91 research outputs found

    Kernels for Deletion to Classes of Acyclic Digraphs

    Get PDF
    In the Directed Feedback Vertex Set (DFVS) problem, we are given a digraph D on n vertices and a positive integer k and the objective is to check whether there exists a set of vertices S of size at most k such that F = D - S is a directed acyclic digraph. In a recent paper, Mnich and van Leeuwen [STACS 2016] considered the kernelization complexity of DFVS with an additional restriction on F, namely that F must be an out-forest (Out-Forest Vertex Deletion Set), an out-tree (Out-Tree Vertex Deletion Set), or a (directed) pumpkin (Pumpkin Vertex Deletion Set). Their objective was to shed some light on the kernelization complexity of the DFVS problem, a well known open problem in the area of Parameterized Complexity. In this article, we improve the kernel sizes of Out-Forest Vertex Deletion Set from O(k^3) to O(k^2) and of Pumpkin Vertex Deletion Set from O(k^18) to O(k^3). We also prove that the former kernel size is tight under certain complexity theoretic assumptions

    Polynomial Kernels for Deletion to Classes of Acyclic Digraphs

    Get PDF
    We consider the problem to find a set X of vertices (or arcs) with |X| <= k in a given digraph G such that D = G-X is an acyclic digraph. In its generality, this is DIRECTED FEEDBACK VERTEX SET or DIRECTED FEEDBACK ARC SET respectively. The existence of a polynomial kernel for these problems is a notorious open problem in the field of kernelization, and little progress has been made. In this paper, we consider both deletion problems with an additional restriction on D, namely that D must be an out-forest, an out-tree, or a (directed) pumpkin. Our main results show that for each of these three restrictions the vertex deletion problem remains NP-hard, but we can obtain a kernel with k^{O(1)} vertices on general digraphs G. We also show that, in contrast to the vertex deletion problem, the arc deletion problem with each of the above restrictions can be solved in polynomial time

    Brief Announcement: Treewidth Modulator: Emergency Exit for DFVS

    Get PDF
    In the Directed Feedback Vertex Set (DFVS) problem, we are given as input a directed graph D and an integer k, and the objective is to check whether there exists a set S of at most k vertices such that F=D-S is a directed acyclic graph (DAG). Determining whether DFVS admits a polynomial kernel (parameterized by the solution size) is one of the most important open problems in parameterized complexity. In this article, we give a polynomial kernel for DFVS parameterized by the solution size plus the size of any treewidth-eta modulator, for any positive integer eta. We also give a polynomial kernel for the problem, which we call Vertex Deletion to treewidth-eta DAG, where given as input a directed graph D and a positive integer k, the objective is to decide whether there exists a set of at most k vertices, say S, such that D-S is a DAG and the treewidth of D-S is at most eta

    Parameterized Algorithms for Directed Maximum Leaf Problems

    Full text link
    We prove that finding a rooted subtree with at least kk leaves in a digraph is a fixed parameter tractable problem. A similar result holds for finding rooted spanning trees with many leaves in digraphs from a wide family L\cal L that includes all strong and acyclic digraphs. This settles completely an open question of Fellows and solves another one for digraphs in L\cal L. Our algorithms are based on the following combinatorial result which can be viewed as a generalization of many results for a `spanning tree with many leaves' in the undirected case, and which is interesting on its own: If a digraph DLD\in \cal L of order nn with minimum in-degree at least 3 contains a rooted spanning tree, then DD contains one with at least (n/2)1/51(n/2)^{1/5}-1 leaves

    A survey on algorithmic aspects of modular decomposition

    Full text link
    The modular decomposition is a technique that applies but is not restricted to graphs. The notion of module naturally appears in the proofs of many graph theoretical theorems. Computing the modular decomposition tree is an important preprocessing step to solve a large number of combinatorial optimization problems. Since the first polynomial time algorithm in the early 70's, the algorithmic of the modular decomposition has known an important development. This paper survey the ideas and techniques that arose from this line of research

    Packing Arc-Disjoint Cycles in Tournaments

    Get PDF
    A tournament is a directed graph in which there is a single arc between every pair of distinct vertices. Given a tournament T on n vertices, we explore the classical and parameterized complexity of the problems of determining if T has a cycle packing (a set of pairwise arc-disjoint cycles) of size k and a triangle packing (a set of pairwise arc-disjoint triangles) of size k. We refer to these problems as Arc-disjoint Cycles in Tournaments (ACT) and Arc-disjoint Triangles in Tournaments (ATT), respectively. Although the maximization version of ACT can be seen as the linear programming dual of the well-studied problem of finding a minimum feedback arc set (a set of arcs whose deletion results in an acyclic graph) in tournaments, surprisingly no algorithmic results seem to exist for ACT. We first show that ACT and ATT are both NP-complete. Then, we show that the problem of determining if a tournament has a cycle packing and a feedback arc set of the same size is NP-complete. Next, we prove that ACT and ATT are fixed-parameter tractable, they can be solved in 2^{O(k log k)} n^{O(1)} time and 2^{O(k)} n^{O(1)} time respectively. Moreover, they both admit a kernel with O(k) vertices. We also prove that ACT and ATT cannot be solved in 2^{o(sqrt{k})} n^{O(1)} time under the Exponential-Time Hypothesis

    Machine Learning Techniques as Applied to Discrete and Combinatorial Structures

    Get PDF
    Machine Learning Techniques have been used on a wide array of input types: images, sound waves, text, and so forth. In articulating these input types to the almighty machine, there have been all sorts of amazing problems that have been solved for many practical purposes. Nevertheless, there are some input types which don’t lend themselves nicely to the standard set of machine learning tools we have. Moreover, there are some provably difficult problems which are abysmally hard to solve within a reasonable time frame. This thesis addresses several of these difficult problems. It frames these problems such that we can then attempt to marry the allegedly powerful utility of existing machine learning techniques to the practical solvability of said problems

    A Polynomial Kernel for Funnel Arc Deletion Set

    Get PDF
    In Directed Feedback Arc Set (DFAS) we search for a set of at most k arcs which intersect every cycle in the input digraph. It is a well-known open problem in parameterized complexity to decide if DFAS admits a kernel of polynomial size. We consider ?-Arc Deletion Set (?-ADS), a variant of DFAS where we want to remove at most k arcs from the input digraph in order to turn it into a digraph of a class ?. In this work, we choose ? to be the class of funnels. Funnel-ADS is NP-hard even if the input is a DAG, but is fixed-parameter tractable with respect to k. So far no polynomial kernel for this problem was known. Our main result is a kernel for Funnel-ADS with ?(k?) many vertices and ?(k?) many arcs, computable in ?(nm) time, where n is the number of vertices and m the number of arcs of the input digraph

    Breaking the Barrier 2k2^k for Subset Feedback Vertex Set in Chordal Graphs

    Full text link
    The Subset Feedback Vertex Set problem (SFVS), to delete kk vertices from a given graph such that any vertex in a vertex subset (called a terminal set) is not in a cycle in the remaining graph, generalizes the famous Feedback Vertex Set problem and Multiway Cut problem. SFVS remains NP\mathrm{NP}-hard even in split and chordal graphs, and SFVS in Chordal Graphs can be considered as a special case of the 3-Hitting Set problem. However, it is not easy to solve SFVS in Chordal Graphs faster than 3-Hitting Set. In 2019, Philip, Rajan, Saurabh, and Tale (Algorithmica 2019) proved that SFVS in Chordal Graphs can be solved in 2knO(1)2^k n^{\mathcal{O}(1)}, slightly improving the best result 2.076knO(1)2.076^k n^{\mathcal{O}(1)} for 3-Hitting Set. In this paper, we break the "2k2^k-barrier" for SFVS in Chordal Graphs by giving a 1.619knO(1)1.619^k n^{\mathcal{O}(1)}-time algorithm. Our algorithm uses reduction and branching rules based on the Dulmage-Mendelsohn decomposition and a divide-and-conquer method.Comment: 27 pages, 8 figures. Full versio
    corecore