

THIS IS A PREPRINT VERSION OF THE ARTICLE (MANUSCRIPT VERSION)

Energy-Efficient Virtual Machine Placement using Enhanced Firefly Algorithm

Esha Barlaskar1, Yumnam Jayanta Singh2 and Biju Issac3
1,2 Department of Computer Science & Engineering and Information Technology,

School of Technology, Assam Don Bosco University, India
3School of Computing, Teesside University, UK

eshabarlaskar@gmail.com, jayanta@dbuniversity.ac.in, bissac@ieee.org

Abstract:
The consolidation of the virtual machines (VMs) helps to optimise the usage of resources and hence
reduces the energy consumption in a cloud data centre. VM placement plays an important part in the
consolidation of the VMs. The researchers have developed various algorithms for VM placement
considering the optimised energy consumption. However, these algorithms lack the use of
exploitation mechanism efficiently. This paper addresses VM placement issues by proposing two
meta-heuristic algorithms namely, the enhanced modified firefly algorithm (MFF) and the
hierarchical cluster based modified firefly algorithm (HCMFF), presenting the comparative analysis
relating to energy optimisation. The comparisons are made against the existing honey bee (HB)
algorithm, honeybee cluster based technique (HCT) and the energy consumption results of all the
participating algorithms confirm that the proposed HCMFF is more efficient than the other
algorithms. The simulation study shows that HCMFF consumes 12% less energy than honeybee
algorithm, 6% less than HCT algorithm and 2% less than original Firefly. The usage of the
appropriate algorithm can help in the efficient usage of energy in cloud computing.

Keywords: Energy Efficiency; VM Placement; Hierarchical clustering; Modified Firefly
algorithm.

1. Introduction

The cloud being the fastest growing service providers impose increased the cost of maintenance and
energy demand. To minimise the energy consumption in a cloud data center, the Virtualization
Technology (VT) is considered [1]. VT supports the data centers to run with fewer physical servers,
optimising the usages of server and hence reduces the cost of the hardware and operation. However,
it brings new challenges for the management of Virtual Machines (VMs), which must be provisioned
and managed productively and hence, must pave the way for optimising the energy and performance
trade-off. Proper allocation of VMs reduces the energy consumption and minimises the Service level
agreements (SLAs). In clouds, dynamic VM consolidation is important since present-day service
applications frequently experience variable workloads. When an application increases its demand, it
results in an unexpected rise of the resource usage, which may lead to performance degradation if
VM consolidation is not constrained. Many a time the application may encounter increased response
times, timeouts or failures if the application’s resource requirement is not met. One of the important
agreements in SLAs made between cloud providers, and their users are to provide quality of service.

E. Barlasker et al.

For meeting the quality of service in SLAs, the performance degradation is a major concern, which is
further explained in this paper. The dynamic VM consolidation problem has four sub-problems:

(a) To determine when a host is considered as being overloaded (host overloading detection)
(b) To determine when a host is considered as being under-loaded.
(c) To determine which VMs must be selected to migrate from overloaded host;
(d) To determine which hosts must be selected to place migrated VMs.

This work mainly focuses on Infrastructure-as-a-service (IaaS) environments in cloud data centres to
provide an energy-efficient VM placement and quality of services inminimising the SLAs. It is
essential to manage the heterogeneous mixed type of workloads since numerous distinctive users
provision VMs in a dynamic fashion and dispose of diversified applications on shared physical
resources. While the resource provider is oblivious and uninformed of the types of application that
are deployed in the system and hence the system must be application skeptic, that is, must be capable
of dealing with unknown mixed workloads effectively and efficiently. Another essential factor that
needs to be handled is the quality of service guarantees, which are settled in the SLAs made between
cloud providers and cloud consumers. Since numerous applications exist together in the system,
therefore, it is essential to use an independent workload quality of service metric to measure the
performance delivered to those applications. To establish system-wide quality of service, it is
necessary to use such quality of service metric. IaaS only has been recognised as the most promising
model, and it uses various virtualization technologies for instance Xen hypervisor [2], which
efficiently manages the computing workload by assigning them in a proper manner. The problem of
VM placement becomes crucial [3, 4, 5] as virtualization is the crux of cloud computing and the VM
placement is usually pertaining to server consolidation [6]. Many metal-heuristic algorithms were
used by different researchers in cloud computing.

Each of the afore-stated sub-problems must operate in an optimisedway, and this study tries to
address the VM placement problem as it is necessary to manage the mapping of VMs to the
appropriate physical machines (PMs) in the cloud data centres to avoid too many migrations that
may lead to performance degradation. In order to perform the mapping of VMs correctly onto a PM,
it is important to know the PM’s capacity and whether it can fulfil the VMs resource demand without
having resource conflicts, which aligns with the data center’s policies. However, it is not only
adequate to make good VM placement choices initially but also it is necessary to change the initial
VM mapping in a dynamic way that is suitable for the changing conditions in the data center’s VM
load. To address the issue, this work proposes two meta-heuristic algorithms – (a) the modified
firefly algorithm and (b) the hierarchical cluster based modified firefly algorithm (HCMFF). The
performance of the proposed algorithms is evaluated by using CloudSim simulation toolkit and is
compared with earlier work in [7]. Firefly algorithm (FA) is a meta-heuristic algorithm, which is
used for optimisation problems. This gives an assurance of finding near-optimal solutions within a
remarkable decline in the amount of time. Henceforth, the use of meta-heuristics is acquiring
considerable attention. The sequence of the study is as follows:

(a) A comparison study between Firefly and honeybee algorithms: The firefly algorithm gives a

better result because it has the following advantages: (i) automatic subdivision of the whole

E. Barlasker et al.

population into subgroups (ii) the natural capability of dealing with multi-modal
optimisation (iii) high ergodicity and diversity in the solutions. All these advantages make
FA unique and very efficient. The details impact of the all participating parameters is also
shown.

(b) Comparison of Honeybee cluster based technique (HCT) and hierarchical cluster based
modified firefly algorithm (HCMFF): The HCMFF gives a better result as the searching
time of the most appropriate PM for placing a particular VM is reduced, and it has been
observed that by combining hierarchical clustering with firefly algorithm the total number
of VM migrations had been reduced to a great extent. This isbecause the VMs will be sent
to a specific cluster of PMs (which can provide the amount of resource required by the
VMs) instead of sending the VMs randomly. Thus the advantages of Firefly along with that
of the hierarchical clustering show a nearly optimal result.

(c) An overall comparison between all participating algorithms: The overall results of all four
algorithms are analysed. The HCMFF gives better than the entire participating algorithm.
The results show that both modified firefly algorithm and HCMFF algorithm reduces energy
consumption and some SLA violations.

The HCMFF performed better than other algorithms because it is competent in finding the best
cluster among the different clusters of PMs that will be most capable and efficient for any VM
placement. Firefly algorithm is swarm-intelligence-based, so it has the same type of advantages that
other swarm intelligence-based algorithms have. However, Firefly algorithm has two prime benefits
over other algorithms: automatic subdivision and the ability to deal with multimodality. First, Firefly
algorithm is based on attraction and attractiveness decreases with distance. This leads to the fact that
the whole population can automatically subdivide into subgroups, and each group can swarm around
each mode or local optimum. Among all these modes, the best global solution can be found. Second,
this subdivision allows the fireflies to be able to find all optima simultaneously if the population size
is substantially higher than the number of modes. This automatic subdivision ability makes it
particularly suitable for highly nonlinear, multimodal optimisation problems. All these advantages of
firefly algorithm make it even more efficient when combined with hierarchical clustering algorithm’s
merits stated above, thereby outperforming all the algorithms that HCMFF is compared with.

The rest of the paper is organised as follows. Section 2 presents the related work. Section 3 provides
an introduction and explanation of the proposed algorithms. Section 4 shows the experimental result.
Finally, Section 5 provides the summary of the study and concludes the paper

2. Literature Review
The cloud computing provides resources based on SLA created through negotiation between the
service provider and users [8]. It is necessary to minimise energy consumption and thus it is very
difficult to maintain the trade-off between energy and performance. To overcome this problem, many
researchers proposed different methods. Bobroff et. al. [9] proposed a new algorithm for preserving
performance. Their algorithm remaps the VM to PM for future resource demand. Barbagallo et al.
[10] described a bio-inspired algorithm hinged on the scout-worker migration method where some of
the scouts are professed to move from one physical node to another so that they can cooperatively
find a suitable destination for the migrated VMs.

E. Barlasker et al.

Metaheuristic algorithms have been widely studied for VMP in the literature [11]. The study [12]
shows performance of various Swarm Intelligence (SI) approaches including Genetic algorithm
(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Differential Evolution
(DE), Artificial Bee Colony (ABC), Glow-worm Swarm Optimization (GSO), and Cuckoo Search
Algorithm (CSA).Such algorithms are widely used for solving the problem of VM placement, along
with the Genetic Algorithm (GA), Honeybee algorithm (HB), Ant Colony Optimization algorithm
(ACO) as listed in [13].

2.1. Ant Colony Algorithm
The study in [14] proposes an approach based on ant colony algorithm to effectively balance power
consumption among nodes. However, they have only focused on overload, under load and idle host
detection but didn’t consider VM-migration in their work. Several studies hardly consider historical
data and system fluctuations which lead to load inequality of the system. In [15] a multi-objective ant
colony system algorithm was proposed for the VM placement with the aim of obtaining a group of
non-dominated solutions that manages the tradeoff between resource wastage and power
consumption. The authors compared the proposed algorithm with multi-objective GA, two single-
objective algorithms namely bin packing, and MMAS; the outcome of the experiment proved that the
proposed algorithm is much efficient than the algorithm it was compared to. The authors in [16] and
[17] explain the placement problem based on the proxy method. Ant colony optimisation can be used
to solve multi-objective optimisation problems to optimise total processing resource wastage and
memory resource wastage [18]. This work focused only on the performance.

2.2. Genetic Algorithm
Hu et. al. [19] proposed a scheduling strategy of resources based on a genetic algorithm which
considers historical data and the current state of the system and therefore estimates in advance the
influence it will have on the system. Hence this strategy solves the problem of load imbalance and
huge migration cost. Falkenauer [20] proposed an enhanced approach of a genetic algorithm to
handle the server consolidation problem using the group-based encoding scheme. In [21] Savant
proposed genetic algorithm as a scheduling strategy for load balancing of VM resources. The VM
resource scheduling strategy focuses on system load balancing. The study is similar to the work done
in [22] in which the GA approach finds in proceed the effect of the deployment of new VM resources
in the system. The author proved that the traditional algorithm, when used for resource scheduling,
ends up in an imbalance of load and the number of VM migration also increases. In [23] another GA-
based approach (GABA) was proposed which could self-reconfigure the VMs in CC data centres
consisting of heterogeneous PMs. While in [24] the VM placement problem is designed as a multi-
objective optimisation problem to minimise various issues such as power consumption, resource
wastage and the cost of thermal dissipation. To tackle all these issues, the authors proposed an
Optimal GA with fuzzy multi-objective evaluation.

2.3 Firefly Algorithm
In the recent years, the FA (firefly algorithm) research work has multiplied considerably. Faster et al.
presented an extensive and abridged review [25] on FA. Some variants of FA were proposed and
implemented in various fields, for example, the authors in studies [26, 27, 28, 29, 30] designed

E. Barlasker et al.

discrete form of FA for tackling the combinatorial optimisation problems and discrete problems. This
discrete pattern of FA can be used in a variety of applications, for instance, graph colouring,
travelling-salesman problems (TSP) etc. In [30] a discrete form of FA was proposed for solving the
scheduling problems. In addition to that the authors in [29, 31], and [32] demonstrated that the
problem of scheduling and travelling-salesma could be solved in a much progressive manner. In [33,
34] FA was applied in solving the problems of clustering and classification and FA gave an excellent
result. In [35] FA has also been applied in the training of neural network. Eventually from [36, 37,
38] it was demonstrated that for any kind of optimisation problems that are dynamic in nature, FA
has always proved to be quite efficient. A multi-swarm based firefly algorithm is used in dynamic
environments.

2.4. Honey Bee and Ant Colony Algorithm
In [39] the authors proposed eco-friendly algorithm by combining both honey bee and ant colony
algorithm for cloud computing which reduced the operational cost by minimising power
consumption which also diminished global warming to a great extent. The proposed Bee-Ants colony
system was used for proper energy efficient resource management where initially the jobs are divided
into two parts; the first part which looks after the proper management of overloaded. The
underloaded CPUs with service rescheduling was carried out by honey bee algorithm. The second
part, which helps to manage the idle CPUs (power consumption management) is achieved by ant
colony algorithm.

2.5 Particle Swarm Algorithms
Particle Swarm algorithms are used for efficient VM allocation to physical servers to reduce the total
resource wastage and a number of servers used [40]. An improved particle swarm optimisation
approach for virtual machine placement is proposed by Wang et al. [41]. The immune algorithm is
also used for energy optimisation in cloud computing [42, 43]. The Glowworm swarm optimisation
algorithm uses features with some better-known swarm intelligence based optimisation algorithms
[44]. A comparative study on Firefly Algorithm, Particle Swarm Optimization, is shown in several
studies [25,34,45].

2.6. Existing Virtual Machine Placement Techniques
VM placement is crucial for better resource utilisation and energy efficiency in cloud computing
infrastructures. Various research work has pontificated the significance of the VM placement
problem relevantly, for instance, Cardoso et al. [46] described the importance of placing VM into
PM appropriately. In [47] the authors proposed a Power Aware Best Fit Decreasing (PABFD)
algorithm for VM placement that is a modification of Best Fit Decreasing algorithm (BFD). The
authors in [9,48,49] have also formulated numerous heuristics for VM placement problem. In the
study [50] the authors dealt with the tradeoff between cost and power dependent on tight
performance constraint by packing as many VMs in a small number of physical machines and this
reduced the cost of VM migration. While the author in [51] designed a single-objective algorithm
based on max-min ant system (MMAS) metaheuristic to reduce the total amount of PMs needed to
handle the currently available load.

E. Barlasker et al.

The authors in [52] proposed an efficient algorithm established in linear and quadratic programming
for making the placement of VMs on PMs optimum and the main aim of this work is to minimise the
usage of the total number of nodes. The server consolidation problems were solved with the
formulations of linear programming in [53] and [54] where the authors created extended restrictions
for the problem of VM allocation. The restriction was that the VMs allocated to a PM should be
based on some unique attribute so that the total number of VM migrations can be minimised and also
a heuristic based on LP-relaxation was built to optimise the linear program solving cost. The authors
in [55] addressed the problem of VM provisioning and placement as two constraint satisfaction
problem and they proposed a framework for resource management by combining dynamic VM
provisioning manager and VM placement manager which are utility based. On the other hand, the
authors in [56] solved the constraint programming based dynamic consolidation problem by
designing an Entropy resource manager for similar clusters that considers both the issues of VM
allocation and VM migration to the available nodes.

VT (virtualization technology) also tried to minimise the consumed energy [57]. These efforts started
in the study [58] in which it was mentioned that the scintillating features of VT such as migration
could be used to cause systems to be power-aware. The nature-inspired honey bee algorithm is used
in solving the dynamic VM placement problem in [7]. They have tackled the problem of power
efficient resource management in virtualized data centers to maximise the cloud provider’s profit by
minimising both power consumption and SLA violation. Bouras et al. [59] defined a framework
showing the effort to capture all the technical parameters entailed in provisioning a service with
qualitative guarantees. B. Addis et al. [60] proposed a unifying framework that provides very
efficient and robust solutions at multiple time-scales. Sharifi et al. [61] consider energy efficiency
along with performance. They showed that amaurotic consolidation of VMs does not minimise the
power consumption of data centers but it can also cause energy wastage. They then proposed a
scheduling algorithm that was energy-aware using a group of objective functions regarding fitness
consolidation metric and was much better when compared to other scheduling algorithms.

However, these algorithms do not use exploitation mechanism efficiently. This study uses
hierarchical clustering method for the VM placement. This helps in finding the best cluster among
the different clusters by mining the energy usage level.

3. Proposed Method
This study mainly considers Infrastructure-as-a-Service (IaaS) as it has been recognised as the most
promising model. IaaS is represented by a large-scale data centre comprising of a large number of
the heterogeneous physical node where each node is characterised by CPU performance, disk
storage, the amount of RAM and network bandwidth [8]. The system model with the proposed
Firefly Algorithm is presented in figure 1.

E. Barlasker et al.

Figure 1. System model with the proposed Firefly algorithm

The task from the users is accepted by the Global Manager. The software layer of the system is tiered
comprising of local and global managers. All the local managers maintain the list or indexes of PMs
in a particular cluster for other clusters. When a new VM instance request is sent to the global
manager, it takes the updates of the available resources from all the local managers of each cluster.
Thus it maps the VM to the most appropriate cluster of PM. The VM monitor (VMM) maintains
seclusion at all times between VMs by managing and multiplexing the physical resources access.
Each of the VM is self-supporting with its operating system because of the virtualization of the
physical resources and hence numerous VMs can be executed on the single physical machine (PM).
The separation between physical and virtual resources provided by the VMM allows elasticity of
resource provisioning for VMs. As a PM, a VM too has resources such as CPU, memory, and
input/output (I/O) devices associated with it and these resources needs to be provisioned to each of
the VMs while doing their instantiation. The responsibility of the VMM is to multiplex the resources
across VMs as these resources can be overcommitted. To determine the initial levels for resource
provisioning of a VM “sizing process” is used which depends on applications resource usage profiles
or assessment to fulfil the load demand and other processes. This architecture is supported by the
firefly algorithm.

Every VM have various kinds of loads, and as these loads keep on increasing with time, the upper
threshold value of a PM will be reached or crossed resulting in the imbalance of load in the system.
To avoid such a situation, proper VM allocation must be done to enhance the resource utilisation and
consequently improve the overall performance of the cloud data centres. VM placement or allocation
problem is also known as VM instance scheduling. Any algorithm is considered profitable if it
efficiently allocates a large number of VMs to very few PMs and also avoids the overutilization of
PMs which often increases the number of VM migrations. In VM placement problem it may not be
possible to get the best placement results within polynomial time. However, the meta-heuristic
algorithms can get near optimal solutions, if not the best. Due to this reason, the study chooses FA
algorithm for VM placement that can use exploitation mechanism efficiently. VM migration takes
place when a PM is overloaded, and by shifting few VMs, the resource utilisation of that particular
PM can be minimised. Also, if a PM is not fully utilised, then the resource will be wasted. Thus by

E. Barlasker et al.

migrating VMs from under loaded PMs the resource wastage, as well as energy consumption, can be
reduced. But if the total number of VM migration increases then it will also increase the SLA
violation. The increase in SLA violation will result in performance degradation.

Therefore the cloud providers will benefit a lot if they group the PMs based on their ability to
manage different kinds of VM instances. For example, if a VM instance is too large then it would be
better to allocate this particular VM to a PM which will be capable of handling such large instance
instead of allocating it randomly. Again for this purpose, the study used the concept of hierarchical
clustering algorithm so that it can minimise the time required to search the best PM while performing
VM migration. It can easily find the best cluster among the different clusters of PMs that will be
most capable and efficient for any VM placement. The dynamic VM consolidation problem is
divided into four sub-problems: (a) Checking whether the host is under loaded; (b) Checking whether
the host is overloaded; (c) Selection policy to migrate VMs from the overloaded host; and (d) VMs
placement for placing the VMs in allocation or migration to another host [47]. Among all the
mentioned sub-problems, we are focused more on the VM placement.

3.1. Problem Formulation of VM Placement
Assuming, a set of VMs denoted by VM= {vm1,vm2,….,vmn} where each of the vmiis a trinity
represented as vmi = (cpui, rami, bwi), 1 ≤ i ≤ n, the values of the triplets denotes CPU, memory and
bandwidth demands of VMs respectively. Let PM= {pm1,pm2,…..,pmm} denote a set of PMs and
each of the pmj is also a trio represented as pmj = (cpuj, ramj, bwj), 1 ≤ j ≤ m, the values of the
triplets denote the total resource capacity of the jth PM. In addition, xij ,1 ≤ i ≤ m, 1 ≤ j ≤ n and yi, 1 ≤
i ≤ m are decision variables, xij =1 if and only if vmjis mapped onto pmi, yi =1 if pmi is used to host
virtual machine. The objective function is to minimise ∑ 𝑦𝑖

𝑚
𝑖=1 while discovering all values of xij.

The absolute restrictions constraints in the above stated description is that each of the VM can be
allocated on only one physical machine at a time. The details of constraints are also referred from the
study of [62]. For each type of resources (CPU, memory and bandwidth, the quantity of resource
requests of VMs) placed in the same physical machine must be less or equal to ability/capacity of
the PMs hosting them; The total numbers of PMs that allocate VMs[47] are not more than m,
∑ 𝑦𝑖

𝑚
𝑖=1 ≤ 𝑚.

3.2. Assumptions of the Firefly Algorithm
For VM placementthis study proposes energy efficient modified Firefly Algorithm. This algorithm is
based on the demeanour of different species of fireflies that generate terse and cadent flashes. Most
of the time the pattern observed for the flashes is exclusive and distinct for every particular species
of fireflies, for instance, the cadent of the flashes, the rate of flashing and the total time for which the
flashes are noticed. Each and every of these patterns collectively composes a kind of pattern that
attracts both male and female fireflies to each other and thus the female of a species reunite to a
distinctive pattern of the male of the same species. At a certain distance ‘r’, the intensity of light
from the light source conforms to the inverse square law [45]. That is, as ‘r’ increases the intensity
of light ‘I’ will decrease and is given in terms of I α 1/r2. Furthermore, the air or medium keeps on
enthralling the light and as a result of which the light becomes feeble as the distance increases. Thus
when these two factors, namely the intensity of the light and air absorption or enthralling are

E. Barlasker et al.

combined, it makes most fireflies seeable at a narrow distance, usually to a few hundred meters at
night which are pretty sufficient for fireflies to confer and communicate with each other.

Xin-She Yang developed Firefly Algorithm (FA) in late 2007 and 2008 [63,64]. The FA was
inspired by the flashing motif and action of fireflies. It uses the following three rules (or rather
assumptions).

(a) It is considered that one firefly is captivated to other fireflies regardless of their sex. That
means all fireflies are unisex.

(b) It states that for any two fireflies that are flashing, the brighter one will be attracted to less
bright one and less bright to the brighter one. The brightness and attractiveness are
proportional to each other, and both will decrease when their distance increases. However, a
firefly will move randomly if there is no one brighter than that particular firefly.

(c) The objective function is used to determine the brightness of Firefly [45]. The brightness is
directly proportional to the objective function’s value for all maximisation problems. Other
forms of the brightness have a function as used in genetic algorithms [65].

To refit the FA concept to VM placement problem the proper translation of terminology used in the
FA must be done efficiently and this terminology is the crucial factor in a combinatorial space from a
continuous one. VM placement is one of the combinatorial optimisation problems and as such the
key concepts related to FA (which is the above three assumptions) must be described by VM
placement problem before solving this problem. The basic FA algorithm assumes that all fireflies are
unisex, and the main terms described are brightness and attractiveness of fireflies. These assumptions
are modified in order to relate it to VM placement problem and as such the following three
assumptions are made due to the fact that they are VMs which need to be properly allocated on PMs
depending on the availability of resources. To align FA to VM placement, the three crucial
assumptions need to be redefined and discussed. From the three assumptions made in the basic FA,
the study uses that the firefly flashing behaviour by modifying the concept in VM placement
methods, which are given as follows.

Assumption #1:
It is assumed that all the fireflies are not unisex, which implies that VM’s are female fireflies and
PM’s are male fireflies. The female fireflies will be attracted to male fireflies depending on the
brightness of the male firefly and their brightness. For PMs, the brightness is more if PM is not
overloaded or slightly loaded and brightness is less if PM is overloaded or going to be overloaded
very soon. For VMs, the brightness is more if the VM is not overloaded or slightly loaded.
Brightness is less if VM is overloaded. That is, less bright VM will be placed on those PMs which
are brighter and bright VM will be placed on less bright PMs.

Assumption #2:
Attractiveness and brightness are proportional to each other. For any two male flashing fireflies (the
PMs), the less bright female firefly(VMs) will move towards the one which is brighter PM than the
less bright PM. Attractiveness and brightness both decrease as their distance increases (that is,
distance increases when the resource utilisation of both PM and VM increases).

E. Barlasker et al.

Assumption #3:
The brightness of male and female fireflies are determined by the view of the objective function
which is, in our case, the resource utilisation of the PMs and VMs. The more the resource utilisation,
the less will be the brightness. The less the resource utilisation the more will be the brightness.
However, in the case of PMs the threshold values are set, and for values below and above the
brightness decreases. That is if a PM is underutilised and is below the lower threshold then also the
PM becomes less bright. If a PM is over-utilized and is above the upper threshold, then the PM
becomes less bright. Therefore a PM is brighter only when its resource utilisation is in between the
lower and upper threshold.

From these three assumptions, the concept of FA was clearly depicted and presented in accordance to
VM placement problem. The formal definition of “brightness” in this context is explained below. For
PM the brightness is defined by the amount of resource available at the time of VM placement. That
is, if a PM is said to be brighter than another PM then it means the resource provided by the first PM
is more compared to the second PM. Hence the first PM is not overloaded or less loaded. For VM the
brightness is defined as the amount of resource needed by a VM while placing that VM in a PM. If
more resources are requested by a particular VM, then it shows less brightness.

3.3. Proposed Modified Firefly Algorithm for VM Placement (MFA)
As discussed in the theory this proposed modified Firefly algorithm(MFA) considers that fireflies are
not unisex. The fireflies are males and females belonging to a different variety of species. The
variation in the light intensity and formulation of the attractiveness are the two important factors in
the firefly algorithm [45, 63, 64, 65]. For simplicity, it is assumed that the attractiveness of a firefly
is determined by its brightness which in turn is connected with the encoded objective function.

xj = PEnumj × PEmipsj+ VMbwj…….. (1)

In equation (1), PEnumj is the number of processor in VMj; PEmipsj is a million instructions per
second of all processors in VMj; VMbwj is the bandwidth and communication ability of VMj. The
brightness ‘I’ of any VM could be chosen as I(xj) proportional to f(xj) where f(xj) is the current
resource utilisation by that particular VMj. In the case of female firefly the brightness increases if the
resource utilisation increases. The location x of a PM is the capacity of any PM ‘i’ which is given
by:

xi= PEnumi × PEmipsi + PMbwi…….. (2)

In equation (2), PEnumi is the number processor in PMi; PEmipsi is a million instructions per second
of all processors in PMi; PM bwi is the bandwidth communication ability of PMi. The brightness ‘I’
of any PM could be chosen as I(xi) proportional to f(xi) where f(xi) is the current resource utilisation
by that particular PMi. In the case of male firefly the brightness increases if the resource utilisation
increases. Although the attractiveness (β denotes attractiveness) is relative, it should be determined
by the other fireflies, specifically with the brightness of each male and female fireflies. Thus it will
vary with the distance rij between male firefly i and female firefly j. The distance rijis determined by
the difference in resource utilisation of male firefly (i.e. PM) and the female firefly (i.e. VM). The

E. Barlasker et al.

distance between them will be different if the resource utilisation of male firefly is morethefemale
firefly.Inversely more the resource utilisation of male firefly and more the resource utilisation of
female the distance will be more. Also, light intensity decreases with the distance from its source. If
the difference between the resource utilisation of male and female fireflies is more, then there is less
possibility of placing a VM in a PM.The air media also absorb light. In this study the underutilization
of resource usage in PMs is denoted as the absorption co-efficient. It should allow the attractiveness
to differ with the varying degree of absorption. However, the light intensity or attractiveness value β
depends on the distance r between the fireflies and the media light absorption coefficientγ. The
attractiveness of each firefly is determined using the equation:

β (r) = β0e-γr2…….. (3)

where β0 represents the attractiveness of the firefly at r=0.The movement of the less bright female
firefly j is attracted to another more attractive (brighter) male firefly i is determined by

xi = xi + β0e-γr
i, j

2 (xj – xi) + αεi…….. (4)

where the second term is rise due to the attraction and third term is randomization with α being the
randomization parameter, and εi is a vector of random numbers taken from a Gaussian or uniform
distribution. The parameter γ now represents the variation of the attractiveness, and its value is
critically necessary for deciding the speed of the convergence and how the FA algorithm behaves. In
theory, γ Є (0, ∞), but in areal application, γ= O(1) is determined by the characteristic distance
r(=Г=1/γ) of the system to be optimised. Thus for most applications, it conventionally varies from
0.1 to 10.

The pseudo code of proposed modified firefly algorithm (MFA) is provided as algorithm 1.

Algorithm 1: Modified Firefly Algorithm

MFA Meta-heuristic ()
1. Begin;
2. Initialize algorithm parameters:

 MaxGen: the maximal number of generations
 γ: the coefficient of light absorption
 r: the specific distance from the light source
 d: the realm space

3. Characterize the objective function of f(x), where x=(x1,........,xd)
4. Produce the introductory population of fireflies or xi (for i=1 to n)
5. Evaluate the intensity of light Ii at xi via f(xi)
6. While (t<MaxGen)
7. For i = 1 to n (all n male fireflies);
8. For j=1 to m (m female fireflies);
9. If (Ij> Ii)
10. Move firefly i towards j by using equation (4);
11. End if
12. Attractiveness varies with distance r via Exp [-γr2];
13. Evaluate new solutions and update light intensity;

E. Barlasker et al.

14. End for j;
15. End for i;
16. Rank the fireflies and find the current best;
17. End while;
18. Post process results and visualisation;
19. End procedure

3.3.1. Hierarchical Clustering Method

In combination with the proposed Firefly algorithm, we want to use the clustering method to reduce
the time while migrating the VMs to find the best cluster for virtual machine placement. The process
of grouping or partitioning data based on some similitude is known as clustering.

Clustering algorithms are of two types, namely, hard clustering and soft clustering. Hierarchical
clustering is where a nested series of the division is created, and the partitioned clustering is used
with a segregation of given data. They fall under the type of hard clustering. Whereas rough sets,
fuzzy sets, evolutional algorithms or artificial neural networks (ANNs), and particularly genetic
algorithms (GAs) are soft clustering algorithms. In this proposed work, the hierarchical clustering
algorithm is used. Hierarchical algorithms produce a nested series of divisions of the data that can be
interpreted by using a tree structure that is commonly called as a dendrogram. Hierarchical
algorithms are of two types, namely, divisive and agglomerative. The divisive clustering starts with
one cluster with all the patterns and at each consecutive step a cluster is divided; this method goes on
till it finishes up with each pattern in a cluster or a group of clusters with exactly one pattern. A top-
down approach is used by the divisive algorithm for creating divisions of the data. In divisive
algorithms when two patterns are put into two distinct clusters at any step, then at all the consecutive
steps they remain in distinct clusters. To the contrary, agglomerative algorithms use a bottom-up
approach where starting with n single clusters when the size of the input dataset is n and each pattern
of the input data set is in a distinct cluster. At each subsequent steps, the most matching pair of
clusters is joined to decrease the size of the division by one.

The proposed system model of Hierarchical Cluster-based Modified Firefly algorithm (HCMFF) is
as follows. The algorithm is shown in figure 2. The execution process of the FF is designed using the
concept of the hierarchical cluster. The related literature and ideas are collected from earlier studies
[47].

A significant characteristic of the agglomerative algorithms is that once the two patterns are put in
the same cluster at a step, then they remain in the same cluster at all the consecutive steps.
Agglomerative clustering follows a bottom-up approach [66,67]. This work follows the
agglomerative clustering algorithm for making clusters of PMs based on the type of resources
provided by the PMs. In this study the total number of input data sets is equal to the total number of
PMs which is ‘m’, the similarity between the patterns is equal to the type or characteristic of
resources provided by the PMs. For instance, to form the clusters it considered few parameters like
CPU utilisation, bandwidth speed etc. There are total 800 PMs with the characteristics similar to the
servers considered in [47]. The purpose of forming clusters of PMs is to minimise the time taken
while migrating a VM by reducing the searching procedure of most capable PMs.

E. Barlasker et al.

Figure 2. System model with the proposed HCMFF algorithm.

The hierarchical clustering algorithm with bottom-up approach is described as follows: D = [d(i,j)] is
the N*N adjacency matrix. All the clusters are assigned series numbers 0,1,......, (n-1) and L(k) is the
level of the kth cluster. The adjacency between clusters (r) and (s) is denoted d [(r),(s)] and a cluster
with series number m is denoted by (m).

1. Begin with the disjoint clustering having level L(0) = 0 and sequence number m = 0.
2. Find the least dissimilar pair of clusters in the current clustering, say pair (r), (s),

according to d[(r),(s)] = min d[(i),(j)], where the minimum is over all pairs of clusters in
the current clustering.

3. Increment the sequence number: m = m +1. Merge clusters (r) and (s) into a single cluster
to form the next clustering m. Set the level of this clustering to L(m) = d[(r),(s)]

4. Update the proximity matrix, D, by deleting the rows and columns corresponding to
clusters (r) and (s) and adding a row and column corresponding to the newly formed
cluster. The proximity between the new cluster, denoted (r,s) and old cluster (k) is defined
in this way: d[(k), (r,s)] = min d[(k),(r)], d[(k),(s)]

5. If all objects are in one cluster, stop or else, go to step 2.

E. Barlasker et al.

The pseudo code of the hierarchical cluster-based modified firefly (HCMFF) is provided below
as algorithm 2.

Algorithm 2: Hierarchical cluster-based modified firefly
Step 1. Resources are clustered as a combination of RESOURCE, BANDWIDTH and MEMORY by

using hierarchical clustering
Step 2. Each cluster is deliberated as a single resource.
Step 3. VMs are classified by different types of requirements such as small instances and large

instances
Step 4. Initialize firefly parameters

MaxGen: maximal number of generations (total number of ‘n’ VMs and ‘m’ PMs)
γ: the light absorption coefficient, which means that the brightness decreases if the distance
between resource utilization of PM and VM is more and also it decreases if the resource
utilization of PM is under the lower threshold
r: the particular distance from the light source
d: the domain space i.e. the total number of clusters formed.

Step 5. Define the objective function of f(x), where x = PEnum × PEmips + VMbw/ PMbwj
where, PEnum is the number processor in VM/PM ,
PEmips is a million instructions per second of all processors in VM/PM

 VMbwj/PMbwj is the bandwidth communication ability of VMj
Step 6. Generate the initial population of fireflies i.e. number of PMs= 1 to n and Number of VMs =

1 to M
 Let PM = {PM1,PM2, . . . PMn} and VM = {VM1,VM2, . . . VMm}
Step 7. Determine the light intensity of Ii or Ij at xior xj via f(xi) or f(xj)

 The brightness ‘Ii’ of any PM could be chosen as I(xi) proportional to f(xi) where f(xi) is the
current resource utilisation by that particular PMi. In the case of male firefly, the brightness
increases if the resource utilisation decreases.

 The brightness ‘Ij’ of any VM could be chosen as I(xj) proportional to f(xj) where f(xj) is the
current resource utilisation by that particular VMj. In the case of female firefly, the
brightness increases if the resource utilisation decreases.

Step 8. While (t<MaxGen)
For i = 1 to m (all m male fireflies);
For j=1 to n (n female fireflies)
 if (Ij> Ii)

move firefly i towards j by using equation 4;
 end if
Attractiveness varies with distance r via Exp [-γr2];
Evaluate new solutions and update light intensity;
End for j;
End fori;
Rank the fireflies and find the current best;
End while;

Step 9. Post process results and visualisation;
Step 10. End procedure

E. Barlasker et al.

A flow chart for general firefly algorithm for VM placement is given in figure 3.

Figure 3. Flowchart of Firefly algorithm for VM placement

3.3.2. Advantage of using Hierarchical Clustering Algorithm for VM Placement

By using an agglomerative clustering algorithm, the clusters of PMs are setup based on the type of
resources provided by the PMs. Each PM is identified by CPU performance, disk storage, the amount
of RAM and network bandwidth. The software layer of the system is tiered comprising of local and
global managers. The benefits of such clustering (groups of clusters) are provided below: The
searching time of the most appropriate PM for placing a particular VM is reduced. All the local
managers maintain the list or indexes of PMs in a particular cluster for other clusters. When a new
VM instance request is sent to the global manager, it takes the updates of the available resources
from all the local managers of each cluster. Thus it maps the VM to the most appropriate cluster of
PM. The migration time is thus reduced. Normally VMs with large instance took a longer time to
serve the instances. The cluster indexes provide the VMs along with its threshold value that can
accept such large instances. Therefore, as the choosing time of VM placement is reduced, the
migration time is also reduced atomically. Most importantly, it has been observed that by combining

E. Barlasker et al.

hierarchical clustering with firefly algorithm the total number of VM migrations had been reduced
largely. This is because the VMs will be sent to a specific cluster of PMs (which can provide the
amount of resource required by the VMs) instead of sending the VMs randomly.

3.3.3. Different Clusters of PMs and How They Help in VM Placement

In figure 4 (a) the PM represents the Physical Machine. All PMs that can serve large VM instances
are grouped together in cluster 1. In figure 4 (b) all PMs that can serve small VM instances are put in
cluster 2. In figure 4 (c) all PMs that can serve medium instances are in cluster 3.

Figure 4 (a, b and c). Different clusters of PMs that serve different type of VM instances

In figure 5 (a) if the large VM instance is sent to cluster 1 then it will be served very efficiently as
this cluster contains PMs that can serve VMs with large instances properly. In figure 5 (b) if the large
VM instance is sent to cluster 2 then it will get overloaded immediately as this cluster contains PMs
that can only serve small instances and as a result of this the number of migrations will be more. In
figure 5 (c) if the large VM instance is sent to cluster 3 then it will become overloaded very soon
because the cluster cannot support the large VM instance when the resource utilisation increases with
time, leading to a large number of VM migrations.

Figure 5 (a, b and c). A large VM instance request arrives which is sent to cluster 1

In figure 6 (a) if the medium VM instance is sent to cluster 1 then it will be served, but some
resources will be left underutilised as the VM instance is medium. So it will not use all the resources
provided by the PM as this cluster contains PMs that can serve VMs with large instances properly.
In figure 6 (b) if the medium VM instance is sent to cluster 2 then it will get overloaded very fast as
this cluster contains PMs that can only serve small instances and as a result of this the number of
migrations will be increased. In figure 6 (c) if the medium VM instance is sent to cluster 3 then it
will be served very efficiently. So wastage of resources can be avoided if the VM instance is sent to
cluster 1 and no overutilization will take place if sent to cluster 2, thus avoiding VM migrations.

E. Barlasker et al.

Figure 6 (a, b and c). A medium VM instance request arrives which is sent to cluster 2

If the small VM instance is sent to cluster 1 then it will be served, but the major portion of the
resources will be left underutilised as the VM instance is small. So it will not use all the resources
provided by the PM as this cluster contains PMs that can serve VMs with large instances properly
(figure7 (a)).Thus resource wastage will take place leading to increased energy consumption. In
figure 7 (b) if the small VM instance is sent to cluster 2 then it will be served very efficiently.
Wastage of resources will not occur like it could happen if the VM instances are sent to cluster 1 and
cluster 3. In figure 7 (c) if the small VM instance is sent to cluster 3 then some amount of resources
will be left underutilised as small instance VM will not use all the resources provided by a PM that
can serve medium instances. Therefore, again underutilization will occur and will lead to higher
energy consumption.

Figure 7 (a, b and c). A small VM instance request arrives which is sent to cluster 3

From figures 4, 5, 6 and 7, it can be seen that all the VM instances could be sent to the most
appropriate cluster that can serve it very efficiently by placing the VM to available PMs in that
particular cluster. Once a VM instance requests arrive it can be easily sent to a particular cluster with
the help of clustering algorithm used. After it is sent to a particular cluster, then it will be placed in a
PM that is most capable of serving that particular VM instance. Thus searching of the PMs for VM
placement will become easy and also the time for search will reduce as it is already sent to a cluster

E. Barlasker et al.

which can serve the VM instance. The only difference is that the search will be performed within that
cluster, and the most suitable PM will be searched for VM allocation. All the PMs in a cluster may
not be free at a given period and so by using firefly algorithm, the most suitable PM can be found
and hence VM placement can be done. Thus using the clustering technique, the time for searching
the most appropriate PM will be reduced and also underutilization, or overutilization will be avoided
to a great extent which will also help in reducing the total number of VM migrations.

4. Performance Evaluation and Results

The metrics used for measuring the energy consumption and violation of SLA are given below.
The performance of the proposed work has been evaluated using existing metrics [47]. This
algorithm is used to optimise two main parameters -energy consumption and SLA violation
related to the performance degradation. To portray the energy-performance tradeoff, both the
definition of energy consumption and performance degradation must be defined distinctly. In this
study, the Energy Consumption (EC) by a server is defined as a linear function of CPU
utilisation, and performance is defined as a function of evaluating the SLA delivered to any VM
deployed in an IaaS. The SLA violation is defined with the help of two metrics-SLA Violation
Time per Active Physical machine (SLATAH) that rise with overload period of the PM, and
Performance Degradation due to Migrations (PDM) that rise due to live migration. Hence these
metrics were defined with the assumption that the SLAs are delivered when 100% performance
requested by any applications inside a VM is provided at any time.

𝑃𝐷𝑀 =
1

𝑀
∑

𝐷𝑑𝑗

𝐷 𝑟𝑗

𝑀

𝑗=1

 …….. (5)

In equation (5), M is the number of VMs; Ddj is an estimation of the performance degradation of the
VMj caused by migration;
𝐷𝑑𝑗

 is total CPU capacity requested by VMj during its lifetime. A metric for describing SLA
violation (SLAV) can be defined as follows:

SLAV = SLATAH × PDM …….. (6)

In consideration of formulation above SLA Time (SLAT) for each physical machine can be defined
as:

SLATi= (Tsi/Tai) 1 <= i<= N ……… (7)

In equation (7), Tsi is total time during which physical machine i has experience maximum CPU
utilisation; Tai is total time during which physical machine i being in the serving VMs; N is the
number of active physical machines.

The CloudSim toolkit [68] has been chosen to carry out the experiments in a simulation platform and
also real life workload from PlanetLab’s monitoring infrastructure [69] has been collected and
utilised for the VM workload traces. To compare the proposed algorithms for VM placement with
the Honeybee cluster based technique (HCT) from [7] along with the existing algorithms [47] for

E. Barlasker et al.

VM selection, host overload detection and host for load detection. For overload detection existing
algorithms from [7] are used, which are as follows: Static Threshold (THR), Median Absolute
Deviation (MAD), Inter-Quartile Range (IQR), Local Regression (LR) and Robust Local Regression
(LRR). Once the overloads are detected, it uses the different policies of VMs selection such as
Maximum Correlation (MC), Minimum Migration Time (MMT), Minimum Utilization (MU) and
Random Selection (RS). The simulation was done with 800 heterogeneous PMs in a data centre. Two
types of servers were taken, the first type is HP ProLiant ML110 G4 and the second type is HP
ProLiant ML110 G5, wherein the 800 PMs were divided into two parts and half of the PMs belong to
the first type and the remaining half belong to the second type respectively. The PMs are rigged with
multi-core CPUs where each core has ‘p’ MIPS, and therefore if there are ‘n’ numbers of cores then
the overall capacity of the ‘n’ multi-core CPUs is ‘np’. In this work, it is assumed that each of the
VMs can have a single core and not more than that because if a VM needs more capacity than a
single core, then the VM should be run parallel on other cores, which is another critical research
issue [47]. The data for power consumption is taken from SPEC power benchmark [70] where the
power utilisation varies for the elected PMs at each and every load level. Each of the PM is designed
to have 1 GB/s network bandwidth and the instances of the VM are of four types, such as: (i) High-
CPU Medium Instance; (ii) Extra Large Instance; (iii) Small Instance and (iv) Micro Instance.
Instantiation of VM is made conforming to the requirements of resources denoted by the VM types.
Nevertheless, throughout the lifetime of VMs there is a variation in the resource utilisation by the
VMs by the workload data and hence gives a chance for performing dynamic consolidation. Two
different workload data were used that was taken in two different days. At the time of simulation,
each VM is assigned workload traces at random from one of the VMs from the corresponding day.
The workload data’s characteristics are shown in table 1.

4.1. Selection of Algorithms for Overload Detections
To detect the system overload, several policies were proposed in the study [47]. The policies are
Static Threshold (THR), Median Absolute Deviation (MAD), Inter-Quartile Range (IQR), Local
Regression (LR) and Robust Local Regression (LRR). Once the overloads are detected, it uses the
different policies of VMs selection such as Maximum Correlation (MC), Minimum Migration Time
(MMT), Minimum Utilization (MU) and Random Selection (RS). This study also uses the above
policies but was using different heuristics and these policies showed significant improvement in
minimising energy consumption. The study also analyses the impact of the use of different
algorithms for overload detections such as Static Threshold (THR), Median Absolute Deviation
(MAD), Inter-Quartile Range (IQR), Local Regression (LR) and Robust Local Regression (LRR).
Each host occasionally executes an overload detection algorithm to avoid performance degradation
and SLA violation. Some concept of the algorithms is givenbelow but the details are provided in the
earlier study [47].

(a) A Static Threshold (THR) algorithms workin a situation where CPU utilisation threshold value
detects a host overload.

(b) The Median Absolute Deviation (MAD) is a measure of statistical dispersion, and it is
considered as a robust estimator.

(c) Inter Quartile Range (IQR) sets adaptive CPU utilisation threshold based on another robust
statistic, like the difference between the upper and lower quartiles

E. Barlasker et al.

(d) Local Regression (LR) works for fitting models to localised subsets of data to build up a curve
that approximates the original data.

(e) Robust Local Regression (LRR) works similar to LR but with extra robustness weight.

4.2. Selection of Effective Policies of VM Selection
Once a host overload is detected, the VMs selection process is started. Some concept of the VM
selection policies are discussed below, however, the details are provided in the study of Anton and
Rajkumar [14]. The different policies of VMs selection used in this study are Minimum Migration
Time (MMT), Random Selection (RS) and Maximum Correlation (MC).

(a) Minimum Migration Time (MMT) chooses the VM that requires the minimum time to
complete a migration relatively. The migration time is estimated as the amount of RAM
utilised by the VM separated by the spare network bandwidth available for the host.

(b) Random Selection (RS) selects a VM to be migrated from the host according to a uniformly
distributed discrete random variable.

(c) Maximum Correlation (MC) selects VMs that have the highest correlation of the CPU
utilisation with the other VMs.

Some information is collected from work presented in [7] where improved result was achieved by
applying them to the honeybee algorithm. Because of this reason of all the VM mentioned above
selection and over-load detection policies are used in this paper. The results of the simulation are
illustrated in the following sections.

4.3. Simulation Results of Modified Firefly Algorithm with Honeybee
The proposed modified Firefly algorithm for VM placement has been implemented, and the results
of this study showed are duction in the VM migration, SLA violation and Energy consumption. The
experimental result with workload 1 and workload 2 are given in table 2 and table 3 respectively.
Each of the experiments is run 20 times and the common numbers measures obtained after 20
numbers of independent runs are illustrated in the tables 2-4.

Table 1. Characteristics of Workload Data

Data Number of VMs Mean St. dev Quartile 1 Median Quartile 3
Workload 1 1052 12.31% 17.09% 2% 6% 15%
Workload 2 1516 9.26% 12.78% 2% 5% 12%

Table 2. Firefly and honeybee for VM Placement using overload detection and VM selection for
Workload 1

Overload Detection-
VM Selection Energy (KWh) SLA VM Migration

VM Placement Firefly Honeybee Firefly Honeybee Firefly Honeybee
IQR-MC 32.17 41.90 0.00008 0.00012 869 889
IQR-MMT 32.21 41.47 0.00007 0.00013 880 931
IQR-MU 32.35 42.41 0.00009 0.00012 919 907
IQR-RS 32.91 44.44 0.00008 0.00009 867 869

E. Barlasker et al.

LR-MC 31.81 44.56 0.00008 0.00010 907 900
LR-MMT 32.09 41.45 0.00007 0.00012 874 857
LR-MU 32.50 42.19 0.00008 0.00013 908 896
LR-RS 31.79 44.17 0.00007 0.00011 833 885
LRR-MC 31.66 46.62 0.00009 0.00010 923 841
LRR-MMT 30.87 44.82 0.00009 0.00011 971 918
LRR-MU 32.06 45.38 0.00008 0.00010 860 879
LRR-RS 32.32 41.90 0.00009 0.00012 871 948
MAD-MC 31.73 43.32 0.00008 0.00011 855 884
MAD-MMT 32.91 43.01 0.00007 0.00012 824 893
MAD-MU 32.00 43.31 0.00009 0.00013 900 875
MAD-RS 31.79 44.82 0.00008 0.00011 908 906
THR-MC 33.99 43.46 0.00007 0.00012 881 894
THR-MMT 31.96 43.45 0.00009 0.00011 853 921
THR-MU 32.41 43.46 0.00008 0.00012 891 905
THR-RS 30.82 44.51 0.00009 0.00010 917 911

Table 3. Firefly and honeybee for VM Placement using overload detection and VM selection for
Workload 2

Overload Detection-
VM Selection Energy (KWh) SLA VM Migration

VM Placement Firefly Honeybee Firefly Honeybee Firefly Honeybee
IQR-MC 34.77 47.99 0.00009 0.00013 888 899
IQR-MMT 33.29 46.77 0.00008 0.00014 898 934
IQR-MU 35.34 45.83 0.00010 0.00013 956 966
IQR-RS 34.99 48.54 0.00009 0.00010 877 888
LR-MC 36.33 47.67 0.00009 0.00011 915 915
LR-MMT 35.33 44.88 0.00010 0.00013 867 870
LR-MU 38.55 49.88 0.00009 0.00014 977 920
LR-RS 39.66 48.76 0.00011 0.00012 856 900
LRR-MC 38.61 45.66 0.00010 0.00011 978 876
LRR-MMT 36.81 47.88 0.00010 0.00012 988 953
LRR-MU 35.77 48.39 0.00009 0.00012 888 920
LRR-RS 37.82 49.64 0.00010 0.00013 898 978
MAD-MC 33.75 49.38 0.00009 0.00012 891 921
MAD-MMT 33.93 48.55 0.00011 0.00013 855 929
MAD-MU 37.33 49.89 0.00010 0.00014 919 905
MAD-RS 36.99 49.78 0.00009 0.00012 925 945
THR-MC 39.19 46.66 0.00009 0.00013 898 916
THR-MMT 35.56 44.56 0.00010 0.00012 888 967
THR-MU 37.87 46.66 0.00009 0.00013 898 977
THR-RS 32.88 47.11 0.000010 0.00011 926 944

E. Barlasker et al.

Figure 8. Energy consumption comparison with workload 1 and workload 2: The proposed firefly
algorithm for workload 1 outperformed the honeybee algorithm and gave better results by giving

minimising the total energy consumption

Figure 8 shows the key comparison use of energy (kWh) of proposed Firefly (FF) algorithm with
Honeybee (HB) algorithm as per the chosen workload 1 and 2. The performance declined when the
number of VMs was increased as presented in table 2 and table 3. This result indicated that even
when the number of VMs is increased the proposed Firefly algorithm perform well in minimising the
total energy consumption as in figure 8. It is also observed that the percentage of SLA violation was
less for firefly algorithm with both workloads 1 and 2 as in figure 9. Hence, the performance of
honeybee algorithm was outperformed by firefly algorithm even with workload changes. In selected
best pairs of overload detection vs. VM selection policies, it has been observed that for all the
workloads the proposed Firefly algorithm outperformed the honeybee algorithm. Firefly algorithm
gave better results by giving less number of VMs as in figure 10.

Figure 9. SLA violation comparison with workload 1 and 2: The study shows SLA violation was less

for firefly algorithm with both workload 1 and 2

E. Barlasker et al.

Figure 10. VM migration comparison with workload 1 and workload 2: Firefly algorithm gave better

results by giving less number of VMs

Figure 11 gives the overall performance of all participating parameters (Overload Detection vs. VM
Selection policies) used in this study for workload 2. It shows that the firefly algorithm consumes
less energy than the honeybee. The reason for this is the novel idea of attraction via light intensity as
an exploitation mechanism was used in firefly algorithm and the main function of such attraction is
to enable an algorithm to converge quickly because these multi-agent systems evolve, interact and
attract, leading to some self-organized behaviour and attractors. As the swarming agents evolve, it is
possible that their attractor states will move towards to the true global optimality.

Figure 11. Comparison of Energy Consumption: Firefly algorithm and Honey bee algorithm: The
firefly algorithm consumes less energy than the honey bee as it uses an exploitation mechanism

E. Barlasker et al.

The impact of the important parameters on the host overload detection and VM selection policies are
shown in figure 12, 13 and 14 that relates to energy consumption, SLA Violation and VM migration
respectively. From the study results, it is known that the dynamic VM consolidation with firefly
algorithm significantly reduces energy consumption by adjusting the number of active servers. The
energy consumption is low under overload detection policy (IQR, LR, LRR. MAD and THR). The
VM selection policy used are Maximum Correlation (MC), Minimum Migration Time (MMT),
Minimum Utilization (MU) and Random Selection (RS). The best result is provided by the pair of
Overload Detection (IQR) and VM Selection (MU). In the same manner, the some of the select
notable results of SLA violation are provided in figure 13.

Figure 12. Energy Consumption with Firefly algorithm (parameters): VM consolidation significantly
reduces energy consumption by adjusting the number of active servers and the best result is provided

by overload detection policy (IQR, LR, LRR. MAD and THR).

Figure 13. SLA Violation with Firefly algorithm (parameters): SLA violation is reduced by

parameter IQR and MM

E. Barlasker et al.

Figure 14. Number of VM migration with Firefly algorithm (parameters)

Figures 15, 16 and 17 show the impact of most contributing parameters for energy consumption,
SLA Violation and VM migration respectively. During the VM placement of firefly algorithms, the
parameter THR-RS gives the lowest value of energy consumption as 30.82 kWh. The parameter LR-
MMT of the honeybee gives the lowest value of energy consumption as 41.45 kWh.In honeybee, the
minimum percentage of SLA Violation is contributed by IQR-RS as 0.00009%, whereas in Firefly
the minimum SLA is 0.00007%. In honeybee, the number of best VM migrations 857 is given by
LR-MMT and in Firefly it was 824 that is contributed by MAD-MMT. The proposed approach is
distributed, scalable, and efficient in managing the energy-performance trade-off.

Figure 15. Energy Consumption Comparison (Firefly and Honeybee): LR-MMT and THR-RS

policies uses the least energy

E. Barlasker et al.

Figure 16. Comparison of SLA Violation (Firefly and Honeybee): The parameter LR-MMT of the
honeybee gives the lowest value of energy

Figure 17. Comparison of VM Migration (Firefly and Honeybee): The lowest SLA is contributed by

MAD-MMT using FF algorithm

The firefly algorithm with LR-MMT and THR-RS policies gives a better result for energy compared
to other policies. The firefly algorithm together with IQR-RS and LR-MMT show less number of
SLA violation compared to other overload detection and VM selection policies and Firefly also gave
better results than honeybee algorithm. Firefly algorithm combined with LRR-MMT and MAD-
MMT has less number of VM migrations than with other overload detection and VM selection
policies. The proposed FF algorithm significantly reduced energy consumption, SLA violation and
VM migration in comparison to the Honeybee (HB) algorithm proposed in [7].

E. Barlasker et al.

4.4. Simulation Results of Hierarchical Cluster-Based Modified Firefly Algorithm
(HCMFF)

We wanted to improve the result further. The system model of HCMFF was shown in figure 2. The
result of HCMFF is compared to HCT. The related literature and ideas are collected from earlier
studies [47].

Table 4. A Comparison of Cluster-based Honeybee Technique (HCT) and HCMFF

Overload
Detection-VM
Selection

Energy SLA VM Migration

VM Placement

HCT HCMFF HCT HCMFF HCT HCMFF

IQR-MC 34.71 34.17 0.00009 0.00008 854 889
IQR-MMT 36.52 33.21 0.00009 0.00007 865 880
IQR-MU 34.35 34.35 0.00010 0.00009 887 919
IQR-RS 34.29 33.91 0.00010 0.00008 852 867
LR-MC 34.02 26.17 0.00010 0.00007 856 907
LR-MMT 33.99 35.09 0.00010 0.00006 882 815
LR-MU 36.85 33.50 0.00008 0.00007 869 908
LR-RS 34.75 32.79 0.00009 0.00018 867 866
LRR-MC 36.52 33.66 0.00010 0.00009 896 1218
LRR-MMT 35.17 28.16 0.00010 0.00007 874 830
LRR-MU 33.47 30.04 0.00011 0.00008 908 1183
LRR-RS 35.71 33.32 0.00009 0.00009 861 898
MAD-MC 34.27 32.73 0.00011 0.00008 916 876
MAD-MMT 34.84 32.91 0.00010 0.00016 882 873
MAD-MU 34.70 32.87 0.00009 0.00009 873 945
MAD-RS 34.84 31.98 0.00009 0.00008 866 981
THR-MC 35.88 33.46 0.00009 0.00011 895 889
THR-MMT 34.30 32.77 0.00010 0.00009 868 877
THR-MU 34.88 34.88 0.00010 0.00008 854 874
THR-RS 34.27 30.19 0.00011 0.00009 908 997

Figure 18 shows the overall performance of most of the parameters used in the study. It shows that
the HCMFF consumes less energy than HCT. The prime reason is that the searching time for VM
placement is considerably reduced due to the clustering technique. The impact of the critical
parameters is shown in the figures 19, 20 and 21. The proposed approach showed better results when
compared to HCT giving minimised the energy consumption.

E. Barlasker et al.

Figure 18. Energy Consumption by HCMFF and HCT (Cluster-based Honeybee Technique):

Figure 19. Energy Consumption of HCMFF algorithm: Consumes less energy than HCT due to the

clustering technique

Figure 20. SLA Violation of HCMFF algorithm: It gives less SLA violation due to uses of the

clustering technique

E. Barlasker et al.

Figure 21. Number of VM Migration of HCMFF algorithm

Further, figures 22, 23 and 24 show the most important contributing parameters for energy
consumption, SLA Violation and VM migration respectively. From this simulation study, it can be
derived that the dynamic VM placement with HCMFF substantially minimised energy consumption
by adjusting the number of active servers. In HCMFF the VM placement with the lowest value of
energy consumption is given by LR-MC as 26.17 kWh, wherein the HCT VM placement with the
lowest value of energy consumption is given by LRR-MU as 33.47 kWh. In HCT, the minimum
percentage of SLA violation was 0.00008% by LR-MU, whereas in HCMFF it was 0.00006% given
by LR-MMT. In HCT, the minimum number of VM migrations was 852 by IQR-RS and in HCMFF
it was 815 given by LR-MMT.

Figure 22. Energy consumption with HCMFF and HCT: The lowest value of energy consumption is

given by LR-MC

E. Barlasker et al.

Figure 23. SLA Violation with HCMFF and HCT: VM placement with the lowest value of energy

consumption is given by LR-MMT

Figure 24. Number of VM Migration with HCMFF and HCT

The results indicate that HCMFF algorithm with LR-MC gave a better result for energy compared to
other policies. HCMFF algorithm together with LR-MMT show less number of SLA violation
compared to other overload detection and VM selection policies and HCMFF also gave better results
than HCT algorithm that was used in [71]. HCMFF algorithm combined with LR-MMT has less
number of VM migrations than with other overload detection and VM selection policies. The results
indicated that the HCMFF algorithm performed fewer VM migrations in comparison to HCT
algorithm.

4.5. The Overall Remarks of the Study
Some of the best results of all four algorithms on the energy consumption are provided in Table 5.

Table 5. Best results of all four algorithms
 Firefly Honeybee HCT HCMFF
IQR-MMT 32.21 41.47 36.52 33.21
LR-MC 31.81 44.56 34.02 26.17
LR-RS 31.79 44.17 34.75 32.79
LRR-MC 31.66 46.62 36.52 33.66
LRR-MMT 30.87 44.82 35.17 28.16
LRR-MU 32.06 45.38 33.47 30.04

E. Barlasker et al.

MAD-RS 31.79 44.82 34.84 31.98
THR-MMT 31.96 43.45 34.3 32.77
THR-RS 30.82 44.51 34.27 30.19

The overall results of all four algorithms on the energy consumption are analysed and shown in
figure 25. Only the most important contributing parameters are considered for analysis. The HCMFF
gives better result than those of HCT, honeybee and Firefly. The simulation study of HCMFF
outperformed both HCT and FF. Thus HCMFF proved to be most efficient for all three metrics
(energy consumption, SLA violation and VM migration). The reason HCMFF outweighs other
algorithms is because it combines the advantages of both Firefly and hierarchical clustering
algorithms that enhanced the overall performance. A close view of the overall comparison of four
different techniques is provided in figure 26. The HCMFF consumes 12% less energy than Honeybee
algorithm, 6% less than HCT algorithm and 2% less than original Firefly.

Figure 25. The overall comparison of four different techniques for VM placement (energy

consumption): The HCMFF gives the best result as it uses the combined advantages of Firefly and
hierarchical clustering concepts

E. Barlasker et al.

Figure 26. The overall comparison of four different techniques (energy consumption): The

HCMFF consumes less energy than Honeybee, HCT and original Firefly.

5. Conclusion
VM placement has become an important research problem to provide energy efficient cloud
computing environment. The cloud providers must implement energy efficient resource management
techniques to maximise their return on investment (ROI). Hence dynamic consolidation of VMs has
become an essential solution for this problem that is achieved by switching idle servers to power-
saving modes. The proposed modified Firefly algorithm and hierarchical cluster based modified
firefly algorithm (HCMFF) reduce the energy consumption in the datacentre. The efficiency of the
proposed algorithms is evaluated through simulations in CloudSim3.0.3 using workload traces from
PlanetLab. This study contributes a new VM placement algorithm using a meta-heuristics concept.
Both these algorithms show better results with different combinations of overload detection policy
and VM selection policy. Modified Firefly algorithm and HCMFF show significant improvement as
compared with honeybee algorithm and existing Honeybee cluster based technique (HCT)
respectively. The uses of the different algorithms for overload detections and effective policies of
VM selection gives better merit in this study.

The strength of the modified Firefly algorithm(FA)is that it uses two important features, namely
automatic subdivision and the ability to deal with multimodality for optimisation. FA gives an
assurance of finding near-optimal solutions within a remarkable decline in the amount of time. It also
has the following advantages: such as dynamic or automatic subdivision of the whole population into
subgroups, and high ergodicity and diversity in the solutions. Such advantages make FA unique and
very efficient. The study shows that the modified FA uses 10% less energy than Honeybee
algorithm.

The strength of HCMFF is that the searching time for VM placement is substantially reduced by the
use of hierarchical clustering which helps in finding the best cluster among the different cluster of
physical machines that will be most capable and efficient for any VM placement. This algorithm uses
maximum exploitation mechanism to efficiently use energy and other resources. The study shows

E. Barlasker et al.

that HCMFF consumes 12% less energy than Honeybee algorithm, 6% less than HCT algorithm and
2% less than original Firefly.

The use of the appropriate algorithm can help in efficient usages of energy in cloud computing.
However, this work considers only a single meta-heuristic algorithm and requires further comparison
with the various meta-heuristic algorithms for virtual machine placement, e.g., ACO, PSO, etc. to
verify the performance of the algorithms in an extensive manner. Also more metrics can be
considered to improve the evaluation and validation process of the algorithms.

References

[1] S. Kumar, V. Talwar, V. Kumar, P. Ranganathan and K. Schwan, vManage: loosely coupled platform
and virtualization management in data centres, in Proc. 6th Int. conf. on Autonomic computing,
ACM, (2009), pp.127–136.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A.
Warfield, Xen and the Art of Virtualization, in Proceedings of ACM Symposium on Operating
Systems Principles, ACM, (2003), pp.164-177.

[3] L. Zeng, B. Veeravalli, and Q. Wei, Space4time: Optimization latency-sensitive content service in
cloud, Journal of Network and Computer Applications 41, Elsevier, (2014), pp.358-368.

[4] Y. Wang, Z. Zhou, L.Liu, and W. Wu, Replica-aided load balancing in overlay networks, Journal of
Network and Computer Applications 36.1, Elsevier, (2013) 388-401.

[5] S. K. Garg, A. N. Toosi, S. K. Gopalaiyengar, and R. Buyya. SLA-based virtual machine management
for heterogeneous workloads in a cloud data center. Journal of Network and Computer Applications,
vol. 45, Elsevier, (2014), pp.108-120.

[6] W. Vogels, Beyond Server Consolidation, ACM QUEUE, 6 (2008), pp.20-26.
[7] A. N. Singh, and M. Hemalatha, Cluster Based Bee Algorithm for Virtual Machine Placement in

Cloud Data Centre, Journal of Theoretical and Applied Information Technology, 57, (2013), pp.1-10.
[8] R. Buyya, C. Yeo Shin, and S. Venugopal, Market- Oriented Cloud Computing: Vision, Hype, and

Reality for Delivering IT Services as Computing Utilities, in Proc. 10th IEEE Int. Conf. on High-
Performance Computing & Communications, IEEE, (2008), pp. 5-13.

[9] N. Bobroff, A. Kochut, and K. Beaty, Dynamic placement of virtual machines for managing SLA
violations, in Proc. International Symposium on Integrated Network Management, IEEE, (2007),
pp.199-128.

[10] D. Barbagallo, E. Di. Nitto, D. J. Dubois, and R. Mirandola, A bio-inspired algorithm for energy
optimization in a self-organizing data center, Self-Organizing Architectures, Springer-Verlag, (2010),
pp.127–151.

[11] S. H. H. Madni, M. S. A.Latiff, Y. Coulibaly, and S. M. Abdulhamid. An Appraisal of Meta-Heuristic
Resource Allocation Techniques for IaaS Cloud, Indian Journal of Science and Technology, 9.4,
(2016).

[12] MN. Ab.Wahab, S. Nefti-Meziani, A.Atyabi, A comprehensive review of swarm optimization
algorithms. PloS one 10.5, (2015)

[13] M. Dorigo, M. Birattari and T. Stutzle, "Ant colony optimization," in IEEE Computational
Intelligence Magazine, 1(4), IEEE, (2006), pp. 28-39.

[14] X. Liu, and D. He, Ant colony optimization with greedy migration mechanism for node deployment in
wireless sensor networks, in Journal of Network and Computer Applications, 39, Elsevier, (2014),
pp.310-318.

E. Barlasker et al.

[15] Y. Gao, H. Guan, Z. Qi, Y. Hou, L. Liu, A multi-objective ant colony system algorithm for virtual
machine placement in cloud computing, Journal of Computer and System Sciences, 79(8), (2013),
pp.1230-1242.

[16] K. Li, H. Shen, Optimal proxy placement for coordinated en-route transcoding proxy caching, IEICE
Trans. Inform. Syst. 87(12) (2004), pp.2689-2696.

[17] K. Li, H. Shen, Optimal placement of web proxies for tree networks, in proceedings of the IEEE
International Conference on e-Technology, e-Commerce and e-Service, IEEE, (2004), pp. 479-486.

[18] M. A. Tawfeek, A. B. El-Sisi, A. E. Keshk, and F. A. Torkey, Virtual machine placement based on ant
colony optimization for minimizing resource wastage, in Advanced Machine Learning Technologies
and Applications, (2014), Springer, pp.153–164.

[19] J. Hu, J. Gu, G. Sun, and T. Zhao, A Strategy on Load Balancing of Virtual Machine Resources in
Cloud Computing Environment, 3rd Int. Symposium on Parallel Architectures, Algorithms and
Programming, IEEE, (2010), pp.89-96.

[20] E. Falkenauer, “A hybrid grouping genetic algorithm for bin packing,” Journal of Heuristics, 2(1),
Springer, 1996, pp. 5–30.

[21] S. Sawant. A Genetic Algorithm Scheduling Approach for Virtual Machine Resources in a Cloud
Computing Environment, Master's Projects. Paper 198. http://scholarworks.sjsu.edu/etd_projects/ 198,
(2011), (accessed on 10 May,2016)

[22] J. Hu, J. Gu, G. Sun, T. Zhao, A Scheduling Strategy on Load Balancing of Virtual Machine
 Resources in Cloud Computing Environment, in IEEE's Third International Symposium onParallel
Architectures, Algorithms and Programming, (2010), pp.89-96.

[23] H. Mi, H. Wang, G. Yin, Y. Zhou, D. Shi, L. Yuan, “Online self-reconfiguration with performance
guarantee for energy-efficient large-scale cloud computing data centers”, in proc. of the IEEE
International Conf. on Services Computing, (2010), pp. 514–521.

[24] J. Xu, J. Fortes, “Multi-objective virtual machine placement in virtualized data center environments”,
in: Proceedings of the IEEE/ACM International Conference on Green Computing and
Communications & 2010 IEEE/ACM International Conference on Cyber, Physical and Social
Computing, (2010), pp.179-188.

[25] I. Fister, Jr. I. Fister, X. S. Yang, and J. Brest, A comprehensive review of firefly algorithms, Swarm
and Evolutionary Computation, 13, Elsevier, (2013), pp. 34-46.

[26] K. Durkota, Implementation of a discrete firefly algorithm for the QAP problem within the sage
framework, B.Sc. Thesis, Czech Technical University, (2011).

[27] Jr. I. Fister, I. Fister, J. Brest, and X. S. Yang, Memetic firefly algorithm for combinatorial
optimization, Bio inspired Optimisation Methods and Their Applications, 2(2012), pp.75-86.

[28] T. Hassanzadeh, H. Vojodi, and A. M. E. Moghadam, An image segmentation approach based on
maximum variance intra-cluster method and firefly algorithm, in Proceedings of 7th International
Conference on Natural Computation, (2011), pp. 1817–1821.

[29] G. K. Jati, and S. Suyanto, Evolutionary discrete firefly algorithm for travellingsalesman problem,
International Journal for Research in Science & Advanced Technologies, Lecture Notes in Artificial
Intelligence LNAI,6943, Springer, (2011), pp.393–403.

[30] M. K. Sayadi, R. Ramezanian, and N. Ghaffari-Nasab, A discrete firefly meta-heuristic with local
search for makespan minimization in permutation flow shop scheduling problem, Int. J. of Industrial
Engineering Computations 1(2010), pp.1-10.

[31] S. Palit, S. Sinha, M. Molla, A. Khanra, and M. Kule, A cryptanalytic attack on the knapsack
cryptosystem using binary Firefly algorithm, in Proc. 2nd Int. Conf. on Computer and Communication
Technology, (2011), pp. 428–432.

[32] A. Yousif, A. H. Abdullah, S. M. Nor, and A. A. Abdelaziz, Scheduling jobs on grid computing using
firefly algorithm, Journal of Theoretical and Applied Information Technology, 33(2011), pp.155–164.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jinhua%20Hu.QT.&searchWithin=p_Author_Ids:378561690
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jinhua%20Hu.QT.&searchWithin=p_Author_Ids:378561690
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jianhua%20Gu.QT.&searchWithin=p_Author_Ids:37595419
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jianhua%20Gu.QT.&searchWithin=p_Author_Ids:37595419
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Guofei%20Sun.QT.&searchWithin=p_Author_Ids:37856222
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Guofei%20Sun.QT.&searchWithin=p_Author_Ids:37856222
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tianhai%20Zhao.QT.&searchWithin=p_Author_Ids:375986
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5714188
http://scholarworks.sjsu.edu/etd_projects/198
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jinhua%20Hu.QT.&searchWithin=p_Author_Ids:378561690
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jinhua%20Hu.QT.&searchWithin=p_Author_Ids:378561690
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jianhua%20Gu.QT.&searchWithin=p_Author_Ids:37595419
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jianhua%20Gu.QT.&searchWithin=p_Author_Ids:37595419
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Guofei%20Sun.QT.&searchWithin=p_Author_Ids:37856222
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Guofei%20Sun.QT.&searchWithin=p_Author_Ids:37856222
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tianhai%20Zhao.QT.&searchWithin=p_Author_Ids:375986
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Tianhai%20Zhao.QT.&searchWithin=p_Author_Ids:375986
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5714188
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5714188
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5715067&queryText%3DA+Scheduling+Strategy+on+Load+Balancing+of+V
http://www.sciencedirect.com/science/journal/22106502
http://www.sciencedirect.com/science/journal/22106502
http://www.sciencedirect.com/science/journal/22106502/13/supp/C
http://growingscience.com/beta/ijiec/
http://growingscience.com/beta/ijiec/

E. Barlasker et al.

[33] M. A. Rajini, A hybrid meta-heuristic algorithm for classification using micro array data, International
Journal of Scientific & Engineering Research, 3, (2012), pp.1–9.

[34] J. Senthilnath, S.N. Omkar, and V. Mani, Clustering using firefly algorithm: performance study,
Swarm and Evolutionary Computation, 1, Elsevier, (2011), pp.164–171.

[35] S. Nandy, P. P. Sarkar, and A. Das, Analysis of nature-inspired firefly algorithm based back
propagation neural network training, International Journal of Compute Application, 43(2012), pp. 8–
16.

[36] S. M. Farahani, A. A. Abshouri, B. Nasiri, M. R. Meybodi, A Gaussian firefly algorithm, International
Journal of Machine Learning. and Computing, 1 (2011), pp.448–453.

[37] S. M. Farahani, B. Nasiri, and M. R. Meybodi, A multiswarm based firefly algorithm in dynamic
environments, in Proc. Third international conference on signal processing systems, (Yantai, China,
2011), pp.68–72.

[38] A. A. Abshouri, M.R. Meybodi, and A. Bakhtiary, New firefly algorithm based on multi swarm and
learning automata in dynamic environments, in Proc. 3rd Int. conference on signal processing
systems, (Yantai, China, 2011), pp. 73–77.

[39] K.Mukherjee, G.Sahoo, Green Cloud: An Algorithmic Approach, International Journal of Computer
Applications, 9(9), (2010).

[40] D. Kumar, Z. Raza. A PSO based VM resource scheduling model for cloud computing. in proc.
IEEE's International Conference on Computational Intelligence and Communication Technology
(CICT); (2015), pp.213–219.

[41] S.Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang, Particle swarm optimization for energy-aware virtual
machine placement optimization in virtualized data centers, in proc.19th IEEE International
Conference on Parallel and Distributed Systems (ICPADS’13), IEEE, (2013), pp. 102–109.

[42] L. Dai, JH. Li, An optimal resource allocation algorithm in cloud computing environment. Applied
Mechanics and Materials. 733(1), (2015), pp.779–83.

[43] W. Shu, W. Wang, Y. Wang, A novel energy-efficient resource allocation algorithm based on immune
clonal optimization for green cloud computing. EURASIP Journal on Wireless Communications and
Networking, Springer, (2014), pp.1–9.

[44] KN. Krishnan, D. Ghose, Glowworm swarm optimization for simultaneous capture of multiple local
optima of multimodal functions. Swarm Intelligence 3(2), Springer, (2009), pp. 87-124.

[45] S. K. Pal, C. S. Rai, and A. P. Singh, Comparative Study of Firefly Algorithm and Particle Swarm
Optimization for Noisy Non-Linear Optimization Problems, I.J. Intelligent Systems and Applications,
l, Mecs press, (2012), pp.50-57.

[46] M. Cardosa, M. Korupolu, A. Singh, Shares and utilities based power consolidation in virtualized
server environments, in: Proceedings of IFIP/IEEE Integrated Network Management (IM’09), (2009),
pp. 327–334.

[47] A. Beloglazov, and R. Buyya, Optimal Online Deterministic algorithms and adaptive heuristics for
energy and performance efficient dynamic consolidation of virtual machines in cloud data centers,
Concurr. Comput. Pract. Experience 24(13), Wiley, (2011), pp.1-24

[48] S. Srikantaiah, A. Kansal, F. Zhao, Energy aware consolidation for cloud computing, in proc. of
HotPower’08 Workshop on Power Aware Computing and Systems, (2008), pp.1-5.

[49] B. Li, J. Li, J. Huai, T. Wo, Q. Li, L. Zhong, Enacloud: an energy-saving application live placement
approach for cloud computing environments, in: Proceedings of the IEEE International Conference on
Cloud Computing, (2009), pp. 17–24.

[50] A. Verma, P. Ahuja, A. Neogi, pMapper: power and migration cost aware application placement in
virtualized systems, in: proc.of the 9th ACM/IFIP/USENIX International Conference on Middleware,
(2008), pp. 243–264.

http://www.sciencedirect.com/science/journal/22106502

E. Barlasker et al.

[51] E. Feller, L. Rilling, C. Morin, Energy-aware ant colony based workload placement in clouds, in:
Proceedings of the IEEE/ACM International Conference on Grid Computing (GRID), (2011), pp. 26–
33

[52] S. Chaisiri, B. Lee, D. Niyato, Optimal virtual machine placement across multiple cloud providers, in:
Proceedings of the IEEE Asia-Pacific Services Computing Conference, (2009), pp. 103–110

[53] M. Bichler, T. Setzer, B. Speitkamp, Capacity planning for virtualized servers, Workshop on
Information Technologies and Systems (WITS), Milwaukee, USA, (2006).

[54] B. Speitkamp, M. Bichler, A mathematical programming approach for server consolidation problems
in virtualized data centers, IEEE Trans. Services Comput. IEEE, (2010), pp.266–278.

[55] H. Van, F. Tran, J. Menaud, Performance and power management for cloud infrastructures, in: proc.of
the IEEE 3rd International Conference on Cloud Computing, IEEE, (2010), pp. 329–336.

[56] F. Hermenier, X. Lorca, J. Menaud, G. Muller, J. Lawall, Entropy: a consolidation manager for
clusters, in proc of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, ACM, (2009), pp. 41–50.

[57] A. Beloglazovy, R. Buyya, Y. C. Lee, and A. Zomaya, A Taxonomy and Survey of Energy-Efficient
Data Centers and Cloud Computing Systems, Technical Report, CLOUDS TR-2010-3, Cloud
Computing and Distributed Systems Laboratory, The University of Melbourne, (2010), pp.1-51.

[58] R. Nathuji, and K,. Schwan, Virtual power: coordinated power management in virtualized enterprise
systems, ACM SIGOPS Operating Systems Review, 41(6), ACM, (2007), pp. 265-278.

[59] C. Bouras and A. Sevasti, Service level agreements for DiffServ-based services' provisioning, Journal
of network and computer applications 28.4, Elsevier, (2005), pp.285-302.

[60] B. Addis, D. Ardagna, B. Panicucci, M. S. Squillante and L. Zhang, "A Hierarchical Approach for the
Resource Management of Very Large Cloud Platforms," IEEE Transactions on Dependable and
Secure Computing, 10(5), IEEE, (2013), pp. 253-272.

[61] M. Sharifi, H. Salimi, and M. Najafzadeh, Power-efficient distributed scheduling of virtual machines
using workload-aware consolidation techniques, The Journal of Supercomputing, 6, Springer, (2011),
pp.46-66.

[62] B Perumal, A Murugaiyan, A Firefly Colony and Its Fuzzy Approach for Server Consolidation and
Virtual Machine Placement in Cloud Data centers, Advances in Fuzzy Systems, (2016), Article ID
6734161, 15 pages, doi:10.1155/2016/6734161

[63] X. S. Yang, Engineering Optimisation: An Introduction with Meta-heuristic Applications, John Wiley
&Sons, (2010)

[64] X. S. Yang, Firefly algorithms for multimodal optimization. In: Stochastic Algorithms: Foundations
and Applications, SAGA, Lecture Notes in Computer Sciences, 5792, Springer, (2009), pp.169–178.

[65] A. O. Bajeh, and K. O. Abolarinwa, A Comparative Study of Genetic and Tabu Search Algorithms,
International Journal of Computer Applications, 31,(2011), pp.43-48.

[66] S. C. Johnson, Hierarchical clustering schemes, Psychometrika 32.3, Springer, (1967), pp. 241-254.
[67] R. D'andrade, U-Statistic Hierarchical Clustering, Psychometrika, 43.1, Springer, (1978), pp.58-67
[68] R. N. Calheiros, R. Ranjan, et al. CloudSim: a toolkit for modeling and simulation of Cloud

computing environments and evaluation of resource provisioning algorithms, Software: Practice and
Experience, 41, Wiley, (2011), pp.23–50

[69] K. S. Park, and V. S. Pai, CoMon: a mostly-scalable monitoring system for Planet- Lab, ACM
SIGOPS Operating Systems Review, 40, ACM, (2006), pp. 65–74.

[70] The SPECpower benchmark website. [Online]. (accessed on 18/10/2014). Available:
http://www.spec.org/power_ssj2008/

[71] L. Zhao, Y. Ren, M. Li, K. Sakurai, Flexible service selection with user-specific QoS service support
in service-oriented architecture, Journal of Network and Computer Applications 35.3, Elsevier,
(2012), pp.962-973.

http://www.spec.org/power_ssj2008/

E. Barlasker et al.

Biographies:

Esha Barlaskar completed her masters degree in Computer Science with specialization in Artificial
Intelligence from Assam Don Bosco University, India. Currently Esha is a PhD student in the High
Performance and Distributed Computing (HPDC) cluster at Queen's University of Belfast, United Kingdom.
Esha’s research interests include: cloud data center monitoring, dynamic resource management in cloud and
dynamic consolidation of virtual machines.

Yumnam Jayanta Singh is a professor and head of the Department of Computer Science, Engineering and
Information Technology, Assam Don Bosco University, India. He earned his PhD in Computer Science and
Information Technology. His areas of research interest are Real Time Distributed Database, Cloud
Computing, Digital Signal processing, Data warehousing and mining, etc.

Biju Issac is a senior lecturer at the School of Computing, Teesside University, United Kingdom. He earned
PhD in Networking and Mobile Communications, along with MCA (Master of Computer Applications) and
BE (Electronics and Communications Engineering). His research interests are in computer networks,
application of artificial intelligence and optimization problems.

