VM placement with the aim of obtaining a group of 
non-dominated solutions that manages the tradeoff between resource wastage and power 
consumption. The authors compared the proposed algorithm with multi-objective GA, two single-
objective algorithms namely bin packing, and MMAS; the outcome of the experiment proved that the 
proposed algorithm is much efficient than the algorithm it was compared to. The authors in [16] and 
[17] explain the placement problem based on the proxy method. Ant colony optimisation can be used 
to solve multi-objective optimisation problems to optimise total processing resource wastage and 
memory resource wastage [18]. This work focused only on the performance. 
 
2.2. Genetic Algorithm 
Hu et. al. [19] proposed a scheduling strategy of resources based on a genetic algorithm which 
considers historical data and the current state of the system and therefore estimates in advance the 
influence it will have on the system. Hence this strategy solves the problem of load imbalance and 
huge migration cost. Falkenauer [20] proposed an enhanced approach of a genetic algorithm to 
handle the server consolidation problem using the group-based encoding scheme. In [21] Savant 
proposed genetic algorithm as a scheduling strategy for load balancing of VM resources.  The VM 
resource scheduling strategy focuses on system load balancing. The study is similar to the work done 
in [22] in which the GA approach finds in proceed the effect of the deployment of new VM resources 
in the system. The author proved that the traditional algorithm, when used for resource scheduling, 
ends up in an imbalance of load and the number of VM migration also increases. In [23] another GA-
based approach (GABA) was proposed which could self-reconfigure the VMs in CC data centres 
consisting of heterogeneous PMs. While in [24] the VM placement problem is designed as a multi-
objective optimisation problem to minimise various issues such as power consumption, resource 
wastage and the cost of thermal dissipation. To tackle all these issues, the authors proposed an 
Optimal GA with fuzzy multi-objective evaluation.   
 
2.3 Firefly Algorithm 
In the recent years, the FA (firefly algorithm) research work has multiplied considerably. Faster et al. 
presented an extensive and abridged review [25] on FA. Some variants of FA were proposed and 
implemented in various fields, for example, the authors in studies [26, 27, 28, 29, 30] designed 
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discrete form of FA for tackling the combinatorial optimisation problems and discrete problems. This 
discrete pattern of FA can be used in a variety of applications, for instance, graph colouring, 
travelling-salesman problems (TSP) etc. In [30] a discrete form of FA was proposed for solving the 
scheduling problems. In addition to that the authors in [29, 31], and [32] demonstrated that the 
problem of scheduling and travelling-salesma could be solved in a much progressive manner. In [33, 
34] FA was applied in solving the problems of clustering and classification and FA gave an excellent 
result. In [35] FA has also been applied in the training of neural network. Eventually from [36, 37, 
38] it was demonstrated that for any kind of optimisation problems that are dynamic in nature, FA 
has always proved to be quite efficient. A multi-swarm based firefly algorithm is used in dynamic 
environments. 
 
2.4. Honey Bee and Ant Colony Algorithm 
In [39] the authors proposed eco-friendly algorithm by combining both honey bee and ant colony 
algorithm for cloud computing which reduced the operational cost by minimising power 
consumption which also diminished global warming to a great extent. The proposed Bee-Ants colony 
system was used for proper energy efficient resource management where initially the jobs are divided 
into two parts; the first part which looks after the proper management of overloaded. The 
underloaded CPUs with service rescheduling was carried out by honey bee algorithm. The second 
part, which helps to manage the idle CPUs (power consumption management) is achieved by ant 
colony algorithm. 
 
2.5 Particle Swarm Algorithms 
Particle Swarm algorithms are used for efficient VM allocation to physical servers to reduce the total 
resource wastage and a number of servers used [40]. An improved particle swarm optimisation 
approach for virtual machine placement is proposed by Wang et al. [41]. The immune algorithm is 
also used for energy optimisation in cloud computing [42, 43]. The Glowworm swarm optimisation 
algorithm uses features with some better-known swarm intelligence based optimisation algorithms 
[44]. A comparative study on Firefly Algorithm, Particle Swarm Optimization, is shown in several 
studies [25,34,45]. 
 
2.6. Existing Virtual Machine Placement Techniques 
VM placement is crucial for better resource utilisation and energy efficiency in cloud computing 
infrastructures. Various research work has pontificated the significance of the VM placement 
problem relevantly, for instance, Cardoso et al. [46] described the importance of placing VM into 
PM appropriately. In [47] the authors proposed a Power Aware Best Fit Decreasing (PABFD) 
algorithm for VM placement that is a modification of Best Fit Decreasing algorithm (BFD). The 
authors in [9,48,49] have also formulated numerous heuristics for VM placement problem. In the 
study [50] the authors dealt with the tradeoff between cost and power dependent on tight 
performance constraint by packing as many VMs in a small number of physical machines and this 
reduced the cost of VM migration. While the author in [51] designed a single-objective algorithm 
based on max-min ant system (MMAS) metaheuristic to reduce the total amount of PMs needed to 
handle the currently available load.  
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The authors in [52] proposed an efficient algorithm established in linear and quadratic programming 
for making the placement of VMs on PMs optimum and the main aim of this work is to minimise the 
usage of the total number of nodes. The server consolidation problems were solved with the 
formulations of linear programming in [53] and [54] where the authors created extended restrictions 
for the problem of VM allocation. The restriction was that the VMs allocated to a PM should be 
based on some unique attribute so that the total number of VM migrations can be minimised and also 
a heuristic based on LP-relaxation was built to optimise the linear program solving cost. The authors 
in [55] addressed the problem of VM provisioning and placement as two constraint satisfaction 
problem and they proposed a framework for resource management by combining dynamic VM 
provisioning manager and VM placement manager which are utility based. On the other hand, the 
authors in [56] solved the constraint programming based dynamic consolidation problem by 
designing an Entropy resource manager for similar clusters that considers both the issues of VM 
allocation and VM migration to the available nodes. 

VT (virtualization technology) also tried to minimise the consumed energy [57]. These efforts started 
in the study [58] in which it was mentioned that the scintillating features of VT such as migration 
could be used to cause systems to be power-aware. The nature-inspired honey bee algorithm is used 
in solving the dynamic VM placement problem in [7]. They have tackled the problem of power 
efficient resource management in virtualized data centers to maximise the cloud provider’s profit by 
minimising both power consumption and SLA violation. Bouras et al. [59] defined a framework 
showing the effort to capture all the technical parameters entailed in provisioning a service with 
qualitative guarantees. B. Addis et al. [60] proposed a unifying framework that provides very 
efficient and robust solutions at multiple time-scales. Sharifi et al. [61] consider energy efficiency 
along with performance. They showed that amaurotic consolidation of VMs does not minimise the 
power consumption of data centers but it can also cause energy wastage. They then proposed a 
scheduling algorithm that was energy-aware using a group of objective functions regarding fitness 
consolidation metric and was much better when compared to other scheduling algorithms. 
 
However, these algorithms do not use exploitation mechanism efficiently. This study uses 
hierarchical clustering method for the VM placement.  This helps in finding the best cluster among 
the different clusters by mining the energy usage level. 

 

3.   Proposed Method 
This study mainly considers Infrastructure-as-a-Service (IaaS) as it has been recognised as the most 
promising model. IaaS is represented by a large-scale data centre comprising of a large number of 
the heterogeneous physical node where each node is characterised by CPU performance, disk 
storage, the amount of RAM and network bandwidth [8]. The system model with the proposed 
Firefly Algorithm is presented in figure 1.  
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Figure 1. System model with the proposed Firefly algorithm 

 
The task from the users is accepted by the Global Manager. The software layer of the system is tiered 
comprising of local and global managers. All the local managers maintain the list or indexes of PMs 
in a particular cluster for other clusters. When a new VM instance request is sent to the global 
manager, it takes the updates of the available resources from all the local managers of each cluster. 
Thus it maps the VM to the most appropriate cluster of PM. The VM monitor (VMM) maintains 
seclusion at all times between VMs by managing and multiplexing the physical resources access. 
Each of the VM is self-supporting with its operating system because of the virtualization of the 
physical resources and hence numerous VMs can be executed on the single physical machine (PM). 
The separation between physical and virtual resources provided by the VMM allows elasticity of 
resource provisioning for VMs. As a PM, a VM too has resources such as CPU, memory, and 
input/output (I/O) devices associated with it and these resources needs to be provisioned to each of 
the VMs while doing their instantiation. The responsibility of the VMM is to multiplex the resources 
across VMs as these resources can be overcommitted. To determine the initial levels for resource 
provisioning of a VM “sizing process” is used which depends on applications resource usage profiles 
or assessment to fulfil the load demand and other processes. This architecture is supported by the 
firefly algorithm. 
 
Every VM have various kinds of loads, and as these loads keep on increasing with time, the upper 
threshold value of a PM will be reached or crossed resulting in the imbalance of load in the system. 
To avoid such a situation, proper VM allocation must be done to enhance the resource utilisation and 
consequently improve the overall performance of the cloud data centres. VM placement or allocation 
problem is also known as VM instance scheduling. Any algorithm is considered profitable if it 
efficiently allocates a large number of VMs to very few PMs and also avoids the overutilization of 
PMs which often increases the number of VM migrations. In VM placement problem it may not be 
possible to get the best placement results within polynomial time. However, the meta-heuristic 
algorithms can get near optimal solutions, if not the best. Due to this reason, the study chooses FA 
algorithm for VM placement that can use exploitation mechanism efficiently. VM migration takes 
place when a PM is overloaded, and by shifting few VMs, the resource utilisation of that particular 
PM can be minimised. Also, if a PM is not fully utilised, then the resource will be wasted. Thus by 
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migrating VMs from under loaded PMs the resource wastage, as well as energy consumption, can be 
reduced. But if the total number of VM migration increases then it will also increase the SLA 
violation. The increase in SLA violation will result in performance degradation. 
 
Therefore the cloud providers will benefit a lot if they group the PMs based on their ability to 
manage different kinds of VM instances. For example, if a VM instance is too large then it would be 
better to allocate this particular VM to a PM which will be capable of handling such large instance 
instead of allocating it randomly. Again for this purpose, the study used the concept of hierarchical 
clustering algorithm so that it can minimise the time required to search the best PM while performing 
VM migration. It can easily find the best cluster among the different clusters of PMs that will be 
most capable and efficient for any VM placement. The dynamic VM consolidation problem is 
divided into four sub-problems: (a) Checking whether the host is under loaded; (b) Checking whether 
the host is overloaded; (c) Selection policy to migrate VMs from the overloaded host; and (d) VMs 
placement for placing the VMs in allocation or migration to another host [47]. Among all the 
mentioned sub-problems, we are focused more on the VM placement. 

3.1.   Problem Formulation of VM Placement 
Assuming, a set of VMs denoted by VM= {vm1,vm2,….,vmn} where each of the vmiis a trinity 
represented as vmi = (cpui, rami, bwi), 1 ≤ i ≤ n,  the values of the triplets denotes CPU, memory and 
bandwidth demands of VMs respectively. Let PM= {pm1,pm2,…..,pmm} denote a set of PMs and 
each of the pmj is also a trio represented as pmj = (cpuj, ramj, bwj), 1 ≤ j ≤ m, the values of the 
triplets denote the total resource capacity of the jth PM. In addition, xij ,1 ≤ i ≤ m, 1 ≤ j ≤ n and yi, 1 ≤ 
i ≤ m are decision variables, xij =1 if and only if vmjis mapped onto pmi, yi =1 if pmi is used to host 
virtual machine.  The objective function is to minimise ∑ 𝑦𝑖

𝑚
𝑖=1  while discovering all values of xij. 

The absolute restrictions constraints in the above stated description is that each of the VM can be 
allocated on only one physical machine at a time. The details of constraints are also referred from the 
study of [62].  For each type of resources (CPU, memory and bandwidth, the quantity of resource 
requests of  VMs)  placed in the same physical machine must be less or equal to ability/capacity of 
the PMs  hosting them; The total numbers of PMs that allocate VMs[47] are not more than m, 
∑ 𝑦𝑖

𝑚
𝑖=1  ≤ 𝑚. 

3.2.   Assumptions of the Firefly Algorithm 
For VM placementthis study proposes energy efficient modified Firefly Algorithm. This algorithm is 
based on the demeanour of different species of fireflies that generate terse and cadent flashes. Most 
of the time the pattern observed for the flashes is exclusive and distinct for every particular species 
of fireflies, for instance, the cadent of the flashes, the rate of flashing and the total time for which the 
flashes are noticed. Each and every of these patterns collectively composes a kind of pattern that 
attracts both male and female fireflies to each other and thus the female of a species reunite to a 
distinctive pattern of the male of the same species. At a certain distance ‘r’, the intensity of light 
from the light source conforms to the inverse square law [45].  That is, as ‘r’ increases the intensity 
of light ‘I’ will decrease and is given in terms of I α 1/r2. Furthermore, the air or medium keeps on 
enthralling the light and as a result of which the light becomes feeble as the distance increases. Thus 
when these two factors, namely the intensity of the light and air absorption or enthralling are 
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combined, it makes most fireflies seeable at a narrow distance, usually to a few hundred meters at 
night which are pretty sufficient for fireflies to confer and communicate with each other. 
 
Xin-She Yang developed Firefly Algorithm (FA) in late 2007 and 2008 [63,64]. The FA was 
inspired by the flashing motif and action of fireflies. It uses the following three rules (or rather 
assumptions). 

(a) It is considered that one firefly is captivated to other fireflies regardless of their sex. That 
means all fireflies are unisex.  

(b) It states that for any two fireflies that are flashing, the brighter one will be attracted to less 
bright one and less bright to the brighter one. The brightness and attractiveness are 
proportional to each other, and both will decrease when their distance increases. However, a 
firefly will move randomly if there is no one brighter than that particular firefly. 

(c) The objective function is used to determine the brightness of Firefly [45]. The brightness is 
directly proportional to the objective function’s value for all maximisation problems. Other 
forms of the brightness have a function as used in genetic algorithms [65]. 

 
To refit the FA concept to VM placement problem the proper translation of terminology used in the 
FA must be done efficiently and this terminology is the crucial factor in a combinatorial space from a 
continuous one. VM placement is one of the combinatorial optimisation problems and as such the 
key concepts related to FA (which is the above three assumptions) must be described by VM 
placement problem before solving this problem. The basic FA algorithm assumes that all fireflies are 
unisex, and the main terms described are brightness and attractiveness of fireflies. These assumptions 
are modified in order to relate it to VM placement problem and as such the following three 
assumptions are made due to the fact that they are VMs which need to be properly allocated on PMs 
depending on the availability of resources. To align FA to VM placement, the three crucial 
assumptions need to be redefined and discussed. From the three assumptions made in the basic FA, 
the study uses that the firefly flashing behaviour by modifying the concept in VM placement 
methods, which are given as follows. 
 
Assumption #1: 
It is assumed that all the fireflies are not unisex, which implies that VM’s are female fireflies and 
PM’s are male fireflies. The female fireflies will be attracted to male fireflies depending on the 
brightness of the male firefly and their brightness. For PMs, the brightness is more if PM is not 
overloaded or slightly loaded and brightness is less if PM is overloaded or going to be overloaded 
very soon. For VMs, the brightness is more if the VM is not overloaded or slightly loaded. 
Brightness is less if VM is overloaded. That is, less bright VM will be placed on those PMs which 
are brighter and bright VM will be placed on less bright PMs. 
 
Assumption #2: 
Attractiveness and brightness are proportional to each other. For any two male flashing fireflies (the 
PMs), the less bright female firefly(VMs) will move towards the one which is brighter PM than the 
less bright PM. Attractiveness and brightness both decrease as their distance increases (that is, 
distance increases when the resource utilisation of both PM and VM increases). 
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Assumption #3: 
The brightness of male and female fireflies are determined by the view of the objective function 
which is, in our case, the resource utilisation of the PMs and VMs. The more the resource utilisation, 
the less will be the brightness. The less the resource utilisation the more will be the brightness. 
However, in the case of PMs the threshold values are set, and for values below and above the 
brightness decreases. That is if a PM is underutilised and is below the lower threshold then also the 
PM becomes less bright. If a PM is over-utilized and is above the upper threshold, then the PM 
becomes less bright. Therefore a PM is brighter only when its resource utilisation is in between the 
lower and upper threshold. 
 
From these three assumptions, the concept of FA was clearly depicted and presented in accordance to 
VM placement problem. The formal definition of “brightness” in this context is explained below. For 
PM the brightness is defined by the amount of resource available at the time of VM placement. That 
is, if a PM is said to be brighter than another PM then it means the resource provided by the first PM 
is more compared to the second PM. Hence the first PM is not overloaded or less loaded. For VM the 
brightness is defined as the amount of resource needed by a VM while placing that VM in a PM. If 
more resources are requested by a particular VM, then it shows less brightness. 

3.3.   Proposed Modified Firefly Algorithm for VM Placement (MFA) 
As discussed in the theory this proposed modified Firefly algorithm(MFA) considers that fireflies are 
not unisex. The fireflies are males and females belonging to a different variety of species. The 
variation in the light intensity and formulation of the attractiveness are the two important factors in 
the firefly algorithm [45, 63, 64, 65]. For simplicity, it is assumed that the attractiveness of a firefly 
is determined by its brightness which in turn is connected with the encoded objective function.  

 
xj = PEnumj × PEmipsj+ VMbwj…….. (1) 

 
In equation (1), PEnumj is the number of processor in VMj; PEmipsj is a million instructions per 
second of all processors in VMj; VMbwj is the bandwidth and communication ability of VMj. The 
brightness ‘I’ of any VM could be chosen as I(xj) proportional to f(xj) where f(xj) is the current 
resource utilisation by that particular VMj. In the case of female firefly the brightness increases if the 
resource utilisation increases. The location x of a PM is the capacity of any PM   ‘i’ which is given 
by:  
 

xi= PEnumi × PEmipsi + PMbwi…….. (2) 
 
In equation (2), PEnumi is the number processor in PMi;  PEmipsi is a million instructions per second 
of all processors in PMi; PM bwi is the bandwidth communication ability of PMi. The brightness ‘I’ 
of any PM could be chosen as I(xi) proportional to f(xi) where f(xi) is the current resource utilisation 
by that particular PMi. In the case of male firefly the brightness increases if the resource utilisation 
increases. Although the attractiveness (β denotes attractiveness) is relative, it should be determined 
by the other fireflies, specifically with the brightness of each male and female fireflies.  Thus it will 
vary with the distance rij between male firefly i and female firefly j. The distance rijis determined by 
the difference in resource utilisation of male firefly (i.e. PM) and the female firefly (i.e. VM).  The 
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distance between them will be different if the resource utilisation of male firefly is morethefemale 
firefly.Inversely more the resource utilisation of male firefly and more the resource utilisation of 
female the distance will be more. Also, light intensity decreases with the distance from its source. If 
the difference between the resource utilisation of male and female fireflies is more, then there is less 
possibility of placing a VM in a PM.The air media also absorb light. In this study the underutilization 
of resource usage in PMs is denoted as the absorption co-efficient. It should allow the attractiveness 
to differ with the varying degree of absorption. However, the light intensity or attractiveness value β 
depends on the distance r between the fireflies and the media light absorption coefficientγ. The 
attractiveness of each firefly is determined using the equation: 

 
β (r) = β0e-γr2…….. (3) 

where β0 represents the attractiveness of the firefly at r=0.The movement of the less bright female 
firefly j is attracted to another more attractive (brighter) male firefly i is determined by    

xi = xi + β0e-γr
i, j

2 (xj – xi) + αεi…….. (4) 

where the second term is rise due to the attraction and third term is randomization with α being the 
randomization parameter, and εi is a vector of random numbers taken from a Gaussian or uniform 
distribution. The parameter γ now represents the variation of the attractiveness, and its value is 
critically necessary for deciding the speed of the convergence and how the FA algorithm behaves. In 
theory, γ Є (0, ∞), but in areal application, γ= O(1) is determined by the characteristic distance 
r(=Г=1/γ) of the system to be optimised. Thus for most applications, it conventionally varies from 
0.1 to 10. 

The pseudo code of proposed modified firefly algorithm (MFA) is provided as algorithm 1. 

Algorithm 1: Modified Firefly Algorithm 

MFA Meta-heuristic ( ) 
1. Begin;  
2.  Initialize algorithm parameters:  

 MaxGen: the maximal number of generations  
 γ: the coefficient of light absorption  
 r: the specific distance from the light source  
 d: the realm space  

3.  Characterize the objective function of f(x), where x=(x1,........,xd)  
4. Produce the introductory population of fireflies or xi (for i=1 to n)  
5. Evaluate the intensity of light Ii at xi via f(xi)  
6.  While (t<MaxGen)  
7.   For i = 1 to n (all n male fireflies);  
8.    For j=1 to m (m female fireflies);  
9.     If (Ij> Ii) 
10.      Move firefly i towards j by using equation (4);  
11.     End if  
12.     Attractiveness varies with distance r via Exp [-γr2];  
13.     Evaluate new solutions and update light intensity;  
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14.    End for j;  
15.   End for i;  
16.   Rank the fireflies and find the current best;  
17.  End while;  
18.  Post process results and visualisation;  
19. End procedure 

3.3.1.   Hierarchical Clustering Method 

In combination with the proposed Firefly algorithm, we want to use the clustering method to reduce 
the time while migrating the VMs to find the best cluster for virtual machine placement. The process 
of grouping or partitioning data based on some similitude is known as clustering.  
 
Clustering algorithms are of two types, namely, hard clustering and soft clustering. Hierarchical 
clustering is where a nested series of the division is created, and the partitioned clustering is used 
with a segregation of given data. They fall under the type of hard clustering. Whereas rough sets, 
fuzzy sets, evolutional algorithms or artificial neural networks (ANNs), and particularly genetic 
algorithms (GAs) are soft clustering algorithms. In this proposed work, the hierarchical clustering 
algorithm is used. Hierarchical algorithms produce a nested series of divisions of the data that can be 
interpreted by using a tree structure that is commonly called as a dendrogram. Hierarchical 
algorithms are of two types, namely, divisive and agglomerative. The divisive clustering starts with 
one cluster with all the patterns and at each consecutive step a cluster is divided; this method goes on 
till it finishes up with each pattern in a cluster or a group of clusters with exactly one pattern. A top-
down approach is used by the divisive algorithm for creating divisions of the data. In divisive 
algorithms when two patterns are put into two distinct clusters at any step, then at all the consecutive 
steps they remain in distinct clusters. To the contrary, agglomerative algorithms use a bottom-up 
approach where starting with n single clusters when the size of the input dataset is n and each pattern 
of the input data set is in a distinct cluster. At each subsequent steps, the most matching pair of 
clusters is joined to decrease the size of the division by one. 
 
The proposed system model of Hierarchical Cluster-based Modified Firefly algorithm (HCMFF) is 
as follows. The algorithm is shown in figure 2. The execution process of the FF is designed using the 
concept of the hierarchical cluster. The related literature and ideas are collected from earlier studies 
[47].  

A significant characteristic of the agglomerative algorithms is that once the two patterns are put in 
the same cluster at a step, then they remain in the same cluster at all the consecutive steps. 
Agglomerative clustering follows a bottom-up approach [66,67]. This work follows the 
agglomerative clustering algorithm for making clusters of PMs based on the type of resources 
provided by the PMs. In this study the total number of input data sets is equal to the total number of 
PMs which is ‘m’, the similarity between the patterns is equal to the type or characteristic of 
resources provided by the PMs. For instance, to form the clusters it considered few parameters like 
CPU utilisation, bandwidth speed etc. There are total 800 PMs with the characteristics similar to the 
servers considered in [47]. The purpose of forming clusters of PMs is to minimise the time taken 
while migrating a VM by reducing the searching procedure of most capable PMs.  
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Figure 2. System model with the proposed HCMFF algorithm. 

 
The hierarchical clustering algorithm with bottom-up approach is described as follows: D = [d(i,j)] is 
the N*N adjacency matrix. All the clusters are assigned series numbers 0,1,......, (n-1) and L(k) is the 
level of the kth cluster. The adjacency between clusters (r) and (s) is denoted d [(r),(s)] and a cluster 
with series number m is denoted by (m). 

1. Begin with the disjoint clustering having level L(0) = 0 and sequence  number m = 0.  
2. Find the least dissimilar pair of clusters in the current clustering, say pair (r), (s), 

according to d[(r),(s)] = min d[(i),(j)], where the minimum is over all pairs of clusters in 
the current clustering. 

3. Increment the sequence number: m = m +1. Merge clusters (r) and (s) into a single cluster 
to form the next clustering m. Set the level of this clustering to L(m) = d[(r),(s)]  

4. Update the proximity matrix, D, by deleting the rows and columns corresponding to 
clusters (r) and (s) and adding a row and column corresponding to the newly formed 
cluster. The proximity between the new cluster, denoted (r,s) and old cluster (k) is defined 
in this way: d[(k), (r,s)] = min d[(k),(r)], d[(k),(s)]  

5. If all objects are in one cluster, stop or else, go to step 2.  
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The pseudo code of the hierarchical cluster-based modified firefly (HCMFF) is provided below 
as algorithm 2. 

Algorithm 2: Hierarchical cluster-based modified firefly 
Step 1. Resources are clustered as a combination of RESOURCE, BANDWIDTH and MEMORY by 

using hierarchical clustering 
Step 2.  Each cluster is deliberated as a single resource.  
Step 3.  VMs are classified by different types of requirements such as small instances and large 

instances 
Step 4.  Initialize firefly parameters  

MaxGen: maximal number of generations (total number of ‘n’ VMs and ‘m’ PMs)  
γ: the light absorption coefficient, which means that the brightness decreases if the distance 
between resource utilization of PM and VM is more and also it decreases if the resource 
utilization of PM is under the lower threshold 
r: the particular distance from the light source  
d: the domain space i.e. the total number of clusters formed.  

Step 5.  Define the objective function of f(x), where x = PEnum × PEmips + VMbw/ PMbwj 
where, PEnum is the number processor in VM/PM , 
PEmips is a million instructions per second of all processors in VM/PM  

 VMbwj/PMbwj is the bandwidth communication ability of VMj 
Step 6.  Generate the initial population of fireflies i.e. number of PMs= 1 to n and Number of VMs = 

1 to M 
  Let PM = {PM1,PM2, . . . PMn} and VM = {VM1,VM2, . . . VMm} 
Step 7. Determine the light intensity of Ii or Ij at xior xj via f(xi) or f(xj)  

 The brightness ‘Ii’ of any PM could be chosen as I(xi) proportional to f(xi) where f(xi) is the 
current resource utilisation by that particular PMi. In the case of male firefly, the brightness 
increases if the resource utilisation decreases.  

 The brightness ‘Ij’ of any VM could be chosen as I(xj) proportional to f(xj) where f(xj) is the 
current resource utilisation by that particular VMj. In the case of female firefly, the 
brightness increases if the resource utilisation decreases.  

Step 8.  While (t<MaxGen)  
For i = 1 to m (all m male fireflies);  
For j=1 to n (n female fireflies)  
 if (Ij> Ii) 

move firefly i towards j by using equation 4;  
 end if  
Attractiveness varies with distance r via Exp [-γr2]; 
Evaluate new solutions and update light intensity; 
End for j;  
End fori;  
Rank the fireflies and find the current best; 
End while; 

Step 9.  Post process results and visualisation; 
Step 10. End procedure 
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A flow chart for general firefly algorithm for VM placement is given in figure 3. 

 
Figure 3. Flowchart of Firefly algorithm for VM placement 

3.3.2.   Advantage of using Hierarchical Clustering Algorithm for VM Placement 

By using an agglomerative clustering algorithm, the clusters of PMs are setup based on the type of 
resources provided by the PMs. Each PM is identified by CPU performance, disk storage, the amount 
of RAM and network bandwidth. The software layer of the system is tiered comprising of local and 
global managers.  The benefits of such clustering (groups of clusters) are provided below: The 
searching time of the most appropriate PM for placing a particular VM is reduced. All the local 
managers maintain the list or indexes of PMs in a particular cluster for other clusters. When a new 
VM instance request is sent to the global manager, it takes the updates of the available resources 
from all the local managers of each cluster. Thus it maps the VM to the most appropriate cluster of 
PM. The migration time is thus reduced. Normally VMs with large instance took a longer time to 
serve the instances. The cluster indexes provide the VMs along with its threshold value that can 
accept such large instances. Therefore, as the choosing time of VM placement is reduced, the 
migration time is also reduced atomically. Most importantly, it has been observed that by combining 
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hierarchical clustering with firefly algorithm the total number of VM migrations had been reduced 
largely. This is because the VMs will be sent to a specific cluster of PMs (which can provide the 
amount of resource required by the VMs) instead of sending the VMs randomly. 

3.3.3.   Different Clusters of PMs and How They Help in VM Placement 

In figure 4 (a) the PM represents the Physical Machine. All PMs that can serve large VM instances 
are grouped together in cluster 1. In figure 4 (b) all PMs that can serve small VM instances are put in 
cluster 2. In figure 4 (c) all PMs that can serve medium instances are in cluster 3.  

Figure 4 (a, b and c). Different clusters of PMs that serve different type of VM instances 
 

In figure 5 (a) if the large VM instance is sent to cluster 1 then it will be served very efficiently as 
this cluster contains PMs that can serve VMs with large instances properly. In figure 5 (b) if the large 
VM instance is sent to cluster 2 then it will get overloaded immediately as this cluster contains PMs 
that can only serve small instances and as a result of this the number of migrations will be more. In 
figure 5 (c) if the large VM instance is sent to cluster 3 then it will become overloaded very soon 
because the cluster cannot support the large VM instance when the resource utilisation increases with 
time, leading to a large number of VM migrations. 

 
Figure 5 (a, b and c). A large VM instance request arrives which is sent to cluster 1 

 
In figure 6 (a) if the medium VM instance is sent to cluster 1 then it will be served, but some 
resources will be left underutilised as the VM instance is medium. So it will not use all the resources 
provided by the PM as this cluster contains PMs that can serve VMs with large instances properly. 
In figure 6 (b) if the medium VM instance is sent to cluster 2 then it will get overloaded very fast as 
this cluster contains PMs that can only serve small instances and as a result of this the number of 
migrations will be increased. In figure 6 (c) if the medium VM instance is sent to cluster 3 then it 
will be served very efficiently. So wastage of resources can be avoided if the VM instance is sent to 
cluster 1 and no overutilization will take place if sent to cluster 2, thus avoiding VM migrations. 
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Figure 6 (a, b and c).  A medium VM instance request arrives which is sent to cluster 2 

 
If the small VM instance is sent to cluster 1 then it will be served, but the major portion of the 
resources will be left underutilised as the VM instance is small. So it will not use all the resources 
provided by the PM as this cluster contains PMs that can serve VMs with large instances properly 
(figure7 (a)).Thus resource wastage will take place leading to increased energy consumption. In 
figure 7 (b) if the small VM instance is sent to cluster 2 then it will be served very efficiently. 
Wastage of resources will not occur like it could happen if the VM instances are sent to cluster 1 and 
cluster 3. In figure 7 (c) if the small VM instance is sent to cluster 3 then some amount of resources 
will be left underutilised as small instance VM will not use all the resources provided by a PM that 
can serve medium instances. Therefore, again underutilization will occur and will lead to higher 
energy consumption. 

 

 
Figure 7 (a, b and c). A small VM instance request arrives which is sent to cluster 3 

 
From figures 4, 5, 6 and 7, it can be seen that all the VM instances could be sent to the most 
appropriate cluster that can serve it very efficiently by placing the VM to available PMs in that 
particular cluster. Once a VM instance requests arrive it can be easily sent to a particular cluster with 
the help of clustering algorithm used. After it is sent to a particular cluster, then it will be placed in a 
PM that is most capable of serving that particular VM instance. Thus searching of the PMs for VM 
placement will become easy and also the time for search will reduce as it is already sent to a cluster 
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which can serve the VM instance. The only difference is that the search will be performed within that 
cluster, and the most suitable PM will be searched for VM allocation. All the PMs in a cluster may 
not be free at a given period and so by using firefly algorithm, the most suitable PM can be found 
and hence VM placement can be done.  Thus using the clustering technique, the time for searching 
the most appropriate PM will be reduced and also underutilization, or overutilization will be avoided 
to a great extent which will also help in reducing the total number of VM migrations. 

4.   Performance Evaluation and Results 

The metrics used for measuring the energy consumption and violation of SLA are given below. 
The performance of the proposed work has been evaluated using existing metrics [47]. This 
algorithm is used to optimise two main parameters -energy consumption and SLA violation 
related to the performance degradation. To portray the energy-performance tradeoff, both the 
definition of energy consumption and performance degradation must be defined distinctly. In this 
study, the Energy Consumption (EC) by a server is defined as a linear function of CPU 
utilisation, and performance is defined as a function of evaluating the SLA delivered to any VM 
deployed in an IaaS. The SLA violation is defined with the help of two metrics-SLA Violation 
Time per Active Physical machine (SLATAH) that rise with overload period of the PM, and 
Performance Degradation due to Migrations (PDM) that rise due to live migration. Hence these 
metrics were defined with the assumption that the SLAs are delivered when 100% performance 
requested by any applications inside a VM is provided at any time. 

𝑃𝐷𝑀 =
1

𝑀
∑

𝐷𝑑𝑗

𝐷 𝑟𝑗

𝑀

𝑗=1

 …….. (5)  

In equation (5), M is the number of VMs; Ddj is an estimation of the performance degradation of the 
VMj caused by migration;      
𝐷𝑑𝑗

 is total CPU capacity requested by VMj during its lifetime. A metric for describing SLA 
violation (SLAV) can be defined as follows: 
 

SLAV = SLATAH × PDM …….. (6) 
 
In consideration of formulation above SLA Time (SLAT) for each physical machine can be defined 
as: 
 

SLATi= (Tsi/Tai) 1 <= i<= N ……… (7) 
 
In equation (7), Tsi is total time during which physical machine i has experience maximum CPU 
utilisation; Tai is total time during which physical machine i being in the serving VMs; N is the 
number of active physical machines. 
 
The CloudSim toolkit [68] has been chosen to carry out the experiments in a simulation platform and 
also real life workload from PlanetLab’s monitoring infrastructure [69] has been collected and 
utilised for the VM workload traces. To compare the proposed algorithms for VM placement with 
the Honeybee cluster based technique (HCT) from [7] along with the existing algorithms [47] for 
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VM selection, host overload detection and host for load detection. For overload detection existing 
algorithms from [7] are used, which are as follows: Static Threshold (THR), Median Absolute 
Deviation (MAD), Inter-Quartile Range (IQR), Local Regression (LR) and Robust Local Regression 
(LRR). Once the overloads are detected, it uses the different policies of VMs selection such as 
Maximum Correlation (MC), Minimum Migration Time (MMT), Minimum Utilization (MU) and 
Random Selection (RS). The simulation was done with 800 heterogeneous PMs in a data centre. Two 
types of servers were taken, the first type is HP ProLiant ML110 G4 and the second type is HP 
ProLiant ML110 G5, wherein the 800 PMs were divided into two parts and half of the PMs belong to 
the first type and the remaining half belong to the second type respectively. The PMs are rigged with 
multi-core CPUs where each core has ‘p’ MIPS, and therefore if there are ‘n’ numbers of cores then 
the overall capacity of the ‘n’ multi-core CPUs is ‘np’.  In this work, it is assumed that each of the 
VMs can have a single core and not more than that because if a VM needs more capacity than a 
single core, then the VM should be run parallel on other cores, which is another critical research 
issue [47]. The data for power consumption is taken from SPEC power benchmark [70] where the 
power utilisation varies for the elected PMs at each and every load level. Each of the PM is designed 
to have 1 GB/s network bandwidth and the instances of the VM are of four types, such as: (i) High-
CPU Medium Instance; (ii) Extra Large Instance; (iii) Small Instance and (iv) Micro Instance. 
Instantiation of VM is made conforming to the requirements of resources denoted by the VM types. 
Nevertheless, throughout the lifetime of VMs there is a variation in the resource utilisation by the 
VMs by the workload data and hence gives a chance for performing dynamic consolidation. Two 
different workload data were used that was taken in two different days. At the time of simulation, 
each VM is assigned workload traces at random from one of the VMs from the corresponding day. 
The workload data’s characteristics are shown in table 1.  

4.1.   Selection of Algorithms for Overload Detections 
To detect the system overload, several policies were proposed in the study [47]. The policies are 
Static Threshold (THR), Median Absolute Deviation (MAD), Inter-Quartile Range (IQR), Local 
Regression (LR) and Robust Local Regression (LRR). Once the overloads are detected, it uses the 
different policies of VMs selection such as Maximum Correlation (MC), Minimum Migration Time 
(MMT), Minimum Utilization (MU) and Random Selection (RS). This study also uses the above 
policies but was using different heuristics and these policies showed significant improvement in 
minimising energy consumption. The study also analyses the impact of the use of different 
algorithms for overload detections such as Static Threshold (THR), Median Absolute Deviation 
(MAD), Inter-Quartile Range (IQR), Local Regression (LR) and Robust Local Regression (LRR). 
Each host occasionally executes an overload detection algorithm to avoid performance degradation 
and SLA violation. Some concept of the algorithms is givenbelow but the details are provided in the 
earlier study [47]. 
 

(a) A Static Threshold (THR) algorithms workin a situation where CPU utilisation threshold value 
detects a host overload. 

(b) The Median Absolute Deviation (MAD) is a measure of statistical dispersion, and it is 
considered as a robust estimator. 

(c) Inter Quartile Range (IQR) sets adaptive CPU utilisation threshold based on another robust 
statistic, like the difference between the upper and lower quartiles 
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(d) Local Regression (LR) works for fitting models to localised subsets of data to build up a curve 
that approximates the original data. 

(e) Robust Local Regression (LRR) works similar to LR but with extra robustness weight. 

4.2.   Selection of Effective Policies of VM Selection 
Once a host overload is detected, the VMs selection process is started. Some concept of the VM 
selection policies are discussed below, however, the details are provided in the study of Anton and 
Rajkumar [14]. The different policies of VMs selection used in this study are Minimum Migration 
Time (MMT), Random Selection (RS) and Maximum Correlation (MC).  

(a) Minimum Migration Time (MMT) chooses the VM that requires the minimum time to 
complete a migration relatively. The migration time is estimated as the amount of RAM 
utilised by the VM separated by the spare network bandwidth available for the host. 

(b) Random Selection (RS) selects a VM to be migrated from the host according to a uniformly 
distributed discrete random variable. 

(c) Maximum Correlation (MC) selects VMs that have the highest correlation of the CPU 
utilisation with the other VMs. 

 
Some information is collected from work presented in [7] where improved result was achieved by 
applying them to the honeybee algorithm. Because of this reason of all the VM mentioned above 
selection and over-load detection policies are used in this paper.  The results of the simulation are 
illustrated in the following sections. 

4.3.   Simulation Results of Modified Firefly Algorithm with Honeybee 
The proposed modified Firefly algorithm for VM placement has been implemented, and the results 
of this study showed are duction in the VM migration, SLA violation and Energy consumption. The 
experimental result with workload 1 and workload 2 are given in table 2 and table 3 respectively. 
Each of the experiments is run 20 times and the common numbers measures obtained after 20 
numbers of independent runs are illustrated in the tables 2-4. 

 

Table 1. Characteristics of Workload Data 

Data Number of VMs Mean St. dev Quartile 1 Median Quartile 3 
Workload 1 1052 12.31% 17.09% 2% 6% 15% 
Workload 2 1516 9.26% 12.78% 2% 5% 12% 

 

Table 2. Firefly and honeybee for VM Placement using overload detection and VM selection for 
Workload 1 

Overload Detection- 
VM Selection Energy (KWh) SLA VM Migration 

VM Placement  Firefly Honeybee Firefly Honeybee Firefly Honeybee 
IQR-MC 32.17 41.90 0.00008 0.00012 869 889 
IQR-MMT 32.21 41.47 0.00007 0.00013 880 931 
IQR-MU 32.35 42.41 0.00009 0.00012 919 907 
IQR-RS 32.91 44.44 0.00008 0.00009 867 869 
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LR-MC 31.81 44.56 0.00008 0.00010 907 900 
LR-MMT 32.09 41.45 0.00007 0.00012 874 857 
LR-MU 32.50 42.19 0.00008 0.00013 908 896 
LR-RS 31.79 44.17 0.00007 0.00011 833 885 
LRR-MC 31.66 46.62 0.00009 0.00010 923 841 
LRR-MMT 30.87 44.82 0.00009 0.00011 971 918 
LRR-MU 32.06 45.38 0.00008 0.00010 860 879 
LRR-RS 32.32 41.90 0.00009 0.00012 871 948 
MAD-MC 31.73 43.32 0.00008 0.00011 855 884 
MAD-MMT 32.91 43.01 0.00007 0.00012 824 893 
MAD-MU 32.00 43.31 0.00009 0.00013 900 875 
MAD-RS 31.79 44.82 0.00008 0.00011 908 906 
THR-MC 33.99 43.46 0.00007 0.00012 881 894 
THR-MMT 31.96 43.45 0.00009 0.00011 853 921 
THR-MU 32.41 43.46 0.00008 0.00012 891 905 
THR-RS 30.82 44.51 0.00009 0.00010 917 911 

Table 3. Firefly and honeybee for VM Placement using overload detection and VM selection for 
Workload 2 

Overload Detection- 
VM Selection Energy (KWh) SLA VM Migration 

VM Placement  Firefly Honeybee Firefly Honeybee Firefly Honeybee 
IQR-MC 34.77 47.99 0.00009 0.00013 888 899 
IQR-MMT 33.29 46.77 0.00008 0.00014 898 934 
IQR-MU 35.34 45.83 0.00010 0.00013 956 966 
IQR-RS 34.99 48.54 0.00009 0.00010 877 888 
LR-MC 36.33 47.67 0.00009 0.00011 915 915 
LR-MMT 35.33 44.88 0.00010 0.00013 867 870 
LR-MU 38.55 49.88 0.00009 0.00014 977 920 
LR-RS 39.66 48.76 0.00011 0.00012 856 900 
LRR-MC 38.61 45.66 0.00010 0.00011 978 876 
LRR-MMT 36.81 47.88 0.00010 0.00012 988 953 
LRR-MU 35.77 48.39 0.00009 0.00012 888 920 
LRR-RS 37.82 49.64 0.00010 0.00013 898 978 
MAD-MC 33.75 49.38 0.00009 0.00012 891 921 
MAD-MMT 33.93 48.55 0.00011 0.00013 855 929 
MAD-MU 37.33 49.89 0.00010 0.00014 919 905 
MAD-RS 36.99 49.78 0.00009 0.00012 925 945 
THR-MC 39.19 46.66 0.00009 0.00013 898 916 
THR-MMT 35.56 44.56 0.00010 0.00012 888 967 
THR-MU 37.87 46.66 0.00009 0.00013 898 977 
THR-RS 32.88 47.11 0.000010 0.00011 926 944 
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Figure 8. Energy consumption comparison with workload 1 and workload 2: The proposed firefly 
algorithm for workload 1 outperformed the honeybee algorithm and gave better results by giving 

minimising the total energy consumption 
 
Figure 8 shows the key comparison use of energy (kWh) of proposed Firefly (FF) algorithm with 
Honeybee (HB) algorithm as per the chosen workload 1 and 2. The performance declined when the 
number of VMs was increased as presented in table 2 and table 3. This result indicated that even 
when the number of VMs is increased the proposed Firefly algorithm perform well in minimising the 
total energy consumption as in figure 8. It is also observed that the percentage of SLA violation was 
less for firefly algorithm with both workloads 1 and 2 as in figure 9. Hence, the performance of 
honeybee algorithm was outperformed by firefly algorithm even with workload changes. In selected 
best pairs of overload detection vs. VM selection policies, it has been observed that for all the 
workloads the proposed Firefly algorithm outperformed the honeybee algorithm. Firefly algorithm 
gave better results by giving less number of VMs as in figure 10. 

 
Figure 9. SLA violation comparison with workload 1 and 2: The study shows SLA violation was less 

for firefly algorithm with both workload 1 and 2 
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Figure 10. VM migration comparison with workload 1 and workload 2: Firefly algorithm gave better 

results by giving less number of VMs 
 
Figure 11 gives the overall performance of all participating parameters (Overload Detection vs. VM 
Selection policies) used in this study for workload 2. It shows that the firefly algorithm consumes 
less energy than the honeybee. The reason for this is the novel idea of attraction via light intensity as 
an exploitation mechanism was used in firefly algorithm and the main function of such attraction is 
to enable an algorithm to converge quickly because these multi-agent systems evolve, interact and 
attract, leading to some self-organized behaviour and attractors. As the swarming agents evolve, it is 
possible that their attractor states will move towards to the true global optimality.  

 
Figure 11. Comparison of Energy Consumption: Firefly algorithm and Honey bee algorithm: The 
firefly algorithm consumes less energy than the honey bee as it uses an exploitation mechanism 
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The impact of the important parameters on the host overload detection and VM selection policies are 
shown in figure 12, 13 and 14 that relates to energy consumption, SLA Violation and VM migration 
respectively. From the study results, it is known that the dynamic VM consolidation with firefly 
algorithm significantly reduces energy consumption by adjusting the number of active servers. The 
energy consumption is low under overload detection policy (IQR, LR, LRR. MAD and THR). The 
VM selection policy used are Maximum Correlation (MC), Minimum Migration Time (MMT), 
Minimum Utilization (MU) and Random Selection (RS). The best result is provided by the pair of 
Overload Detection (IQR) and VM Selection (MU). In the same manner, the some of the select 
notable results of SLA violation are provided in figure 13. 

 
Figure 12. Energy Consumption with Firefly algorithm (parameters): VM consolidation significantly 
reduces energy consumption by adjusting the number of active servers and the best result is provided 

by overload detection policy (IQR, LR, LRR. MAD and THR). 
 
 

 
Figure 13. SLA Violation with Firefly algorithm (parameters): SLA violation is reduced by 

parameter IQR and MM 
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Figure 14. Number of VM migration with Firefly algorithm (parameters) 

Figures 15, 16 and 17 show the impact of most contributing parameters for energy consumption, 
SLA Violation and VM migration respectively. During the VM placement of firefly algorithms, the 
parameter THR-RS gives the lowest value of energy consumption as 30.82 kWh. The parameter LR-
MMT of the honeybee gives the lowest value of energy consumption as 41.45 kWh.In honeybee, the 
minimum percentage of SLA Violation is contributed by IQR-RS as 0.00009%, whereas in Firefly 
the minimum SLA is 0.00007%. In honeybee, the number of best VM migrations 857 is given by 
LR-MMT and in Firefly it was 824 that is contributed by MAD-MMT. The proposed approach is 
distributed, scalable, and efficient in managing the energy-performance trade-off. 
 

 
Figure 15. Energy Consumption Comparison (Firefly and Honeybee): LR-MMT and THR-RS 

policies uses the least energy 
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Figure 16. Comparison of SLA Violation (Firefly and Honeybee): The parameter LR-MMT of the 
honeybee gives the lowest value of energy 

 
 

 
Figure 17. Comparison of VM Migration (Firefly and Honeybee): The lowest SLA is contributed by 

MAD-MMT using FF algorithm 

 
The firefly algorithm with LR-MMT and THR-RS policies gives a better result for energy compared 
to other policies. The firefly algorithm together with IQR-RS and LR-MMT show less number of 
SLA violation compared to other overload detection and VM selection policies and Firefly also gave 
better results than honeybee algorithm. Firefly algorithm combined with LRR-MMT and MAD-
MMT has less number of VM migrations than with other overload detection and VM selection 
policies. The proposed FF algorithm significantly reduced energy consumption, SLA violation and 
VM migration in comparison to the Honeybee (HB) algorithm proposed in [7].   
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4.4.   Simulation Results of Hierarchical Cluster-Based Modified Firefly Algorithm 
(HCMFF) 

We wanted to improve the result further. The system model of HCMFF was shown in figure 2. The 
result of HCMFF is compared to HCT. The related literature and ideas are collected from earlier 
studies [47].  

 
Table 4. A Comparison of Cluster-based Honeybee Technique (HCT) and HCMFF 

 
Overload 
Detection-VM 
Selection 

Energy SLA VM Migration 

VM Placement 
 

HCT HCMFF HCT HCMFF HCT HCMFF 

IQR-MC 34.71 34.17 0.00009 0.00008 854 889 
IQR-MMT 36.52 33.21 0.00009 0.00007 865 880 
IQR-MU 34.35 34.35 0.00010 0.00009 887 919 
IQR-RS 34.29 33.91 0.00010 0.00008 852 867 
LR-MC 34.02 26.17 0.00010 0.00007 856 907 
LR-MMT 33.99 35.09 0.00010 0.00006 882 815 
LR-MU 36.85 33.50 0.00008 0.00007 869 908 
LR-RS 34.75 32.79 0.00009 0.00018 867 866 
LRR-MC 36.52 33.66 0.00010 0.00009 896 1218 
LRR-MMT 35.17 28.16 0.00010 0.00007 874 830 
LRR-MU 33.47 30.04 0.00011 0.00008 908 1183 
LRR-RS 35.71 33.32 0.00009 0.00009 861 898 
MAD-MC 34.27 32.73 0.00011 0.00008 916 876 
MAD-MMT 34.84 32.91 0.00010 0.00016 882 873 
MAD-MU 34.70 32.87 0.00009 0.00009 873 945 
MAD-RS 34.84 31.98 0.00009 0.00008 866 981 
THR-MC 35.88 33.46 0.00009 0.00011 895 889 
THR-MMT 34.30 32.77 0.00010 0.00009 868 877 
THR-MU 34.88 34.88 0.00010 0.00008 854 874 
THR-RS 34.27 30.19 0.00011 0.00009 908 997 

 
Figure 18 shows the overall performance of most of the parameters used in the study. It shows that 
the HCMFF consumes less energy than HCT.  The prime reason is that the searching time for VM 
placement is considerably reduced due to the clustering technique.  The impact of the critical 
parameters is shown in the figures 19, 20 and 21. The proposed approach showed better results when 
compared to HCT giving minimised the energy consumption. 
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Figure 18. Energy Consumption by HCMFF and HCT (Cluster-based Honeybee Technique):  

 

 
Figure 19. Energy Consumption of HCMFF algorithm: Consumes less energy than HCT due to the 

clustering technique 
 

 
Figure 20. SLA Violation of HCMFF algorithm: It gives less SLA violation due to uses of the 

clustering technique 
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Figure 21. Number of VM Migration of HCMFF algorithm 

  
Further, figures 22, 23 and 24 show the most important contributing parameters for energy 
consumption, SLA Violation and VM migration respectively. From this simulation study, it can be 
derived that the dynamic VM placement with HCMFF substantially minimised energy consumption 
by adjusting the number of active servers. In HCMFF the VM placement with the lowest value of 
energy consumption is given by LR-MC as 26.17 kWh, wherein the HCT VM placement with the 
lowest value of energy consumption is given by LRR-MU as 33.47 kWh. In HCT, the minimum 
percentage of SLA violation was 0.00008% by LR-MU, whereas in HCMFF it was 0.00006% given 
by LR-MMT. In HCT, the minimum number of VM migrations was 852 by IQR-RS and in HCMFF 
it was 815 given by LR-MMT. 

 
Figure 22. Energy consumption with HCMFF and HCT: The lowest value of energy consumption is 

given by LR-MC 
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Figure 23. SLA Violation with HCMFF and HCT: VM placement with the lowest value of energy 

consumption is given by LR-MMT 

 

Figure 24. Number of VM Migration with HCMFF and HCT 

The results indicate that HCMFF algorithm with LR-MC gave a better result for energy compared to 
other policies. HCMFF algorithm together with LR-MMT show less number of SLA violation 
compared to other overload detection and VM selection policies and HCMFF also gave better results 
than HCT algorithm that was used in [71]. HCMFF algorithm combined with LR-MMT has less 
number of VM migrations than with other overload detection and VM selection policies. The results 
indicated that the HCMFF algorithm performed fewer VM migrations in comparison to HCT 
algorithm. 

4.5.   The Overall Remarks of the Study 
Some of the best results of all four algorithms on the energy consumption are provided in Table 5. 
 

Table 5. Best results of all four algorithms 
  Firefly Honeybee HCT HCMFF 
IQR-MMT 32.21 41.47 36.52 33.21 
LR-MC 31.81 44.56 34.02 26.17 
LR-RS 31.79 44.17 34.75 32.79 
LRR-MC 31.66 46.62 36.52 33.66 
LRR-MMT 30.87 44.82 35.17 28.16 
LRR-MU 32.06 45.38 33.47 30.04 
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MAD-RS 31.79 44.82 34.84 31.98 
THR-MMT 31.96 43.45 34.3 32.77 
THR-RS 30.82 44.51 34.27 30.19 

 
The overall results of all four algorithms on the energy consumption are analysed and shown in 
figure 25. Only the most important contributing parameters are considered for analysis. The HCMFF 
gives better result than those of HCT, honeybee and Firefly. The simulation study of HCMFF 
outperformed both HCT and FF. Thus HCMFF proved to be most efficient for all three metrics 
(energy consumption, SLA violation and VM migration).  The reason HCMFF outweighs other 
algorithms is because it combines the advantages of both Firefly and hierarchical clustering 
algorithms that enhanced the overall performance. A close view of the overall comparison of four 
different techniques is provided in figure 26. The HCMFF consumes 12% less energy than Honeybee 
algorithm, 6% less than HCT algorithm and 2% less than original Firefly. 
 
 

 
Figure 25. The overall comparison of four different techniques for VM placement (energy 

consumption): The HCMFF gives the best result as it uses the combined advantages of Firefly and 
hierarchical clustering concepts 
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Figure 26. The overall comparison of four different techniques (energy consumption): The 

HCMFF consumes less energy than Honeybee, HCT and original Firefly.  
 

5.   Conclusion 
VM placement has become an important research problem to provide energy efficient cloud 
computing environment. The cloud providers must implement energy efficient resource management 
techniques to maximise their return on investment (ROI). Hence dynamic consolidation of VMs has 
become an essential solution for this problem that is achieved by switching idle servers to power-
saving modes. The proposed modified Firefly algorithm and hierarchical cluster based modified 
firefly algorithm (HCMFF) reduce the energy consumption in the datacentre. The efficiency of the 
proposed algorithms is evaluated through simulations in CloudSim3.0.3 using workload traces from 
PlanetLab. This study contributes a new VM placement algorithm using a meta-heuristics concept. 
Both these algorithms show better results with different combinations of overload detection policy 
and VM selection policy. Modified Firefly algorithm and HCMFF show significant improvement as 
compared with honeybee algorithm and existing Honeybee cluster based technique (HCT) 
respectively. The uses of the different algorithms for overload detections and effective policies of 
VM selection gives better merit in this study. 

The strength of the modified Firefly algorithm(FA)is that it uses two important features, namely 
automatic subdivision and the ability to deal with multimodality for optimisation. FA gives an 
assurance of finding near-optimal solutions within a remarkable decline in the amount of time. It also 
has the following advantages: such as dynamic or automatic subdivision of the whole population into 
subgroups, and high ergodicity and diversity in the solutions. Such advantages make FA unique and 
very efficient. The study shows that the modified FA uses 10% less energy than Honeybee 
algorithm. 

The strength of HCMFF is that the searching time for VM placement is substantially reduced by the 
use of hierarchical clustering which helps in finding the best cluster among the different cluster of 
physical machines that will be most capable and efficient for any VM placement. This algorithm uses 
maximum exploitation mechanism to efficiently use energy and other resources. The study shows 
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that HCMFF consumes 12% less energy than Honeybee algorithm, 6% less than HCT algorithm and 
2% less than original Firefly. 

The use of the appropriate algorithm can help in efficient usages of energy in cloud computing. 
However, this work considers only a single meta-heuristic algorithm and requires further comparison 
with the various meta-heuristic algorithms for virtual machine placement, e.g., ACO, PSO, etc. to 
verify the performance of the algorithms in an extensive manner. Also more metrics can be 
considered to improve the evaluation and validation process of the algorithms. 
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