97 research outputs found

    Algorithms and Complexity for Geodetic Sets on Planar and Chordal Graphs

    Get PDF
    We study the complexity of finding the geodetic number on subclasses of planar graphs and chordal graphs. A set S of vertices of a graph G is a geodetic set if every vertex of G lies in a shortest path between some pair of vertices of S. The Minimum Geodetic Set (MGS) problem is to find a geodetic set with minimum cardinality of a given graph. The problem is known to remain NP-hard on bipartite graphs, chordal graphs, planar graphs and subcubic graphs. We first study MGS on restricted classes of planar graphs: we design a linear-time algorithm for MGS on solid grids, improving on a 3-approximation algorithm by Chakraborty et al. (CALDAM, 2020) and show that MGS remains NP-hard even for subcubic partial grids of arbitrary girth. This unifies some results in the literature. We then turn our attention to chordal graphs, showing that MGS is fixed parameter tractable for inputs of this class when parameterized by their treewidth (which equals the clique number minus one). This implies a linear-time algorithm for k-trees, for fixed k. Then, we show that MGS is NP-hard on interval graphs, thereby answering a question of Ekim et al. (LATIN, 2012). As interval graphs are very constrained, to prove the latter result we design a rather sophisticated reduction technique to work around their inherent linear structure

    Three problems on well-partitioned chordal graphs

    Get PDF
    In this work, we solve three problems on well-partitioned chordal graphs. First, we show that every connected (resp., 2-connected) well-partitioned chordal graph has a vertex that intersects all longest paths (resp., longest cycles). It is an open problem [Balister et al., Comb. Probab. Comput. 2004] whether the same holds for chordal graphs. Similarly, we show that every connected well-partitioned chordal graph admits a (polynomial-time constructible) tree 3-spanner, while the complexity status of the Tree 3-Spanner problem remains open on chordal graphs [Brandstädt et al., Theor. Comput. Sci. 2004]. Finally, we show that the problem of finding a minimum-size geodetic set is polynomial-time solvable on well-partitioned chordal graphs. This is the first example of a problem that is NP -hard on chordal graphs and polynomial-time solvable on well-partitioned chordal graphs. Altogether, these results reinforce the significance of this recently defined graph class as a tool to tackle problems that are hard or unsolved on chordal graphs.acceptedVersio

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k3k \geq 3, deciding whether src(G)k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    Convexity in partial cubes: the hull number

    Full text link
    We prove that the combinatorial optimization problem of determining the hull number of a partial cube is NP-complete. This makes partial cubes the minimal graph class for which NP-completeness of this problem is known and improves some earlier results in the literature. On the other hand we provide a polynomial-time algorithm to determine the hull number of planar partial cube quadrangulations. Instances of the hull number problem for partial cubes described include poset dimension and hitting sets for interiors of curves in the plane. To obtain the above results, we investigate convexity in partial cubes and characterize these graphs in terms of their lattice of convex subgraphs, improving a theorem of Handa. Furthermore we provide a topological representation theorem for planar partial cubes, generalizing a result of Fukuda and Handa about rank three oriented matroids.Comment: 19 pages, 4 figure

    07211 Abstracts Collection -- Exact, Approximative, Robust and Certifying Algorithms on Particular Graph Classes

    Get PDF
    From May 20 to May 25, 2007, the Dagstuhl Seminar 07211 ``Exact, Approximative, Robust and Certifying Algorithms on Particular Graph Classes\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Revisiting path-type covering and partitioning problems

    Get PDF
    This is a survey article which is at the initial stage. The author will appreciate to receive your comments and contributions to improve the quality of the article. The author's contact address is [email protected] problems belong to the foundation of graph theory. There are several types of covering problems in graph theory such as covering the vertex set by stars (domination problem), covering the vertex set by cliques (clique covering problem), covering the vertex set by independent sets (coloring problem), and covering the vertex set by paths or cycles. A similar concept which is partitioning problem is also equally important. Lately research in graph theory has produced unprecedented growth because of its various application in engineering and science. The covering and partitioning problem by paths itself have produced a sizable volume of literatures. The research on these problems is expanding in multiple directions and the volume of research papers is exploding. It is the time to simplify and unify the literature on different types of the covering and partitioning problems. The problems considered in this article are path cover problem, induced path cover problem, isometric path cover problem, path partition problem, induced path partition problem and isometric path partition problem. The objective of this article is to summarize the recent developments on these problems, classify their literatures and correlate the inter-relationship among the related concepts

    Complexity and Algorithms for ISOMETRIC PATH COVER on Chordal Graphs and Beyond

    Get PDF
    A path is isometric if it is a shortest path between its endpoints. In this article, we consider the graph covering problem Isometric Path Cover, where we want to cover all the vertices of the graph using a minimum-size set of isometric paths. Although this problem has been considered from a structural point of view (in particular, regarding applications to pursuit-evasion games), it is little studied from the algorithmic perspective. We consider Isometric Path Cover on chordal graphs, and show that the problem is NP-hard for this class. On the positive side, for chordal graphs, we design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The approximation algorithm is based on a reduction to the classic path covering problem on a suitable directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have length at most k) by showing that it has an approximation ratio of k+7 for such graphs, and to graphs of treelength at most ?, where the approximation ratio is at most 6?+2

    Hardness and approximation for the geodetic set problem in some graph classes

    Full text link
    In this paper, we study the computational complexity of finding the \emph{geodetic number} of graphs. A set of vertices SS of a graph GG is a \emph{geodetic set} if any vertex of GG lies in some shortest path between some pair of vertices from SS. The \textsc{Minimum Geodetic Set (MGS)} problem is to find a geodetic set with minimum cardinality. In this paper, we prove that solving the \textsc{MGS} problem is NP-hard on planar graphs with a maximum degree six and line graphs. We also show that unless P=NPP=NP, there is no polynomial time algorithm to solve the \textsc{MGS} problem with sublogarithmic approximation factor (in terms of the number of vertices) even on graphs with diameter 22. On the positive side, we give an O(n3logn)O\left(\sqrt[3]{n}\log n\right)-approximation algorithm for the \textsc{MGS} problem on general graphs of order nn. We also give a 33-approximation algorithm for the \textsc{MGS} problem on the family of solid grid graphs which is a subclass of planar graphs

    Parameterized Complexity of Geodetic Set

    Get PDF
    A vertex set S of a graph G is geodetic if every vertex of G lies on a shortest path between two vertices in S. Given a graph G and k ? ?, the NP-hard Geodetic Set problem asks whether there is a geodetic set of size at most k. Complementing various works on Geodetic Set restricted to special graph classes, we initiate a parameterized complexity study of Geodetic Set and show, on the negative side, that Geodetic Set is W[1]-hard when parameterized by feedback vertex number, path-width, and solution size, combined. On the positive side, we develop fixed-parameter algorithms with respect to the feedback edge number, the tree-depth, and the modular-width of the input graph
    corecore