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Abstract
We consider the problem to find a set X of vertices (or arcs) with |X| ≤ k in a given digraph G
such that D = G − X is an acyclic digraph. In its generality, this is Directed Feedback
Vertex Set or Directed Feedback Arc Set respectively. The existence of a polynomial
kernel for these problems is a notorious open problem in the field of kernelization, and little
progress has been made.

In this paper, we consider both deletion problems with an additional restriction on D, namely
that D must be an out-forest, an out-tree, or a (directed) pumpkin. Our main results show that
for each of these three restrictions the vertex deletion problem remains NP-hard, but we can
obtain a kernel with kO(1) vertices on general digraphs G. We also show that, in contrast to
the vertex deletion problem, the arc deletion problem with each of the above restrictions can be
solved in polynomial time.
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1 Introduction

In this paper, we study the problem of removing a (small) subset of vertices X from a
graph G such that the resulting graph G−X is acyclic. On undirected graphs, this translates
immediately to the property that G−X is a forest or (if we insist that G−X is connected)
a tree. The problem to decide whether a given undirected graph G has a set X ⊆ V (G) of
size at most a given integer k such that G−X is a forest or a tree is known as Feedback
Vertex Set and Tree Deletion Set respectively.

Over the past years, we have gotten to understand the complexity of Feedback Vertex
Set and Tree Deletion Set quite well. Both problems are NP-hard [14, 20]. It is long
known that the minimization version of Feedback Vertex Set admits a polynomial-time
2-approximation algorithm [2] and that Feedback Vertex Set admits a polynomial kernel
parameterized by k [19] (see e.g. [8, 11] for background on kernelization). The minimization
version of Tree Deletion Set, in contrast, cannot be polynomial-time approximated
within a factor O(n1−ε) for any ε > 0 [20], unless P = NP. However, Tree Deletion Set
was recently shown to admit a polynomial kernel (when parameterized by k) [13].

The usual way to generalize Feedback Vertex Set and Tree Deletion Set to
digraphs is to insist that the resulting digraph has no directed cycle. Indeed, the problem to
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55:2 Polynomial Kernels for Deletion to Classes of Acyclic Digraphs

decide whether a given digraph G has a set X ⊆ V (G) of size at most a given integer k such
that G−X is a (connected) acyclic digraph is known as Directed Feedback Vertex Set
(Connected DAG Vertex Deletion Set). In contrast to their undirected counterparts,
the complexity situations for Directed Feedback Vertex Set and Connected DAG
Vertex Deletion Set are very much unclear.

It is known that Directed Feedback Vertex Set is NP-hard [14], even on tourna-
ments [18]. Connected DAG Vertex Deletion Set is NP-hard and cannot be polynomial-
time approximated within a factor O(n1−ε) for any ε > 0 [20], but we are not aware of any
results on the parameterized complexity of this problem. Directed Feedback Vertex Set
is polynomial-time approximable within a factor of O(log |V (G)| log log |V (G)|) on general
digraphs [9, 17], but it is open whether this is best possible. Directed Feedback Vertex
Set has a kernel of exponential size kO(k), as the problem was shown fixed-parameter tract-
able by Chen et al. [4], but it is unknown whether a polynomial kernel exists. In fact, this
question remains open despite being posed several times [4, 10, 8, 6, 5].

There is limited insight into whether Directed Feedback Vertex Set could admit a
polynomial kernel. Abu-Khzam [1] (see also Dom et al. [7]) showed that Directed Feedback
Vertex Set admits a polynomial kernel if the given digraph is a (bipartite) tournament
and Bang-Jensen et al. [3] recently extended this to generalizations of tournaments. We are
not aware of polynomial kernels for Directed Feedback Vertex Set on other restricted
classes of digraphs. This suggests to explore other roads towards an answer to the open
question of a polynomial kernel for Directed Feedback Vertex Set.

Our Contributions

We study a different translation of Feedback Vertex Set and Tree Deletion Set to
digraphs. Instead of transferring the property that the resulting graph should be acyclic to
digraphs, we transfer the property that the resulting graph should be a forest or tree. To this
end, we consider the notion of an out-tree, which is a digraph where each vertex has in-degree
at most 1 and the underlying (undirected) graph is a tree. An out-forest is a disjoint union
of out-trees. This leads to the following parameterized problems:

Out-Forest/Out-Tree Vertex Deletion Set
Input: A digraph G and an integer k.
Question: Is there a set X ⊆ V (G) with |X| ≤ k s.t. G−X is an out-forest/out-tree?

Note that these problems can also be viewed as a restricted version of Directed
Feedback Vertex Set and Connected DAG Vertex Deletion Set. Here, instead of
restricting the input graph G as Abu-Khzam [1] and Dom et al. [7] did when they considered
tournaments, we consider general digraphs G as input but restrict what kind of acyclic
digraph the resulting digraph G−X should be.

Thinking further in this direction, we consider another restriction on the resulting digraph,
namely that it should be a pumpkin. A digraph is a pumpkin if it consists of a source vertex s
and a sink vertex t (s 6= t), together with a collection of internally vertex-disjoint induced
directed paths from s to t. Note that the underlying graph of a pumpkin is not acyclic, in
contrast to out-forests and out-trees. This leads to the following parameterized problem:

Pumpkin Vertex Deletion Set
Input: A digraph G and an integer k.
Question: Is there a set X ⊆ V (G) with |X| ≤ k s.t. G−X is a pumpkin?
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We consider all three problems on general digraphs, and observe that each is NP-hard, even
on acyclic digraphs. More importantly, we show that all three problems admit a polynomial
kernel.

I Theorem 1. Out-Tree Vertex Deletion Set is NP-hard, even on acyclic digraphs,
but admits a kernel with O(k3) vertices.

I Theorem 2. Out-Forest Vertex Deletion Set is NP-hard, even on acyclic digraphs,
but admits a kernel with O(k3) vertices.

I Theorem 3. Pumpkin Vertex Deletion Set is NP-hard, even on acyclic digraphs, but
admits a kernel with O(k18) vertices.

The polynomial kernel for Out-Tree Vertex Deletion Set, presented in Sec. 2, relies on
a large set of reduction rules that heavily exploit that vertices of out-trees have in-degree at
most 1. Although this ‘forbidden structure’ seems to lend itself naturally to a characterization
by forbidden induced subgraphs that can be attacked through a standard approach using the
Sunflower Lemma (cf. [12, Lemma 3.2]), the demand that the resulting digraph be connected
means that substantially different methods must be employed to obtain meaningful structure.

After applying our set of reduction rules, the underlying graph of the resulting digraph G′
contains a small feedback vertex set F . It then remains to show that the forest G′ − F has
bounded size by analyzing the interaction of G′ − F with F . In particular, we argue that the
leaves of G′ − F can be split into four types, and bound the number of leaves of each type.
In the analysis of one of the types (the fourth), we adapt some of the rules of the polynomial
kernel for Tree Deletion Set by Giannopoulou et al. [13] to the directed case; the analysis
for the other cases is new and specific to Out-Tree Vertex Deletion Set.

The kernel for Out-Forest Vertex Deletion Set follows the same lines, but requires
an additional reduction rule, presented in Sec. 3. We believe that the Sunflower Lemma could
yield an alternative road to a polynomial kernel for Out-Forest Vertex Deletion Set
(as connectedness is no longer an issue), but we chose to instead present our simple extension
of the kernel for Out-Tree Vertex Deletion Set.

The polynomial kernel for Pumpkin Vertex Deletion Set, presented in Sect. 4, uses
completely different methods. We first show that there are only poly(k) candidates for the
source and sink of the pumpkin. Therefore, we can split the instance into poly(k) new
instances with an annotated source and sink, each of which we subsequently kernelize. The
resulting kernelized instances can be seen as a Turing kernel of the problem. Instead of being
satisfied with this, we show that we can modify and combine these kernelized instances into
a single instance of Pumpkin Vertex Deletion Set, which forms the final kernel.

The NP-hardness results and missing proofs are deferred to the full version of this paper.

Edge and Arc Deletion Problems

Instead of deleting vertices to get an acyclic graph, we also consider the problem of deleting
edges or arcs from a given (di)graph to obtain an acyclic (di)graph. On undirected graphs, the
problem to delete edges to obtain a forest or tree can easily be shown to be polynomial-time
solvable by reducing to finding a spanning forest/tree. On digraphs, however, the complexity
situation is quite different. In fact, it can be readily shown that the problem of deleting arcs
from a digraph to remove all cycles must have the same complexity as Directed Feedback
Vertex Set [9]. Therefore, one wonders how this affects the three problems of this paper.

The arc-deletion versions of our problems are defined as follows. Given a subset B of the
arcs of a digraph G, the digraph induced by B is the graph with vertex set equal to the set
of endpoints of the arcs in B and arc set equal to B.

STACS 2016
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Out-Forest/Out-Tree/Pumpkin Arc Deletion Set
Input: A digraph G and an integer k.
Question: Is there a set X ⊆ A(G) with |X| ≤ k s.t. the arcs of A(G) − X induce an

out-forest/out-tree/pumpkin?

I Theorem 4. Out-Forest Arc Deletion Set, Out-Tree Arc Deletion Set, and
Pumpkin Arc Deletion Set can be solved in polynomial time.

A shortened proof of this theorem is in Sect. 5; full proofs are deferred to the full version.

Throughout this paper, we consider digraphs G with vertex set V (G) and arc set A(G).
For a digraph G, we denote its underlying undirected graph by 〈G〉. The in-degree and the
out-degree of a vertex v ∈ V (G) is denoted d−(v) resp. d+(v).

For a digraph G and distinct vertices u, v ∈ V (G), call P = [w0, . . . , w`] an induced
directed u, v-path (of length `) if u = w0, v = w`, (wi, wi+1) are arcs of G for i = 0, . . . , `− 1
and d−(wi) = d+(wi) = 1 for i = 1, . . . , `− 1.

2 Polynomial Kernel for Out-Tree Vertex Deletion

For a digraph G, call a set S ⊆ V (G) an out-tree vertex deletion set if G− S is an out-tree.
To obtain a polynomial kernel for Out-Tree Vertex Deletion Set parameterized by
solution size k, we first generalize the problem to its vertex-weighted variant, defined as:

Weighted Out-Tree Vertex Deletion Set
Input: A digraph G with weight function w : V (G)→ N; an integer k.
Question: Is there a set S ⊆ V (G) of weight w(S) =

∑
v∈S

w(v) ≤ k so that G−S is an out-tree?

Allowing vertices to carry weights will allow for more flexible reduction rules. Using four
relatively standard reduction rules (described in the full version), we can impose the following
structure on instances of Weighted Out-Tree Vertex Deletion Set:

I Lemma 5. Given an instance (G,w, k) of Weighted Out-Tree Vertex Deletion
Set, in polynomial time we can construct an instance (G′, w′, k′) such that:
1. d−(v) ≤ k + 1 for each v ∈ V (G′);
2. w′(v) ≤ k + 1 for each v ∈ V (G′);
3. no vertex v ∈ V (G′) has d−(v) = 1 and d+(v) = 0;
4. every induced directed path of G′ has length at most 4;
5. (G,w) has an out-tree vertex deletion set of weight at most k if and only if (G′, w′) has

an out-tree vertex deletion set of weight at most k′

We now define several novel reduction rules that are specific to Weighted Out-Tree
Vertex Deletion Set. A collision in G is an ordered triple (u,m, v) of distinct vertices
u,m, v such that (u,m), (v,m) ∈ A(G). A collision only demands that (u,m), (v,m) ∈ A(G);
it does not specify anything about other arcs between u,m, v.

I Lemma 6 (Collision Star Rule). Let (u1,m1, v), . . . , (uk+1,mk+1, v) be collisions that pair-
wise intersect only in v. Let G′ = G− v, let k′ = k − w(v) and w′ = w|V (G′). Then (G,w)
has an out-tree vertex deletion set of weight at most k if and only if (G′, w′) has an out-tree
vertex deletion set of weight at most k′.
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Proof. Let S be an out-tree vertex deletion set of (G,w) of weight at most k. We argue
that v ∈ S; this then implies immediately that S \ {v} is an out-tree vertex deletion set
of (G′, w′) with weight at most k′ = k − w(v). To this end, suppose that v /∈ S; then
from each collision (ui,mi, v), at least one of ui,mi belongs to S, since S must intersect all
collisions (out-trees are free of collisions). As each of ui,mi has weight at least 1 and the
pairs (u1,m1), . . . , (uk+1,mk+1) are pairwise vertex-disjoint, this contradicts that w(S) ≤ k;
hence, v ∈ S.

Conversely, let S′ be an out-tree vertex deletion set of (G′, w′) of weight at most k′. As
out-tree vertex deletion sets are closed under taking supersets, S = S′ ∪ {v} is an out-tree
vertex deletion set of (G,w). Further, the weight of S is equal to w(S) = w′(S′) + w(v) ≤
k′ + w(v) = k.

We can implement the rule in polynomial time by considering each v in turn and then
running a maximum matching algorithm. For a vertex v, let N+

v denote its set of out-neighbors.
Let N∗v denote the set of in-neighbors of the vertices in N+

v , where we ensure that v is not
placed in N∗v . Now consider an auxiliary graph Hv on N+

v ∪N∗v , were u ∈ N+
v and w ∈ N∗v

are adjacent if and only if there is an arc from w to u in G. Then any set of collisions that
pairwise intersect only in v (as in the lemma statement) induces a matching in Hv, and
conversely, any matching in Hv induces a set of collisions that pairwise intersect only in v
(as in the lemma statement). Hence, it suffices to find, for each v ∈ V (G) a matching of size
at least k in Hv, which can be done in polynomial time. J

Note again that the rule only specifies that the arcs (ui,mi) and (mi, v) for i = 1, . . . , k + 1
should belong to A(G); it does not specify anything about other arcs between these vertices.

I Lemma 7 (Source Rule). If G contains at least k + 2 vertices of in-degree 0, then (G,w)
does not contain an out-tree vertex deletion set of weight at most k.

We apply the above rules exhaustively, before continuing to the next rule.

I Lemma 8 (Feedback Vertex Set Rule). If a 2-approximate minimum size undirected feedback
vertex set of 〈G〉 has size more than 2k, then (G,w) does not admit an out-tree vertex deletion
set of weight at most k.

This rule is correct, because 〈G− S〉 is acyclic, where S is an out-tree vertex deletion set
of (G,w). We thus assume that 〈G〉 has a feedback vertex set F of size at most 2k.

We next argue that if G−F has many vertex-disjoint collisions, then G does not admit an
out-tree vertex deletion set of low weight, because an out-tree does not contain any collisions.
Observe that finding the maximum number of vertex-disjoint collisions in a digraph is in
general an NP-hard problem, because of a straightforward reduction from the P2-matching
problem, which is known to be NP-hard [15]. However, here we only need to solve this task
in G− F , which is a forest. We are then able to employ a greedy algorithm that ‘cuts away’
collisions in a bottom-up fashion and finds a largest set of vertex-disjoint collisions in G− F
in polynomial time.

I Lemma 9 (Disjoint Collisions Rule). If G−F contains more than k vertex-disjoint collisions,
then (G,w) does not admit an out-tree vertex deletion set of weight at most k.

Assume now that Lemma 9 has been applied, and that F (as before) is a feedback vertex set
of 〈G〉. Let T1, . . . , Tc denote the set of connected components of G−F ; then each underlying
undirected component 〈Ti〉 is a tree. Let L denote the set of leaves of 〈T1〉, . . . , 〈Tc〉. Our
strategy to prove a polynomial kernel will be to first bound |L|, and therefrom bound both c
and

∑c
i=1 |V (Ti)|.

STACS 2016
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Bounding the Number of Leaves

We consider four types of leaves. Throughout, we assume that a leaf of type i is not of type
i− 1, . . . , 1.

Type 1: Leaves with an arc to a vertex of F .
By Lemma 5(1),

∑
v∈F d

−(v) ≤ |F |(k+ 1) ≤ 2k(k+ 1). Hence, the number of leaves with
an arc to a vertex of F is at most 2k(k + 1).

Type 2: Leaves without any arc to or from a vertex of F .
By Lemma 5(3), such a leaf must be a source of G. We can bound the number of leaves

of type 2 by k + 1, since Lemma 7 does not apply.

Type 3: Leaves with an arc from a vertex of F whose unique incident arc in G− F is an
out-arc.

Let v1, . . . , v` denote those leaves. An F -disjoint path is a directed path P in G between
two vertices u, v ∈ V (G) such that no vertex of P belongs to F ; in particular, u, v /∈ F . Call
a vertex m /∈ F a mixer for i, j (where i, j are distinct) if there exist F -disjoint paths from
vi to m and from vj to m; we also say that i, j get mixed at m. If m /∈ F is a mixer for some
i, j, then we simply call m a mixer. Observe that for any m /∈ F , there is an F -disjoint path
in G to some vi only if vi and m are part of the same tree of 〈G〉 − F ; therefore, if such a
path exists, then it is unique.

We now construct a set M of mixers, as follows. Initialize M = ∅ and I = {1, . . . , `}.
Iteratively find a mixer m for some {i, j} ⊆ I such that for any {i′, j′} ⊆ I that get mixed
at m, the F -disjoint path from vi to m or F -disjoint path from vj to m is free of mixers for
i, j′, and i′, j, and i′, j′ as internal vertex. Then add m to M , and remove all indices from I

that get mixed at m. Denote by I ′ the set of indices in I at the end of this procedure.
We can show that the set of mixers induces a set of vertex-disjoint collisions of size |M |

by using that two unique indices i, j get mixed at each m ∈M ; the F -disjoint paths from vi
and vj to m then ensure that m has two unique in-neighbors. Hence, the following lemma
follows from Lemma 9:

I Lemma 10. For the constructed set M of mixers, |M | ≤ k.

Consider any index i ∈ {1, . . . , `}\I ′, and let m denote the mixer that was added toM at the
step that i was removed from I. Let Pi be an F -disjoint path from vi to m that is guaranteed
by m being a mixer. It follows from the construction of M that {Pi | i ∈ {1, . . . , `}\I ′} forms
a collection of F -disjoint paths that are pairwise disjoint except possibly for their end vertices.
By Lemma 5(1), d−(m) ≤ k + 1 for each m ∈M . Hence, `− |I ′| ≤ |M |(k + 1) ≤ k(k + 1).

To bound |I ′|, we find a set of inclusion-wise maximal directed paths starting in the
vertices in {vi | i ∈ I ′}. The ends (not equal to vi) of these paths yield a set of collisions,
which are almost disjoint. Then Lemmas 6 and 9 combined imply:

I Lemma 11. |I ′| ≤ 3k2 + 2k.

Adding up, we have that ` ≤ 3k2 + 2k + k(k + 1) = 4k2 + 3k.

Type 4: Leaves with an arc from a vertex of F whose arc in G− F is an in-arc.
To bound the number of leaves of Type 4, we need an extra reduction rule. This rule is

similar to one applied by Giannopoulou et al. [13] in a different context. The general idea is
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to translate the constraints on leaves of Type 4 into a set of linear equations, then kernelize
this set of equations, and use that kernel to reduce the number of leaves of Type 4. Since
this works in the same way as in the paper by Giannopoulou et al. [13], we defer the details
to the full version.

I Lemma 12. The number of leaves of Type 4 is at most 2k(k + 1)2 + k + 1.

After analyzing all types of leaves, we can conclude that |L| ≤ 2k3 + 10k2 + 9k+ 2. Using
standard arguments about trees in conjunction with the properties ensured by Lemma 5(4),
we can show the following:

I Lemma 13. The number of vertices in T1, . . . , Tc is O(k3) in total.

Proof. Since we already bounded the number of leaves of T1, . . . , Tc, it suffices to bound the
number of internal vertices. Let D denote the set of internal vertices of T1, . . . , Tc that have
degree at least 3 in 〈G〉. Since the number |L| of leaves is O(k3), we have |D| = O(k3) as
well by standard arguments on trees.

It remains to bound the number of internal vertices of degree 2 in 〈G〉. The number
of such vertices that neighbor a leaf is O(k3), so it remains to consider vertices that have
distance at least 2 to every leaf in 〈G〉.

We start by bounding the number of such vertices involved in a collision. First, consider
collisions (u,m, v) for which m has degree at least 3 in 〈G〉. Such collisions involve at most∑
v∈D d〈G〉(v) vertices of degree 2 in 〈G〉. Since this sum is bounded by 2|L|, we obtain a

bound of O(k3) for such vertices.
Now consider collisions (u,m, v) for which m has degree 2 in 〈G〉 but at least one of u, v

has degree at least 3 in 〈G〉. The number of vertices of degree 2 involved in such collisions is
at most 2

∑
v∈D d〈G〉(v) = O(k3).

It remains to count vertices involved in collisions that do not touch an internal vertex of
degree at least 3 in 〈G〉. Note that any such collision can overlap at most two others. Hence,
by Lemma 9, at most 7k vertices can be involved, or we can reject (G, k) as a “no”-instance.
Therefore, O(k3) internal vertices of degree 2 are involved in a collision.

Any internal vertex of degree 2 that is not involved in a collision must lie on a directed
path between two vertices that are either of degree at least 3 or are involved in a collision.
By another rule deferred to the full version of this paper, all directed paths have length at
most 4; this leads to a bound of 4((

∑
v∈D d(v)) +O(k3)) = O(k3). J

Now, by Lemma 5(2), each vertex has weight at most k + 1, and thus this kernel can be
encoded with O((k3) log k) bits. This completes the proof of Theorem 1.

3 Polynomial Kernel for Out-Forest Vertex Deletion

Given a digraph G, we call a set S ⊆ V (G) an out-forest vertex deletion set if G − S is
an out-forest. To obtain the polynomial kernel for Out-Forest Vertex Deletion Set,
we proceed similarly as in the case of Out-Tree Vertex Deletion Set. Namely, we
can argue that almost all reduction rules that apply to Out-Tree Vertex Deletion
Set also work for Out-Forest Vertex Deletion Set. More precisely, one can argue
that Lemmas 5, 6, 8, and 10, and 12 also apply. This way, we can bound the number of
Type 1, Type 3 and Type 4 leaves by a polynomial in k in instances of Out-Forest Vertex
Deletion Set that have been reduced by their respective rules.

However, Lemma 7 does not apply. Therefore, we cannot bound the number of Type 2
leaves by a polynomial in k in instances of Out-Forest Vertex Deletion Set that have

STACS 2016
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been reduced by all rules except the one of Lemma 7. Instead, we propose the following
additional rule:

I Lemma 14 (Out-Forest Source Rule). Let (G,w, k) be an instance of Out-Forest Vertex
Deletion Set. If G contains a vertex v of in-degree 0 with unique out-neighbor u that itself
has v as its unique in-neighbor, then let G′ = G− v and let w′ = w|V (G′). Then (G,w) has
an out-forest vertex deletion set of weight at most k if and only if (G′, w′) has an out-forest
vertex deletion set of weight at most k.

Crucially, the rule is invalid for Out-Tree Vertex Deletion Set, because if u is part of
the deletion set for the resulting instance, then we might also need to add v to the deletion
set in the original instance.

Once an instance of Out-Forest Vertex Deletion Set has been reduced by all
previous rules except the one of Lemma 7 and additionally by the one of Lemma 14, we can
also bound the number of Type 2 leaves by a polynomial in k.

I Lemma 15. There are at most 3k2(k + 1) leaves of Type 2.

Proof. We perform a marking scheme. Initially, no vertices are marked. Consider any
unmarked leaf u of Type 2 for which its unique out-neighbor m is also unmarked. Since the
rule of Lemma 14 cannot be performed, m has at least one other in-neighbor besides u. Let
v be an arbitrary in-neighbor of m that is not u. Store the collision (u,m, v), and mark u,
m, and v. Perform this procedure until no longer possible. At the end, each leaf of Type 2
has a marked vertex as its out-neighbor. Since each marked vertex has in-degree at most
k + 1 by Lemma 5(1), it suffices to bound the number of marked vertices.

Consider all collisions Z = {(ui,mi, vi)} that were stored during the marking scheme.
Whenever we added (u,m, v), the vertices u and m were unmarked. Therefore, for each
i 6= j, {ui,mi} ∩ {uj ,mj} = ∅. However, the v-vertices might coincide between the different
stored collisions. Let Y = {vi | (ui,mi, vi) ∈ Z}. Since Lemma 9 does not apply, |Y | ≤
k. Now consider the set Yv of collisions that were stored for a fixed vertex v ∈ Y , i.e.,
Yv := {(ui,mi, vi) ∈ Z | vi = v}. Since Lemma 6 cannot be applied, |Yv| ≤ k. Therefore,
|Z| ≤ |Y | ·maxv∈Y {|Yv|} ≤ k2, and thus the number of marked vertices is at most 3k2. J

4 Polynomial Kernel for Pumpkin Vertex Deletion Set

We first give a simple property of the problem, and use it to give our first reduction rule.
Let (G, k) be an instance of Pumpkin Vertex Deletion Set. Let HI = {v ∈ V (G) |
d−(v) ≥ k + 2} and HO = {v ∈ V (G) | d+(v) ≥ k + 2}.

I Lemma 16 (High Degree Rule). If |HI| > k + 1 or |HO| > k + 1, then (G, k) is a
“no”-instance.

We now assume that (G, k) is an instance of Pumpkin Vertex Deletion Set to which
Lemma 16 does not apply; that is, |HI|, |HO| ≤ k+1. We call such an instance primary-reduced.
We now split (G, k) into (k + 2)2 instances of the following problem.

Annotated Pumpkin Vertex Deletion Set
Input: A digraph G, an integer k, a set S ⊆ V (G) with |S| ≤ 1 and a set T ⊆ V (G)

with |T | ≤ 1 and S ∩ T = ∅, such that each vertex v ∈ V (G) \ (S ∪ T ) satisfies
max{d−(v), d+(v)} ≤ k + 1.

Question: Is there a set X ⊆ V (G) with |X| ≤ k for which G−X is a pumpkin with source s

and sink t s.t. S ⊆ {s} and T ⊆ {t}?
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The annotation of the problem is a source and sink (when S 6= ∅ or T 6= ∅). We call it
Fully Annotated Pumpkin Vertex Deletion Set if both S and T are non-empty.

Now, for each S ⊆ HO with |HO ∩ S| ≤ 1 and for each T ⊆ HI \ S with |HI ∩ T | ≤ 1, let
WS,T = (HI∪HO)\ (S∪T ) and construct the instance IS,T = (G−WS,T , k−|WS,T |, S, T ) of
Annotated Pumpkin Vertex Deletion Set. Let I denote the set of all such instances;
we call this the primary split of (G, k). Observe that |I| ≤ (k + 2)2 since |HI|, |HO| ≤ k + 1.

I Lemma 17. (G, k) is a “yes”-instance if and only if at least one of the instances of
Annotated Pumpkin Vertex Deletion Set of the primary split of (G, k) is a “yes”-
instance.

4.1 Polynomial Kernel for Annotated Pumpkin Vertex Deletion Set
We start with several reduction rules. Let (G′, k′, S′, T ′) be an instance of Annotated
Pumpkin Vertex Deletion Set.

I Lemma 18 (Source-Sink Rule). If G′ has more than k′ + 1 vertices v with d−(v) = 0 or
more than k′ + 1 vertices v with d+(v) = 0, then (G′, k′, S′, T ′) is a “no”-instance.

I Lemma 19 (Long Path Rule). For distinct vertices u, v ∈ V (G′), let P = {w0, . . . , w`} be
an induced directed u, v-path of G′ of length ` > k′ + 2 so that {w1, . . . , w`−1} ∩ (S ∪ T ) = ∅.
Obtain G′′ from G′ by removing w1 and adding the arc (w0, w2). Then (G′, k′, S′, T ′) is a
“yes”-instance if and only if (G′′, k′, S′, T ′) is.

I Lemma 20 (Parallel Paths Rule). Let u, v be distinct vertices. If there are ` induced
directed u, v-paths that do not contain a vertex of S′ and ` > k′ + 2, then let G′′ be obtained
from G′ by removing all vertices of `− (k′ + 2) arbitrary such paths. Then (G′′, k′, S′, T ′) is
a “yes”-instance if and only if (G′, k′, S′, T ′) is.

We now assume that (G′, k′, S′, T ′) is an instance of Annotated Pumpkin Vertex De-
letion Set on which Lemmas 18, 19, and 20 have no effect. We may thus assume that G
has at most k′ + 1 vertices v with d−(v) = 0 and that G has at most k′ + 1 vertices v with
d+(v) = 0. Moreover, each induced directed path has length at most k′ + 2. Finally, there
are at most k′ + 2 induced directed paths between any (ordered) pair of vertices. We call
such an instance reduced.

I Lemma 21. Let (G′, k′, S′, T ′) be a reduced instance of Annotated Pumpkin Vertex
Deletion Set. If |V (G′)| > 2(k′ + 3)2(2k′ + 3)3, then (G′, k′, S′, T ′) is a “no”-instance.

Proof. The rule can clearly be executed in linear time, so it remains to prove correctness.
Suppose that (G′, k′, S′, T ′) is a “yes”-instance, and let X ′ ⊆ V (G′) be any set such that
G′−X ′ is a pumpkin with source s′ (where S′ ⊆ {s′}) and sink t′ (where T ′ ⊆ {t′}), and that
|X ′| ≤ k′. We will say that a vertex v ∈ V (G′) has low degree if max{d−(v), d+(v)} ≤ k′ + 1.

We perform an iterative marking scheme. Initially, no vertices are marked. As long as
this is possible, find an unmarked low-degree vertex v ∈ V (G′) such that v has at least
two unmarked in-neighbors or at least two unmarked out-neighbors; then, mark v and its
low-degree in- and out-neighbors.

We claim that at most (k′ + 2)(2k′ + 3) vertices are marked. Since in each iteration we
mark a low-degree vertex and (some of) its in- and out-neighbors, the number of vertices
that are marked in an iteration is at most 2k′ + 3. Hence, it suffices to bound the number of
iterations. Consider any iteration and let v denote the vertex for this iteration. We count
two iterations for the case that v = s′ or v = t′, and thus may assume that v 6= s′ and v 6= t′.
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Without loss of generality assume that v has at least two unmarked in-neighbors. Then either
v ∈ X ′ or at least one of the unmarked in-neighbors of v must be in X ′. Since the marking
scheme proceeds iteratively, this means that after k′+ 3 iterations, we know that X ′ contains
at least k′ + 1 vertices, a contradiction. Hence, there are at most k′ + 2 iterations, and the
claim follows.

We now bound the total number of vertices v with max{d−(v), d+(v)} > 1. Let v be any
vertex such that max{d−(v), d+(v)} > 1. Since the marking scheme was exhaustive, v has at
least one marked neighbor. Since each marked vertex has low degree and there are at most
(k′ + 2)(2k′ + 3) marked vertices by the above claim, there can be at most (k′ + 2)(2k′ + 3)2

vertices v with max{d−(v), d+(v)} > 1.
To complete the proof, we notice that since the instance is reduced and thus Lemma 18 can-

not be applied, there are at most 2k′+2 vertices v with min{d−(v), d+(v)} = 0. Let C denote
the set of vertices v (v 6= s′, t′) satisfying min{d−(v), d+(v)} = 0 or max{d−(v), d+(v)} > 1.
We just proved that |C| ≤ (k′+ 3)(2k′+ 3)2. As any vertex v ∈ V (G′) \ (C ∪{s′, t′}) satisfies
d−(v) = d+(v) = 1, all vertices of V (G′) \ (C ∪ {s′, t′}) are on induced directed paths
between vertices of C ∪ {s′, t′}. Since the instance is reduced and thus Lemma 19 cannot
be applied, any such induced directed path has length at most k′ + 2. Moreover, because
each vertex of C has low degree, a vertex of C is incident upon at most 2k′ + 2 induced
directed paths. Hence, there at most |C|(2k′ + 2)(k′ + 1) vertices v ∈ V (G′) \ (C ∪ {s′, t′})
in induced directed paths that have at least one vertex of C as an endpoint. Finally, there
might be induced directed paths that have s′ and t′ as endpoints. However, since the
instance is reduced and thus Lemmas 19 and 20 cannot be applied, there are at most
k′ + 2 induced directed s′, t′-paths, each of at most k′ + 1 internal vertices. Therefore,
|V (G′)| ≤ 2 + (k′ + 1)(k′ + 2) + |C| + |C|(2k′ + 2)(k′ + 1) ≤ 2(k′ + 3)2(2k′ + 3)3 and the
lemma follows. J

I Theorem 22. Annotated Pumpkin Vertex Deletion Set has a polynomial kernel
with at most 2(k′ + 3)2(2k′ + 3)3 = O(k′5) vertices.

4.2 Polynomial Kernel for Pumpkin Vertex Deletion Set
Let (G, k) be an instance of Pumpkin Vertex Deletion Set. Find the primary split I
of (G, k), and kernelize each of the resulting instances of Annotated Pumpkin Vertex
Deletion Set using Theorem 22. Let I ′ denote the set of resulting instances of Annotated
Pumpkin Vertex Deletion Set. Let p(k) = 2(k + 3)2(2k + 3)3; that is, p(k) is the bound
of Theorem 22.

To obtain the kernel, we need to know the source and sink of the pumpkin. Therefore,
for each instance I ′S,T ∈ I ′ where |S| = 0 or |T | = 0, we create at most (p(k))2−|S|−|T |

new instances of Fully Annotated Pumpkin Vertex Deletion Set as follows. Let
I ′S,T = (G′, k′, S, T ). If |S| = 0 and |T | = 1, then for each v ∈ V (G′)\T , create a new instance
Jv,T = (G′, k′, {v}, T ). We create similar instances if |S| = 1 and |T | = 0. If |S| = 0 and
|T | = 0, then for each ordered pair u, v ∈ V (G′), create a new instance Ju,v = (G′, k′, {u}, {v}).
Let J denote the set of these new instances and of all instances I ′S,T ∈ I ′ where |S|, |T | > 0.
We call J the secondary split of (G, k). Observe that |J | ≤ (k + 2)2(p(k))2, since each
instance in I ′ has at most p(k) vertices by Theorem 22. Moreover, each instance of J is
indeed an instance of Fully Annotated Pumpkin Vertex Deletion Set. Similar to
Lemma 17, we can now prove the following lemma.

I Lemma 23. (G, k) is a “yes”-instance if and only if at least one of the instances of
Fully Annotated Pumpkin Vertex Deletion Set of the secondary split of (G, k) is a
“yes”-instance.
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Now consider the instances of the secondary split J of (G, k). Let (G′, k′, S′, T ′) be such an
instance. As argued before, |V (G′)| ≤ p(k). Moreover, |S′| = |T ′| = 1. We now add vertices
such that the resulting graph has exactly p(k) + 3k + 4 vertices and that the source and sink
are forced, even if we remove the annotation.

Let (G′, k′, S′, T ′) ∈ J . Since the instance is part of the secondary split, we know that
S′ = {s′} for some s′ ∈ V (G′) and that T ′ = {t′} for some t′ ∈ V (G′). Let A denote an
arbitrary set of min{k′ + 1, d+(s′)} out-arcs of s′. For each arc a ∈ A, replace the arc by
an induced directed path of length p(k) − |V (G′)| + k + k′ + 3. Then, add k + 2 induced
directed paths of length 2 from s′ to t′, and add k − k′ new vertices with an incoming arc
from s′. Let G′a denote the resulting graph. Observe that G′a has exactly p(k) + 3k + 4
vertices, by construction. The resulting instance then is the instance (G′a, k) of Pumpkin
Vertex Deletion Set. Let K denote the set of these created instances for all instances
of J combined. We call this the tertiary split of (G, k). Observe that, by construction,
|K| ≤ (k + 1)(k + 2)2(p(k))2, since k′ ≤ k by construction.

I Lemma 24. (G, k) is a “yes”-instance if and only if at least one of the instances of
Pumpkin Vertex Deletion Set of the tertiary split of (G, k) is a “yes”-instance.

We can now complete the proof of Theorem 3 by simply taking a disjoint union of the instances
of the tertiary split of (G, k) and setting the parameter to k′ = (|K| − 1)(p(k) + 3k + 4) + k;
the full proof can be found in the full version.

5 Arc Deletion Problems

We give part of the proof of Theorem 4 by giving the polynomial-time algorithm for Out-
Forest Arc Deletion Set and a sketch of the polynomial-time algorithm for Pumpkin
Arc Deletion Set. The polynomial-time algorithm for Out-Tree Arc Deletion Set
boils down to running breadth-first search from each vertex of the graph and is deferred to
the full version.

Out-Forest Arc Deletion Set. Notice that for any out-forest T of G, the graph (V (G), T )
has exactly |V (G)| − |T | vertices of in-degree 0, which we refer to as the roots of (V (G), T ).
Therefore, if |T | = |V (G)| − 1, then (V (G), T ) is an out-tree.

LetM1 = (E(G), I1) be the graphic matroid of 〈G〉, and letM2 = (E(G), I2) be the
partition matroid of G in which a set of arcs I ⊆ E(G) is independent if and only if each
vertex v ∈ V (G) has at most one incoming arc in I. It follows that the set of out-forests of G
is exactly the matroid intersectionM1 ∩M2, that is,M1 ∩M2 = (E(G), I1 ∩ I2). (Notice
thatM1 ∩M2 is not generally a matroid itself.)

Using Edmond’s Theorem, the matroid intersection polytope has an efficient separation
oracle which consists of sequentially checking bothM1,M2 separation oracles. Using the
ellipsoid method to convert a separation oracle into an optimization algorithm allows us
to construct a polynomial-time algorithm for optimization over the intersection polytope
P (M1 ∩M2). Linear programming duality combined with the matroid intersection theorem
implies that we can find a maximum independent set ofM1 ∩M2 in polynomial time. We
refer to Schrijver’s book [16, Theorem 41.1] for further explanation.

Therefore, we can find a maximum size out-forest of G in polynomial time. This proves
that Out-Forest Arc Deletion Set can be solved in polynomial time.

Pumpkin Arc Deletion Set. We need the following auxiliary lemma.
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I Lemma 25. Given a digraph G and a pair of distinct vertices s, t ∈ V (G), in polynomial
time we can either find a set Z ⊆ A(G) of smallest size such that the arcs of G−Z induce a
pumpkin with source s and sink t, or correctly answer that no Z ⊆ A(G) exists such that the
arcs of G− Z induce a pumpkin with source s and sink t.

Proof (Sketch). We perform the following algorithm to construct the set Z ⊆ A(G); the
proof of its correctness is deferred to the full version. First, add all incoming arcs of s
and all outgoing arcs of t to Z, and remove these arcs from G. Now replace each vertex
v ∈ V (G)\{s, t} by two vertices v− and v+, add an arc av from v− to v+, direct all incoming
arcs of v towards v−, and direct all outgoing arcs of v to start at v+. Let G′ denote the
resulting graph. Let w be a cost function that assigns cost 0 to av for each v ∈ V (G) \ {s, t}
and cost (−1) to each other arc of G′, and let c be a capacity function that assigns capacity 1
to each arc. Now find a minimum-cost s, t-flow f in G′; this takes polynomial time and yields
a flow f that assigns flow 0 or 1 to each arc of G′ [16, p. 177–181]. Add all arcs of A(G) that
are assigned flow 0 by f to Z. If the value of the flow f is 0, then answer “no”. J

Now let (G, k) be an instance of Pumpkin Arc Deletion Set. For each pair of distinct
vertices s, t ∈ V (G), apply the algorithm of Lemma 25. Return “yes” if the size of the smallest
set X found over all choices of s, t is at most k, and “no” otherwise. The correctness of the
algorithm is immediate from Lemma 25. This proves that Pumpkin Arc Deletion Set
can be solved in polynomial time.

6 Conclusions

In this paper, we took a different approach to generalizing Feedback Vertex Set and Tree
Deletion Set to digraphs: instead of generalizing the property that the resulting graph
should be ‘acyclic’, we generalized the property that the resulting graph should be a ‘forest’
and ‘tree’ respectively. The corresponding problems, Out-Forest Vertex Deletion Set
and Out-Tree Vertex Deletion Set, were both shown to admit a polynomial kernel.
We also considered Pumpkin Vertex Deletion Set, which in contrast to the previous
two problems asks for the deletion to a digraph for which the underlying graph is not acyclic.
We showed that Pumpkin Vertex Deletion Set admits a polynomial kernel as well.

In the past, efforts to find a polynomial kernel for Directed Feedback Vertex Set
were aimed at considering restricted classes of digraphs [1, 7]. We believe that our work
establishes a different line of attack that could help to resolve this longstanding open problem.
In particular, all three studied problems are of the form “delete k vertices to an acyclic
digraph that is a Π”, where in our case Π is ‘out-forest’, ‘out-tree’, or ‘pumpkin’. Therefore, we
ask for which other properties Π does this problem have a polynomial kernel (parameterized
by k) on general digraphs?

An interesting next step in the suggested research program would be to consider the
problem to delete k vertices to obtain a planar acyclic digraph with a single source and a
single sink. On the one hand, as evidenced by our polynomial kernel for Pumpkin Vertex
Deletion Set, the restriction to a single source and a single sink can be quite helpful. On the
other hand, there is no restriction on the (in-)degrees of the vertices, which neutralizes most
of the reduction rules presented in this paper. Therefore, we believe that resolving Single-
Source&Sink Planar Acyclic Digraph Vertex Deletion Set might yield crucial
insights. (Note that without planarity condition, this problem is equivalent to Directed
Feedback Vertex Set.)

Of course, this conclusion is not complete without asking the question whether Directed
Feedback Vertex Set has a polynomial kernel.
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