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Abstract
A vertex set S of a graph G is geodetic if every vertex of G lies on a shortest path between two
vertices in S. Given a graph G and k ∈ N, the NP-hard Geodetic Set problem asks whether there
is a geodetic set of size at most k. Complementing various works on Geodetic Set restricted to
special graph classes, we initiate a parameterized complexity study of Geodetic Set and show,
on the negative side, that Geodetic Set is W[1]-hard when parameterized by feedback vertex
number, path-width, and solution size, combined. On the positive side, we develop fixed-parameter
algorithms with respect to the feedback edge number, the tree-depth, and the modular-width of the
input graph.
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1 Introduction

Let G be an undirected, simple graph with vertex set V (G) and edge set E(G). The
interval I[u, v] of two vertices u and v of G is the set of vertices of G that are contained
in any shortest path between u and v. In particular, u, v ∈ I[u, v]. For a set S of vertices,
let I[S] be the union of the intervals I[u, v] over all pairs of vertices u and v in S. A set
of vertices S is called geodetic if I[S] contains all vertices of G. In this work we study the
following problem (see an exemplary illustration in Figure 1):

Geodetic Set
Input: A graph G and an integer k.
Question: Does G have a geodetic set of cardinality at most k?

Atici [2] showed that Geodetic Set is NP-complete on general graphs, and it was shown
that the hardness holds even if the graph is planar [8], subcubic [7], chordal, or bipartite
chordal [11]. Although not stated, W[2]-hardness for the solution size k directly follows
from the reduction for the latter result of Dourado et al. [11]. On the positive side, the
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20:2 Parameterized Complexity of Geodetic Set

Figure 1 An exemplary graph. The gray vertices form a minimum geodetic set. The shortest
paths between the top left and the bottom right gray vertex cover all vertices except for the bottom
left vertex. Observe that every geodetic set contains all degree-one vertices.

problem was shown to be polynomial-time solvable for cographs, split graphs and unit interval
graphs [11]. Also, upper bounds on the geodetic set size in Cartesian product graphs were
studied [6].

For a graph G and k ∈ N, the closely related Geodetic Hull problem asks whether
there is a vertex set S ⊆ V (G) with I |V (G)|[S] = V (G) and |S| ≤ k, where I0[S] = S and
Ij [S] = I[Ij−1[S]] for j > 0. Geodetic Hull is NP-hard on bipartite [1], chordal [4],
and P9-free graphs [12]. Recently, Kanté et al. [17] studied the parameterized complexity
of Geodetic Hull: they proved that the problem is W[2]-hard when parameterized by k,
and W[1]-hard but in XP when parameterized by tree-width.1

Our Contributions. Comparing the algorithmic complexity of Geodetic Hull and Geode-
tic Set, one can observe that both problems are trivial on trees (take all leaves into the
solution). But while Geodetic Hull is polynomial-time solvable on graphs of constant
tree-width, the complexity of Geodetic Set on graphs of tree-width two is unknown to the
best of our knowledge. Motivated by this gap, we study the parameterized complexity of
Geodetic Set for structural parameters such as tree-width that measure the tree-likeness
of the input graph, providing both positive and negative results.

We start off by showing that Geodetic Set is W[1]-hard with respect to tree-width.
More specifically, we show that Geodetic Set is W[1]-hard for feedback vertex number,
path-width, and solution size, all three combined (Section 3), using a parameterized reduction
from the W[1]-hard Grid Tiling problem [20]. Since this reduction implies NP-hardness,
this complements previous results by providing a more fine-grained view on computational
tractability in terms of parameterized complexity instead of studying special graph classes.

We complement the W[1]-hardness by presenting two fixed-parameter tractability results
for Geodetic Set. First, we show that Geodetic Set is fixed-parameter tractable with
respect to the feedback edge number (Section 4). It turns out to be quite effortful to
obtain fixed-parameter tractability, requiring the design and analysis of polynomial-time
data reduction rules and branching before employing the main technical trick: Integer Linear
Programming (ILP) with a bounded number of variables. To the best of our knowledge, this
is the first usage of ILP when solving Geodetic Set.

Second, we show that Geodetic Set is fixed-parameter tractable with respect to clique-
width combined with diameter (Section 5); note that Geodetic Set is NP-hard even on
graphs with constant diameter [11], and W[1]-hard with respect to clique-width (this follows
from our first result). Our result exploits the fact that we can express Geodetic Set in
an MSO1 logic formula, the length of which is upper-bounded in a function of the diameter
of the graph. A direct consequence of this result is that Geodetic Set is fixed-parameter
tractable with respect to tree-depth and with respect to modular-width.

1 Informally, this means it can be solved in polynomial time for graphs of constant tree-width.



L. Kellerhals and T. Koana 20:3

cw

tw

pw (Thm. 7) fvn (Thm. 7)

W[1]-hard

fen (Thm. 17)cw + diam (Thm. 18)

td (Cor. 19)mw (Cor. 19)

vc
FPT

Figure 2 An overview of our results for Geodetic Set, containing the parameters vertex cover
number (vc), modular-width (mw), tree-depth (td), clique-width (cw), diameter (diam), feedback
edge number (fen), path-width (pw), feedback vertex number (fvn) and tree-width (tw). An edge
between two parameters indicates that the one below is smaller than some function of the other.

Figure 2 gives an overview of the parameters for which we obtain positive and negative
results, and presents their interdependence.

2 Preliminaries

For n ∈ N let [n] = {1, 2, . . . , n}. The distance dG(u, v) between two vertices u and v

in G is the length of a shortest path between u and v (also called shortest u–v-path). We
drop the subscript ·G if G is clear from context. Note that w belongs to I[u, v] if and only
if dG(u, v) = dG(u,w) + dG(w, v). The diameter diam(G) of G is the maximum distance
between any two vertices of G. A multigraph G consists of a vertex set and an edge multiset.
Note that in a multigraph, we count self-loops twice for the vertex degree.

A set F ⊆ E(G) is a feedback edge set if G\F is a forest. The feedback edge number fen(G)
is the size of a smallest such set. Analogously, a set V ′ ⊆ V (G) is a feedback vertex set
if G− V ′ is a forest. The feedback vertex number fvn(G) is the size of a smallest such set.

For a graph G, a tree decomposition is a pair (T,B), where T is a tree and B : V (T )→
2V (G) such that (i) for each edge uv ∈ E(G) there exists x ∈ V (T ) with u, v ∈ B(x), and
(ii) for each v ∈ V (G) the set of nodes x ∈ V (T ) with v ∈ B(x) forms a nonempty, connected
subtree in T . The width of (T,B) is maxx∈V (T )(|B(x)| − 1). The tree-width tw(G) of G
is the minimum width of all tree decompositions of G. The path-width pw(G) of G is the
minimum width of all tree decompositions (T,B) of G for which T is a path.

The tree-depth of a connected graph G is defined as follows [21]. Let T be a rooted tree
with vertex set V (G), such that if xy ∈ E(G), then x is either an ancestor or a descendant
of y in T . We say that G is embedded in T . The depth of T is the number of vertices in a
longest path in T from the root to a leaf. The tree-depth td(G) of G is the minimum t such
that there is a rooted tree of depth t in which G is embedded.

We next define the modular-width of a graph G [15]. A vertex set M ⊆ V (G) is a module
if for all u, v ∈M it holds that N(v) ∩ V (G) \M = N(w) ∩ V (G) \M . We call a module M
trivial, if |M | ≤ 1 or M = V , and we call it strong if for every other module M ′ of G we
have that M ∩M ′ = ∅, or that one is a subset of the other. A graph that only admits trivial
modules is called prime. Every non-singleton graph can be uniquely partitioned into maximal
strong modules P = {M1, . . . ,M`} with ` ≥ 2. Recursively partitioning the graphs G[Mi]
in this way until every module is a single vertex yields a modular decomposition of G. The
modular-width is the largest number of trivial modules in a prime subgraph G[Mi] of the
modular decomposition of G.

IPEC 2020
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A parameterized problem is a subset L ⊆ Σ∗ ×N over a finite alphabet Σ. Let f : N→ N
be a computable function. A problem L is fixed-parameter tractable (in FPT) with respect
to k if (I, k) ∈ L is decidable in time f(k) · |I|O(1) and L is in XP if (I, k) ∈ L is decidable
in time |I|f(k). There is a hierarchy of computational complexity classes for parameterized
problems: FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. To show that a parameterized problem L

is (presumably) not in FPT one may use a parameterized reduction from a W[1]-hard
problem to L. A parameterized reduction from a parameterized problem L to another
parameterized problem L′ is a function that acts as follows: For functions f and g, given
an instance (I, k) of L, it computes in f(k) · |I|O(1) time an instance (I ′, k′) of L′ so
that (I, k) ∈ L ⇐⇒ (I ′, k′) ∈ L′ and k′ ≤ g(k).

3 Hardness for Path-width and Feedback Vertex Number

In this section we show that Geodetic Set is W[1]-hard with respect to the feedback
vertex number, the path-width and the solution size, combined. To this end, we present a
parameterized reduction from Grid Tiling, which is W[1]-hard with respect to k [20]:

Grid Tiling
Input: A collection S of k2 sets Si,j ⊆ [m] × [m], i, j ∈ [k] (called tile sets),

each of cardinality exactly n.
Question: Can one choose a tile (xi,j , yi,j) ∈ Si,j for each i, j ∈ [k] such that xi,j =

xi,j
′ with j′ = (j + 1) mod k and yi,j = yi

′,j with i′ = (i+ 1) mod k?

This distinguishes our reduction from most parameterized reductions to show W[1]-hardness,
as one typically reduces from Clique, or its multicolored variant. Grid Tiling though
seemed to be a much better fit, since the values of the tiles can be expressed by lengths of
paths. This is the central idea for our reduction: We place a connection gadget between each
pair of adjacent tile sets. Placing paths of fitting lengths, the connection gadget ensures
that the vertices corresponding to the tiles agree with each other, that is, the appropriate
coordinates of the two tiles are equal.

I Remark. Throughout this section we write i′ and j′ as shorthands for (i + 1) mod k
and (j + 1) mod k, respectively. Moreover, we assume that the grid size k is even.

Construction. Let I = (S, k,m, n) be an instance of Grid Tiling. We construct an
instance of Geodetic Set I ′ = (G, k′) as follows: First, we set k′ = k2 + 4. We add
the global vertices Ξ = {α, β, γ, δ} and Ξ′ = {α′, β′, γ′, δ′}, and add four edges αα′, ββ′,
γγ′ and δδ′. Next, for each i, j ∈ [k] we introduce tile vertices Si,j = {si,j1 , . . . , si,jn }. For a
tile vertex v we denote by (xv, yv) the corresponding tile. Moreover, for each i, j ∈ [k] we
introduce two copies of the horizontal and two copies of the vertical connection gadget.

The construction of a horizontal connection gadget next to tile set Si,j is as follows.
Let S = Si,j and let S′ = Si,j

′ be the vertices of the two horizontally adjacent tile sets.
We introduce the vertices a and b called hidden vertices and the vertices a∗ and b∗ called
exposed vertices. Next, for every tile vertex s ∈ S with its corresponding tile (xs, ys), we
add a path of length 16m+ 2xs + 1 from s to a, and a path of length 16m− 2xs + 1 from s

to b. For every tile vertex s′ ∈ S′ with its corresponding tile (xs′ , ys′), we add a path of
length 16m− 2xs′ + 1 from s′ to a, and a path of length 16m+ 2xs′ + 1 from s′ to b. We call
these paths tile paths towards S, respectively S′. We call the neighbors of a, respectively b,
connector vertices towards S, respectively S′. The exposed vertices a∗, respectively b∗ are
adjacent to all neighbors of a, respectively b. Moreover, each of a∗ and b∗ has one additional
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Figure 3 Left: One copy of a horizontal connection gadget next to Si,j = {s1, . . . , sn} where j
is even, connecting the tile sets Si,j and Si,j′ . Edges with label ` in the figure represent paths of
length `. The ellipses mark the connector vertices towards Si,j and Si,j′ . Right: An exemplary
reduction from an instance of Grid Tiling, where k = 2. Between every pair of horizontally, resp.
vertically adjacent tile sets (big circles) there are two copies of horizontal, resp. vertical connection
gadgets. Note that α, β, γ, δ ∈ Ξ are global; every vertex labeled such is the same vertex. The gray
square marks the vertices of Q2,1 (note that β, δ /∈ Q3,2). Note that this illustration wraps around
its boundaries.

neighbor: If j is even, then α is a neighbor of a∗ and β is a neighbor of b∗. If j is odd,
then β is a neighbor of a∗ and α is a neighbor of b∗. See Figure 3 (left) for an illustration of
a horizontal connection gadget next to Si,j for even j.

The construction of a vertical connection gadget next to tile set Si,j is identical to the
construction of a horizontal gadget, except for the following differences:

the gadget connects tile sets S = Si,j and S′ = Si
′,j ;

the lengths of the tile paths depend on the y-coordinates; and
if i is even, then γ is a neighbor of a∗ and δ is a neighbor of b∗, and if i is odd, then δ is
a neighbor of a∗ and γ is a neighbor of b∗.

This concludes the construction. See Figure 3 (right) for an overview.
Let J be the set of all hidden vertices and let J∗ be the set of all exposed vertices. We

now show that this construction has the desired properties for showing W[1]-hardness with
respect to solution size, feedback vertex number and path-width, combined.

I Observation 1. The constructed graph G has pw(G) ≤ 16k2 + 2 and fvn(G) ≤ 16k2.

Proof. The graph G′ = G− (J ∪J∗) consists of paths of length one and subdivisions of stars.
Clearly, fvn(G′) = 0, and since removing the center vertex of a subdivision of a star yields
disjoint paths, pw(G′) = 2. Adding a vertex to a graph increases each of the two parameters
by at most one. Now, as |J ∪ J∗| = 16k2, the claim follows. J

Correctness. Let us first point out that the central challenge is to cover all hidden vertices J ,
as every other vertex is covered by the four degree-one vertices in Ξ′.

I Observation 2 (?2). I[Ξ′] = V (G) \ J .

2 Results marked with (?) are deferred to the full version.

IPEC 2020
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Then the forward direction becomes straightforward: Our geodetic set V ′ consists of Ξ′ and,
for every tile in the solution of instance I, the corresponding tile vertex. It is easy to see that
for every (copy of a) connection gadget, there are two shortest paths between the chosen
tile vertices of any two adjacent tiles, each covering one of the two hidden vertices in the
connection gadget. Compare with Figure 3 (hidden vertices are gray).

The backward direction is more involved. We show in two steps that every solution of
our constructed instance consists of Ξ′ and exactly one tile vertex of each tile set. For this
we make use of two properties of our construction. First, if two vertices are sufficiently far
apart, then there is a shortest path via some global vertex that connects them.

I Lemma 3 (?). For any two vertices u, v ∈ V (G) there is a u–v-path of length at most 36m+6
that visits some global vertex.

With Lemma 3 at hand, it is easy to derive from Figure 3 (left) the following observation,
which is also the reason why the vertices in J are called hidden.

I Observation 4. Let u, v ∈ V (G) \ (Ξ ∪ Ξ′). If a shortest u–v-path visits a global vertex,
then none of its inner vertices is a hidden vertex.

We introduce some additional notation. The square Qi,j of tile set Si,j is the vertex set
consisting of the tile vertices Si,j , the paths between tile vertices and connector vertices
towards Si,j , and all hidden vertices and exposed vertices that are in the connection gadgets
next to Si,j . See Figure 3 (right) for an illustration of a square. Note that the squares are
pairwise disjoint. We say that two squares are adjacent if they contain vertices of the same
connection gadget. The adjacency Adj(Qi,j) of a square Qi,j is the union of squares adjacent
to Qi,j . The closed adjacency of a square Qi,j is the vertex set Adj[Qi,j ] = Adj(Qi,j) ∪Qi,j .

We show that any solution of (G, k′) contains exactly one vertex per square.

I Lemma 5. A geodetic set V ′ ⊆ V (G) of size at most k′ consists of the four vertices in Ξ′,
and exactly one vertex in each square Qi,j, for each i, j ∈ [k].

Proof sketch. Recall that k′ = k2 + 4. The four vertices in Ξ′ are the only vertices of
degree one and are part of every geodetic set. Further we may assume that V ′ ∩ Ξ = ∅
as I[V ′] = I[V ′ \ Ξ]. So V ′ consists of the four vertices in Ξ′ and a set of at most k2 vertices
within the squares, denoted by W .

For contradiction, assume that there are q > 0 squares Q1, . . . , Qq such that Qp ∩W = ∅
for p ∈ [q]. We call these squares empty, and all other squares non-empty. We claim that there
is an empty square Qp such that |Adj(Qp) ∩W | ≤ 8. Let W ′ ⊆W be an arbitrary subset
consisting of exactly one vertex ofW per non-empty square. So |W ′| = k2−q and |W \W ′| ≤ q.
Clearly, for each p ∈ [q], we have |Adj(Qp)∩W ′| ≤ 4, thus

∑q
p=1 |Adj(Qp)∩W ′| ≤ 4q. Since∑q

p=1 |Adj(Qp) ∩ {v}| ≤ 4 for any vertex v ∈ V (G), we also have
q∑
p=1
|Adj(Qp) ∩ (W \W ′)| =

q∑
p=1

∑
v∈W\W ′

|Adj(Qp) ∩ {v}| ≤ 4q.

Consequently,
q∑
p=1
|Adj(Qp) ∩W | =

q∑
p=1
|Adj(Qp) ∩W ′|+

q∑
p=1
|Adj(Qp) ∩ (W \W ′)| ≤ 4q + 4q = 8q.

It follows that there exists an empty square Q for which |Adj(Q) ∩W | ≤ 8.
Let JQ = J ∩ N [Q] be the sixteen hidden vertices that are either in Q or adjacent to

vertices of Q. The next two claims are consequences of Lemma 3 and Observation 4 (see the
full version for proofs of the claims):
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(1) no shortest path between a vertex outside of Q and a vertex outside of Adj[Q] can visit
any vertex in JQ, and

(2) W covers at most |Adj(Q) ∩W | ≤ 8 vertices of JQ.
Since |JQ| = 16, the set V ′ is not geodetic; so there cannot be an empty square in G. There
are k2 squares and |W | = |V ′ \ Ξ′| ≤ k2. So |V ′ ∩Qi,j | = 1 for each i, j ∈ [k]. J

Using Lemma 5, we show that every solution vertex in a square must be a tile vertex.

I Lemma 6. A geodetic set V ′ ⊆ V (G) of size at most k′ consists of the four vertices in Ξ′
and exactly one vertex of Si,j, for each i, j ∈ [k].

Proof. For i, j ∈ [k], let S = Si,j , S′ = Si,j
′ , Q = Qi,j , and Q′ = Qi,j

′ . Without loss
of generality, assume that j is even (see Figure 3 for an illustration). Let X1 and X2
be the two copies of the horizontal connection gadget next to tile S, let a1, b1 ∈ V (X1)
and a2, b2 ∈ V (X2) be the hidden vertices, and let a∗1, b∗1 ∈ V (X1) and a∗2, b∗2 ∈ V (X2) be
the exposed vertices. By Lemma 5, V ′ contains exactly one vertex u in Q and exactly one
vertex v in Q′.

Consider a vertex w ∈ V (G) \ (Q ∪ Q′). Note that any shortest u–w-path and any
shortest v–w-path going through one of a1, a2, b1, b2 must use tile vertices in S and S′. It
is easy to verify that due to its length, such a path must visit some global vertex, thus it
cannot visit any hidden vertex (Observation 4). It follows that {a1, a2, b1, b2} ⊆ I[u, v].

For the sake of contradiction, suppose that u /∈ S. In particular, we assume without loss
of generality that u ∈ V (X1). Let u′ ∈ S be the tile vertex such that u lies on the tile path
between u′ and a1. Observe that d(u, a1) < d(u, a2). Hence, no shortest u–v-path visits a2 if
d(v, a1) ≤ d(v, a2). It follows that v lies on some tile path between some tile vertex v′ ∈ S′
and a2. Since there are shortest u–v-paths visiting a1 and a2, we have

d(u, v) = (d(a1, u
′)− d(u′, u)) + d(a1, v

′) + d(v, v′) and
d(u, v) = (d(a2, v

′)− d(v, v′)) + d(a2, u
′) + d(u, u′).

By construction, d(a1, u
′) = d(a2, u

′) = 16m + 2xu′ + 1 and d(a1, v
′) = d(a2, v

′) = 16m −
2xv′ + 1. Thus, we obtain d(u, u′) = d(v, v′) and d(u, v) = 32m+ 2xu′ − 2xv′ + 2. Note that
there is a u–v-path visiting α that is of length

` = (d(u′, a∗1)− d(u, u′)) + 2 + (d(a∗2, v′)− d(v′, v)).

Since d(a1, u
′) = 16m + 2xu′ + 1 and d(v′, a1) = 16m − 2xv′ + 1 (by construction), and

since ` ≥ d(u, v), we obtain d(u, u′) = d(v, v′) ≤ 1. By the assumption that u /∈ S, we have
d(u, u′) > 0. It follows that d(u, u′) = d(v, v′) = 1. Finally, observe that the shortest path
from u to v that visits b1 is of length

`′ = d(u, b1) + d(b1, v) = 32m− 2xu′ + 2xv′ + 4.

Since `′ = d(u, v), we obtain 4xu′ − 4xv′ = 2, so one of xu′ , xv′ cannot be integer – a
contradiction. J

Now, given Lemma 6, if there is a solution for our instance of Geodetic Set, then the
tiles corresponding to the chosen tile vertices are a solution for our instance of Grid Tiling.
The main theorem of the section follows:

I Theorem 7 (?). Geodetic Set is W[1]-hard with respect to the feedback vertex number,
the path-width, and the solution size, combined.

IPEC 2020
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4 Fixed-Parameter Tractability for Feedback Edge Number

We now show that Geodetic Set is fixed-parameter tractable for feedback edge number.
In fact, we present a fixed-parameter algorithm for the following, more general variant:

Extended Geodetic Set
Input: A graph G, a vertex set T ⊆ V (G), and an integer k.
Question: Does G have a geodetic set S ⊇ T of cardinality at most k?

The algorithm works in three steps: We first apply some polynomial-time data reduction
rules. The graph may be arbitrarily large even after they are applied exhaustively. However,
together with some branching steps, they lead to an instance in which a part of the solution
vertices are fixed and can be extended to a minimum geodetic set by adding vertices on
paths of degree-two vertices. We determine these vertices using an ILP formulation with
O(fen(G)2) variables, showing that (Extended) Geodetic Set is fixed-parameter tractable
for feedback edge number.

Although feedback edge number is considered one of the largest structural graph parame-
ters, our algorithm is still technically involved and it has an impractical running time. This
hints at the difficulty of designing efficient algorithms for Geodetic Set. We also remark
that some of the techniques presented may be of independent interest. For example, the
presented approach may also be useful to show fixed-parameter tractability of the closely
related Metric Dimension problem3 for feedback edge number, which was posed as an
open problem by Eppstein [13] (so far, it is only known to be in XP for this parameter [14]).

This section is divided into three parts. In Section 4.1, we provide some polynomial-time
data reduction rules, which allow us to bound the number of vertices with degree at least
three. In Section 4.2, we guess parts of the solution. Finally, in Section 4.3, we present our
ILP formulation to determine the vertices in the solution.

Throughout this section we assume without loss of generality that G is connected.

4.1 Preprocessing
In this section we present three data reduction rules and some observations on the instance
obtained after their exhaustive application. We will also introduce the feedback edge graph G̃
in this subsection, which will be used throughout the presentation of this algorithm.

Our first reduction rule deletes degree-one vertices. This reduction rule is based on the
observation that a geodetic set contains every degree-one vertex.

I Reduction Rule 8. If there is a degree-one vertex v ∈ V (G) with N(v) = {u}, then
decrease k by 1 if u ∈ T ,
add u to T if u /∈ T , and
delete v from V (G) (and from T ).

Henceforth we assume that Reduction Rule 8 has been exhaustively applied (which can
be done in linear time). Suppose that fen(G) = 1. Then G is a cycle, and any minimal
geodetic set S ⊇ T is of size at most |T |+ 3. So Extended Geodetic Set can be solved
in polynomial time when fen(G) ≤ 1 (in fact, further analysis yields a linear-time algorithm
for fen(G) = 1). We thus assume that fen(G) ≥ 2.

3 Given a graph, Metric Dimension asks for a set S of at most k vertices such that for any pair of
vertices u and v, there is a vertex in S which has distinct distances to u and v.
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v1
v2

v3

Figure 4 An illustration of an input graph G (left) and G̃ after Reduction Rule 8 has been
exhaustively applied (right). Observe that G̃ contains no degree-one or degree-two vertex. For
instance, a thick edge p in G̃ (right) corresponds to a path P of length hp = 3 in G(left). Moreover,
we have Tp = {0, 1} after Reduction Rule 8 has been applied exhaustively.

Now we introduce the feedback edge graph G̃, a multigraph which is obtained from G as
follows: As long as there is a degree-two vertex v with neighbors u,w, we remove v and add
an edge (multiedge) uw. Using the handshake lemma, one can easily obtain the following.

I Observation 9 (?). It holds that |V (G̃)| ≤ 2 fen(G)− 2 and |E(G̃)| ≤ 3 fen(G)− 3.

Observe that each edge p in G̃ is associated with a path P = (p0, p1, . . . , php) in G where
all of its inner vertices are of degree 2. We sometimes refer to the endpoints p0, php as
p←, p→, respectively. Moreover, let Tp = {i | pi ∈ T} and let p←T = pt

←
p and p→T = pt

→
p ,

where t←p = minTp and t→p = max Tp. We illustrate the definitions in Figure 4.
The following reduction rule deals with self-loops in G̃.

I Reduction Rule 10 (?). If v ∈ V (G̃) has a self-loop p in G̃, then decrease k as follows:
If Tp = ∅, then decrease k by (hp mod 2).
If Tp 6= ∅ and V (P ) 6⊆ I[Tp ∪ {v}], then decrease k by |Tp|.
If Tp 6= ∅ and V (P ) ⊆ I[Tp ∪ {v}], then decrease k by |Tp| − 1.

Moreover, add v to T and remove V (P ) \ {v}.

The next reduction rule ensures that for every p ∈ E(G̃) with Tp 6= ∅, there is a shortest
path from an endpoint of P to the closest vertex in Tp that is contained inside P . For this
we introduce the following notation. Let R = {←,→}. For r ∈ R, we denote by r ∈ R \ {r}
the opposite direction.

I Reduction Rule 11 (?). Let p ∈ E(G̃) with Tp 6= ∅, and let r ∈ R. If dP (prT , pr) >
dP (prT , pr) + dG(pr, pr), then add p′ to T , where p′ is between prT and pr and d(p′, prT ) =
b(hp + dG(p←, p→))/2c.

4.2 Guessing
Towards obtaining a geodetic set S of size at most k, we extend our current set T of vertices
fixed in the solution. First we guess the set of endpoints that are in the solution. Next, using
another reduction rule, we fix further vertices that are required to be in the geodetic set
of our interest. These vertices possibly depend on the (previously guessed) endpoints that
are in the solution. Finally, we guess how many vertices we need to add to every path P
for p ∈ E(G̃). Then, the exact positions of these vertices are determined using ILP.

Suppose that (G,T, k) is a yes-instance. We fix a solution S of minimum size that
maximizes the number |S ∩V (G̃)| of endpoints among all such solutions. Intuitively, our goal
is to find S. To do so, we first guess the set S̃ = S ∩ V (G̃) of endpoints in S; there are at
most 2|V (G̃)| ≤ 22 fen(G)−2 possibilities by Observation 9. We extend T by adding all vertices
from S̃. So we will henceforth assume that S ∩ V (G̃) = T ∩ V (G̃). Using another reduction
rule, we ensure that for every p ∈ E(G̃), the vertices between p←T and p→T are covered.

IPEC 2020
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I Reduction Rule 12 (?). Let p ∈ E(G̃). If there are t < t′ ∈ Tp such that [t+1, t′−1]∩Tp = ∅
and dG(pt, pt′) < t′− t (equivalently, dG(p←, p→) + hp < 2t′− 2t), then add b(t+ t′)/2c to T .

We will prove two lemmata required for the next guessing step and for the subsequent ILP
formulation. First, we show that S contains no vertex on a path P for p ∈ E(G̃) with Tp 6= ∅.

I Lemma 13. Let p ∈ E(G̃) with Tp 6= ∅. Then, S ∩ V (P ) ⊆ Tp.

Proof. For r ∈ R, suppose that S contains a vertex pi ∈ V (P ) \ Tp that lies between pr

and prT . Since Reduction Rule 11 is applied exhaustively, (S \{pi})∪{pr} is also a solution of
minimum size, contradicting the maximality of |S ∩ V (G̃)|. Thus, it remains to show that S
contains no vertex that lies between p←T and p→T in P . Note that after applying Reduction
Rule 12, each vertex in P between p←T and p→T are included in I[Tp]. Due to its minimality,
S contains no vertex pi ∈ V (P ) \ Tp between p←T and p→T in P . J

We also show that S contains at most two inner vertices of P if Tp = ∅ for p ∈ E(G̃).

I Lemma 14. Let p ∈ E(G̃) with Tp = ∅. Then, |S ∩ V (P )| ≤ 2.

Proof. If |S ∩ V (P )| = 3, then (S \ V (P )) ∪ {p←, pbhp/2c, p→} is also a minimum solution,
contradicting the fact that |S ∩ V (G̃)| is maximized. J

Now we make further guesses. For each edge p ∈ E(G̃), we guess the number np ∈ {0, 1, 2}
of inner vertices in S ∩ V (P ). Note that there are at most 3|E(G̃)| ≤ 33 fen(G)−3 possibilities
by Observation 9. The next step is to determine exactly which vertices to take using ILP.

4.3 Finding a minimum geodetic set via ILP
Let En = {p ∈ E(G̃) | Tp = ∅, np = n} for n ∈ {0, 1, 2} and let E′ = {p ∈ E(G̃) | Tp 6= ∅}.
Further, let E = E1 ∪ E2 ∪ E′ = E(G̃) \ E0. Note that S contains at least one vertex
in V (P ) for every p ∈ E . For each p ∈ E , we introduce two nonnegative variables x←p , x→p ,
and let p←S = px

←
p and p→S = php−x→p . The intended meaning of x←p , respectively x→p is

that S contains p←S , respectively p→S . Then the geodetic set of our interest will be given
by X = T ∪

⋃
p∈E1∪E2

{p←S , p→S }. For each p ∈ E we add the following constraints:
x←p > 0, x→p > 0, and x←p + x→p ≤ hp if p ∈ E1 ∪ E2,

x←p + x→p = hp if p ∈ E1,

hp − 2x←p − 2x→p ≤ dG(v←p , v→p ) if p ∈ E2,

x←p = p←T and x→p = hp − p→T if p ∈ E′.

(1)

Let V←p = {p1, . . . , px
←
p −1} and V→p = {php−x→i +1, . . . , php−1} for each p ∈ E . We show

that constraint (1) guarantees that the vertices between p←S and p→S are covered if p 6∈ E0.

I Lemma 15 (?). If constraint (1) is fulfilled, then Qp = V (P )\({p←, p→}∪V←p ∪V→p ) ⊆ I[S]
holds for each p ∈ E.

Next, we introduce constraints to determine whether there is a shortest path between prS
and qsS visiting pr and qs, for each p 6= q ∈ E(G̃) and r, s ∈ R (recall that R = {←,→}).
Using binary variables ar,sp,q, br,sp,q, cr,sp,q, zr,sp,q, we add the following constraints for each p 6= q ∈ E
and r, s ∈ R. Informally, if zr,sp,q = 1, then there exists a shortest path as described above.

(xrp + dG(pr, qs) + xsq)− (xrp + dG(pr, qs) + hq − xsq) ≤ N(1− ar,sp,q),
(xrp + dG(pr, qs) + xsq)− (hp − xrp + dG(pr, qs) + xsq) ≤ N(1− br,sp,q),
(xrp + dG(pr, qs) + xsq)− (hp − xrp + dG(pr, qs) + hq − xsq) ≤ N(1− cr,sp,q),
3− ar,sp,q − br,sp,q − cr,sp,q ≤ 3− 3zr,sp,q.

(2)
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Here N is some sufficiently large number (i.e., N = 100 · |E(G)| will do).

I Lemma 16 (?). If constraint (2) is fulfilled with zr,sp,q = 1, then I[pr, qs] ⊆ I[prS , qsS ].

We add a similar constraint for shortest paths between p←S and p→S for each p ∈ E(G̃).
For each p ∈ E and r ∈ R we add the constraint

(xrp + dG(pr, pr) + xrp)− (hp − xrp − xrp) ≤ N(1− zr,rp,p). (3)

Here zr,rp,p is a binary variable. It is easy to see that if zr,rp,p = 1, then there is a shortest path
from prS to prS going through pr and pr.

Now we use constraints (2) and (3) to cover the remaining vertices. First we handle
the paths without any solution vertex. For each ` ∈ E0, we add the following constraint to
guarantee that there are p, q ∈ E(G̃) and r, s ∈ R such that V (L) ⊆ I[prS , qsS ], where L is
the path associated with `:∑

p,q∈E, r,s∈R,(p,r)6=(q,s)
d(pr,`←)+h`+d(`→,qs)=d(pr,qs)

zr,sp,q ≥ 1. (4)

To ensure that every vertex v ∈ V (G̃) \ S̃ is covered, we add constraint (4), where L is a
path of length zero with endpoint v, that is, h` = 0 and `← = `→ = v.

Finally, we deal with the vertices in V←p and V→p . Note that for each p ∈ E(G̃) and
r ∈ R, the vertices in V rp are covered if

it holds that xrp ≤ 1 (that is, V rp = ∅), or
there is q ∈ E(G̃) and s ∈ R such that a shortest prS–qsS-path visits pr.

For each p ∈ E and r ∈ R, let yrp be a binary variable and add the following constraint:

xrp − 1 ≤ N(1− yrp) and yrp +
∑

q∈E(G̃),s∈R

zr,sp,q ≥ 1. (5)

It is easy to verify that if yrp = 1, then xrp ≤ 1 must hold. This concludes the ILP formulation.
We show that our ILP formulation finds a minimum geodetic set.

I Theorem 17. Geodetic Set can be solved in O∗(2O(fen(G)2)) time.4

Proof. We prove that there is a geodetic set S ⊇ T satisfying Lemmas 13 and 14 if and only
if one of our ILP instances is a yes-instance. The forward direction is clearly correct. The
correctness of the other direction is due to the following observations.

The vertices in P for p ∈ E0 as well as the vertices in V (G̃) \ S̃ are covered because of
constraint (4).
For each p ∈ E , V←i and V→i are covered due to constraint (5). The remaining vertices
are covered due to Lemma 16.

Note that we construct 2O(fen(G)) instances of ILP. Each ILP instance uses O(fen(G)2) binary
variables and O(fen(G)) variables which are not necessarily binary. To solve one ILP instance,
we first try every assignment to binary variables (note that there are 2O(fen(G)2) assignments).
Then, we solve an ILP instance with O(fen(G)) variables, which requires O∗(fen(G)O(fen(G)))
time [19]. This results in an algorithm whose running time is O∗(2O(fen(G)2)). J

4 The O∗(·) notation hides factors that are polynomial in the input size.
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5 Fixed-Parameter Tractability for Clique-Width with Diameter

In this section we obtain fixed-parameter tractability results for clique-width combined with
diameter, and for tree-depth. Our algorithm is based on a theorem by Courcelle et al. [10]: If
a graph property π can be expressed as a formula ϕ in MSO1 logic, then whether a graph G
has π can be determined in O(f(cw(G) + |ϕ|) · (|V (G)|+ |E(G)|)) time for some function f .

I Theorem 18. Geodetic Set is fixed-parameter tractable with respect to cw(G)+diam(G).

Proof. We describe how to express Geodetic Set in MSO1 logic. We define

ϕ = ∃S (∀v [∃u,w (u ∈ S ∧ w ∈ S ∧Visit(u, v, w))]) ,

where Visit(u, v, w) is true if and only if there is a shortest path u–w visiting v. It remains
to construct Visit(u, v, w). First, let us define a formula Path(v1, . . . , vi) which evaluates to
true if and only if (v1, . . . , vi) is a path:

Path(v1, . . . , vδ) =
∧

j∈[i−1]

vjvj+1 ∈ E(G).

We then define Disti(u,w) which is true if and only if dG(u,w) = i.

Disti(u,w) =∃v2, . . . , vi−1 (Path(u, v2, . . . , vi−1, w))

∧
∧

j∈[i−1]

@v2, . . . , vj−1(Path(u, v2, . . . , vj−1, w)).

Finally, we define Visit(u, v, w):

Visit(u, v, w) =
∨

i∈[diam(G)]

Disti(u,w) ∧

 ∨
j∈[i−1]

Distj(u, v) ∧Distj−i(v, w)

 .

Note that |ϕ| ∈ diam(G)O(1). Thus, fixed-parameter tractability for cw(G)+diam(G) follows
from Courcelle’s theorem. J

Note that cw(G) ≤ 2 and diam(G) ≤ 2 for any cograph G. Thus, our result extends
polynomial-time solvability on cographs proven by Dourado et al. [11].

We also obtain fixed-parameter tractability for tree-depth as well as for modular-width
from Theorem 18. The tree-depth of a graph G can be roughly approximated by log h ≤
td(G) ≤ h, where h is the height of a depth-first search tree of G [21]. Hence, the length of all
paths in G, specifically the diameter of G, is at most 2td(G). Moreover, cw(G) ≤ 3 · 2tw(G)−1

[9] and tw(G) ≤ td(G) − 1. Similarly, cw(G) ≤ mw(G) (by definition) and diam(G) ≤
max{2,mw(G)} [18]. Consequently, we obtain the following.

I Corollary 19. Geodetic Set is fixed-parameter tractable with respect to tree-depth and
with respect to modular-width.

6 Conclusion

We initiated a parameterized complexity study of Geodetic Set for parameters measuring
tree-likeness. We conclude this work by suggesting some future research directions. None
of the fixed-parameter algorithms presented in this work are practical. Are there more
efficient fixed-parameter algorithms with respect to feedback edge number, tree-depth or
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modular-width? Further, while we can quite surely exclude fixed-parameter tractability for
feedback vertex number and path-width, it is still open whether Geodetic Set is in XP with
any (combination) of these parameters. Recall that the related Geodetic Hull problem
is in XP with respect to tree-width [17], but for Geodetic Set, even the complexity on
series-parallel graphs (which have tree-width two) is unknown.

Going to related problems and parameters, it is open whether Metric Dimension is
fixed-parameter tractable with respect to the feedback edge number [13]. This is especially
interesting since the problem behaves similarly to Geodetic Set in terms of complexity:
Metric Dimension is fixed-parameter tractable with respect to tree-depth [22] and with
respect to modular-width [3], but W[1]-hard with respect to path-width [5] and W[2]-hard
with respect to the solution size [16]. We are optimistic that the method presented in
Section 4 can be used to answer this question positively, especially since Epstein et al. [14]
showed that the number of solution vertices on a path of degree-two vertices (cf. Lemma 14)
is bounded by a constant.
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