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Abstract
In the Directed Feedback Vertex Set (DFVS) problem, we are given as input a directed
graph D and an integer k, and the objective is to check whether there exists a set S of at most
k vertices such that F = D− S is a directed acyclic graph (DAG). Determining whether DFVS
admits a polynomial kernel (parameterized by the solution size) is one of the most important
open problems in parameterized complexity. In this article, we give a polynomial kernel for DFVS
parameterized by the solution size plus the size of any treewidth-η modulator, for any positive
integer η. We also give a polynomial kernel for the problem, which we call Vertex Deletion
to treewidth-η DAG, where given as input a directed graph D and a positive integer k, the
objective is to decide whether there exists a set of at most k vertices, say S, such that D − S is
a DAG and the treewidth1 of D − S is at most η.
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1 Introduction and Overview of Our Results

In the Directed Feedback Vertex Set (DFVS) problem, the input consists of a directed
graph D on n vertices, and an integer k. The parameter is k, and the objective is to check
whether there exists a set of at most k vertices, say S, such that F = D − S is a directed
acyclic graph (DAG). The question whether DFVS is fixed-parameter tractable was posed
as an open problem in the first few papers on fixed-parameter tractability (FPT) [8, 9].

1 Throughout the article, by treewidth of a directed graph we mean the treewidth of its underlying
undirected graph.
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This remained an open problem for over a decade until, in a breakthrough paper, DFVS
was shown to be fixed-parameter tractable by Chen et al. [5] in 2008. Specifically, they
gave an algorithm that runs in time O(4k · k! · k4 · n4). Following the resolution of the
fixed-parameter tractability status of DFVS, one of the most natural follow-up questions in
parameterized complexity, that has been raised several times, and has become one of the most
fundamental questions, is “does DFVS admit a polynomial kernel?” A polynomial kernel is
essentially a polynomial-time preprocessing algorithm that transforms the given instance
of the problem into an equivalent one whose size is bounded polynomially in the specified
parameter. Whenever the parameter is not specified, it is implied that the parameter is the
solution size (in our case, the integer k in the input of the DFVS problem). In an attempt to
develop an understanding on what makes this problem hard, and to move closer to answering
this open question, several routes have been taken. These include:
1. enriching the parameterization to encompass not only solution size but also additional

structural parameters,
2. restricting the input instances,
3. restricting the structure of the resulting DAG (F ).

In this article, we give two results concerning DFVS that contribute to progress along
all these three routes. We begin by first stating our results formally. For a directed graph
D, a subset M ⊆ V (D) is called a treewidth η-modulator if D −M has treewidth at most η.
For a fixed positive integer η > 0, let Fη be the family of digraphs of treewidth at most η.
Formally, our first problem is the following.

DFVS/DFVS+Treewidth-η Modulator (DFVS/DFVS+Tw-η Mod) Parameter: k + `

Input: A digraph D, an integer k, M ⊆ V (D) such that |M | = ` and D −M ∈ Fη.
Question: Does there exist S ⊆ V (D) such that |S| ≤ k and D − S is a DAG?

Our first result is the following.

I Theorem 1. DFVS/DFVS+Tw-η Mod admits a polynomial kernel of size (k · `)O(η2).

Our second problem is the following.

Vertex Deletion to treewidth-η DAG Parameter: k
Input: A digraph D, an integer k.
Question: Does there exist S ⊆ V (D) such that |S| ≤ k and D − S is a DAG and
D − S ∈ Fη?

The next theorem states our second result.

I Theorem 2. For any fixed positive integer η, Vertex Deletion to treewidth-η DAG
has polynomial kernel.

Let us now see how both our results make progress along all the three routes described
above. Along the first route, Bergougnoux et al. [4] studied DFVS parameterized by the
feedback vertex set (fvs) number of the underlying undirected graph, and gave a polynomial
kernel for this problem. Our first result gives a polynomial kernel for DFVS when the
parameter is solution size (k) plus the size of any treewidth-η modulator in D (say `), for any
fixed positive integer η. Note that the parameter k+ ` is not only upper bounded by O(fvs),
where fvs is the feedback vertex set number of the underlying undirected graph of D, but
it can be arbitrarily smaller than fvs. Thus, studying such a parameter brings us closer to
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the problem of the existence of a polynomial kernel for DFVS. (Note that the question of
the existence of a polynomial kernel for DFVS parameterized by the size of a treewidth-η
modulator, for η ≥ 2, alone has a negative answer because Vertex Cover parameterized by
the size of any treewidth-2 modulator cannot have a polynomial kernel, unless NP⊆ co-NP

poly
[6].) Moreover, the ideas harnessed during the construction of our polynomial kernel utilizes
the tool of important separators in a novel fashion. To the best of our knowledge, this is the
first time that the power of important separators has been harnessed to develop a polynomial
kernel. Furthermore, to derive this result, we need to embed this tool in state-of-the-art
machinery such as the use of protrusion replacers where the replacement is a minor of the
part of the graph that is replaced.

Along the second route (that is, studying DFVS by restricting the input instance),
there have been several results for polynomial kernels for DFVS when the input graph is
a tournament or some generalization of it (like a bipartite tournament etc.) [1, 3, 7, 10].
However, the existence of a polynomial kernel for DFVS is open even when the input digraph
is a planar digraph. From our first result (Theorem 1), we can conclude that we have a
polynomial kernel for DFVS when the treewidth of the input graph is polynomial in the
solution size (kO(1)).

Along the third route, Mnich and van Leeuwen [11] studied the problem, where they
considered DFVS with an additional restriction on the output DAG rather than the input
instance. They inspected this question by considering k vertex deletion to the classes of
out-forests, out-trees and (directed) pumpkins. They obtained polynomial kernels for all
these problems. Observe that for all these classes, the treewidth of the graphs in these classes
is constant (at most 2). In a follow-up paper [2], the kernel sizes given by Mnich and van
Leeuwen [11] were reduced. Our second result generalizes this approach by demanding that
the resulting DAG has bounded treewidth (bounded by any fixed constant η).

Our Methods. We now give a very brief overview of the methods used to prove our results.
In fact, here, we only focus on our first result.

Proof Idea of Theorem 1. Our kernelization algorithm can be divided into three main
phases. Recall that the input is a directed graph D, an integer k and a treewidth-η modulator
M of size `. In the first phase, we decompose the graph into O(k`2) parts (which we call
zones), each of which have constant treewidth and a “controlled” neighbourhood in the rest
of the graph. In the next step, we mark (k`)O(η2) vertices inside each zone, which have the
property that in the case of a YES-instance, there is also a solution that does not use any of
the unmarked vertices in these zones. Getting such a set of marked vertices of polynomial
size is the core of our algorithm. Having such a set of marked vertices at our disposal, we
then design reduction rules that partition the unmarked vertices in each zone into disjoint
protrusions that are then replaced by constant size graphs, such that the modulator M
remains a treewidth-η modulator in the resulting graph too. Note that this is done (over
a standard protrusion replacement) to ensure that our parameter does not increase in the
resulting instance. If one does not care about the parameter increase in the resulting instance,
then some of the steps in this algorithm can be simplified.
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