
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

8-2019 

Machine Learning Techniques as Applied to Discrete and Machine Learning Techniques as Applied to Discrete and 

Combinatorial Structures Combinatorial Structures 

Samuel David Schwartz 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Schwartz, Samuel David, "Machine Learning Techniques as Applied to Discrete and Combinatorial 
Structures" (2019). All Graduate Theses and Dissertations. 7542. 
https://digitalcommons.usu.edu/etd/7542 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.usu.edu%2Fetd%2F7542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7542?utm_source=digitalcommons.usu.edu%2Fetd%2F7542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


MACHINE LEARNING TECHNIQUES AS APPLIED TO

DISCRETE AND COMBINATORIAL STRUCTURES

by

Samuel David Schwartz

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Mathematics

Approved:

David E. Brown, Ph.D. Adele Cutler, Ph.D.
Major Professor Committee Member

Todd Moon, Ph.D. Richard S. Inouye, Ph.D.
Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2019



ii

Copyright © Samuel David Schwartz 2019

All Rights Reserved



iii

ABSTRACT

Machine Learning Techniques as Applied to

Discrete and Combinatorial Structures

by

Samuel David Schwartz, Master of Science

Utah State University, 2019

Major Professor: David E. Brown, Ph.D.
Department: Mathematics and Statistics

Machine learning techniques, while well established for many observation types,

have only recently come onto the scene for graphs and other combinatorial objects.

Further, the use and efficacy of machine learning techniques in predicting computationally

difficult invariants on discrete and combinatorial objects is next to unknown. This thesis

outlines methodologies useful for articulating discrete structures in the paradigm of many

machine learning algorithms. Moreover, we examine several NP hard problems in different

representations. We then report on the results of various techniques and methodologies in

solving certain families of these problems.

(106 pages)



iv

PUBLIC ABSTRACT

Machine Learning Techniques as Applied to

Discrete and Combinatorial Structures

Samuel David Schwartz

Machine Learning Techniques have been used on a wide array of input types: images,

sound waves, text, and so forth. In articulating these input types to the almighty machine,

there have been all sorts of amazing problems that have been solved for many practical

purposes.

Nevertheless, there are some input types which don’t lend themselves nicely to the

standard set of machine learning tools we have. Moreover, there are some provably difficult

problems which are abysmally hard to solve within a reasonable time frame.

This thesis addresses several of these difficult problems. It frames these problems such

that we can then attempt to marry the allegedly powerful utility of existing machine learning

techniques to the practical solvability of said problems.



v

DEDICATION

Most thesis dedications are yawn inducing. Often dedicated to the author’s loved ones
in a trite one liner, it’s no wonder that the dedication is the most skipped over section of
the typical graduate student produced manuscript. In fact, I’m shocked you’re even reading
this. Alas, since you’re here reading this page anyway, I assure you to fear not; I fall in
line and wax typically sentimental in my acknowledgements. At this time, however, I beg
of you a moment of indulgence in my overtly political dedication: I dedicate this thesis to
the haves and have-nots.

I am most definitely a “have”. I have had a wonderful family that inculcated love of
learning and discovery at a young age. I have had teachers and public school systems that
fostered opportunities to explore curiosities all throughout my teenagehood. I have had a
vast array of academic resources made readily available during my affordable undergraduate
experience at USU. I have had a department and advisor who never gave up on me during
my darkest hours as a graduate student.

Many of my fellow graduate student peers in the department are similarly situated
“haves”. I salute them in their diligent tackling of the unique internal and external pressures
they face. From the varied complaints of undergraduate curriculum they field on a regular
basis (complaints sourced from the lowliest undergraduate rabble to the lofty professor in
some other department), to the abysmal pay compared with peers in industry, my fellow
graduate student “haves” tolerate much and I stand with them in solidarity. It is to them
I dedicate this thesis.

I dedicate this thesis equally to those who have-not. To those who were not born
into a family supportive of academic endevors. To those who, by misfortunate accident of
their circumstances of birth or environment of origin, did not have a background sufficient
for subsequent collegiate success. To those who have-not a place at the banquet table of
opportunity, I dedicate this thesis.

This is my solemn prayer: That we may utilize the gifts of machine learning to benefit
the many, not the few. That the fruits of these gifts will lead to the boundless and equitable
distribution of opportunity. That the paths from have-not to have may become wider and
more numerous. To this dream and hope I commend and dedicate my thesis.



vi

ACKNOWLEDGMENTS

• David E. Brown It is only appropriate that any acknowledgements page begin with

Dave. I thank him for the tireless service he has provided over the years. A previous

MS student likened Dave to “Yoda” in his thesis; the wisdom has yet to cease.

• Adele Cutler and Todd Moon For sticking with me from semester one till now.

• Andreas Malmendier For having the audacity to work late into the wee hours of

the morning, and for being willing to lend a listening ear at both 3 p.m. and 3 a.m.

• Andrew Lloyd For being my first advisor and sounding board. Andy may be gone

from this life, but his wisdom is never far from mind.

• Brent Thomas For speaking to me of the unspoken rules, and for having the courage

to tell me what I needed to hear even when I didn’t want to hear it.

• Katie Sweet For being my stalwart supporter since second grade.

• Kevin Moon For thoughtful technical remarks, and for the opportunity to utilize

his research group as a fertilizer for new ideas and directions.

• My Family For their unwavering dedication through thick and thin.

• My Fellow Graduate Students For cheering me on and teaching me the things

which research and classrooms cannot. While I can’t enumerate everyone, I’d like

to mention Michael Schultz, Tyler Bowles, and Kaitlin Murphy as pivotal influences

during each semester I’ve been a graduate student.

• The Department of Mathematics and Statistics For, as an institution, allowing

me the opportunity to cyclically fail, learn from the failure, and grow from it.

For all the support given, I am grateful.

Samuel David Schwartz



vii

CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PUBLIC ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivating Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivating the Use of Existing Techniques . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Limitations of Existing Techniques . . . . . . . . . . . . . . . . . . . . . 5
1.3 Motivating the Use of Machine Learning Techniques . . . . . . . . . . . . . . . 8

1.3.1 Limitations of Machine Learning Techniques . . . . . . . . . . . . . . . 8
1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 INPUT REPRESENTATIONS OF GRAPHS AND MATRICES TO MACHINE
LEARNING ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 The Boolean Semiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Relaxation to R and “Unit Casting” . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Recasting to Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Threshold Casting in the [0,1] interval . . . . . . . . . . . . . . . . . . 13
2.3.2 Distance Preserving Casting . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Matrix Representations of Digraphs . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Laplacian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Planar Embeddings of a Graph as Set of Matrices . . . . . . . . . . . . 15

2.5 The Motivation for the Vectorization of Matrices . . . . . . . . . . . . . . . . . 20
2.6 Converting Matrices Representing Digraphs to Vectors . . . . . . . . . . . . . 25

2.6.1 Remark on Vectors in Cn . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6.2 Naive Singular Value Representation . . . . . . . . . . . . . . . . . . . . 25
2.6.3 Ordered Singular Value Representation . . . . . . . . . . . . . . . . . . 26
2.6.4 Melting Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.5 Melted Singular Value Representation . . . . . . . . . . . . . . . . . . . 28
2.6.6 Polynomial Representations of Graphs and Matrices as Vectors . . . 29

2.7 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.1 A Warning on Convolutional Approaches and Pitfalls . . . . . . . . . 30
2.7.2 Dimension Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.3 Existing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Lossless Compressive Traversal of Matrices in Zn . . . . . . . . . . . . . . . . 32



viii

3 BOOLEAN MATRIX FACTORIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Formal Problem Statement and Definitions . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Lemma: Square Boolean Matrix Decomposition is a SAT Problem . . 38
3.3 Defining Metrics: Datasets, Sample Spaces, Expected Values, and Accuracy

Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.1 The Dataset and Sample Spaces . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3 Image Completion Approach . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.1 Auto-Tuned Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.2 Model Inputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Model Descriptions and Names . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 GRAPH ATTRIBUTE COMPUTATION USING ENTROPY-BASED KERNELS 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Ye et al. Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.2 Matrix Generalization of the Ye et al. Kernel . . . . . . . . . . . . . . 58
4.2.3 Prediction Using a Variant of Kernel Principal Components Analysis 60

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.1 Data Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Isomorphism Class on Labeled Tournaments . . . . . . . . . . . . . . . 62
4.3.3 Minimum Feedback Arc Set Size on Labeled Tournaments . . . . . . . 63
4.3.4 Final Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Isomorphism Class on Labeled Tournaments . . . . . . . . . . . . . . . 65
4.4.2 Minimum Feedback Arc Set Size on Labeled Tournaments . . . . . . . 66

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 ENTROPY BASED VARIABLE SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1 Componentwise Observation for Variable Selection with Entropy (COVSE) . 69

5.1.1 Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 COVSE Experiments on the MNIST Dataset . . . . . . . . . . . . . . . . . . . 70

5.2.1 COVSE Predictor Selection Technique . . . . . . . . . . . . . . . . . . 72
5.2.2 COVSE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.3 Meta COVSE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.4 Comparative Accuracy via Random Forest . . . . . . . . . . . . . . . . 85
5.2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Vectorwise Observation for Variable Selection with Entropy (VOVSE) . . . . 90
5.3.1 Multivariate Kernel Density Estimation . . . . . . . . . . . . . . . . . . 91

6 CONCLUDING REMARKS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . 93

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



CHAPTER 1

INTRODUCTION

Machine learning techniques are well established for many observation types and application

domains, ranging from ecology to image recognition to language translation. Nevertheless,

machine learning techniques have only recently come onto the scene for use in graphs and

other combinatorial objects, such as matrices operating under algebraic operations outside

the fields of R and C.

Further, the use and efficacy of machine learning techniques in predicting computationally

difficult invariants on discrete combinatorial objects is next to unknown. This thesis

outlines methodologies useful for articulating discrete structures in the paradigm of many

machine learning algorithms. Moreover, we examine several NP hard problems in different

articulations. We then report on the results of various techniques and methodologies in

solving certain families of these problems.

1.1 Motivating Problems

This thesis focuses on three exemplary decision problems:

• The Boolean Matrix Factorization Problem

• The Tournament Isomorphism Problem

• The Feedback Arcset Number Problem

These problems are selected as motivating examples since the underlying decidability

of these problems lies in the computational class NP. In particular, the Boolean Matrix

Factorization problem is NP Complete [1], as well as the Feedback Arcset Number Problem

[2]. While the Tournament Isomorphism problem resides in DLOGSPACE (a subset of P

class problems), the best known algorithm has a time complexity of O(nlog2(n)) [3], making

the problem intractable in practical settings.



2

Formally, a decision problemX asks the following question: “Given a set of n constraints,

does there exist at least one solution? Yes or no?” If X can be decided in polynomial time

with respect to n, then X is said to reside in the computational complexity class P.

As a side note, we are often interested in asking subsidiary questions: Assuming the

response to X is “Yes, there exists at least one solution”, we subsequently ask, “What is

(are) the solution(s)? Further, if there are multiple solutions which satisfy the n constraints,

which is the optimal solution given a particular optimality criterion?”

Suppose X is articulated as an optimization problem and the ordering of potential

solutions can be done in polynomial time. Then, as the optimal ordering of solutions

is predicated on our knowledge of existence of solutions to order, X falls into the same

complexity class as its underlying decision problem.

The class NP is defined as the set of decision problems which have polynomial time

verifiers. A verifier is an algorithm which, when given decision problem X and additional

information c (perhaps given from the oracle), can determine whether there exists at least

one solution to X. In practice, this additional information c is often a solution to X itself.

As an illustrative example, consider the following articulation of the Traveling Salesman

Problem: “Given a set of cities S and routes between cities R, does there exist a sequence

of routes (r1, r2,⋯, rn) with ri ∈ R such that each city s ∈ S is visited exactly once, save for

the starting city, which is returned to at the very end of the journey?”

We recognize this problem to be in the computational complexity class NP since, if we

had a proposed solution (r1, r2,⋯, rn) given by the oracle which matched the requirements of

visiting each city s exactly once (save for the first city, which we return to at the conclusion

of rn), we could verify that this is in fact a solution in polynomial time.

Other variants of the Traveling Salesman Problem, such as those which apply weights

to the routes, often induce a kind of optimization ordering among possible solutions. The

underlying decision problem, “Does there exist at least one solution, regardless of route

weighting?” remains the same.

There are other computational complexity classes, such as NP Hard and NP Complete,



3

which give finer granularity to the classification of a decision problem being within NP.

We refer the curious reader to [4] for a full exposition of these classes. Our immediate

motivation behind examining of each of the three problems of Boolean Matrix Factorization,

Tournament Isomorphism, and the Feedback Arcset Number, is due to all being decision

problems (or optimization corollaries) which are computationally expensive to compute.

1.2 Motivating the Use of Existing Techniques

Much of the natural world can be framed in terms of real-valued numbers, and many

problems are solvable by algorithms which work by manipulating real values under the usual

operations of addition, additive negation, multiplication, and multiplicative invertibility. In

other words, for many situations we can take advantage of the techniques available to us

when working with an ordered field, particularly when bounded by a set of constraints given

by some idiosyncratic problem.

There are many techniques we can use to solve various types of polynomial-time decision

problems and their optimization corollaries. One of the more generalized ways to solve these

kinds of problems is through articulation as a Linear Program (LP). In the next few sections

we will use LP formulations, and their variants, as an analogy for the use of appropriate

representations when inputting decision problems to machine learning techniques.

In canonical form, a linear program is articulated as:

Maximize c⃗ ⋅ x⃗

subject to Ax⃗ ≤ b⃗

and x⃗ ≥ 0⃗.



4

Or, articulated as its dual problem:

Minimize b⃗ ⋅ y⃗

subject to AT y⃗ ≥ c⃗

and y⃗ ≥ 0⃗.

George Dantzig’s 1947 simplex method is one of the most well known algorithms for

solving this problem in the general case [5]. Indeed, the simplex method is still widely used

today due to its amortized efficiency, despite an exponential time complexity in the worst

case.

Leonid Khachiyan developed the first polynomial time bounded algorithm in 1979

with an ellipsoid method [6]. This achievement was important for the development of

the theory that the linear programming problem was provably solvable in polynomial

time, although practically unimportant as the simplex method continued to outperform

the ellipsoid method in all but a few edge cases.

Both methods take advantage of the geometry of the problem. As a concrete example

in two dimensions, let A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1

0 1

−1 −1

1.25 1

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

3.5

−5

10

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and c⃗ =
⎡⎢⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎥⎦
.

As it happens, we can geometrically visualize the set of feasible solutions (that is, the

solutions of x⃗ =
⎡⎢⎢⎢⎢⎢⎣

x1

x2

⎤⎥⎥⎥⎥⎥⎦
such that Ax⃗ ≤ b⃗ and x⃗ ≥ 0⃗) as noted in Figure 1.1.



5

Fig. 1.1: The feasible solution space of our example linear program.

Dantzig and others determined that the solution space could always be further restricted

to the vertices of these polytopes [5]. The simplex algorithm quickly finds these vertices

and, in the worst case, iterates through all of them in order to find the optimal solution.

This is to say, when the constraints of some optimization problem X are describable as

linear inequalities and solutions x⃗ ∈ Rn, a linear program formulation solved by Dantzig’s

simplex algorithm is an appropriate representation X.

1.2.1 Limitations of Existing Techniques

While linear programming can be used to obtain a solution in many types of optimization

problems, there are salient limits. The linear integer programming problem is nearly

identical to the generalized linear programming problem with one additional restriction:

the solution x⃗ must reside in the set Zn. This is known as the Integer Programming (IP)

problem.



6

Fig. 1.2: The feasible solution space of our example linear program.

Feasible solutions for x⃗ ∈ R2 in blue.

Feasible solutions for x⃗ ∈ Z2 in red.

In the case illustrated in figure 1.2 we observe, given c⃗ =
⎡⎢⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎥⎦
, that the optimal solution

in Z2 is

⎡⎢⎢⎢⎢⎢⎣

5

3

⎤⎥⎥⎥⎥⎥⎦
. However, if we were to simply round the optimal solution in R2 componentwise

we would result in an alleged solution of

⎡⎢⎢⎢⎢⎢⎣

6

4

⎤⎥⎥⎥⎥⎥⎦
; a solution which isn’t even in our feasible

region. Indeed, by observing all four of the nearest integer neighbors of the optimal linear

solution it is clear that three are not feasible.

In fact, this restricted linear programming problem of finding solutions in Zn has been

proven to be computationally difficult to solve. It resides in the class of NP Hard, with

special cases having been proved to be NP Complete, such as when integer solutions are

restricted to 1s and 0s. The IP problem was included on Richard Carp’s seminal list of 21

NP Complete problems in 1972 [2].

In other words, while a linear program representation may be appropriate for some



7

kinds of problems, it may not be a sufficient representation for closely related variants (e.g.,

IPs) to be solved by the ellipsoid or simplex methods. Chapter 2 discusses a number of

representations for matrices for input to machine learning techniques.

Some work has been done to overcome the limitations of integer programs when casting

them to a reframed linear program. This is particularly true in the larger context of

networks and combiniatorics where the techniques fall under the umbrella of “Fractional

Graph Theory” [7]. Indeed, despite the pitfalls of relaxation described above, consider the

following motivating example of fractional matching (definitions paraphrased from [7]):

A matching in a graph G = (V,E) is a set of edges no two of which are adjacent.

The matching number α(G) is the size of a largest matching of G. A fractional

matching is a function f ∶ E → [0,1] that assigns to each edge of a graph a

number in [0,1] such that, for each vertex v, we have ∑ f(e) ≤ 1 where the sum

is taken over all edges incident to v.

The fractional matching number αf(G) of G is the supremum of ∑
e∈E

f(e) over

all fractional matching f .

With this framework of definitions in place, we can thus think of a matching as a 0− 1

program where we wish to

maximize c⃗ ⋅ x⃗

subject to Ax⃗ ≤ b⃗

with x⃗ ≥ 0⃗

where A represents the vertex–edge incidence matrix of G, b⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

⋮

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and c⃗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

⋮

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

x⃗ ∈ {0,1}n thus represents whether an edge indexed by column j of A is included in our

matching based on whether or not x⃗j = 1. Consequently, we see that α(G) = c⃗ ⋅ x⃗ when c⃗ ⋅ x⃗



8

is maximized. We further see the close relationship that α(G) has with αf(G) by noting

that αf(G) = c⃗ ⋅ x⃗ when x⃗ ∈ Rn and c⃗ ⋅ x⃗ is maximized.

By utilizing fractional matching (that is, a kind of relaxation) we can exploit the

relationships we observe between αf(G) and α(G) to find bounds. In [8], for example, the

authors proved that αf(G) ≤ α(G) + ∣V ∣ − 2

6
for a large number of graph families. Their

motivation was driven, in part, by the dynamics they observed in these integer and linear

programs. This is all to illustrate a larger point: by relaxation or other approximations,

we may gain intuition as to the bounds of a problem. Intuition which may motivate future

analytic work on a problem thought to be intractable at first brush.

1.3 Motivating the Use of Machine Learning Techniques

Even with tools utilizing integer and linear programming at our disposal, determining

a solution(s) to an underlying decision problem in NP may be time consuming.

Machine learning techniques have had fantastic success in domains ranging from ecology

to medicine to image recognition. Given their success in quickly predicting a wide array of

natural phenomena, we will show their efficacy in predicting solutions for the three decision

problems described in 1.1.

We will touch on the efficacy of many techniques, including Support Vector Machines,

k Nearest Neighbors classifiers, Random Forests, and Neural Networks. As a prerequisite

to this demonstration, we will provide a survey in Chapter 2 of how discrete structures can

be rearticulated as input to a wide array of existing techniques.

1.3.1 Limitations of Machine Learning Techniques

Ultimately, any machine learning technique applied to a decision problem will result in

heuristic predictions. There will be instances where the machine learning apparatus gives

a wrong answer; perhaps correctly asserting that there does exist a solution to a given

decision problem, yet simultaneously providing an alleged solution which doesn’t conform

to the constraints of the problem. This core issue of providing incorrect answers with a

non-zero probability, as well as its derivative subproblems (such as the best way to measure



9

accuracy of a method in the NP context), is the paramount limitation of utilizing machine

learning techniques.

Nevertheless, there is precedence in utilizing probabilistic algorithms, particularly if

the algorithm can be paramaterized such that the probability of error in the algorithm’s

response is less than the probability of hardware error on the system in which the algorithm

is running [4]. One such example is the Miller–Rabin test for determining if a number x ∈ N

is prime [9].

1.4 Roadmap

Looking forward, the rest of this manuscript will be divided into five areas:

1. General Representation Techniques for Graphs and Matrices

Chapter Two gives a survey of existing and new ways in which discrete and combinatorial

objects can be recast to different paradigms such that their representation to existing

machine learning techniques is straightforward.

2. The Boolean Matrix Factorization Problem

Chapter Three focuses on the Boolean Matrix Factorization problem, localizing in the

space of matrices from {0,1}3×3 as an illuminating example.

3. The Tournament Isomorphism Problem and Feedback Arcset Problem

Chapter Four pivots back to problems on tournaments; namely the Isomorphism

problem and Feedback Arcset problem. There, an entropy function is developed for

further use in a metric. By utilizing this metric, some existing classification techniques

work quite well in deciding and optimizing these exemplary problems.

4. General Feature Selection Techniques for Real Valued Predictors

Chapter Five illustrates two new techniques for general unsupervised feature selection

based on entropy, using the MNIST dataset as a proof of concept. The use of entropy

in this chapter is inspired by results from Chapter Four.



10

5. Retrospective Remarks

Chapter Six then concludes the manuscript by providing a brief reflection and identifies

areas for future work. In doing so, the chapter also gives a brief technical summary

of the main results found in this thesis.



CHAPTER 2

INPUT REPRESENTATIONS OF GRAPHS AND MATRICES TO MACHINE

LEARNING ALGORITHMS

This chapter will present existent and new ways in which discrete and combinatorial

objects can be represented to machine learning techniques, providing motivating examples

when appropriate. In particular, we will talk about a commonly encountered algebraic

structure, the Boolean semiring, followed by a discussion on ways to cast integers to reals

and vice-versa. We then discuss matrix representations of graphs, and then how to represent

those matrices as vectors for input to machine learning techniques. Subsequently, due to

the large size of some of these vectors, we discuss dimensionality reduction, concluding with

a technique to bijectively map a matrix from {0,1}m×m to n ∈ N.

2.1 The Boolean Semiring

Many combinatorial objects make use of the set {0,1} to describe their structure. For

example, the adjacency matrix of a graph, formally defined in section 2.4.1, utilizes this set

to describe the presence or absence of edges between vertices.

The Boolean semiring is an algebraic structure with two operations, + and ⋅ (or

juxtaposition), operating over the set {0,1}. One of the key utilities of this algebraic

structure is its relationship with the logical operators ∧ and ∨ over the elements in the set

{TRUE,FALSE}. We describe this relationship in the following tables.



12

Elements: {TRUE, FALSE}.

Addition Operator: ∨

Multiplication Operator: ∧

FALSE ∨ FALSE = FALSE

FALSE ∨ TRUE = TRUE

TRUE ∨ FALSE = TRUE

TRUE ∨ TRUE = TRUE

FALSE ∧ FALSE = FALSE

FALSE ∧ TRUE = FALSE

TRUE ∧ FALSE = FALSE

TRUE ∧ TRUE = TRUE

Elements: {1, 0}.

Addition Operator: ∨

Multiplication Operator: ∧

0 ∨ 0 = 0

0 ∨ 1 = 1

1 ∨ 0 = 1

1 ∨ 1 = 1

0 ∧ 0 = 0

0 ∧ 1 = 0

1 ∧ 0 = 0

1 ∧ 1 = 1

Elements: {1, 0}.

Addition Operator: +

Multiplication Operator: ⋅

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

0 ⋅ 0 = 0

0 ⋅ 1 = 0

1 ⋅ 0 = 0

1 ⋅ 1 = 1

In summary: FALSE may be mapped to 0, TRUE to 1, “OR” or ∨ to +, and “AND”

or ∧ to ⋅. We will interchange the notation for the operators as appropriate for the context.

That said, we will utilize the notation B to describe this semiring generally.

2.2 Relaxation to R and “Unit Casting”

Despite the utility of the Boolean semiring, in certain situations it is also convenient

to relax variables, constraints, and other articulations to the full set R. Recall the utility of

relaxing the matching of a graph as discussed in 1.2.1, for example. That is, in fractional

graph theory we can take a graph and apply various algorithms which treat the existence

of an edge between vertex i and j not as a value of 0 or 1, but rather as some value in [0,1]

to help us gain intuition or provide an approximation to a difficult optimization problem.

The usual underlying motivation for relaxations, whether in fractional graph theory or

otherwise, is to employ the full power of an ordered field. This is often done by strictly

relaxing an integer to its real valued analog (e.g., 2↦ 2.0 where 2 ∈ Z, 2.0 ∈ R).

In practice, however, integers in a computational problem always come from a closed

and bounded subset A ⊂ Z. As such, one such casting to R might be better articulated as



13

a mapping f ∶ A → [0,1] ⊂ R where f(sup(A)) = 1, f(inf(A)) = 0 and ∃k > 0 such that

∣f(x) − f(y)∣
∣x − y∣ = k, ∀x, y ∈ A. That is, a mapping which maps the maximal value of A to

1, the minimal value of A to 0, and preserves relative linear distances between all elements

of A. We will refer this type of transformation as “Unit Casting” or “Unit Relaxation”

throughout the rest of this text. In particular, we will refer to the kinds of transformations

embodied by f as a casting.

2.3 Recasting to Z

When faced with a single element x ∈ R, there are three typical ways to transform it

into an integer: ⌈x⌉, ⌊x⌋, and round(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⌈x⌉ decimal portion of x > 0.5

⌊x⌋ otherwise

.

Once again, we note that in practical cases we really can consider x to be an element

of a closed and bounded subset B of R. In considering this larger subset B, we can utilize

different kinds of casting back to Z from R.

2.3.1 Threshold Casting in the [0,1] interval

For example, suppose we have a closed and bounded set of reals C ⊆ [0,1] ⊂ R. We can

create a casting f such that fc ∶ C → {0,1} by articulating f as

fC(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 x > threshold(C)

0 otherwise

,

where threshold(C) in this case may be defined as one of the following:

• threshold(C) = sup(C) − inf(C)
2

Or, assuming C is also finite:

• threshold(C) = algebraicMean(C)

• threshold(C) = geometricMean(C)

• threshold(C) = median(C)

• threshold(C) = mode(C)



14

2.3.2 Distance Preserving Casting

Suppose we have an ordered, closed, bounded, and finite set D = {d1, d2,⋯, dn} ⊂ R

such that d1 ≤ d2 ≤ ⋯ ≤ dn. There are times where we wish to perfectly encapsulate the

relative distances between each di and dj when transforming each d ∈ D to a number in

Z. One way to ensure that each element is mapped to an integer while also maintaining

relative distances is by applying a suitable rescaling.

Consider the following example of one such scaling. Supposing that we have a finite

amount of space to store numbers in a computational setting, we can readily restrict

ourselves to the set D ⊂ Q. Consequentially, let’s re-write D = {d1, d2,⋯, dn} as D =

{p1q1 ,
p2
q2
,⋯, pnqn } where pi, qi ∈ Z, ∀i, and pi, qi are relatively prime. With this assumption, we

can create one such distance preserving mapping from Qz→ Z by asserting di ↦ d′i = di ⋅
n

∏
i

qi.

We can re-center this distribution as needed by simply adding or subtracting an appropriate

z ∈ Z to di for all i.

2.4 Matrix Representations of Digraphs

The primary combinatorial objects of interest to us are digraphs. In general, we will

denote a digraph G as an ordered pair G = (V,E) where V = {v1, v2,⋯, vn} is a set of

vertices and E is a set of ordered pairs (vi, vj) ∈ E such that vi, vj ∈ V . In this section we

will describe existing and novel ways in which a digraph can be articulated as a matrix.

2.4.1 Adjacency Matrix

A digraph can be represented by a matrix in many ways. Here we will use the notation

[G] to denote one such matrix, the adjacency matrix of G. If the digraph G = (V,E) is

unweighted, then [G] ∈ {0,1}∣V ∣×∣V ∣.

In particular, the entries of [G] are defined as follows: [G]ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 (vi, vj) ∈ E

0 (vi, vj) /∈ E
.

In the event of a weighting w ∶ E → R on G = (V,E), the adjacency matrix will be given

as [G] ∈ R∣V ∣×∣V ∣, with the entry at row i and column j given by [G]ij = w((vi, vj)).



15

One subtlety to note is the implicit ordering of the elements of V when creating our

adjacency matrix. Given our arbitrary ordering, we can see that for any unlabeled graph we

impose a labeling when we articulate it as an adjacency matrix. While for certain families

of graphs we can bound the number of different adjacency matrix articulations, in general

there are ∣V ∣! distinct labelings for any given graph G.

Indeed, given adjacency matrices [G1] and [G2], determining if G1 and G2 are in fact the

same graph is known as the Graph Isomorphism Problem, of which our problem of interest,

the Tournament Isomorphism Problem, is a special case.

2.4.2 Laplacian Matrix

A matrix similar to the adjacency matrix is the Laplacian. For our purposes, let

the graph G = (V,E) have the Laplacian matrix L(G) given by L(G) = D − [G] where

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

deg(v1) 0

⋱

0 deg(vn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix articulation has several nice linear-algebraic features, such as being positive

semidefinite. A survey of the properties of the Laplacian can be found in [10].

2.4.3 Planar Embeddings of a Graph as Set of Matrices

A graph is considered planar if there exists a drawing in the plane of the graph’s vertices

and edges such that no edges cross. Determining whether a graph is planar is a special case

of computing the graph’s genus.

The genus of a graph evokes the definition of genus in a topological setting. Genus is

defined in the graph theoretic context as the minimal integer n such that the graph can be

drawn without crossing itself on a sphere with n handles.

The question of “Is graph G planar?” is identical to asking “Is the genus of graph G

0?”. While this question is answerable in O(n) time, as first demonstrated by Hopcroft

and Tarjan with an algorithm in 1974 [11], the generalized question, “Is the genus of graph

G g, for g ∈ N?” was proved to be NP Complete by Thomassen in 1989 [12].



16

There are five commonly used families of polynomial time graph visualizations which,

when taken together, may be utilized as image inputs to a machine learning apparatus.

Many machine learning techniques have their basis in image recognition. All of the visualization

algorithms noted below are deterministic in nature. Combining all, or some subset of, these

embeddings as a joint image may render fruit when attempting to fit image oriented machine

learning techniques to graph inputs.

Our motivation, therefore, in discussing these visualization algorithms is due to the

realization that, through stitching the resultant images together, we can create a larger,

image-based predictor set for a graph. Hence, we can use machine learning techniques

optimized for images on these particular graph visualizations.

2.4.3.1 Orthogonal Layouts

One of the key areas of research done is in the area of orthogonal layouts. Here,

the motivation is in printed computer chip layout: given many edges representing silicone

electrical paths, chip manufactures have a vested interest in designing circuit-boards with

the minimal number of crossings (and therefore circuit-board layers) required. These

techniques are well summarized by Abboud et al. in their 2008 literature review paper [13].

2.4.3.2 Spring Based Layouts

Spring based layouts stem from a physical analogy where edges of a graph are imagined

as tension and extension springs. The graph is thought of as a system in a vacuum and left

to revert to equilibrium. The algorithms find the positions of these springs and uses this

physical analogy to then plot the graph in the plane. Force, entropy, and energy layouts

are variants on this idea of using attributes of physical systems coming to equilibrium to

visualize graphs.

As a motivating example, consider a labeled digraph D on 15 vertices under two

commonly used force based algorithms: GraphVis’ neato and fdp [14], as seen in figures

2.1 and 2.2.



17

Fig. 2.1: neato applied to D

Fig. 2.2: fdp applied to D



18

2.4.3.3 Layered Layouts

A layered approach attempts to partition partially ordered data (such as the nodes in a

mostly acyclic graph) into distinct layers and then visualize that data in a quasi-sequential

way. Much of the work done is this arena was undertaken by Warfield in 1977 [15], Carpano

in 1980 [16], and Sugiyama in 1981 [17].

The dot program formally described in [14] utilizes these methods and can be seen in

figure 2.3.

Fig. 2.3: dot applied to D

2.4.3.4 Circular Layouts

Circular layouts, as the name implies, utilize radial symmetries in their layout policies.

In general, circular layouts either place nodes along a circumference or select a single node

as a central point and attempt to create a packing of nodes analogous to that of a sphere,

usually by some sort of concentric approach. This latter layout is often seen in genealogical

graphs or other multi-tree variants.

Two algorithms which implement circular or radial layouts include circo and twopi,

also described in [14]. They are shown in figures 2.4 and 2.5, respectively.



19

Fig. 2.4: circo applied to D



20

Fig. 2.5: twopi applied to D

2.4.3.5 Spectral Layouts

Spectral layouts are analogous to principal component analysis visualizations, in that

they utilize the eigenvectors and eigenvalues of either the adjacency or Laplacian matrix of

G to plot nodes in the Cartisian plane.

2.5 The Motivation for the Vectorization of Matrices

While there exist some machine learning techniques which are able to directly use a

matrix from Rn×m as input, these techniques nearly universally stem from an image-centric

motivation. Treating a graph’s adjacency matrix as analogous to a matrix describing pixels

in an image can be dangerous. As a motivating example, consider the grayscale image in

figure 2.6:



21

Fig. 2.6: A grayscale image.

This figure is represented by a matrix of pixel values. Here is a sampling of them:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

54 48 39 28 22 15 20 23 21

40 36 30 24 23 20 26 34 33

35 33 31 26 27 26 30 34 33

38 42 44 38 35 28 26 31 30

45 54 59 51 43 29 20 16 15

43 52 59 55 49 35 24 16 13

31 39 49 50 52 44 35 28 22

22 28 34 39 48 53 48 39 29

23 23 26 30 39 47 48 42 37

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Grayscale values [0,255] of the small, centered area outlined in red in the image below.



22

Fig. 2.7: The pixels noted in the matrix above are outlined by the very small red box.

When we take the values of a particular area and plot them, we see how there appears

to be a kind of continuity. We can see this visually in the following surface plot:

Fig. 2.8: The matrix values visualized as a surface plot. The x axis represents the row; y

axis indicates the column; z axis the matrix entry at the xth row and yth column.

Contrast this with the following graph in the Peterson family with random weights

applied to the edges.



23

Fig. 2.9: The 9-vertex graph from the Petersen family of graphs, with weights taken from

a uniform distribution over [1,60] ⊂ N

The graph embedded in figure 2.9 has the adjacency matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 13 0 17 0 0 50

0 0 54 0 0 30 0 28 0

0 54 0 0 58 0 0 0 7

13 0 0 0 3 0 0 5 0

0 0 58 3 0 0 10 0 0

17 30 0 0 0 0 24 0 0

0 0 0 0 10 24 0 11 59

0 28 0 5 0 0 11 0 30

50 0 7 0 0 0 59 30 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and its surface plot shown in figure 2.10:



24

Fig. 2.10: The surface plot of the 9-vertex graph’s adjacency matrix. The x axis represents

the row; y axis indicates the column; z axis the matrix entry at the xth row and yth column.

Images taken of natural phenomena tend to have smooth surface plots based on the

pixel matrices. Surface plots of the adjacency or Laplacian matrices of graphs, by contrast,

tend to have very “spiked” surface plots.

This should not come as a great surprise: in the case of an image, the rows and columns

of an image’s pixels have relative meaning. By rearranging the rows and columns of an image

described by matrix M through multiplication by PMP T , where P is a permutation matrix,

can erase any meaning in the image. A graph’s adjacency matrix, by contrast, utilizes the

rows and columns to convey information as well, but the relative distance of those rows

and columns from each other matter little. Rearranging the rows and columns of adjacency

matrix M by PMP T results in the same graph up to isomorphism; the information is

preserved.

Hence, many existing machine learning techniques which take in matrices as input, such

as convolutional neural networks, are ill equipped to deal with matrices based on graphs.

There is an implicit assumption that relative distance between data entries is important;

an assumption which is simply not true in the case of graphs.



25

This is just one among many reasons as to why we should be skeptical when applying

machine learning techniques optimized for images to matrices representing graphs. Since

many machine learning techniques which take as input matrices from Rn×m were designed for

images, and noting those techniques are largely restricted to convolutional neural network

approaches, we might first reach for a representation of a graph in Rn. This is to maximize

the availability of off-the-shelf machine learning algorithms open for our use.

Many machine learning techniques require input to be articulated as a single, real valued

vector. Given that simply reshaping an n×m matrix to a vector of shape n⋅m×1 could result

in practical limitations, we have a strong motivation to find representations of graphs and

matrices which could act as reasonable vector inputs to a machine learning apparatus. The

next several subsections describe ways to do so. Each of the vector representations below

has limitations, but each also has potential to be an apt set of characteristic descriptors of

graphs and matrices for certain contexts.

2.6 Converting Matrices Representing Digraphs to Vectors

In the following subsections we describe several ways through which we convert matrices

(with a focus on matrices which represent digraphs) to vectors. Vectors which are then able

to be inputted as training data for machine learning algorithms.

2.6.1 Remark on Vectors in Cn

As we begin to discuss transformation of a graph or matrix to a vector v⃗, we note an

area of caution. Namely, we may fall into a problem if our entries of v⃗ are complex, given

that we need to arrive at a real valued vector for input into many machine techniques.

There are a number of ways to preform this conversion from Cn to Rn, the most convenient

of which is to apply some function f ∶ C→ R elementwise. One such function is f(z) = ∣z∣2,

where z = x + yι and ∣z∣ =
√
x2 + y2, with ι denoting the imaginary unit.

2.6.2 Naive Singular Value Representation



26

Consider the graph G = (V,E) as an element in V × E ⊂ V × (V × V ), where E ⊆

V × V . One can think of the adjacency matrix or Laplacian of G as a bijective mapping of

V × (V × V )→ R∣V ∣×∣V ∣.

One vector invariant of G is to take the singular value decomposition of this R∣V ∣×∣V ∣

matrix. This will result in a set of ordered pairs (σ1, v⃗1), (σ2, v⃗2),⋯, (σ∣V ∣, v⃗∣V ∣), where σi is

a singular value and v⃗i is the corresponding singular vector. We’re motivated to look at the

singular values and vectors in particular due to their relationship with principal component

analysis, as noted in Chapter 10 of [18].

We can apply an ordering such as (∣σ1∣)2 ≥ (∣σ2∣)2 ≥ ⋯ ≥ (∣σ
∣V ∣∣)2. In the event that

(∣σi∣)2 = (∣σj ∣)2 for i ≠ j, a secondary ordering based on the magnitude of (v⃗k ⋅ v⃗k)2 (where

⋅ is the dot-product) can be imposed. In creating this ordered sequence of singular values

and singular vectors, we are then able to create a vector of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

v⃗1

σ2

v⃗2

⋮

σ
∣V ∣

v⃗∣V ∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2.6.3 Ordered Singular Value Representation

Given that the number of elements in the vector described in 2.6.2 may be large,

consider a subset of elements of this larger vector. Instead, utilize only the elements directly

derived from the σis. For example, the vector

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣σ1∣2

∣σ2∣2

⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where σis are ordered strictly by their

squared magnitude.

2.6.4 Melting Variants

Melting is a data reshaping technique used in many data cleansing applications (see

R’s reshape2 melt function).



27

Consider a matrix of the following form:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 c2 c3 ⋯ cn

r1 a b c ⋯ i

r2 d e ⋮

r2 f ⋱ ⋮

⋮ ⋮ ⋱ x

rm j ⋯ ⋯ y z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where a, b, c,⋯, x, y, z ∈ R.

Melting this matrix reshapes the data to a sequence of vectors of the form

M ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r c Mr,c

[1 1 a]

[1 2 b]

⋮

[m n z]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

That is, given a matrix M ∈ Rm×n, we define

M ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 M11

⋮

i j Mij

⋮

m n Mmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Articulating our data in this way allows us to treat each row of our new matrix as an

ordered triple. For example, suppose M represents a digraph’s adjacency matrix. In looking

at a pair of connected vertices such as Vi Vj
Mij we have the following

ordered triple: (i, j, Mij). This is a useful articulation, as it allows for the reduction of

rows in simple graphs by ensuring there does not exist the situation where there are two



28

rows of the form [i, j,Mij] and [j, i,Mji] where Mij =Mji; only one is needed. Hence, just

under half our matrix is eliminated (the cases where i = j remaining).

This, of course, is simply a particular articulation of E. Specifically, it’s a representation

when E is thought of as the set of edges when articulated by two vertices, and the associated

weight. Further simplifications can result when we restrict ourselves to the unweighted case,

where Mij = 1 when vivj ∈ E and 0 otherwise. One such example is when we eliminate all

rows of the form [i, j,Mij ≠ 1] and then truncate the last column leaving a matrix consisting

only of rows in the form [i, j]. Such a matrix can be readily cast to a vector in C∣E∣, where

each element of such a vector takes the form i + jι, where ι is the imaginary unit. This

vector in C∣E∣ can then be cast to a vector in R∣E∣ by applying any given function f ∶ C→ R

elementwise.

This notion can be generalized by applying any function f ∶ N2 → R row-wise to the

initially given [i, j] rows.

2.6.5 Melted Singular Value Representation

Many weighted graphs have sparse adjacency matrices. Consequentially, the resultant

melted matrix with rows of the form [i, j,Mij], where rows when Mij = 0 are not included,

is considerably smaller than an initially given weighted adjacency matrix M ∈ Rn×n.

Consider the melted matrix

M ′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[a, b,Mab]

[c, d,Mcd]

...

[y, z,Myz]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

such that rows where Mij = 0 are excluded. Assume that M ′ ∈ Rn−1×3.

This melted matrix M ′ can then be re-imagined as a tridiagonal matrix T of the form



29

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ b 0

a Mab d

c Mcd ⋱

⋱ ⋱ z

0 y Myz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where χ is a free variable which might be populated with any value in R. Some common

choices might include values from the set {0,1, ∣E∣, ∣V ∣} or graph invariants easily determined

from M .

The advantage of having a matrix articulated in this fashion is that the number of

elements is bounded above by (2∣E∣)2 for undirected graphs, which is often considerably

smaller than the sparse, ∣V ∣2 element-sized adjacency matrix.

Once we have T , we can now find its singular values and singular vectors. Utilizing

the techniques in 2.6.2, we arrive with a vector v⃗ which links to the graph initially given by

M . The key caveat is that, as a tridiagonal matrix, there exist algorithms, usually utilizing

techniques first pioneered in the Ehrlich-Aberth iterative algorithm [19,20], which can find

these singular values and singular vectors very efficiently.

Naturally, the dimensionality of T will vary based on the sparsity of M ; if M has lots

of zeros, the dimensionality of T may be small. Given a set of T s with differing dimensions,

however, one need only pad with zeros to result in vectors v⃗ of the same size.

2.6.6 Polynomial Representations of Graphs and Matrices as Vectors

Many structures can be considered invariant under various families of polynomials. In

knot theory, for example, the Jones polynomial comes to mind. In the case of graphs,

the characteristic polynomial (which is the same as the characteristic polynomial of its

adjacency matrix) is a well utilized, exemplary polynomial.

These polynomials are often motivated in their definition by the information they

convey. The characteristic polynomial of a square matrix, for example, has eigenvalues as



30

roots and the trace and determinant as coefficients. Bottom line: these polynomials pack a

lot of information.

Suppose we have some easily computed polynomial P (t) with a finite number of

coefficients in C. Right off the bat, we have a set C = {coefficients of P (t)} ⊂ C handed to us

on a platter. In addition, we can also utilize algorithms, such as Ehrlich-Albert [19], to find

the {roots of P (t)} = R and {maximums, minimum, and inflection points of P (t)} = M

quickly; the latter by finding the roots of P ′(t).

Given that C is finite, and therefore bounded, so are R and M also finite and bounded.

Suppose that C = {c1, c2,⋯, ci}, R = {r1, r2,⋯, rj}, and M = {m1,m2,⋯,mk}. We can then

arrive with a vector v⃗ = [c1,⋯, ci, ∗̄, r1,⋯, rj , ∗̄,m1,⋯,mk, ∗̄]T ∈ Cn. Here ∗̄ represents an

array of placeholders (such as a sequence of 0s) to ensure that v⃗ has the same number of

elements across all objects in our universe for which we are deriving polynomials.

Given this vector v⃗ ∈ Cn, we can now use any function f ∶ C → R of our liking to cast

v⃗ to Rn by applying f elementwise.

2.7 Dimensionality Reduction

In the last several sections, we have discussed various ways to map graphs to real

valued matrices and real valued vectors. Our overarching motivation: the articulation of

graphs so that they could be readily used as training and testing data for existing machine

learning techniques. Nonetheless, these methods frequently result in dimensions of vectors

and matrices which are too large for practical training. Dimensionality reduction is needed.

We discuss existing approaches below.

2.7.1 A Warning on Convolutional Approaches and Pitfalls

For large, sparse matrices which are characteristic of many types of simple graphs,

it is tempting to utilize dimensionality reducing techniques made for images. One such

approach is applying a sequence of filters over the matrix as in a convolutional layer in a

neural network. While this may be enticing at the outset, it relies on, for a few layers, the

underlying relationship between the relative positioning of the data within the matrix.



31

This idea alludes back to the aforementioned idea in section 2.5 that a permutation

matrix applied to an image can distort the image beyond human recognition. At the

same time, a permutation matrix applied to a graph’s adjacency matrix is an isomorphism.

Analogously, a filter over an image may preserve or enhance key features, such as edges.

Yet over an adjacency matrix such a filter has the potential to destroy any semblance

of recoverable structure of a graph. In utilizing convolutional or filtering techniques on

adjacency matrices, one should tread with great caution.

2.7.2 Dimension Selection

In representing objects as vectors of the form v⃗ ∈ Rn, we may find that n is prohibitively

large. Although the goal is to then find some reduced vector v⃗′ ∈ Rm such that m ≪ n,

many dimensionality reducing algorithms require m as an initial parameter. One way to

determine m is by utilizing PCA, LASSO, or other algorithms which give an indication of

predictor importance or underlying dimensionality in either a supervised or unsupervised

setting. Often, this will result in an “L” shaped curve: one with an elbow.

Consequentially, one way to select for m is to take an i.i.d. sample of vectors, apply the

predictor-importance or dimensionality-reduction algorithm in question on all n components

for this subset, determine the elbow point, and set m equal to that elbow point. This

approach, while more computationally intense than other rules of thumb such as simply

using the floor of log(n) or
√
n for m, may result in better accuracy for more sensitive data

outcomes due to the heuristic prediction of the number of latent and expressed variables

underlying the data.

2.7.3 Existing Techniques

It should be noted that linear techniques via PCA and its variants are at the forefront

to reduce the dimensionality of these kinds of vectors. In data exploration particularly, the

ability to visualize these graphs by plotting the two principle components of some set of

vectors is invaluable.

That said, non-linear techniques and manifold learning algorithms, such as t-SNE [21]



32

and Isomap [22], are quickly coming to the scene, with one such example being Moon et

al.’s PHATE [23]. These techniques have particular promise for graphs which are sequenced

as time series, with edges being added or deleted with each discrete time step. A full survey

of commonly used techniques can be found in [22].

2.8 Lossless Compressive Traversal of Matrices in Zn

At this point, much of our energy has been spent describing various mappings from

matrices to vectors. One concern, however, is that vectors and matrices are computationally

expensive to store, no matter how small dimensionally they are. It would be convenient if

there was a bijective mapping f such that f ∶ Zm×mn → N, particularly when n = 2. That is,

a mapping which encapsulated a square matrix with elements in {0,1} as a single natural

number.

Further, this mapping should stay consistent regardless of dimension, given 0 padding.

That is, a mapping such that matrix [M]↦ n ∈ N and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 0⃗ −

∣

0⃗ M

∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↦ n ∈ N.

One way to do so is as follows. Consider the natural numbers 0,1,2,3,⋯ in binary:

• 000000000

• 000000001

• 000000010

• 000000011

If we traverse over a matrix in a particular way, we have a bijection between the

natural numbers and Boolean matrices via the natural number’s binary representation. For

example, consider the number 42. 42 is written as 000101010 in binary. We can then insert

each digit into the matrix according to a traversal of our choosing. For example, as follows:



33

42→ 000101010→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 1 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This type of traversal is seen more clearly in the following case when we have a matrix

with 16 entries and a corresponding binary number with 16 digits. That is, some number

n in base 10 gets mapped to some binary number B, where B is defined as a sequence of

digits B = b16b15b14⋯b1; bi ∈ {0,1}.

n↦ B = b16b15b14b13b12b11b10b9b8b7b6b5b4b3b2b1 ↦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b16 b15 b13 b11

b14 b9 b8 b6

b12 b7 b4 b3

b10 b5 b2 b1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

More formally, this nested zig-zag mapping from x ∈ N to a matrix M can be given as

follows:

1 input : natura l number x ;

output : Boolean matrix M ;

3

Let b be x a r t i c u l a t e d as a binary number .

5 Let Q be a queue composed o f the d i g i t s o f b .

Let d be the dimension o f M . That i s , M ∈ {0,1}d×d .

7 Set d = ⌊
√

∣Q∣⌋

Let M be i n i t i a l i z e d .

9 f o r i in 1...d :

f o r j in 1...d :

11 i f i=j :

Mij = Q . pop ( )

13 e l s e :



34

Mij = Q . pop ( )

15 Mji = Q . pop ( )

re turn M

The inverse, mapping from M → b→ x, has a similar algorithm:

input : Boolean matrix M o f s i z e d × d ;

2 output : natura l number x ;

4 I n i t i a l i z e Q as an empty queue .

f o r i in 1 . . . d

6 f o r j in 1 . . . d :

i f i=j :

8 Q . append (Mij )

e l s e :

10 Q . append (Mij )

Q . append (Mji )

12

Let b be a binary number , with d i g i t s g iven by the items in Q .

14 Let x be the natura l number cor re spond ing with b .

r e turn x



35

The consequence of this nested zig-zag traversal and rudimentary lossless compression

results in several properties, including:

• Each Boolean matrix can be compressed and totally recovered from a single natural

number.

• The Boolean matrix associated with each natural number is consistent from dimension

to dimension: you only need to pad the rows or columns with zeros.

• This indexing has a several graph-theoretic properties. For example, the sequence of

matrices indexed by 0,1,⋯, n forms a Hamiltonian path in the hypercube created by

the set of Boolean matrices as vertices.

• The number of elements which differ between matrices indexed by i and i ± 1 is 1.

• This technique can be generalized to any matrix with elements in Zn by considering

a conversion from base n to base m, where m≪ n.



CHAPTER 3

BOOLEAN MATRIX FACTORIZATION

One of the first mathematical tasks we learn in elementary school is how to factor

numbers. For example, 10 has factors: 1,10,2,5. This concept of factorization can be

extended to any algebraic structure for which a binary multiplicative operator, ⋅, is defined.

The first time we see a factorization of an object outside of Z is typically in a foundational

linear algebra class, where we are taught how to factor (also said by some authors “to

decompose”) some matrix C ∈ Rn×m into two other matrices A and B such that A ⋅B = C.

There are a wide variety of ways to do this when the entries of the matrix are from R: LU

factorization, QR, and so on. The rest of this chapter will focus on matrix factorizations

when matrix elements are from B.

3.1 Motivations

Our primary motivation for creating a matrix factorization algorithm when elements

are sourced from B is due to the problem’s NP hardness [1]. As such, it takes O(` ⋅ 2m⋅n)

operations to find solutions for ` matrices of size m × n in the general case. Consequentially,

it would be nice to have a solution which, in the amortized case, is solvable in polynomial

time given a large number of matrices to factor.

An optimization corollary of Boolean matrix factorization is the determination of

Boolean rank. The Boolean rank of matrix C is the minimal k such that A ⋅ B = C for

A ∈ Bm×k, B ∈ Bk×n, and C ∈ Bm×n. If we were to find all A1B1,⋯,AzBz factorizations of a

matrix C in polynomial time, we could then find the Boolean rank of C in polynomial time

by observing the ki for each AiBi factorization and taking the minimum. Furthermore,

Boolean rank has several practical applications as noted in [24].



37

3.2 Formal Problem Statement and Definitions

As a reminder from 2.1, let B denote the Boolean semiring; B = ({0,1},+, ⋅) where +

and ⋅ denote the usual Boolean operations over the elements in {0,1}. That is, 1+1 = 1 and

the other operations as in the reals. Consequentially, there is no subtraction, nor is there

division.

For our purposes, we are going to restrict our factorization to a strictly square case,

as this allows us some computational flexibility. In all cases, we can simply treat existent

non-square matrices by padding rows or columns with zeros until we reach square dimensions.

Hence, our problem is as follows: Given a matrix C such that C ∈ Bn×n for some n ∈ N,

determine matrices A, B ∈ Bn×n such that AB = C.

As it turns out, this matrix multiplication problem is really a Boolean satisfiablity

problem in disguise. Specifically, we recall that each element Cij in C is defined as

Cij =
n

∑
`=1

Ai` ⋅B`j

when working over the reals.

The binary operators ⋅ and + can be articulated in terms of ∧ and ∨. Assume TRUE ⇐⇒

1 and FALSE ⇐⇒ 0. Notice that x ⋅ y = 1 ⇐⇒ x ∧ y = 1, when x, y are treated as logical

propositions. Likewise, x + y = 1 ⇐⇒ x ∨ y = 1.

Therefore, we can treat

Cij =
n

∑
`=1

Ai` ⋅B`j

as

Cij =
n

⋁
`=1

(Ai` ∧B`j)



38

3.2.1 Lemma: Square Boolean Matrix Decomposition is a SAT Problem

Let φ(x1,⋯, xn) be a boolean formula. φ is said to be satisfiable if there are values for

x1,⋯, xn such that φ(x1,⋯, xn) = TRUE.

Further, consider three square Boolean matrices, A,B,C, each of size n × n.

Let AB = C and let the entries of C be known.

Given Cij =
n

⋁
`=1

(Ai` ∧B`j), we can consider φij =
n

⋁
`=1

(Ai` ∧B`j).

From De Morgan’s laws, we can observe the following:

φij =
n

⋁
`=1

(Bi` ∧B`j)

¬φij = ¬(
n

⋁
`=1

(Ai` ∧B`j))

¬φij = (
n

⋀
`=1

¬(Ai` ∧B`j))

¬φij = (
n

⋀
`=1

(¬Ai` ∨ ¬B`j))

At this point we note that if φij is satisfiable, then Cij = 1. Similarly, if ¬φij is

satisfiable, then Cij = ¬1 = 0.

Naturally, for a decomposition to exist, φij or ¬φij (depending on whether Cij = 0 or

Cij = 1) must be satisfiable over all i, j.

This can be articulated by the formula

φC(A11,⋯,Ann,B11,⋯,Bnn) =
n

⋀
i=1

n

⋀
j=1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n

⋁
`=1

(Ai` ∧B`j) Cij = 1

n

⋀
`=1

(¬Ai` ∨ ¬B`j) Cij = 0

Hence, if φC(A11,⋯,Ann,B11,⋯,Bnn) is satisfiable, then a solution of φC(A11,⋯,Ann,B11,⋯,Bnn)

articulates a decomposition of C = AB.



39

3.3 Defining Metrics: Datasets, Sample Spaces, Expected Values, and Accuracy

Evaluation

In the subsequent subsections we outline how we will sample data and assess accuracy.

3.3.1 The Dataset and Sample Spaces

In coming up with any predictive algorithm which does not yield exact results, we have

a number of questions we wish to answer:

• What does it mean to ensure our data is i.i.d.?

• Is our data set ordinal or nominal?

• How can we best visualize our data?

For our data set, we will consider all 3 × 3 Boolean matrices.

For any matrix of dimension m × m, there are m2 entries. If this square matrix is

composed of elements from Zn , then there must be nm
2

distinct matrices, as each element

in the matrix can be one of n items. Hence, in our case we have 23
2 = 512 square Boolean

matrices in our data set.

In section 2.8, we discussed a bijective way to enumerate the nm
2

matrices in an m×m

matrix with elements from Zn. One way to ensure that Boolean matrices are sampled i.i.d.,

then, is to sample an integer z from a uniform distribution in the range [0,2m2 − 1]. That

is, in our 3 × 3 case, from [0,511]. Our i.i.d. selected matrix M ∈ B3×3 is then the Boolean

matrix associated with z.

As z is clearly an element from an ordered set while M may appear to be strictly

nominal, this gives rise to a question: “How do we treat our data? Ordinally or nominally?”

Since z was constructed with the caveat that ∣z − z′∣ = 1 ⇐⇒ M differs from M ′ by only

one element, we can assert that our data can be seen as both ordered and nominal data:

the data forms a poset.



40

3.3.2 Visualization

One way to visualize this data, then, is to treat the axis as zs and the response value

as a colorized version of z. That is, let Az be the Boolean matrix associated with z via our

traversal in 2.8. Suppose Ai ⋅Bj = Ck. Just as each pixel in an image can be treated as the

tuple (x, y, value), we can create the pixel (i, j, k). In the 3 × 3 Boolean case, then, we can

create an image 512 pixels high and 512 wide, as shown below:

Fig. 3.1: A visualization of all possible matrix multiplications in B3×3.



41

3.3.3 Image Completion Approach

Given that we can articulate our problem of matrix factorization as an image, we might

consider the idea of image completion. Consider the following motivating example using

human faces:

Fig. 3.2: Faces automatically completed by a neural network.

This completion was done using a deep convolutional generative adversarial network

(DCGAN) first pioneered in 2015 by Radford et al. [25]

Our motivation is similar. Given a partially complete image which represents the data

of Boolean matrix products, can we recover the rest of the image?



42

Fig. 3.3: From an image which is only partially complete, can we recover the full image?

For example, if we compute the matrix products for some small number of matrices in

our universe, and then utilize those products to predict the rest of the image, we will be

able to do a traversal of the image to quickly determine the factorizations of all Boolean

matrices. Formally, our process looks like this:

1. Determine by brute force the matrix products for x% of all matrices. This becomes

our training data.

2. Train a machine learning apparatus on the brute-forced data.

3. Quickly predict the rest of the image with high accuracy. “Quickly” being relative to

the time required to brute force. All factorizations for all matrices are thus known.

3.3.4 Accuracy

Paramount to our success is defining what accuracy looks like. In this regard, we will

consider two metrics for defining accuracy: absolute accuracy and granular accuracy.

While formally defined below, we consider the motivation for absolute accuracy to be

the accuracy when the matrix predicted is exactly the correct matrix. Granular accuracy,

by contrast, represents the percentage of entries in the matrix correctly predicted.



43

3.3.4.1 Absolute Accuracy

Suppose we have Boolean matrices A,B,C,D,⋯. Further, suppose we have predicted

Boolean Matrices A′,B′,C ′,D′,⋯.

Let f(X,X ′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 ⇐⇒ Xij =X ′

ij ∀i, j.

0 otherwise.

.

We define absolute accuracy as the arithmetic mean of f(A,A′), f(B,B′), f(C,C ′), f(D,D′),⋯.

3.3.4.2 Granular Accuracy

Suppose we have Boolean matrices A,B,C,D,⋯. Further suppose we have predicted

Boolean Matrices A′,B′,C ′,D′,⋯. Each matrix is of dimension n × n.

Let g(X,X ′) = 1

n2
∑
i,j

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 ⇐⇒ Xij =X ′

ij

0 otherwise.

.

We define granular accuracy as the arithmetic mean of g(A,A′), g(B,B′), g(C,C ′), g(D,D′),⋯.

3.3.4.3 Expected Values

With accuracy defined as either absolute or granular, we can thus determine the

expected accuracy of two Boolean matrices N and M when N,M are selected from a

uniform distribution. That is, if N,M ∈ Bn×n, what is E[f(N,M)] and E[g(N,M)]?

Claim: E[f(N,M)] = 1

2n2 .

Rationale:

If N,M are sampled i.i.d., then the probability of Ni,j =Mi,j for any i, j is 0.5. If there

are n2 entries, then the likelihood they all are equal is given by
n2

∏(0.5) = 1

2n2 .

Claim: E[g(N,M)] = 1

2
.

Rationale:

If N,M are sampled i.i.d., then the probability of Ni,j =Mi,j for any i, j is 0.5. Hence,

the arithmetic mean that any one of them are equal is given by
1

n2
(
n2

∑0.5) = 1

2
.



44

Consequentially, a machine learning apparatus must perform with granular accuracy

greater than 0.5 and absolute accuracy better than 1

231
= 1

512 ≈ 0.002 to be doing better

than chance in the B3×3 case.

3.4 Models

We showed an example in 3.3 of how Radford et al. [25] utilized a Deep Convolutional

Generative Adversarial Network (DCGAN) to do image completion. This approach, while

inspirational, is not quite applicable to the problem here. For example, Radford had access

to multiple images to use for training. For each dimension n, we only have one image.

Further, the images representative of objects in the natural world have the kind of partial

continuity noted in 2.5. Our sole image doesn’t have that.

Still, the results of DCGAN motivates the idea that utilizing some sort of machine

learning apparatus to construct an image is feasible. We utilized two techniques: (1) an

automatically tuned neural-network and (2) an off-the-self random forest from Python’s

Scikit-Learn package with 100 trees per forest. While we hope that the off-the-self random

forest is self-explanatory (and if not, details can be found at [26]), allow us to describe our

network.

3.4.1 Auto-Tuned Neural Network

One of the most curious things about neural networks is how mediocrely they preform

if the hyperparameters are not quite right. How many hidden layers should we use? What

optimizer is the best? Before describing the hyperparameter search space, allow us to

describe what remains constant among all networks considered. Each layer in the network

(except for the final layer) uses ReLUs1 as the activation function. Each layer is fully

connected to its adjacent layers. The loss function is binary crossentropy2, and, as an

expedient to time, training terminates after 5 epochs. Dropout is not utilized. Initial

weights on all layers are drawn from a uniform distribution.

1Rectified Linear Unit. Defined as the function f(x) =max(0, x).
2Binary cross entropy is also called “log loss” by some authors.



45

If the desired output of the network is an integer from a subset of Z (say, the subset

[0,232 − 1] = [0,511]), the network predicts that integer by way of one-hot encoding3. The

final activation layer of the network is the softmax function, with the returned integer being

the argmax of the returned output vector.

If the desired output of the network is a vector of Booleans, the network predicts

that vector by utilizing a “hard sigmoid” function. The hard sigmoid function is a linear

approximation to the sigmoid function, defined as σ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < −2.5

1 x > 2.5

0.2x + 0.5 −2.5 ≤ x ≤ 2.5

.

By using this linear approximation, we significantly speed up training time. The returned

vector rounded all network outputs to the nearest 0 or 1.

Thus, the hyperparamaters up for consideration were batch size, optimizers, hidden

layers, and hidden layer sizes. In the case of batch size, the following options were given:

{16,32,64,130,260,522}. These were chosen by considering sufficiently large batch sizes in

the log space from 100 to 10e.

The possible optimizers considered were Stochastic Gradient Descent, RMSprop, Adadelta,

Adam, and Nesterov-Adam. Optimization implementation details can be found in [27].

The number of hidden layers considered were 0, 1, and 2. The length of each of these

hidden layers was given as a linear spacing between the first and last layer. That is, if the

input layer had x nodes and the output layer had y nodes, then if there was 1 hidden layer,

that hidden layer had ⌊x+y2 ⌋ nodes. In the event of two hidden layers, the number of nodes

in each layer was given by ⌊13 ⋅ (x+y)⌋ and ⌊23 ⋅ (x+y)⌋ nodes, ordered so that the layer sizes

were always monotonic.

Hence, given six batch sizes, six possible optimizers, and three hidden layer options,

there were are possible total of 108 network models to choose from. Including even more

options, such as trying different loss functions, would have resulted in an impermissibly

large search space.

3One-hot encoding is also called “dummy coding” by some authors.



46

As is, we utilized the hyperparameter package Talos to subset our options further [28].

Talos utilizes linear correlation of hyperparamaters to do a restricted grid search. Hence, of

these 108 network models, we cut off our grid search after 10 models were evaluated with

training data. The best model of these ten was returned as the network to use for prediction

on testing data.

3.4.2 Model Inputs and Outputs

As noted in Chapter 2, there are a wide array of ways to articulate Boolean matrices

in terms of graphs. We considered four input representations.

• One articulation is simply to utilize the integer associated with the nested zig-zag

traversal described in section 2.8, z. This can be placed in vector form for two matrices

A,B as [zA, zB]T . We will denote this encoding as z.

• Another articulation is to express z as a binary number; essentially a particular

traversal of the Boolean matrix. Hence, one representation is [asBinary(zA), asBinary(zB)]T .

We will denote this encoding as b.

• The third articulation we will consider is that described in section 2.6.2, the Naive

Singular Value Representation. As in the above, the final vector will be composed of

the juxtaposition of the two vectors associated with A and B. We will denote this

encoding as n.

• The last articulation we will consider is that described in section 2.6.3, the Ordered

Eigenvalue Representation. The final vector will also be composed of the juxtaposition

of the two vectors associated with A and B. We will denote this encoding as e.

Given z and b are bijective with the matrix they represent, we will utilize those

possibilities as target outputs in our models.



47

3.4.3 Model Descriptions and Names

Given four input representations, two output representations, and two underlying

models (auto-tuned neural network and 100-tree random forest), we have 4 ⋅ 2 ⋅ 2 = 16

larger models to consider. We label these models from A to P as in table 3.1:

Model Name Inputs Outputs Underlying ML Technique

A r r Auto-Tuned Neural Network

B r b Auto-Tuned Neural Network

C b r Auto-Tuned Neural Network

D b b Auto-Tuned Neural Network

E e r Auto-Tuned Neural Network

F e b Auto-Tuned Neural Network

G n r Auto-Tuned Neural Network

H n b Auto-Tuned Neural Network

I r r 100-Tree Random Forest

J r b 100-Tree Random Forest

K b r 100-Tree Random Forest

L b b 100-Tree Random Forest

M e r 100-Tree Random Forest

N e b 100-Tree Random Forest

O n r 100-Tree Random Forest

P n b 100-Tree Random Forest

Table 3.1: Model Names and Descriptions.

3.5 Results

We considered five training-validation splits, where the data was sampled i.i.d.: 10% of

data used for training, 30%, 50%, 70%, and 90%. Given that there were 512 ⋅ 512 = 262144

total samples, this corresponded to the breakdown of training-prediction counts shown in



48

table 3.2:

Percentage of data

used for validation

No. of samples used

for training

No. of samples

predicted

0.9 26215 235929

0.7 78644 183500

0.5 131072 131072

0.3 183501 78643

0.1 235930 26214

Table 3.2: Training – Validation Splits

This results in a total of 80 experiments to run across 16 major model types (A – P), of

which the eight neural networks consider 108 separate hyperparameter configurations each.



49

Model In Out Underlying ML Technique Granular Acc. Absolute Acc.

A r r Auto-Tuned Neural Network 0.6025 0.0792

B r b Auto-Tuned Neural Network 0.6339 0.0810

C b r Auto-Tuned Neural Network 0.8704 0.3541

D b b Auto-Tuned Neural Network 0.8608 0.3078

E e r Auto-Tuned Neural Network 0.6316 0.0904

F e b Auto-Tuned Neural Network 0.6624 0.0841

G n r Auto-Tuned Neural Network 0.8132 0.2890

H n b Auto-Tuned Neural Network 0.7806 0.1555

I r r 100-Tree Random Forest 0.8186 0.2691

J r b 100-Tree Random Forest 0.8444 0.2799

K b r 100-Tree Random Forest 0.9660 0.7305

L b b 100-Tree Random Forest 0.9997 0.9973

M e r 100-Tree Random Forest 0.6180 0.0850

N e b 100-Tree Random Forest 0.6587 0.0811

O n r 100-Tree Random Forest 0.8256 0.3308

P n b 100-Tree Random Forest 0.8543 0.3400

Table 3.3: Results of predicting 90% of the data when training on 10%.



50

Model In Out Underlying ML Technique Granular Acc. Absolute Acc.

A r r Auto-Tuned Neural Network 0.5350 0.0258

B r b Auto-Tuned Neural Network 0.6046 0.0827

C b r Auto-Tuned Neural Network 0.9983 0.9853

D b b Auto-Tuned Neural Network 0.9173 0.5284

E e r Auto-Tuned Neural Network 0.6329 0.0908

F e b Auto-Tuned Neural Network 0.6627 0.0844

G n r Auto-Tuned Neural Network 0.8296 0.3543

H n b Auto-Tuned Neural Network 0.8076 0.2091

I r r 100-Tree Random Forest 0.8522 0.3397

J r b 100-Tree Random Forest 0.8775 0.3586

K b r 100-Tree Random Forest 0.9881 0.8965

L b b 100-Tree Random Forest 1.0000 0.9999

M e r 100-Tree Random Forest 0.6237 0.0888

N e b 100-Tree Random Forest 0.6620 0.0839

O n r 100-Tree Random Forest 0.8466 0.3981

P n b 100-Tree Random Forest 0.8722 0.4095

Table 3.4: Results of predicting 70% of the data when training on 30%.



51

Model In Out Underlying ML Technique Granular Acc. Absolute Acc.

A r r Auto-Tuned Neural Network 0.5784 0.0744

B r b Auto-Tuned Neural Network 0.6157 0.0708

C b r Auto-Tuned Neural Network 0.9668 0.8122

D b b Auto-Tuned Neural Network 0.9033 0.4700

E e r Auto-Tuned Neural Network 0.6255 0.0906

F e b Auto-Tuned Neural Network 0.6623 0.0833

G n r Auto-Tuned Neural Network 0.8078 0.2775

H n b Auto-Tuned Neural Network 0.7929 0.1770

I r r 100-Tree Random Forest 0.8612 0.3647

J r b 100-Tree Random Forest 0.8891 0.3913

K b r 100-Tree Random Forest 0.9939 0.9465

L b b 100-Tree Random Forest 1.0000 1.0000

M e r 100-Tree Random Forest 0.6259 0.0891

N e b 100-Tree Random Forest 0.6627 0.0839

O n r 100-Tree Random Forest 0.8536 0.4248

P n b 100-Tree Random Forest 0.8762 0.4367

Table 3.5: Results of predicting 50% of the data when training on 50%.



52

Model In Out Underlying ML Technique Granular Acc. Absolute Acc.

A r r Auto-Tuned Neural Network 0.6175 0.0789

B r b Auto-Tuned Neural Network 0.6093 0.0833

C b r Auto-Tuned Neural Network 0.9988 0.9897

D b b Auto-Tuned Neural Network 0.9027 0.4658

E e r Auto-Tuned Neural Network 0.6284 0.0918

F e b Auto-Tuned Neural Network 0.6625 0.0840

G n r Auto-Tuned Neural Network 0.8361 0.3790

H n b Auto-Tuned Neural Network 0.8124 0.2359

I r r 100-Tree Random Forest 0.8636 0.3708

J r b 100-Tree Random Forest 0.8908 0.3899

K b r 100-Tree Random Forest 0.9966 0.9695

L b b 100-Tree Random Forest 1.0000 1.0000

M e r 100-Tree Random Forest 0.6318 0.0888

N e b 100-Tree Random Forest 0.6628 0.0842

O n r 100-Tree Random Forest 0.8557 0.4344

P n b 100-Tree Random Forest 0.8763 0.4494

Table 3.6: Results of predicting 30% of the data when training on 70%.



53

Model In Out Underlying ML Technique Granular Acc. Absolute Acc.

A r r Auto-Tuned Neural Network 0.6729 0.1181

B r b Auto-Tuned Neural Network 0.6286 0.0707

C b r Auto-Tuned Neural Network 0.9994 0.9945

D b b Auto-Tuned Neural Network 0.9090 0.4846

E e r Auto-Tuned Neural Network 0.6316 0.0899

F e b Auto-Tuned Neural Network 0.6617 0.0842

G n r Auto-Tuned Neural Network 0.8374 0.3745

H n b Auto-Tuned Neural Network 0.8104 0.2176

I r r 100-Tree Random Forest 0.8644 0.3739

J r b 100-Tree Random Forest 0.8940 0.3934

K b r 100-Tree Random Forest 0.9983 0.9845

L b b 100-Tree Random Forest 1.0000 1.0000

M e r 100-Tree Random Forest 0.6303 0.0867

N e b 100-Tree Random Forest 0.6617 0.0846

O n r 100-Tree Random Forest 0.8555 0.4397

P n b 100-Tree Random Forest 0.8744 0.4563

Table 3.7: Results of predicting 10% of the data when training on 90%.



54

3.6 Analysis

Across our 80 data points, our first question burns: “Which model was the most accurate

across a wide variety of training-prediction splits?” To gain a sense of which did well, we

first observe figure 3.4.

Fig. 3.4: Accuracy of all models across all training-prediction splits.

The top performing models, defined as the models which achieved absolute accuracy

greater than 75% or granular accuracy greater than 95% for any training-validation split,

were models C, K, and L. Model L in particular did quite well, with an astounding absolute

and granular accuracy rate of 0.9997 and 0.9973, respectively, when predicting the remaining

90% of the image data from only 10% of the figure. We also note that all techniques did

better than chance in both granular and absolute accuracy.

In figure 3.4 we also observe that there seems to be a tight trend relating the granular

and absolute accuracies. Since we are working in the Boolean case, we conjecture that the



55

trend follows a scaled variant of the geometric distribution. In any case, the visualization

seems to indicate that an acceptable absolute accuracy of, say, 75%, would be highly

correlated with a granular accuracy of 95% or above.

One way to visualize how well these models A through P do across all types of

training-prediction ratios is through the box-plots in figure 3.5:

Fig. 3.5: Accuracy across all models.

This visualization is notable in that the thin gray line in each accuracy type separates

the neural network based models from the random forest based models. Visually, the spread

would seem to indicate that, as a whole, there is not a great deal of difference between the

predictive capabilities between the two (albeit with some trends towards forests having

greater absolute accuracy predictions).

One commonality between models C, K, and L, however, was the input type: in each

case, the binary representation was used. Perhaps this is not surprising, as the binary

representation in this case is a particular traversal of each matrix. We can compare other

representation types as a reflection of accuracy across all models as noted in the box plots



56

in figure 3.6:

Fig. 3.6: Accuracy across all models with respect to input type.

This box plot provides evidence that random forests in particular can learn how to do

Boolean matrix multiplication with very small amounts of binary training data relative to

the universe. In the case of the runner up, the naive singular value representation, there is

some motivation as to why, in this case, the accuracy could not breach a threshold. There

are only so many n × n Boolean matrices up to permutation, each of which have the same

ordered naive singular value representation. While this vector embedding may be useful in

the wide variety of applications where linear permutation does not matter, in this case it

does.



CHAPTER 4

GRAPH ATTRIBUTE COMPUTATION USING ENTROPY-BASED KERNELS

4.1 Introduction

Graph theory has long been filled with questions which are in the computational class

of NP: NP Hard, NP Complete, etc. While many papers in academia have so far pointed

to reductions or clever algorithms to answer specific questions relating to the practical

computation of these computationally difficult invariants, very few authors have so far used

classification techniques – now widely used in statistics and data science – to predict, with

quality accuracy, the answers to these questions. Least of all in graph theory.

We hope to rectify at least one corner of this oversight by employing a technique on

digraphs which generates a vector of predictors based on the graph in question. This set of

predictor vectors can then be used to train a number of common classifiers so that predicting

computationally difficult graph invariants then becomes trivial to a high degree of accuracy.

The rest of this chapter will be dedicated to describing the technique we’ve developed,

experiments done to demonstrate the practical validity of the technique on two NP-level

problems, and will close with a brief discussion as to future arenas of research in this area.

4.2 Technique

In this section we reiterate a definition for a graph kernel described in [29]. We

generalize this definition from graphs to real valued matrices. We then use this kernel

to create a kernel matrix. We apply principal component analysis to this kernel matrix

to create a derived set of vectors. These vectors may thus be utilized as predictors for a

machine learning apparatus.



58

4.2.1 Ye et al. Kernel

In 2012, Ye et al., pioneered a technique illustrated in [29]. Their core idea was to

create a kernel described as follows:

Let G = (V,E) be a digraph. For all v ∈ V , let the out-degree of v be denoted as dout,

and the in-degree of v as din. Define E′ = {(u, v) ∣ (u, v) ∈ E and (v, u) ∈ E}. Define the

entropy of G, denoted H(G), as

H(G) = ∑
(u,v)∈E

dinu

dinv ⋅ doutu
2
+ ∑
(u′,v′)∈E′

1

doutu
′ ⋅ doutv

′

Denote the disjoint union graph of G1, G2 as G1 ⊕ G2. That is, G1 ⊕ G2 = (V1 ∪ V2,E1 ∪E2).

From these above definitions, the authors in [29] presented their kernel, k(G1,G2), as

k(G1,G2) = exp(H(G1) +H(G2)
2

−H(G1 ⊕ G2))

We invite the reader to examine [29] directly for the motivation underpinning this definition.

4.2.2 Matrix Generalization of the Ye et al. Kernel

If we consider the adjacency matrix of G, denoted [G], we can generalize the kernel

described in 4.2.1 to two matrices, M1, M2, subject to a few constraints. Namely:

1. M1, M2 are square (although not necessarily of equal dimension).

2. All entries in both M1 and M2 are non-negative.

These constraints are due to the adjacency matrices of two graphs also having these same

properties.



59

Consider the following generalizations of the definitions provided in [29]:

• Let M be a matrix subject to the aforementioned constrains.

• Define M1 ⊕M2 as the block matrix

⎡⎢⎢⎢⎢⎢⎣

M1 0

0 M2

⎤⎥⎥⎥⎥⎥⎦
. This is analogous to the adjacency

matrix of the disjoint union graph of G1 and G2. That is, [G1 ⊕ G2] =
⎡⎢⎢⎢⎢⎢⎣

[G1] 0

0 [G2]

⎤⎥⎥⎥⎥⎥⎦
.

• Define E = {(i, j) ∣ Mi,j ≠ 0}, which generalizes the edge set of a graph.

• Define E′ = {(i, j) ∣ (i, j) ∈ E and (j, i) ∈ E}, keeping the original definition from [29].

• Define rM(x) = ∑i=0Mi,x, as the in-degree of a vertex indexed as x in a graph’s

adjacency matrix. That is, rM(x) is defined as the sum of the entries of each row of

column x.

• Define cM(x) = ∑j=0Mx,j , as the out-degree of a vertex indexed as x in a graph’s

adjacency matrix. That is, cM(x) is defined as the sum of the entries of each column

of row x.

• Define the entropy of M , denoted H(M), as

H(M) = ∑
(i,j)∈E

rM(i)
rM(j) ⋅ cM(i)2

+ ∑
(i′,j′)∈E′

1

cM(i′) ⋅ cM(j′)

From this relaxed entropy, we can write a kernel for two matrices M1, M2 as

k(M1,M2) = exp(H(M1) +H(M2)
2

−H(M1 ⊕M2))



60

By generalizing this way, we now have the following broader flexibilities:

• We can now use the kernel with other matrices which represent graphs, such as the

signless Laplacian matrix.

• Positively weighted digraphs can be considered.

• Other objects represented by square matrices, such as knots or certain algebraic

structures, can now utilize the kernel directly without first bijectively relating them

to a digraph for classification purposes.

4.2.3 Prediction Using a Variant of Kernel Principal Components Analysis

Consider a set of matrix training data Tx = {M1,M2,⋯,Mj}, with a corresponding

set of classes Ty = {C1,C2,⋯,Cj}, where Ci is one of a finite number of classes. Further,

consider a set of validating matrix data Vx = {M1,M2,⋯,Mk}, with a corresponding set

of classes Vy = {C1,C2,⋯,Ck}. To predict the classes in Vx, we undergo a few intuitive steps:

1. Create the j × j kernel matrix from the training matrices:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k(M1,M1) k(M1,M2) ⋯ k(M1,Mj)

k(M2,M1) k(M2,M2) ⋯ k(M2,Mj)

⋮ ⋮ ⋱ ⋮

k(Mj ,M1) k(Mj ,M2) ⋯ k(Mj ,Mj)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2. Apply PCA to K, with the resulting set of component vectors denoted as P =

{p⃗1, p⃗2,⋯, p⃗j} and ordered by the explained variance (that is, the magnitude of the

associated λi with each pi) of each component.



61

3. Consider the following function FP ∶ Ra×b
≥0 → Rj , a, b ∈ N.

FP (A) = [p⃗1 ⋅ ⃗G(A), p⃗2 ⋅ ⃗G(A),⋯, p⃗j ⋅ ⃗G(A)]

where G(A) = [k(M1,A), k(M2,A),⋯, k(Mj ,A)]

4. Define

T ′x = {F (M1), F (M2),⋯, F (Mj)}

V ′

x = {F (M1), F (M2),⋯, F (Mk)}

5. Using T ′x, Ty as training data, with V ′

x, Vy as validation data, utilize an algorithm of

your choice, such as a linear classifier or k-nearest neighbors, to subsequently classify

the results. From experiments described in the next section and in [29], the data

should already be both quite clustered and linearly separable.

4.3 Experiments

In the following sections we describe experiments undertaken. These experiments

validate the efficacy of the technique described in 4.2. We define our data set and then

use that data set for predicting the results of two computationally intractable problems.

4.3.1 Data Used

Tournaments, formally defined as orientations of complete graphs, while interesting

structures in their own right, have been used to model paired comparisons in domains

ranging from animal social hierarchies [30] to voting phenomena in democracies [31].

There are two classical NP level computational problems which are frequently found in

conjunction with tournaments. Namely, the Tournament Isomorphism Class problem, and



62

the Minimum Feedback Arc Set Size (FAST) problem. For both problems, formally defined

below, the following data sets were used:

• Adjacency Matrices Representing Labeled Tournaments of Order 4 (n = 64)

• Signless Laplacian Matrices Representing Labeled Tournaments of Order 4 (n = 64)

• Adjacency Matrices Representing Labeled Tournaments of Order 5 (n = 1024)

• Signless Laplacian Matrices Representing Labeled Tournaments of Order 5 (n = 1024)

4.3.2 Isomorphism Class on Labeled Tournaments

Formally, an isomorphism of two graphs G1 = (V1,E1),G2 = (V1, V2) is a bijection

between their vertex sets f ∶ V1 ↤↦ V2 such that (v, u) ∈ E1 ⇐⇒ (f(v), f(u)) ∈ E2.

AB

C

D E

F

A↤↦D

B ↤↦ E

C ↤↦ F

D ↤↦ A

E ↤↦ C

F ↤↦ B D E

F

A

E

B

Fig. 4.1: Tournaments in the same isomorphism class.

A set of graphs which are isomorphic to each other are said to be of the same isomorphism

class. Determining whether two graphs belong to the same isomorphism class is, in general,

of computational complexity 2O(log(n)
c
) for c > 0 [32].



63

On labeled tournaments of orders 4 and 5, there are, respectively, 4 and 12 isomorphism

classes. Given that each class is ascribed an artificial label (e.g., one class is labeled “A”,

the next “B”, etc.), train a classifier based on some data for which the isomorphism class

is known, and predict the class for a new observation for which the isomorphism class is

unknown.

Beforehand, the isomorphism class was computed for each tournament in our training

set by brute force. The training instances were then randomized and results validated by

10-fold validation, as noted in section 4.5.

4.3.3 Minimum Feedback Arc Set Size on Labeled Tournaments

A feedback arc set is a set of edges on a digraph, which if removed from the parent

graph, would result in the digraph becoming acyclic.

It is interesting to determine the minimum size of the arc set needed to make a particular

digraph acyclic, and the problem is in fact NP-Complete, as shown by Karp [2]. When

the graphs are tournaments, the problem is known as the minimum Feedback Arc Set on

Tournaments, or FAST.

While others, notably Bessy et al., have focused on deriving polynomial time kernel

algorithms specific to the FAST problem [33], there is little to no literature describing how

the generalized kernel methods, such as those outlined in this paper, preform. Indeed, Bessy

et al. specifically mention this as an area of future work in their own article.



64

AB

C

D E

F

AB

C

D E

F

Some cycles in the above tournament:

BCF, BDE, BDF, CDE, CFE, CDFE,

BCDF, BCDFE.

Derived acyclic digraph. The three

edges BD, CD, CF have been removed.

Minimal arc set size: 3.

Fig. 4.2: A visualization of FAST

Beforehand, the minimum feedback arc set size was computed for each tournament in

our training set by brute force. Since the minimum feedback arc set size is an integer in the

range of, at most, [0, ∣E∣], we can treat the problem as classification with up to ∣E∣ classes.

The training instances were then randomized and results validated by 10-fold validation,

as noted in 4.5.

4.3.4 Final Classifiers

The reader will recall that an additional classifier is needed to actually classify the

data once the steps outlined in section (2) are preformed. The classifiers selected for our

comparison are:



65

• k-nearest neighbors, where k = 1.

• k-nearest neighbors, where k = ⌊
√

Number of Training Observations⌋.

• A single decision tree, using Gini impurity.

• A random forest with 100 trees, each using Gini impurity.

• A support vector machine, with a linear kernel used.

• A support vector machine, with a radial basis kernel used.

• A Gaussian naive Bayes classifier.

All classifiers were implemented using the Python Scikit-Learn library [26]. An

arbitrary seed was set during 10-fold validation to ensure that, while the selected training

and testing samples remained random, each classifier would evaluate the same dataset.

4.4 Results

20 40 60

0

25

50

75

100

25 50 75

Number Of Observations Used For Training

Percentage Of Data Used For Training

10
−

F
ol

d 
V

al
id

at
io

n:
M

ea
n 

A
cc

ur
ac

y 
(%

)

1−NearestNeighbor

100TreeRandomForest

DecisionTree

GaussianNaiveBayes

k−NearestNeighbors

SVM−LinearKernel

SVM−RadialBasisKernel

T4−LaplacianMatrix

4.4.1 Isomorphism Class on Labeled Tournaments

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●
● ● ● ● ● ● ●

20 40 60

0

25

50

75

100

25 50 75

Number Of Observations Used For Training

Percentage Of Data Used For Training

10
−

F
ol

d 
V

al
id

at
io

n:
M

ea
n 

A
cc

ur
ac

y 
(%

)

T4−AdjacencyMatrix

●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ●
● ● ● ● ● ● ● ●

20 40 60

0

25

50

75

100

25 50 75

Number Of Observations Used For Training

Percentage Of Data Used For Training

10
−

F
ol

d 
V

al
id

at
io

n:
M

ea
n 

A
cc

ur
ac

y 
(%

)

T4−LaplacianMatrix



66

● ● ● ● ● ● ●

●

●

●

●

●

●●
●●●●●●●●●●●●●●

0 100 200 300 400

0

25

50

75

100

0 10 20 30 40

Number Of Observations Used For Training

Percentage Of Data Used For Training

10
−

F
ol

d 
V

al
id

at
io

n:
M

ea
n 

A
cc

ur
ac

y 
(%

)

T5−AdjacencyMatrix

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●●●●

●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

0 200 400 600

0

25

50

75

100

0 20 40 60

Number Of Observations Used For Training

Percentage Of Data Used For Training

10
−

F
ol

d 
V

al
id

at
io

n:
M

ea
n 

A
cc

ur
ac

y 
(%

)

T5−LaplacianMatrix

4.4.2 Minimum Feedback Arc Set Size on Labeled Tournaments

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

● ● ● ● ● ● ●

20 40 60

0

25

50

75

100

25 50 75

Number Of Observations Used For Training

Percentage Of Data Used For Training

10
−

F
ol

d 
V

al
id

at
io

n:
M

ea
n 

A
cc

ur
ac

y 
(%

)

T4−AdjacencyMatrix−FAST

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

● ● ● ● ● ● ●

20 40 60

0

25

50

75

100

25 50 75

Number Of Observations Used For Training

Percentage Of Data Used For Training

10
−

F
ol

d 
V

al
id

at
io

n:
M

ea
n 

A
cc

ur
ac

y 
(%

)
T4−LaplacianMatrix−FAST



67

●

●

●

●

●

●

●

●
● ● ●

0 50 100 150

0

25

50

75

100

0 5 10 15

Number Of Observations Used For Training

Percentage Of Data Used For Training

10
−

F
ol

d 
V

al
id

at
io

n:
M

ea
n 

A
cc

ur
ac

y 
(%

)

T5−AdjacencyMatrix−FAST

● ● ● ●

●

●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 100 200 300

0

25

50

75

100

0 10 20 30

Number Of Observations Used For Training

Percentage Of Data Used For Training

10
−

F
ol

d 
V

al
id

at
io

n:
M

ea
n 

A
cc

ur
ac

y 
(%

)

T5−LaplacianMatrix−FAST

4.5 Analysis

It is remarkable to note how quickly the highest accuracy is obtained relative to the

amount of training data provided. Among the two problems and eight data sets evaluated,

the plateau of accuracy for the most accurate classifier tended to be at no more than 30%

of the data in the universe.

What was even more intriguing was the lack of linear separability, as inferred by the

usually poor performance of the two support vector machines.

In any case, the consistently high accuracy of the 1-nearest neighbor, singular decision

tree, and 100 tree forest classifiers perhaps warrants further investigation.

While the Ye-Wilson-Hancock kernel based on Shannon-Jensen entropy was generalized

for generic graphs, it may be that it is not as useful for certain subtypes of graphs such as

the tournaments. An area of further work, therefore, is in analyzing other entropy based

kernels across other graph families.

Another future area of investigation include graphs of larger order. In practice, the

problems of this magnitude have already been solved, utilizing algorithms such as the nauty

program [34]. The rigour of ramping up to data of higher dimension needs to be considered.



CHAPTER 5

ENTROPY BASED VARIABLE SELECTION

In section 2.5 we discussed ways to vectorize matrices as preparation for input to

a supervised machine learning apparatus. In section 2.7 we discussed the importance of

dimensionality reduction in combinatorial contexts. This gives rise to the question “What

elements of a vector (especially a vector created from methods described in section 2.5)

can be safely removed from consideration in machine learning prediction, regardless of the

associated response? Can we minimize the number of elements in our eventual machine

learning input vector without using potentially unstable and computationally expensive dimensionality

reduction techniques described in section 2.7?”

We see in Chapter 4 the utility in using the broadly constructed idea of entropy (that

is, the amount of (dis)order in a system) to generate predictors for graphs. We suspect that

some definition of entropy may be applied to generalized unsupervised feature selection.

Indeed, upon inspection of the literature we found that unsupervised feature selection

algorithms have been developed before, with the techniques described in [35] being one

of the first papers to utilize entropy in any sort of way.

Existing methods such as those described in [35], however, utilize a pairwise definition

of entropy rooted in linear correlation coefficents, or via nearest neighbor entropy as in

[36]. Here we propose two new methods for feature selection, Componentwise Observation

for Variable Selection with Entropy (COVSE) and Vectorwise Observation for Variable

Selection with Entropy (VOVSE). Both methods utilize Shannon entropy at their crux, and

both consider an entire probability distribution via kernel density estimation. We then show

the efficacy of COVSE by using the MNIST dataset as a case study.



69

5.1 Componentwise Observation for Variable Selection with Entropy (COVSE)

Suppose we have a set of vectors v⃗1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1

⋮

n1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v⃗2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2

b2

⋮

n2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,⋯, v⃗k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ak

bk

⋮

nk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where v⃗i ∈ Rn, each

vector v⃗i is chosen i.i.d. from our universe of interest, and k is a sufficiently large sample

size.

Our initial motivation is to find the entropy of each component independently. Recall

the following definition for the Shannon entropy of X, denoted H(X), where X is a random

variable:

H(X) = − ∑
x∈X

Pr(X = x) log2(Pr(X = x)) [37]

Let A = {a1, a2,⋯, ak}, B = {b1, b2,⋯, bk}, ⋯, N = {n1, n2,⋯, nk}. We could construct

the entropy for each H(A), H(B),⋯,H(N ) if only we had probability distributions for each

of A, B, and so on.

5.1.1 Kernel Density Estimation

Kernel density estimation (KDE), as developed in [38,39], is a tool for providing such

a distribution. We define a kernel density estimator, fb(x) ∶X ⊂ R→ [0,1] ⊂ R, such that

∫
X
fb(x)dx = 1, as follows:

fb(x) =
1

∣X ∣ ∑x′∈X
Kb(x − x′)

where

• b ∈ R>0 is a smoothing parameter called bandwidth. While we strive to find this

parameter by cross validation, we nonetheless utilize rules of thumb as a computational

expedient. One such rule is given by Silverman in [40]. We prefer the rule given by

Scott [41] due to its optimality in the Gaussian case.



70

• Kb(x) ∶ R→ R is a non-negative function called the scaled kernel in this context. We

choose the scaled Gaussian normal kernel, defined as:

Kb(x) =
φ (x

b
)

b

Where φ(x) is the standard normal density function:

φ(x) = 1√
2π

⋅ exp(−x
2

2
)

Given that we set up KDEs for each of A, ⋯, N we can now determine the entropy,

H(X), for each vector component.

Recalling that entropy is a metric of the information contained within our set of random

variables actualized from X [37], we can determine a threshold t of our choosing such that

all zi ∈ Z ∈ {A,⋯,N} are discarded as elements in our vectors when H(Z) < t. One way to

select such a t is to plot all H(Z)s monotonically and attempt to identify an elbow.

Another way to determine which set of elements to deselect is by taking a meta entropy

and utilizing it as a response variable to some sort of linear model. That is, let χ =

{H(A), H(B),⋯,H(N )}. Using a KDE as described in 5.1.1, we can determine H(χ),

which we call meta entropy. We can then utilize tools of explained variance with respect to

H(χ) to similarly order and threshold the given H(Z)s.

This idea of meta entropy, however, is hinting at a larger idea of considering all of the

elements in juxtaposition with each other. We survey this idea more directly than merely

aggregating componentwise entropy values in section 5.3.

5.2 COVSE Experiments on the MNIST Dataset

MNIST is a classic dataset used for image recognition. It consists of a set of handwritten

digits, each labeled 0 through 9. Traditionally, 60000 of these images are used for training

a machine learning apparatus, and 10000 are used for testing [42]. Each pixel of the 28×28



71

sized image serves as a feature for a machine learning apparatus to predict on. Several

examples of these images are in figure 5.1.1

Fig. 5.1: Examples of Images and Labels in the MNIST Dataset

1This image of MNIST examples is sourced from [43].



72

In the experiment below we will do the following:

1. Determine the entropy of each pixel based on the method described in 5.1. We will

do this for several different sizes of training data.

2. Based on the entropies calculated in step 1, remove pixels from consideration in our

training data. We then train a random forest to predict an image’s class based on

only the features selected. Accuracy of the training set is then reported.

5.2.1 COVSE Predictor Selection Technique

In 5.1 we assumed the following before describing COVSE:

Suppose we have a set of vectors v⃗1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1

⋮

n1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v⃗2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2

b2

⋮

n2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,⋯, v⃗k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ak

bk

⋮

nk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where v⃗i ∈ Rn,

each vector v⃗i is chosen i.i.d. from our universe of interest, and k is a sufficiently

large sample size.

This begs the question: “How large is a sufficiently large k?” COVSE’s efficacy in

determining how many n predictors to keep (and of those n, which ones) depends on

obtaining a true representation of the entropy of each predictor in our dataset. Ideally,

then, k would be equal to the number of training instances to gain the truest representation

of the entropy of the underlying data.

Nevertheless, calculating entropy is expensive, and adding more data could quickly

result in diminishing returns. Hence, given that we must include at least two samples to

run COVSE, and number of training samples is 60000, we took the following values for

potential k ∈ D; K = {2,4,12,40,133,452,1533,5205,17617}. These K values were chosen

because they are the first 9 values evenly spaced on the log scale [0,60000]2

2Refer to the Python code numpy.logspace(0,math.log10(60000), 10, dtype="int64") + 1



73

For each k inK = {2,4,12,40,133,452,1533,5205,17617}, we selected without replacement

k MNIST images from our training set. We then determined the entropy for each predictor

in the entire training set by applying COVSE to those k images.

5.2.2 COVSE Results

Below are the results for each k in K = {2,4,12,40,133,452,1533,5205,17617}. For

each k we plot the entropy of each pixel as a colorized image using the viridis color pallet

in the Python library matplotlib [44]. Additionally, we also determine the number of

pixels (that is, predictor entries) without entropy (i.e., entropy is 0), as well as reporting

that number as a percentage of all 28 ⋅ 28 pixels. With that information, we suggest a

threshold t of entropy for which predictors with entropy < t should be discarded based on

the calculated elbow of the curve.

The elbow was calculated by the point which had the maximized orthogonal distance

between the line given by the first and last points in a set of ordered numbers. As a concrete

example, consider the following ordered set: {0.9,1.1,1.1,1.9,2.5,2.8,4.9,8.5}.

Fig. 5.2: Finding The Elbow of an Ordered Set of Data



74

In this example, the value 2.8 is the elbow due to it having the maximal orthogonal

distance from the red line. We note that the algorithm is formally defined in the findElbow

method of [45]. While other techniques to find the elbow are based on maximizing the

absolute value of a curve’s second derivative [46], we utilize this method precisely because

it doesn’t depend on the derivative. Our ordered data may not have a sufficiently robust

piecewise continuity to take an accurate numerical approximation of the second-order derivative.

Using the entropy at the elbow as a threshold, we then recommend that we discard

all predictors with COVSE calculated entropy less than that of the elbow from subsequent

consideration. We report the entropy of the elbow, and the resulting number (and percentage

of the initial 28 ⋅ 28 entries) of predictors to discard.

5.2.2.1 COVSE Calculated With 2 Randomly Selected MNIST Training Images

Entropy of Pixels Summary Results

In this experiment, only two images from our MNIST training data were selected to

determine the entropy for all pixels in the set. As one might suspect from the image of the

pixel entropies plotted above, the labels corresponding to the randomly selected samples

were indeed “1” and “7”. One notes that entropy is highest around the apparent edge of

the strokes.

We also note that the sum of entropy across all entries is primarily concentrated in

only (28 ⋅28)−719 = 65 pixels. If the reduction of predictors by ≥ 90% continues for COVSE

when its trained on more samples, then this technique has promise for a general purpose

feature reduction algorithm.



75

5.2.2.2 COVSE Calculated With 4 Randomly Selected MNIST Training Images

Entropy of Pixels Summary Results

As we increase the number of samples used for training, the entropy of each pixel

seems to paint a more blurred picture. The sample of images used for training COVSE had

labels of {4,7,7,8}. The overall shape of the curve of entropies, however, seems to be very

analogous to the k = 2 case. Indeed, the number of predictors to keep is (28 ⋅ 28)− 703 = 81,

implying we discarding close to 90% of predictors; this is similar to the k = 2 case as well.

Based on the visualized entropy of the pixels, however, it appears that the predictors to

keep would differ somewhat from the k = 2 case.



76

5.2.2.3 COVSE Calculated With 12 Randomly Selected MNIST Training Images

Entropy of Pixels Summary Results

Class Count Frequencies

0 1 0.08333333333333333

1 1 0.08333333333333333

2 2 0.16666666666666666

3 0 0.0

4 1 0.08333333333333333

5 0 0.0

6 4 0.3333333333333333

7 1 0.08333333333333333

8 0 0.0

9 2 0.16666666666666666

Table 5.1: Label Distribution of the k

Randomly Selected Training Samples

Here we see a bit more diversity in the

samples provided. What is notable is how

the entropies seem to be maximized when

the edge strokes are on the extremes. As

in the k = 2 and k = 4 case, we continue

to find that the number of predictors to

discard remains at ≈ 90%.

Let’s observe what happens for the next

several values of k.



77

5.2.2.4 COVSE Calculated With 40 Randomly Selected MNIST Training Images

Entropy of Pixels Summary Results

Class Count Frequencies

0 6 0.15

1 2 0.05

2 5 0.125

3 3 0.075

4 2 0.05

5 7 0.175

6 3 0.075

7 8 0.2

8 2 0.05

9 2 0.05

Table 5.2: Label Distribution of the k Randomly Selected Training Samples



78

5.2.2.5 COVSE Calculated With 133 Randomly Selected MNIST Training

Images

Entropy of Pixels Summary Results

Class Count Frequencies

0 15 0.11278195488721804

1 17 0.12781954887218044

2 8 0.06015037593984962

3 13 0.09774436090225563

4 10 0.07518796992481203

5 8 0.06015037593984962

6 16 0.12030075187969924

7 17 0.12781954887218044

8 11 0.08270676691729323

9 18 0.13533834586466165

Table 5.3: Label Distribution of the k Randomly Selected Training Samples



79

5.2.2.6 COVSE Calculated With 452 Randomly Selected MNIST Training

Images

Entropy of Pixels Summary Results

Class Count Frequencies

0 36 0.07964601769911504

1 57 0.1261061946902655

2 47 0.10398230088495575

3 46 0.10176991150442478

4 57 0.1261061946902655

5 48 0.10619469026548672

6 48 0.10619469026548672

7 39 0.08628318584070796

8 31 0.06858407079646017

9 43 0.09513274336283185

Table 5.4: Label Distribution of the k Randomly Selected Training Samples



80

5.2.2.7 COVSE Calculated With 1533 Randomly Selected MNIST Training

Images

Entropy of Pixels Summary Results

Class Count Frequencies

0 145 0.09458577951728636

1 182 0.1187214611872146

2 147 0.0958904109589041

3 176 0.11480756686236138

4 168 0.1095890410958904

5 119 0.0776255707762557

6 163 0.10632746249184605

7 148 0.09654272667971298

8 131 0.08545335942596216

9 154 0.1004566210045662

Table 5.5: Label Distribution of the k Randomly Selected Training Samples



81

5.2.2.8 COVSE Calculated With 5205 Randomly Selected MNIST Training

Images

Entropy of Pixels Summary Results

Class Count Frequencies

0 537 0.10317002881844381

1 595 0.1143131604226705

2 519 0.09971181556195965

3 525 0.10086455331412104

4 495 0.09510086455331412

5 483 0.09279538904899136

6 479 0.0920268972142171

7 577 0.11085494716618637

8 483 0.09279538904899136

9 512 0.09836695485110471

Table 5.6: Label Distribution of the k Randomly Selected Training Samples



82

5.2.2.9 COVSE Calculated With 17671 Randomly Selected MNIST Training

Images

Entropy of Pixels Summary Results

Class Count Frequencies

0 1711 0.09712209797354827

1 2006 0.11386728727933246

2 1684 0.09558948742691718

3 1768 0.10035760912754725

4 1723 0.09780325821649544

5 1605 0.09110518249418176

6 1764 0.10013055571323154

7 1788 0.10149287619912585

8 1735 0.09848441845944259

9 1833 0.10404722711017766

Table 5.7: Label Distribution of the k Randomly Selected Training Samples



83

5.2.3 Meta COVSE Results

In 5.2.2 we examined the results for several values of k, where k is the number of

samples (or, more correctly, the number of vectors which have entries composed of a sample’s

predictors) to train COVSE. The overarching motivation for doing so was to gain intuition

as to the smallest value of k needed to sufficiently capture the entropy of the entire dataset.

In this section we compare the metrics of the selected ks side by side to help us glean further

understanding.

5.2.3.1 The Entropy at the Selected Elbow

We hypothesized that the entropy of the elbow would be a reasonable threshold. If the

entropy at the threshold stabilizes, then the elbow of the elbows might be a good cutoff for

k. We observe the following plots to determine if that hypothesis had merit.

Far from stabilizing to a singular value, we see that the entropy at the elbow consistently

increased as k increased. Contrast the above plot when the same entropy data is shown on

a log scale.



84

The plot indicates that, instead of converging, entropy increased linearly as k increased.

Retrospectively, it is not a surprising observation that the disorder of a system increases as

more elements are added. Nonetheless, we still haven’t answered the question as to what,

if any, k is small enough to sufficiently train COVSE.

5.2.3.2 Number of Entries Without Entropy

Despite the linearity of the elbow entropy noted in section 5.2.3.1, we find that there

does appear to be convergence in the number of predictor entries (i.e., pixels) without

entropy around k ≈ 100, and certainly by k = 452.

5.2.3.3 Number of Predictors to Discard

We also see the number of predictors to discard converge (or at least become more

tightly bounded) once k exceeds 100. Certainly when k = 452.



85

With this in mind, recall that the sample size s for a infinite population is given by

s = z
2 ⋅ (p) ⋅ (1 − p)

c2
[47]

where z is the Z-score of the standard normal distribution, p is probability of the

choice, and c is the confidence interval. Noting that s is maximized when p = 0.5, we can

say that with a confidence interval of 0.05 and a confidence level of 0.95 (z = 1.96), then

s = 1.962 ⋅ (0.5) ⋅ (1 − 0.5)
(0.05)2

s = 385.

As k = 452 is greater than s = 385, and noting that two indicative attributes in sections

5.2.3.2 and 5.2.3.3 seemed to converge for k > 452, there seems to be an indication that the

smallest sufficient k is that given by the sample size s for some chosen c and z.

5.2.4 Comparative Accuracy via Random Forest

In section 5.2.2, we claimed that we should ignore the ≈ 725 predictors with the lowest

entropy. We put that claim to the test here. For each estimation (k = 2, 4, 12, and so forth),

we considered all distinct entropies returned by COVSE. Using each one of those distinct

entropies as a threshold for predictors to include for training and testing, we utilized a 10

tree random forest to classify the image. Each forest was trained on the full 60000 image

training dataset, and evaluated on the 10000 image test dataset.

We utilized small random forests due to their turnkey nature (as opposed to a neural

network with many hyperparameters to choose) and speed in training. The particular

software package we used is Scikit-Learn’s RandomForestClassifier [26].

We give the predicted accuracy for each entropy threshold in the results below. The

vertical dashed line indicates the final accuracy when the recommended number of predictors

was evaluated. As a reminder from section 5.2.2, that recommendation came from an

unsupervised selection based on the elbow of the COVSE entropies calculated across each



86

predictor.

5.2.4.1 MNIST Prediction Accuracy; Predictors Chosen Based on Calculations

in Section 5.2.2.1 (i.e., COVSE trained on 2 images)

We note the large gap between Number of Predictors Being Used ≈ 175 and Number

of Predictors Being Used = 28 ⋅ 28 is due to many predictors having no entropy at all. We

also see here that, even with entropy calculated from just two training images, how well a

random forest classifier performs when trained only on the selected predictors. For example,

note that the classifier achieves more than 90% accuracy when utilizing only 65 pixels for

prediction.

5.2.4.2 MNIST Prediction Accuracy; Predictors Chosen Based on Calculations

in Section 5.2.2.2 (i.e., COVSE trained on 4 images)

We see a similarly shaped curve when four images were used for entropy calculation,

although it resulted in fewer predictors having no entropy, as noted in section 5.2.3.2.

Subsequent results will follow this trend of a Γ shaped curve.



87

5.2.4.3 MNIST Prediction Accuracy; Predictors Chosen Based on Calculations

in Section 5.2.2.3 (i.e., COVSE trained on 12 images)

5.2.4.4 MNIST Prediction Accuracy; Predictors Chosen Based on Calculations

in Section 5.2.2.4 (i.e., COVSE trained on 40 images)

5.2.4.5 MNIST Prediction Accuracy; Predictors Chosen Based on Calculations

in Section 5.2.2.5 (i.e., COVSE trained on 133 images)



88

5.2.4.6 MNIST Prediction Accuracy; Predictors Chosen Based on Calculations

in Section 5.2.2.6 (i.e., COVSE trained on 452 images)

5.2.4.7 MNIST Prediction Accuracy; Predictors Chosen Based on Calculations

in Section 5.2.2.7 (i.e., COVSE trained on 1533 images)

5.2.4.8 MNIST Prediction Accuracy; Predictors Chosen Based on Calculations

in Section 5.2.2.8 (i.e., COVSE trained on 5205 images)



89

5.2.4.9 MNIST Prediction Accuracy; Predictors Chosen Based on Calculations

in Section 5.2.2.9 (i.e., COVSE trained on 17617 images)

5.2.5 Analysis

Seeing the experiments juxtaposed against each other, we note that the suggested

number of features to include tended to match the elbow of the plotted accuracy data.

This suggests that we will see significantly diminishing returns for any predictors included

beyond that indicated by the elbow. Furthermore, due to the exponential reduction of

predictors while still maintaining quality accuracy, we conclude that this method of feature

selection is viable for the MNIST data set.



90

5.3 Vectorwise Observation for Variable Selection with Entropy (VOVSE)

In section 5.1 we discussed a componentwise entropy based method to select predictors.

Suppose we want to consider the relative entropy of each vector in tandem. For example, a

photo of a forest fire might pack more information (that is, have a higher entropy) than a

small candle against a dark background. The entropy of an image may not be realized when

considering an aggregation of pixel entropy individually. At the same time, considering

individual component entropy is not dismissable either, as shown in our experiments in

section 5.2.2. Hence, our initial motivation is to first define and find the internal entropy

of each prediction vector as a whole, while simultaneously taking into account the entropy

of individual components. We then may use that entropy to provide insights into feature

selection.

Suppose we have a set of vectors v⃗1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1

⋮

n1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, v⃗2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2

b2

⋮

n2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,⋯, v⃗k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ak

bk

⋮

nk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where v⃗i ∈ Rn,

each vector v⃗i is chosen i.i.d. from our universe of interest and k is a sufficiently large

sample size. Once again, our initial motivation is to find the internal entropy of each vector

v⃗ι, denoted Hv⃗ι , as a whole. To do so, recall the following definition for the conditional

Shannon entropy of X given Y , denoted H(X ∣Y ), where X and Y are random variables:

H(X ∣Y ) = − ∑
x∈X,y∈Y

Pr(X = x,Y = y) ⋅ log2 (
Pr(X = x,Y = y)

Pr(Y = y) )

Let X represent the set of entries in a vector, and Y the set of vector indices. Under

this motivation, we can define for some vector v⃗ι ∈ Rn

Hv⃗ι = − ∑
x∈{aι,bι,⋯,nι},
y∈{1,2,⋯,n}

Pr(X = x,Y = y) ⋅ log2 (
Pr(X = x,Y = y)

Pr(Y = y) )

Since the number of entries of each vector remains fixed at n, we can assert the

probability of P (Y = y) = 1
n for all y ∈ Y . This immediately simplifies our construction

to



91

Hv⃗ι = − ∑
x∈{aι,bι,⋯,nι},
y∈{1,2,⋯,n}

Pr(X = x,Y = y) ⋅ log2 (
Pr(X = x,Y = y)

Pr(Y = y) )

Hv⃗ι = − ∑
x∈{aι,bι,⋯,nι},
y∈{1,2,⋯,n}

Pr(X = x,Y = y) ⋅ log2 (
Pr(X = x,Y = y)

1
n

)

Hv⃗ι = − ∑
x∈{aι,bι,⋯,nι},
y∈{1,2,⋯,n}

Pr(X = x,Y = y) ⋅ log2 (n ⋅Pr(X = x,Y = y))

The crux is in determining Pr(X = x,Y = y). To approximate this function, we may

utilize a multivariate kernel density estimation (mKDE). That is to say, we assert that the

PDF of Pr(X = x,Y = y) is the same as the mKDE over X and Y .

5.3.1 Multivariate Kernel Density Estimation

Formally, we define a multivariate kernel density estimator, f⃗B(x, y) ∶X × Y ⊂ R2 → [0,1] ⊂ R,

such that ∫
X
∫
Y
f⃗B(x, y)dy dx = 1, as a generalization of the univariate kernel density

estimator in the following way:

f⃗B(x, y) = 1

∣S∣ ∑s⃗∈S
KB

⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x

y

⎤⎥⎥⎥⎥⎥⎦
− s⃗

⎞
⎟⎟
⎠

where

• S =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

a1

1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

a2

1

⎤⎥⎥⎥⎥⎥⎦
,⋯,

⎡⎢⎢⎢⎢⎢⎣

ak

1

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

b1

2

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

b2

2

⎤⎥⎥⎥⎥⎥⎦
,⋯,

⎡⎢⎢⎢⎢⎢⎣

bk

2

⎤⎥⎥⎥⎥⎥⎦
, ⋯,

⎡⎢⎢⎢⎢⎢⎣

n1

n

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

n2

n

⎤⎥⎥⎥⎥⎥⎦
,⋯,

⎡⎢⎢⎢⎢⎢⎣

nk

n

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
• B ∈ R2×2, with B symmetric and positive definite, is our multivariate bandwidth

(smoothing) parameter, found using cross validation.

• KB(x⃗) ∶ Rn → R is a scaled standard multivariate Gaussian normal kernel, defined as:

KB(x⃗) = 1

2π
⋅ ∣B∣−

1
2 ⋅ exp(−1

2
x⃗TB−1x⃗)



92

It should be noted that other kernels have been found to have success in the multivariate

case, such as those pioneered by Breiman et al. in [48], but for simplicity we will hold to

the multivariate Gaussian kernel here. Hence, with this machinery in place, we now may

compute an ordered pair of the form (Hv⃗i , v⃗i) for all our initially given vectors.

While Hv⃗i is useful as a descriptive attribute in-and-of-itself, the real benefit is utilizing

the power of linear regression. At this point, we may set up a linear model of the form:

Hv⃗i ∼ ai + bi +⋯ + ni

Given that Hv⃗i represents the intrinsic entropy of the vector in juxtaposition with

other vectors in {v⃗1,⋯, v⃗k}, we can utilize it as a response variable for which ai,⋯, ni

act as predictors. Consequentially, we may now utilize techniques such as LASSO, ridge

regression, backwards elimination, or any other linear feature selection technique to identify

which elements of our vectors to leave in.



CHAPTER 6

CONCLUDING REMARKS AND FUTURE WORK

The panorama of discrete and combinatorial exploration via machine learning is an

area ripe for further investigation. The results presented in this thesis indicate that, when

represented by appropriate invariants, graphs and matrices (particularly matrices from

non-field algebraic structures) can be used successfully in supervised learning algorithms.

This tends to hold true even for computationally difficult problems, as noted when we

examined computationally intractable problems in Chapters 3 and 4.

In particular, we conclude that by representing Boolean matrices as a vector described

by the binary representation of a particular indexing (described in section 2.8), random

forests were able to reconstruct 99% of all matrix products from only 10% of samples in our

universe of data (reported in section 3.6). This insight indicates the feasibility of solving

the Boolean factorization problem in the amortized case in polynomial time, and to a high

degree of accuracy.

We further conclude, from representations discussed in Chapter 4, that graphs are also

able to be appropriately articulated as predictors for certain machine learning techniques.

Articulations for which machine learning techniques do well in supervised learning contexts.

For example, we noted in section 4.5 that with just 5% of the data in our universe of

tournaments on 5 vertices, we were able to gain over 95% accuracy in determining the

feedback arcset number.

The crux is in determining which invariant representations are most appropriate as

input for the supervised problem at hand. While this thesis explored a handful of problems

and input articulations, there is much more work which needs to be done to understand

which invariant representations work well when supervised against problems in a generic

sense, versus those invariant representations which are idiosyncratically beneficial to only

a particular problem. Exploring more structures, and the invariant articulations of those

structures, is certainly an area which needs to be surveyed.



94

Another area of investigation is that of scalablity. We are under no pretense that

the inputs utilized in Chapters 3 and 4 are large. After all, in Chapter 3 matrices were of

dimension 3×3. In Chapter 4 the largest matrix processed was of dimension 5×5. Although

the search spaces undeniably expand exponentially as matrix dimension increases, this

hurdle of combinatorial explosion must become tractable if machine learning techniques

are to be utilized in practice. More experiments done on higher dimensions should be

conducted. In parallel, currently nonexistent techniques to prune a search space composed

of highly structured data need to be developed.

We addressed one facet of the challenge of scalablity in Chapter 5 by demonstrating

that entropy based methods have merit in feature selection, and hence data reduction. For

example, we showed in section 5.2.2 that using COVSE we could, using only several dozen

MNIST training instances, parry our feature set down to 87 or fewer predictors; a reduction

of 1 − 87

28 ⋅ 28
Ô⇒ 88.9% or more. Other authors have expounded much more on these

ideas of entropy based feature reduction. Where they may have use, and where future work

needs to be done, is in their efficacy in paring down features used to represent graphs.

As is, this thesis serves primarily as a “proof of concept” approach to find solutions

for many currently intractable problems in their amortized cases. We are hopeful that

the methodologies outlined here provide fodder to the lector in solving similarly flavored

problems in other fields, such as in topology (e.g., knot and braid classification) and algebraic

geometry (e.g., cylindrical algebraic decomposition). ∎



95

REFERENCES

[1] M. Kutz, “The complexity of boolean matrix root computation,” Theoretical
Computer Science, vol. 325, no. 3, pp. 373 – 390, 2004, selected Papers from
COCOON 2003. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0304397504004165

[2] R. M. Karp, Reducibility among Combinatorial Problems. Boston, MA: Springer US,
1972, pp. 85–103. [Online]. Available: https://doi.org/10.1007/978-1-4684-2001-2 9

[3] F. Wagner, “Hardness results for tournament isomorphism and automorphism,” in
Mathematical Foundations of Computer Science 2007, L. Kučera and A. Kučera, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 572–583.

[4] M. Sipser, Introduction to the Theory of Computation, 1st ed. International Thomson
Publishing, 1996.

[5] G. Dantzig, “The simplex method,” RAND Corporation, p. 891, 1956.

[6] L. Khachiyan, “Polynomial algorithms in linear programming,” USSR Computational
Mathematics and Mathematical Physics, vol. 20, no. 1, pp. 53 – 72, 1980. [Online].
Available: http://www.sciencedirect.com/science/article/pii/0041555380900610

[7] E. R. Scheinerman and D. H. Ullman, Fractional graph theory: a rational approach to
the theory of graphs. Courier Corporation, 2011.

[8] I. Choi, J. Kim, and S. O, “The difference and ratio of the fractional matching
number and the matching number of graphs,” Discrete Mathematics, vol. 339, no. 4,
pp. 1382 – 1386, 2016. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0012365X15004380

[9] M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal of
Number Theory, vol. 12, no. 1, pp. 128 – 138, 1980. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0022314X80900840

[10] E. W. Weisstein, “Laplacian matrix.” Wolfram Mathworld, 2019. [Online]. Available:
http://mathworld.wolfram.com/LaplacianMatrix.html

[11] J. Hopcroft and R. Tarjan, “Efficient planarity testing,” J. ACM, vol. 21, no. 4, pp.
549–568, Oct. 1974. [Online]. Available: http://doi.acm.org/10.1145/321850.321852

[12] C. Thomassen, “The graph genus problem is np-complete,” J. Algorithms, vol. 10,
no. 4, pp. 568–576, Dec. 1989. [Online]. Available: https://doi.org/10.1016/
0196-6774(89)90006-0

[13] N. Abboud, M. Grötschel, and T. Koch, “Mathematical methods for physical layout
of printed circuit boards: An overview,” OR Spectrum, vol. 30, pp. 453–468, 06 2008.

http://www.sciencedirect.com/science/article/pii/S0304397504004165
http://www.sciencedirect.com/science/article/pii/S0304397504004165
https://doi.org/10.1007/978-1-4684-2001-2_9
http://www.sciencedirect.com/science/article/pii/0041555380900610
http://www.sciencedirect.com/science/article/pii/S0012365X15004380
http://www.sciencedirect.com/science/article/pii/S0012365X15004380
http://www.sciencedirect.com/science/article/pii/0022314X80900840
http://mathworld.wolfram.com/LaplacianMatrix.html
http://doi.acm.org/10.1145/321850.321852
https://doi.org/10.1016/0196-6774(89)90006-0
https://doi.org/10.1016/0196-6774(89)90006-0


96

[14] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull, “Graphviz
and dynagraph – static and dynamic graph drawing tools,” in GRAPH DRAWING
SOFTWARE. Springer-Verlag, 2003, pp. 127–148.

[15] J. N. Warfield, “Crossing theory and hierarchy mapping,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. SMC-7, pp. 505 – 523, 08 1977.

[16] M.-J. Carpano, “Automatic display of hierarchized graphs for computer-aided decision
analysis,” Systems, Man and Cybernetics, IEEE Transactions on, vol. SMC-10, pp.
705 – 715, 12 1980.

[17] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understanding of
hierarchical system structures,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 11, pp. 109–125, 1981.

[18] C. B. Moler, “Numerical computing with matlab, revised reprint.” Philadelphia:
SIAM, 2008, ch. 0. [Online]. Available: http://epubs.siam.org/doi/book/10.1137/1.
9780898717952

[19] D. Bini, L. Gemignani, and F. Tisseur, “The ehrlich–aberth method for the
nonsymmetric tridiagonal eigenvalue problem,” SIAM Journal on Matrix Analysis and
Applications, vol. 27, 01 2005.

[20] K. Fernando, “Computation of exact inertia and inclusions of eigenvalues
(singular values) of tridiagonal (bidiagonal) matrices,” Linear Algebra and
its Applications, vol. 422, no. 1, pp. 77 – 99, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0024379506004228

[21] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008. [Online]. Available:
http://www.jmlr.org/papers/v9/vandermaaten08a.html

[22] L. van der Maaten, E. O. Postma, and H. J. van den Herik, “Dimensionality reduction:
A comparative review,” 2008.

[23] K. R. Moon, D. van Dijk, Z. Wang, S. Gigante, D. B. Burkhardt, W. S.
Chen, K. Yim, A. van den Elzen, M. J. Hirn, R. R. Coifman, N. B.
Ivanova, G. Wolf, and S. Krishnaswamy, “Visualizing structure and transitions
for biological data exploration,” bioRxiv, 2019. [Online]. Available: https:
//www.biorxiv.org/content/early/2019/04/04/120378

[24] C. Damm, K. H. Kim, and F. Roush, “On covering and rank problems for boolean
matrices and their applications,” in Computing and Combinatorics, T. Asano, H. Imai,
D. T. Lee, S.-i. Nakano, and T. Tokuyama, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1999, pp. 123–133.

[25] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with
deep convolutional generative adversarial networks,” CoRR, vol. abs/1511.06434,
2015. [Online]. Available: http://arxiv.org/abs/1511.06434

http://epubs.siam.org/doi/book/10.1137/1.9780898717952
http://epubs.siam.org/doi/book/10.1137/1.9780898717952
http://www.sciencedirect.com/science/article/pii/S0024379506004228
http://www.jmlr.org/papers/v9/vandermaaten08a.html
https://www.biorxiv.org/content/early/2019/04/04/120378
https://www.biorxiv.org/content/early/2019/04/04/120378
http://arxiv.org/abs/1511.06434


97

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[27] F. Chollet et al., “Keras,” https://github.com/keras-team/keras, 2019.

[28] M. Kotila, “Talos,” https://github.com/autonomio/talos, 2019.

[29] C. Ye, R. C. Wilson, and E. R. Hancock, “A jensen-shannon divergence kernel
for directed graphs,” in Structural, Syntactic, and Statistical Pattern Recognition,
A. Robles-Kelly, M. Loog, B. Biggio, F. Escolano, and R. Wilson, Eds. Cham: Springer
International Publishing, 2016, pp. 196–206.

[30] H. G. Landau, “On dominance relations and the structure of animal societies: Iii the
condition for a score structure,” The bulletin of mathematical biophysics, vol. 15, no. 2,
pp. 143–148, Jun 1953. [Online]. Available: https://doi.org/10.1007/BF02476378

[31] D. C. McGarvey, “A theorem on the construction of voting paradoxes,”
Econometrica, vol. 21, no. 4, pp. 608–610, 1953. [Online]. Available: http:
//www.jstor.org/stable/1907926

[32] L. Babai, “Graph isomorphism in quasipolynomial time,” CoRR, vol. abs/1512.03547,
2015. [Online]. Available: http://arxiv.org/abs/1512.03547

[33] S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and S. Thomassé,
“Kernels for feedback arc set in tournaments,” CoRR, vol. abs/0907.2165, 2009.
[Online]. Available: http://arxiv.org/abs/0907.2165

[34] B. D. McKay and A. Piperno, “Practical graph isomorphism, ii,” Journal
of Symbolic Computation, vol. 60, pp. 94 – 112, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0747717113001193

[35] P. Mitra, C. A. Murthy, and S. K. Pal, “Unsupervised feature selection using feature
similarity,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp. 301–312, 2002.

[36] A. Mariello and R. Battiti, “Feature selection based on the neighborhood entropy,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 29, pp. 6313–6322,
2018.

[37] C. E. Shannon, “A mathematical theory of communication,” The Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, 7 1948. [Online]. Available:
https://ieeexplore.ieee.org/document/6773024/

[38] M. Rosenblatt, “Remarks on some nonparametric estimates of a density function,”
Ann. Math. Statist., vol. 27, no. 3, pp. 832–837, 09 1956. [Online]. Available:
https://doi.org/10.1214/aoms/1177728190

[39] E. Parzen, “On estimation of a probability density function and mode,” Ann.
Math. Statist., vol. 33, no. 3, pp. 1065–1076, 09 1962. [Online]. Available:
https://doi.org/10.1214/aoms/1177704472

https://github.com/keras-team/keras
https://github.com/autonomio/talos
https://doi.org/10.1007/BF02476378
http://www.jstor.org/stable/1907926
http://www.jstor.org/stable/1907926
http://arxiv.org/abs/1512.03547
http://arxiv.org/abs/0907.2165
http://www.sciencedirect.com/science/article/pii/S0747717113001193
https://ieeexplore.ieee.org/document/6773024/
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177704472


98

[40] B. W. Silverman, Density estimation for statistics and data analysis. London:
Chapman & Hall, 1986.

[41] D. W. Scott, “On optimal and data-based histograms,” Biometrika, vol. 66, no. 3, pp.
605–610, 12 1979. [Online]. Available: https://doi.org/10.1093/biomet/66.3.605

[42] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[43] S.-H. Lim, S. Young, and R. Patton, “An analysis of image storage systems for scalable
training of deep neural networks,” 04 2016.

[44] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing In Science &
Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[45] B. A. Hanson, ChemoSpecMarkeR: Functions to identify biomarkers in nmr spectra,
2016, r package: version 0.1.44. [Online]. Available: https://github.com/bryanhanson/
ChemoSpecMarkeR

[46] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a kneedle in a haystack:
Detecting knee points in system behavior,” 07 2011, pp. 166 – 171.

[47] B. Bowerman, Essentials of Business Statistics. McGraw Hill Education, 2014.
[Online]. Available: https://books.google.com/books?id=sHRzCgAAQBAJ

[48] L. Breiman, W. Meisel, and E. Purcell, “Variable kernel estimates of multivariate
densities,” Technometrics, vol. 19, no. 2, pp. 135–144, 1977. [Online]. Available:
https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1977.10489521

https://doi.org/10.1093/biomet/66.3.605
http://yann.lecun.com/exdb/mnist/
https://github.com/bryanhanson/ChemoSpecMarkeR
https://github.com/bryanhanson/ChemoSpecMarkeR
https://books.google.com/books?id=sHRzCgAAQBAJ
https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1977.10489521

	Machine Learning Techniques as Applied to Discrete and Combinatorial Structures
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	Introduction
	Motivating Problems
	Motivating the Use of Existing Techniques
	Limitations of Existing Techniques

	Motivating the Use of Machine Learning Techniques
	Limitations of Machine Learning Techniques

	Roadmap

	Input Representations of Graphs and Matrices to Machine Learning Algorithms
	The Boolean Semiring
	Relaxation to R and ``Unit Casting''
	Recasting to Z
	Threshold Casting in the [0,1] interval
	Distance Preserving Casting

	Matrix Representations of Digraphs
	Adjacency Matrix
	Laplacian Matrix
	Planar Embeddings of a Graph as Set of Matrices

	The Motivation for the Vectorization of Matrices
	Converting Matrices Representing Digraphs to Vectors
	Remark on Vectors in Cn
	Naive Singular Value Representation
	Ordered Singular Value Representation
	Melting Variants
	Melted Singular Value Representation
	Polynomial Representations of Graphs and Matrices as Vectors

	Dimensionality Reduction
	A Warning on Convolutional Approaches and Pitfalls
	Dimension Selection
	Existing Techniques

	Lossless Compressive Traversal of Matrices in Zn

	Boolean Matrix Factorization
	Motivations
	Formal Problem Statement and Definitions
	Lemma: Square Boolean Matrix Decomposition is a SAT Problem

	Defining Metrics: Datasets, Sample Spaces, Expected Values, and Accuracy Evaluation
	The Dataset and Sample Spaces
	Visualization
	Image Completion Approach
	Accuracy

	Models
	Auto-Tuned Neural Network
	Model Inputs and Outputs
	Model Descriptions and Names

	Results
	Analysis

	Graph Attribute Computation Using Entropy-Based Kernels
	Introduction
	Technique
	Ye et al. Kernel
	Matrix Generalization of the Ye et al. Kernel
	Prediction Using a Variant of Kernel Principal Components Analysis

	Experiments
	Data Used
	Isomorphism Class on Labeled Tournaments
	Minimum Feedback Arc Set Size on Labeled Tournaments
	Final Classifiers

	Results
	Isomorphism Class on Labeled Tournaments
	Minimum Feedback Arc Set Size on Labeled Tournaments

	Analysis

	Entropy Based Variable Selection
	Componentwise Observation for Variable Selection with Entropy (COVSE)
	Kernel Density Estimation

	COVSE Experiments on the MNIST Dataset
	COVSE Predictor Selection Technique
	COVSE Results
	Meta COVSE Results
	Comparative Accuracy via Random Forest
	Analysis

	Vectorwise Observation for Variable Selection with Entropy (VOVSE)
	Multivariate Kernel Density Estimation


	-0.5emConcluding Remarks and Future Work
	REFERENCES

