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Abstract
In the Directed Feedback Vertex Set (DFVS) problem, we are given a digraph D on
n vertices and a positive integer k and the objective is to check whether there exists a set of
vertices S of size at most k such that F = D−S is a directed acyclic digraph. In a recent paper,
Mnich and van Leeuwen [STACS 2016 ] considered the kernelization complexity of DFVS with
an additional restriction on F , namely that F must be an out-forest (Out-Forest Vertex
Deletion Set), an out-tree (Out-Tree Vertex Deletion Set), or a (directed) pumpkin
(Pumpkin Vertex Deletion Set). Their objective was to shed some light on the kernelization
complexity of the DFVS problem, a well known open problem in the area of Parameterized
Complexity. In this article, we improve the kernel sizes of Out-Forest Vertex Deletion
Set from O(k3) to O(k2) and of Pumpkin Vertex Deletion Set from O(k18) to O(k3). We
also prove that the former kernel size is tight under certain complexity theoretic assumptions.
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1 Introduction

Feedback Set problems form a family of fundamental combinatorial optimization problems.
The input for Directed Feedback Vertex Set (DFVS) (Directed Feedback Edge
Set (DFES)) consists of a directed graph (digraph) D and a positive integer k, and the
question is whether there exists a subset S ⊆ V (D) (S ⊆ E(D)) such that the graph obtained
after deleting the vertices (edges) in S is a directed acyclic graph (DAG). Similarly, the
input for Undirected Feedback Vertex Set (UFVS) (Undirected Feedback Edge
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Set (UFES)) consists of an undirected graph G and a positive integer k, and the question
is whether there exists a subset S ⊆ V (G) (S ⊆ E(G)) such that the graph obtained after
deleting the vertices (edges) in S is a forest.

All of these problems, excluding Undirected Feedback Edge Set, are NP-complete.
Furthermore, Feedback Set problems are among Karp’s 21 NP-complete problems and
have been topic of active research from algorithmic [2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 18, 19, 20,
22, 24, 27, 32] as well as structural points of view [17, 21, 23, 26, 28, 29, 30]. In particular,
such problems constitute one of the most important topics of research in Parameterized
Complexity [6, 8, 9, 10, 12, 13, 22, 20, 24, 27, 32], spearheading development of new techniques.
In this paper we study the parameterized complexity of restrictions of DFVS.

In Parameterized Complexity each problem instance is accompanied by a parameter k.
A central notion in this field is the one of fixed-parameter tractability (FPT). This means,
for a given instance (I, k), solvability in time f(k)|I|O(1) where f is some function of k.
Another central notion is the one of kernelization. A parameterized problem is said to admit
a kernel of size f(k) for some function f of k if there is a polynomial-time algorithm, called
a kernelization algorithm, that translates any input instance to an equivalent instance of the
same problem whose size is bounded by f(k). In case the function f is polynomial in k, the
problem is said to admit a polynomial kernel. For more information on these concepts we
refer the reader to monographs such as [16, 11].

In contrast to UFVS which admits a polynomial kernel, the existence of a polynomial
kernel for DFVS is still an open problem. The lack of progress on this question led to
the consideration of various restrictions on input instances. In particular, we know of
polynomial kernels for DFVS in tournaments as well as various generalizations [1, 3, 15].
However, the existence of a polynomial kernel for DFVS is open even for planar digraphs.
Recently, in a very interesting article, to make progress on this question Mnich and van
Leeuwen [25] considered DFVS with an additional restriction on the output rather than the
input. Essentially, the basic philosophy of their program is the following: What happens to
the kernelization complexity of DFVS when we consider subclasses of DAGs?

Mnich and van Leeuwen [25] inspected this question by considering the classes of out-
forests, out-trees and (directed) pumpkins. An out-tree is a digraph where each vertex has
in-degree at most 1 and the underlying (undirected) graph is a tree. An out-forest is a disjoint
union of out-trees. On the other hand, a digraph is a pumpkin if it consists of a source vertex
s and a sink vertex t, s 6= t, together with a collection of internally vertex-disjoint induced
directed paths from s to t. Here, all vertices except s and t have in-degree 1 and out-degree
1. The examination of the classes of out-forests and out-trees was also motivated by the
corresponding questions of UFVS and Tree Deletion Set in the undirected settings.
Formally, Mnich and van Leeuwen [25] studied the following problems.

Out-Forest Vertex Deletion Set (OFVDS) Parameter: k

Input: A digraph D and a positive integer k.
Question: Is there a set S ⊆ V (D) of size at most k such that F = D\S is an out-forest?

Out-Tree Vertex Deletion Set (OTVDS) and Pumpkin Vertex Deletion Set
(PVDS) are defined in a similar manner, where instead of an out-forest, F should be an
out-tree or a pumpkin, respectively. Mnich and van Leeuwen [25] showed that OFVDS and
OTVDS admit kernels of size O(k3) and PVDS admits a kernel of size O(k18).

Our Results and Methods. The objective of this article is to give improved kernels for
OFVDS and PVDS. In this context, we obtain the following results.
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OFVDS admits an O(k2) kernel and PVDS admits an O(k3) kernel. These results
improve upon the best known upper bounds O(k3) and O(k18), respectively.
For any ε > 0, OFVDS does not admit a kernel for of size O(k2−ε) unless coNP ⊆
NP /poly.

To get the improved kernel for OFVDS we incorporate the Expansion Lemma as well as
a factor 3-approximation algorithm for OFVDS in the kernelization routine given in [25].
The significance of this improvement also lies in the fact that we show that it is essentially
tight. Due to space constraints, the lower bound is omitted from this version of the paper.

The kernelization algorithm for PVDS given in [25] works roughly as follows. It has two
phases: (a) first it gives an O(k5) kernel for a variant of the problem where we know the
source and the sink of the pumpkin obtained after deleting the solution vertices; and (b)
in the second phase, it reduces PVDS to polynomially many instances of a variant of the
problem mentioned in the item (a) and then composes these instances to get a kernel of
size O(k18). In fact given an instance (D, k) of PVDS, the kernelization algorithm of [25]
outputs an equivalent instance (D′, k′) such that k′ = O(k18). We take a completely different
route and use “sun-flower style” reduction rules together with a marking strategy to obtain
an equivalent instance (D′, k′) such that |V (D)|+ |E(D)| = O(k3) and k′ ≤ k. We believe
the method applied in this algorithm could be useful also in other kernelization algorithms.

2 Preliminaries

We denote the set of natural numbers from 1 to n by [n], and we use standard terminology
from the book of Diestel [14] for graph-related terms which are not explicitly defined
here. A digraph D is a pair (V (D), E(D)) such that V (D) is a set of vertices and E(D)
is a set of ordered pairs of vertices. The underlying undirected graph G of D is a pair
(V (G), E(G)) such that V (G) = V (D) and E(G) is a set of unordered pairs of vertices
such that {u, v} ∈ E(G) if and only if either (u, v) ∈ E(D) or (v, u) ∈ E(D). Let D be
a digraph. For any v ∈ V (D), we denote by N−(v) the set of in-neighbors of v, that is,
N−(v) = {(u, v) | (u, v) ∈ E(D)}. Similarly, we denote by N+(v) the set of out-neighbors
of v, that is, N+(v) = {(v, u) | (v, u) ∈ E(D)}. We denote the in-degree of a vertex v by
d−(v) = |N−(v)| and its out-degree by d+(v) = N+(v). We say that P = (u1, . . . , ul) is a
directed path in the digraph D is u1, . . . , ul ∈ V (D) and for all i ∈ [l− 1], (ui, ui+1) ∈ E(D).
A collision is a triplet (u,w, v) of distinct vertices such that (u,w), (v, w) ∈ E(D).

3 Improved Kernel for Out-Forest Vertex Deletion Set

The aim of this section is to present an O(k2) kernel for OFVDS. In Section 3.1 we state
definitions and results relevant to our kernelization algorithm. Next, in Section 3.2, we design
an algorithm for OFVDS that outputs a 3-approximate solution, which will also be used by
our kernelization algorithm. Finally, in Section 3.3, we present our kernelization algorithm.

3.1 Prerequisites
We start by giving the definition of a q-expansion and the statement of the Expansion Lemma.

I Definition 1 (q-Expansion). For a positive integer q, a set of edges M ⊆ E(G) is a q-
expansion of A into B if (i) every vertex in A is incident to exactly q vertices in M , and (ii)
M saturates exactly q|A| vertices in B (i.e., there is a set of q|A| vertices in B which are
incident to edges in M).
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I Lemma 2 (Expansion Lemma [11, 31]). Let q be a positive integer and G be an undirected
bipartite graph with vertex bipartition (A,B) such that |B| ≥ q|A|, and there are no isolated
vertices in B. Then, there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that there exists
a q-expansion of X into Y , and no vertex in Y has a neighbor outside X (i.e., N(Y ) ⊆ X).
Furthermore, the sets X and Y can be found in time polynomial in the size of G.

We will also need to rely on the well-known notion of l-flowers.

I Definition 3 (l-Flower). An undirected graph G contains an l-flower through v if there is
a family of cycles {C1, . . . , Cl} in G such that for all distinct i, j ∈ [l], V (Ci) ∩ V (Cj) = {v}.

I Lemma 4 ([11, 31]). Given an undirected graph G and a vertex v ∈ V (G), there is a
polynomial-time algorithm that either outputs a (k+ 1)-flower through v or, if no such flower
exists, outputs a set Zv ⊆ V (G)\{v} of size at most 2k that intersects every cycle that passes
through v in G.

3.2 Approximation Algorithm for Out-Forest Vertex Deletion Set
This section presents a 3-factor approximation algorithm for OFVDS. Given an instance of
OFVDS, let OPT be the minimum size of a solution. Formally, we solve the following.

3−Approximate Out-Forest Vertex Deletion Set (Approx-OFVDS)
Input: A DAG D.
Output: A subset X ⊆ V (D) such that D \X is an out-forest and |X| ≤ 3 ·OPT .

Given three distinct vertices u1, u2, u3 ∈ V (D), we say (u1, u2, u3) is an obstruction
if u1 and u2 are in-neighbors of u3. Observe that any solution to OFVDS (and hence,
Approx-OFVDS) must intersect any obstruction in at least 1 vertex. Moreover, it must
intersect any cycle in at least 1 vertex. These observations form the basis of this algorithm.

I Lemma 5. Approx-OFVDS can be solved in polynomial time.

Proof. Given a digraph D, the algorithm first constructs (in polynomial time) a family F of
obstructions and induced cycles in D such that the vertex sets of the entities in this family
are pairwise disjoint. To this it, it initializes F = ∅. Then, as long as there exists a vertex
v ∈ V (D) with at least two in-neighbors, u1 and u2, it inserts (v, u1, u2) into F and removes
v, u1 and u2 from F (only for the purpose of the construction of F). Once there is no vertex
v ∈ V (D) such that d−(v) ≥ 2, the digraph is a collection of directed vertex-disjoint cycles
and paths. Each of these cycles is inserted into the family F .

Let us now construct a solution, Sapp, for Approx-OFVDS. For every obstruction in F ,
we let Sapp contain each of the three vertices of this obstruction. From every cycle C in F
we pick an arbitrary vertex and insert it into Sapp. Clearly, |Sapp| ≤ 3|F|. It is now sufficient
to prove is that D \ Sapp is an out-forest. Observe that no vertex v in D \ Sapp has in-degree
at least 2, otherwise the obstruction consisting of v and two of its in-neighbors would have
been inserted into F and hence also into Sapp. Moreover, there is no directed cycle C in
D \ Sapp. Indeed, if the cycle C intersects an obstruction in F , it is clear that it cannot exist
in D \ Sapp, and otherwise it would have been inserted into F and hence one of its vertices
would have been inserted into Sapp. We thus conclude that the theorem is correct. J

3.3 Kernelization algorithm for Out-Forest Vertex Deletion Set
We are are now ready to present our kernelization algorithm. Let (D, k) be an instance of
OFVDS. We note that during the execution of our algorithm, D may become a multigraph.
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Preprocessing. We start by applying the following reduction rules exhaustively, where a
rule is applied only if its condition is true and the conditions of all of the preceding rules are
false. Rule 4 is given in [25], and its correctness is proven in that paper. It will be clear that
the other first five rules can be applied in polynomial time, while for the last rule, we call
the algorithm given by Lemma 4. Moreover, it is straightforward to verify that each of these
rules, except Rule 4, is safe (i.e., the instance it returns is equivalent to the input instance).

I Reduction Rule 1. If there exists a vertex v ∈ V (D) such that d+(v) = 0 and d−(v) ≤ 1,
remove v from D.

I Reduction Rule 2. If there exists a directed path P = (w0, w1, . . . , wl, wl+1) in D such
that l ≥ 2 and for all i ∈ [l], d−(wi) = d+(wi) = 1, remove each vertex in {w1, . . . , wl−1}
from D and add the edge (w0, wl) to D.

I Reduction Rule 3. If there exists an edge (u, v) ∈ E(D) with multiplicity at least 3, remove
all but two copies of it.

I Reduction Rule 4. If there exist collisions (u1, w1, v), . . . , (uk+1, wk+1, v) that pairwise
intersect only at v, remove v from D and decrease k by 1.

I Reduction Rule 5. If there exists a vertex v ∈ V (D) such that d−(v) ≥ k + 2, remove v
from D and decrease k by 1.

I Reduction Rule 6. Let G be the underlying graph of D. If there exists a vertex v ∈ V (G)
such that there is a (k + 1)-flower through v in G, remove v from D and decrease k by 1.

Bounding Out-Degrees. Next, we aim to bound the maximum out-degree of a vertex in
D. To this end, suppose that there exists a vertex v ∈ V (D) with d+(v) ≥ 16k + 1. Let
G be the underlying graph of D. Since Reduction Rule 6 is not applicable, we let Zv be
the set obtained by calling the algorithm given by Lemma 4. Moreover, we let Sapp be a
3-factor approximate solution obtained be calling the algorithm given by Theorem 5. We
can assume that |Sapp| ≤ 3k, since otherwise the input instance is a NO-instance. Denote
Xv = (Sapp ∪ Zv) \ {v}. Since |Zv| ≤ 2k, we have that |Xv| ≤ 5k.

We proceed by examining the set Cv = {C1, C2, . . . , C|Cv|} of the connected components in
G\ (Xv ∪{v}). Since Sapp is an approximate solution, each component Ci ∈ Cv is an out-tree.
Moreover, for any component Ci ∈ Cv, v has at most one neighbor in Ci, since otherwise there
would have been cycle passing through v in G\Zv, contradicting the definition of Zv. For each
component Ci ∈ Cv, let ui be the root of Ci. Let Dv = {Ci | Ci ∈ Cv, (v, ui) ∈ E(D)} and
D̃v = {Ci | Ci ∈ C, (v, u) ∈ E(D), u ∈ Ci, u 6= ui}. Observe that d+(v) ≤ |Dv|+ |D̃v|+ |Xv|.
Moreover, since Reduction Rule 4 is not applicable, |D̃v| ≤ k + 1. Since d+(v) ≥ 16k + 1,
we have that |Dv| ≥ 10k. Without loss of generality, let Dv = {C1, . . . , Cp} where p = |Dv|.
Since Reduction Rule 1 is not applicable, for any component Ci ∈ Dv there exists an edge in
E(G) with one endpoint in Ci and the other in Xv.

We now construct an auxiliary (undirected) bipartite graph H with bipartition (A,B),
where A = Xv and B is a set of new vertices denoted by b1, . . . , bp. For any u ∈ A and
bi ∈ B, (u, bi) ∈ E(H) if and only if there exists an edge in G between u and some vertex
in Ci. Since |B| ≥ 2|A| and there are no isolated vertices in B, we can use the algorithm
given by Lemma 2 to obtain nonempty vertex sets X ′v ⊆ A and Y ′v ⊆ B such that there is a
2-expansion of X ′v into Y ′v and N(Y ′v) ⊆ X ′v. Let D′v = {Ci | bi ∈ Y ′v}.

I Reduction Rule 7. Remove each of the edges in D between v and any vertex in a component
in D′v. For every vertex xi ∈ X ′v, insert two copies of the edge (v, xi) into E(D).

ISAAC 2016



6:6 Kernels for Deletion to Classes of Acyclic Digraphs

I Lemma 6. Reduction Rule 7 is safe.

Proof. Let D′ be the graph resulting from the application of the rule. We need to prove
that (D, k) is a YES-instance if and only if (D′, k) is a YES-instance.

Forward Direction. For the forward direction, we first claim that if (D, k) has a solution S
such that v 6∈ S, then it has a solution S′ such that X ′v ⊆ S′. To this end, suppose that (D, k)
has a solution S such that v 6∈ S. Let S′ = (S \

⋃
Ci∈D′

v
V (Ci))∪X ′v. It holds that |S′| ≤ |S|

since for each x ∈ X ′v \ S, at least one vertex from at least one of the two components in
its expansion set must belong to the solution. Suppose for the sake of contradiction that
F = D \ S′ is not an out-forest. First, assume that there exists a vertex in F with in-degree
at least 2. Note that V (D) =

⋃
Ci∈Cv

V (Ci) ∪Xv ∪ {v}. Recall that the neighborhood of
each of the vertices in the connected components that belong to D′v is contained in {v} ∪X ′v.
Moreover, v only has out-neighbors in the components that belong to D′v and each Ci ∈ Cv is
an out-tree. Therefore, since D \S has no vertex of in-degree at least 2, so does D \S′. Now,
assume that there is a cycle C in F . Then, if V (C)∩ (S ∩

⋃
Ci∈D′ V (Ci)) = ∅, then C is also

a cycle in D \ S, which is a contradiction. Thus, V (C) ∩ (S ∩
⋃
Ci∈D′ V (C)i) 6= ∅. However,

any cycle that passes through a component in D′v also passes through v and a vertex in X ′v.
Since X ′v ⊆ S′, no such cycle exists. This finishes the proof of the claim.

Let S be a solution to (D, k). If v ∈ S, then it is clear that D′ \ S is an out-forest.
Otherwise, if v 6∈ S, our claim implies that (D, k) has a solution S′ such that X ′v ⊆ S′. Then,
D′ \ S′ is an out-forest.

Backward Direction. For the backward direction, let us prove the following claim. If (D′, k)
has a solution S such that v 6∈ S, then X ′v ⊆ S. Suppose, by way of contradiction, that the
claim is incorrect. Then, there exists x ∈ X ′v such that x 6∈ S. However, this implies that
D′ \ S is not an out-forest as it contains the double edges (v, xi).

Now, let S be a solution to (D′, k), and denote F = D′ \ S. Suppose v ∈ S. Then,
F = D \ S is an out forest and thus S is solution to (D, k). If v 6∈ S, then by our previous
claim, X ′v ⊆ S. Observe that each vertex ui 6∈ S is a root in F . Moreover, each such vertex
ui and v belong to different out-trees of F . This implies that if we add (to D′) the edges
between v and each vertex ui that have been removed by the application of the rule, F will
remain an out-forest. Thus, S is a solution to (D, k). J

After an exhaustive application of Reduction Rule 7, the out-degree of each vertex in D is
at most 16k. However, since this rule inserts edges into E(G), we need the following lemma.

I Lemma 7 (*1). The total number of applications of the reduction rules is bounded by a
polynomial in the input size.

Correctness. By relying on counting arguments as well as Lemmas 6 and 7, we obtain the
main result of this section.

I Theorem 8 (*). OFVDS admits an O(k2)-kernel.

We also prove that the size of the kernel given in Theorem 8 is tight, that is OFVDS
does not admit an O(k2−ε) size kernel unless coNP ⊆ NP/poly. This result follows from
an easy polynomial time parameter preserving transformation from the Vertex Cover
problem parameterized by the solution size to OFVDS.

1 Due to space constraints, proofs of results marked with (*) were omitted.
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4 Improved Kernel for Pumpkin Vertex Deletion Set

In this section we prove the following theorem.

I Theorem 9. PVDS admits an O(k3)-vertex kernel.

Let (D, k) be an instance of PVDS. We assume that |V (D)| ≥ k3, else we are done. Let
HO = {v ∈ V | d+(v) ≥ k + 2} and HI = {v ∈ V | d−(v) ≥ k + 2}. That is, HO and HI
are vertices of high out-degrees and high in-degrees, respectively. Mnich and Leeuwen [25]
proved that the following reduction rule is safe.

I Reduction Rule 4.1. If |HO| > k + 1 or |HI| > k + 1, return that (D, k) is a NO-instance.

For the sake of clarity, we divide the presentation of the kernelization algorithm into
two subsections. At the end of Section 4.1, we will simplify the instance in a way that will
allow us to assume that if there is a solution S, then both the source and sink of the pumpkin
D \ S belong to HO ∪ HI (Assumption 17). This assumption will be at the heart of the
“marking approach” of Section 4.2, which will handle instances which have been reduced with
respect to the reduction rules in Section 4.1. An intuitive explanation of the necessity of
our marking process is given at the beginning of Section 4.2. Throughout this section, if k
becomes negative, we return that (D, k) is a NO-instance, and if D becomes a pumpkin and
k is positive or zero, we return that (D, k) is a YES-instance.

4.1 Simplification Phase
For any v ∈ V (D), denote by Xv the set of in-neighbors of v, that is, Xv = N−(v) and
by Yv the set of every vertex y ∈ V (D) for which there exists a vertex x ∈ Xv such that
(x, y) ∈ E(D). Note that Xv and Yv may or may not be disjoint sets. We now give a
construction of an auxiliary graph that will be used to prove the safeness of the upcoming
reduction rule. For this, consider a set Y ′v of new vertices such that there is exactly one
vertex y′ ∈ Y ′v for any y ∈ Yv. That is, Y ′v is a set containing a copy for each of the vertex
in Yv. By construction, Xv and Y ′v are disjoint sets. Let H−v be the (undirected) bipartite
graph on the vertex set Xv ∪ Y ′v where for all x ∈ Xv and y′ ∈ Y ′v , {x, y′} ∈ E(H−v ) if and
only if (x, y) ∈ E(D). Let match−(v) be the size of a maximum matching in H−v .

I Reduction Rule 4.2. If there exists a vertex v ∈ V (D) such that match−(v) > 2(k + 1),
remove v from D and decrease k by 1.

I Lemma 10. Reduction Rule 4.2 is safe.

Proof. For the backward direction, trivially if S is a pumpkin deletion set in D \ {v} of
size at most k − 1, then S ∪ {v} is a pumpkin deletion set in D of size at most k. For
the forward direction, it is sufficient to show that if (D, k) is a YES-instance then every
solution S contains v. For a contradiction, assume that there exists a solution S that does
not contain v. Let M be a maximum matching in the graph H−v . Observe that for every
edge {x, y′} ∈M where x ∈ Xv, if x is not the source of the pumpkin D \ S, it holds that
|S ∩ {x, y}| ≥ 1 (otherwise the pumpkin D \ S contains a vertex, which is not its source, and
has at least two out-neighbors). Moreover, for every edge {x, y′} ∈ M where x ∈ Xv, if y
is the source of the pumpkin D \ S, it holds that x ∈ S. We thus deduce that for all but
one of the edges {x, y′} ∈M , we have that |S ∩ {x, y}| ≥ 1. Since M is a matching, for every
vertex u ∈ S, the vertex u can belong to at most one edge in M , and the vertex u′ (if it
belongs to Y ′v) can also belong to at most one edge in M . However, |S| ≤ k, and therefore
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S ∪ {y′ ∈ Y ′v : y ∈ S} can intersect at most 2k edges in M . Since S ∪ {y′ ∈ Y ′v : y ∈ S} must
intersect all but one edge of M and |M | > 2(k + 1), we obtain a contradiction. J

Now, to present the symmetric rule, for any vertex v ∈ V (D), denote by Xv the set of
out-neighbors of v, that is, Xv = N+(v). Let Yv be the set of vertices y ∈ V (D) for which
there exists a vertex x ∈ Xv such that (y, x) ∈ E(D). Let Y ′v be a set containing a copy y′
of each vertex y ∈ Y . Let H+

v be the bipartite graph on the vertex-set Xv ∪ Y ′v which for all
x ∈ Xv and y′ ∈ Y ′v contains the edge {x, y′} if and only if (y, x) ∈ E(D). Let match+(v) be
the size of a maximum matching in H+

v . Then, the following reduction rule is safe.

I Reduction Rule 4.3. If there exists a vertex v ∈ V (D) such that match+(v) > 2(k + 1),
remove v from D and decrement k by 1.

We also need the following rule, proved by Mnich and Leeuwen [25].

I Reduction Rule 4.4. Let P = (w0, · · · , w`) be an induced directed path, that is for all
i ∈ [l − 1] d−(wi) = d+(wi) = 1, with ` > k + 2 in D. Then, delete w1 from D and add the
edge (w0, w2).

Consider some hypothetical solution S (if such a solution exists). Let s and t denote
the source and sink, respectively, of the pumpkin D \ S. Let A (or B) denote the set of
out-neighbors (resp. in-neighbors) of s (resp. t) in the pumpkin. Clearly, |A| = |B|. Let
C = V (D) \ (S ∪A ∪B ∪ {s, t}). Next, we prove a series of useful claims relating to S.

I Lemma 11 (*). (i) Every vertex in {s} ∪A ∪B ∪ C has in-degree (in D) at most k + 1,
and (ii) every vertex in {t} ∪A ∪B ∪ C has out-degree (in D) at most k + 1.

I Lemma 12 (*). For any vertex v ∈ V (D), |N−(v) ∩ C|, |N+(v) ∩ C| ≤ 2(k + 1).

The set of in-neighbors (or out-neighbors) of any vertex v ∈ V (D) is contained in
A ∪B ∪ C ∪ S ∪ {s, t}. Since |A| ≤ d+(s), |B| ≤ d−(t) and |S| ≤ k, Lemma 12 gives us the
following corollary.

I Corollary 13. For any vertex v ∈ V (D), d−(v), d+(v) ≤ 3k + d+(s) + d−(t) + 4.

We further strengthen this corollary to obtain the following result.

I Lemma 14 (*). For any vertex v ∈ V (D), d−(v), d+(v) ≤ min{4k + 2d+(s) + 4, 4k +
2d−(t) + 4}.

Let M = maxv∈V (D){d+(v), d−(v)}. The next corollary (derived from Lemma 14) and
rule will bring us to the main goal of this subsection, summarized in Assumption 17 below.

I Corollary 15 (*). If M > 6k + 6, then s ∈ HO and t ∈ HI.

I Reduction Rule 4.5. If |V (D)| > 2k2M + 4kM + k + 2, return (D, k) is a NO-instance.

I Lemma 16 (*). Reduction Rule 4.5 is safe.

By Rule 4.5, if M ≤ 6k+ 6, we obtain the desired kernel. Thus, by Corollary 15, we have
the following observation.

I Assumption 17. From now on, we can assume that if a solution exists, in the resulting
pumpkin the source belongs to HO and the target belongs to HI.

Next, it will be convenient to assume that HI and HO are disjoint sets. To this end, we
apply the following rule exhaustively, where safeness follows directly from Lemma 11.
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I Reduction Rule 4.6. Remove all vertices in HI ∩HO and decrease k by |HI ∩ HO|.

We will also assume that the following rule has been applied exhaustively. This assumption
will be used at the end of the following subsection (in the proof of Lemma 25).

I Reduction Rule 4.7. If there exists a vertex v 6∈ HI∪HO such that N−(v)∩(V (D)\HI) = ∅
or N+(v) ∩ (V (D) \ HO) = ∅, delete v from D and decrease k by 1.

I Lemma 18 (*). Reduction Rule 4.7 is safe.

4.2 Marking Approach
We are now ready to present our marking approach, handling instances to which Assump-
tion 17 applies and none of the rules in Section 4.1 is applicable. Let P∗ is the set of connected
components in D \ (HO ∪ HI) that are directed paths whose internal vertices have in-degree
1 and out-degree 1 in D, and let V ∗ be the union of the vertex-sets of the paths in P∗. It
turns out that by relying on Lemma 12 and Rule 4.4, one can directly bound the number
of vertices in V (D) \ V ∗ by O(k3), assuming that the input instance is a YES-instance (see
the proof of Lemma 23). However, bounding the size of V ∗ is more tricky, and our marking
process is devoted to this cause. In this process, we will mark O(k3) vertices from V ∗, and
prove that because we are handling instances to which Assumption 17 applies, all of the
vertices that are not marked are essentially irrelevant. We will perform two “rounds” of
marking. Roughly speaking, for each pair of vertices in HO (or HI) the first round aims to
capture enough vertices of paths that describe the relation between the vertices in this pair,
or, more precisely, why one of the vertices of the pair is a “better choice” than the other
when one should decide which vertex (from HO) is the source of the pumpkin. However, this
round is not sufficient, since some vertices in HO (or HI) have conflicts (independent of the
other vertices in HO ∪ HI) relating to the endpoints of the paths in P∗. In the second round
of marking, for each vertex in HO ∪ HI, we mark enough vertices from these problematic
paths.

First Round of Marking. Towards the performance of the first round, we need the following
notations. For each vertex v ∈ V (D) \ (HI ∪ HO), let P̂ (v) denote the connected component
in D \ (HI∪HO) containing v. For each s ∈ HO, let N̂(s) denote the set of each out-neighbor
v ∈ V (D) \ (HI ∪ HO) of s such that P̂ (v) ∈ P∗ and the first vertex of (the directed path)
P̂ (v) is v. Symmetrically, for each t ∈ HI, let N̂(t) denote the set of each in-neighbor
v ∈ V (D) \ (HI∪HO) of t such that P̂ (v) ∈ P∗ and the last vertex of P̂ (v) is v. By Rule 4.6,
HI ∩ HO = ∅, and therefore these notations are well defined (i.e., we have not defined N̂

twice for the same vertex). Given u ∈ (HI ∪ HO), we also denote P̂(u) = {P̂ (v) | v ∈ N̂(u)}.
Observe that the paths in P̂(u) are pairwise vertex-disjoint.

Next, we identify enough vertices from paths that capture the relation between each pair
of vertices in HO (or HI). For each pair (s, s′) ∈ HO× HO, let M̂KP (s, s′) be an arbitrarily
chosen set of minimal size of paths from P̂(s) \ P̂(s′) that together contain at least k + 1
vertices not having s′ as an in-neighbor. In this context, observe that only the last vertex on
a path in P̂(s) \ P̂(s′) can have s′ as an in-neighbor. In this case, the path must contain at
least two vertices (since its first vertex cannot have s′ as an in-neighbor), and while we insert
the entire path into M̂KP (s, s′), its last vertex is not “counted” when we aim to obtain at
least k + 1 vertices not having s′ as an in-neighbor. If there are not enough paths to obtain
at least k + 1 such vertices, let M̂KP (s, s′) = P̂(s) \ P̂(s′). Symmetrically, for each pair
(t, t′) ∈ HI × HI, let M̂KP (t, t′) be an arbitrarily chosen set of minimal size of paths from
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P̂(t) \ P̂(t′) that together contain at least k + 1 vertices not having t′ as an out-neighbor. If
there are not enough paths, let M̂KP (t, t′) = P̂(t) \ P̂(t′).

Finally, given a pair (v, v′) ∈ (HO× HO) ∪ (HI× HI), let M̂K(v, v′) denote the union of
the vertex-sets of the paths in M̂KP (v, v′). We have the following claim.

I Lemma 19 (*). For each pair (v, v′) ∈ (HO× HO) ∪ (HI× HI), |M̂K(v, v′)| ≤ 3(k + 1).

Second Round of Marking. We proceed to the second round of marking. For this purpose,
we need the following notation. For each u ∈ HI ∪ HO, let M̃KP (u) denote the set of each
directed path in P∗ whose first and last vertices are both neighbors of u.

I Reduction Rule 4.8. If there exists u ∈ HI ∪ HO such that |M̃KP (u)| > k + 1, delete u
from D and decrease k by 1.

I Lemma 20 (*). Reduction Rule 4.8 is safe.

For each u ∈ HI∪HO, let M̃K(u) be the union of the vertex-sets of the paths in M̃KP (u).
Since at this point, Rules 4.4 and 4.8 are not applicable, we have the following lemma.

I Lemma 21. For each u ∈ HI ∪ HO, |M̃K(u)| ≤ (k + 1)(k + 2).

The Size of the Kernel. For the sake of abbreviation, we define the following sets.
MKP = (

⋃
(u,u′)∈(HO×HO)∪(HI∪HI) M̂KP (u, u′)) ∪ (

⋃
u∈HO∪HI M̃KP (u)), and

MK = (
⋃

(u,u′)∈(HO×HO)∪(HI∪HI) M̂K(u, u′)) ∪ (
⋃
u∈HO∪HI M̃K(u)).

By Lemmas 19 and 21, and since Rule 4.1 is not applicable, we bound |MK| as follows.

I Lemma 22. |MK| ≤ 2 · (3(k + 1)3 + (k + 1)2(k + 2)) ≤ 8(k + 2)3.

Let V R denote the set of unmarked vertices in V ∗, i.e., V ∗ \MK. We construct the
graph D′ by removing from D all of the vertices in V R, adding a set Nk+2 of k + 2 new
vertices, and for each of the new vertices, adding an edge from each vertex in HO as well as
an edge to each vertex in HI. If V (D′) contains at most 2k + 4 vertices, add to it one-by-one
a vertex-set of a path in P∗ until its size becomes at least 2k + 5 (by Lemma 4.4, the size
will not exceed 3k + 6, and because |V (D)| ≥ k3, we will reach the desired size).

I Lemma 23 (*). If |V (D′)| > 30(k + 2)3, (D′, k) is a NO-instance of PVDS.

Correctness. Finally, Theorem 9 follows from Lemma 23 and the two lemmas below.

I Lemma 24 (*). If (D, k) is a YES-instance then (D′, k) is a YES-instance.

I Lemma 25. If (D′, k) is a YES-instance then (D, k) is a YES-instance.

Proof. Let S be a solution to (D′, k). Let s and t be the source and target, respectively,
of the pumpkin D′ \ S. Because of the set Nk+2 of k + 2 vertices added to D′ at its
construction, and since |S| ≤ k, s ∈ HO and t ∈ HI. Moreover, by the definition of HO and
HI, (HO ∪ HI) \ {s, t} ⊆ S. We can also assume that S does not contain any vertex added to
D′ at its construction since by removing such a vertex from S, we still have a pumpkin. Our
goal will be to show that S is also a solution to (D, k), which will imply that the lemma is
correct. To this end, we will show that D \ S is a pumpkin with source s and sink t.

First, note that we can assume that in D \ S there exists a path from s to t. Indeed, if
this is not true, then D′ \ S consists only of s, t and newly added vertices. That is, V (D′)



A. Agrawal, S. Saurabh, R. Sharma, and M. Zehavi 6:11

contains at most 2k + 4 vertices, which contradicts its construction. By the definition of P∗,
each path in P∗ has only internal vertices that have in-degree 1 and out-degree 1 in D , and
its endpoints can only be adjacent to vertices in HI ∪ HO and in the path itself. Thus, to
prove the lemma, it is sufficient to show that for each path in P∗ \MKP , its first vertex has
s as an ingoing neighbor, its last vertex has t as an out-neighbor, and if it contains at least
two vertices, its first vertex is not a neighbor of t and its last vertex is not a neighbor of s.

Consider some path P ∈ P∗ \MKP . First suppose, by way of contradiction, that the
first vertex v of P does not have s as an in-neighbor. Because Rule 4.7 is not applicable,
v has at least one in-neighbor s′ ∈ HO. Thus, since v /∈ MK, MK(s′, s) contains at least
k + 1 vertices that are not out-neighbors of s and such that each of them belongs to a path
in P∗ whose first vertex is not an out-neighbor of s. The vertices in MK(s′, s) belong to
D′. Since |S| ≤ k, at least one of these vertices, say some u, should belong to the pumpkin
D′ \ S. However, in D′ \ ((HI ∪ HO) \ {s}), which is a supergraph of D′ \ S, u cannot be
reached from s, which contradicts the fact that D′ \ S is a pumpkin. Symmetrically, it is
shown that the last vertex of P has t as an out-neighbor.

Now assume that P contains at least two vertices. Suppose, by way of contradiction,
that the first vertex of P has t as a neighbor. We have already shown that the last vertex of
P is also a neighbor of t, and therefore P ∈ M̃KP (t). However, M̃KP (t) ⊆ MKP , which
contradicts the fact that P ∈ P∗ \MKP . Symmetrically, it is shown that the last vertex of
P does not have s as a neighbor, concluding the proof of the lemma. J
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