277,300 research outputs found

    Paper Session I-A - Development of Modular Replacement Instruments to Maximize the Science Return of Hubble Space Telescope (HST)

    Get PDF
    The Hubble Space Telescope science return has been and will continue to be improved through regular shuttle servicing missions which replace first generation science instruments with advanced design second and third generation instruments. Orders of magnitude improvement in science return per dollar comes primarily from incorporation of state of the art 1/100 wave optics such as were used on Corrective Optics Space Telescope Axial Replacement (COSTAR) to fix Hubbies vision and from large area Charge Coupled Device (CCD) and Multi Anode MicroChannel Array (MAMA) detectors that enable hundreds of times more spectral and/or spatial coverage of the sky with approximately the same sensitivity

    Contattori a Membrana

    Get PDF

    Configurable 3D-integrated focal-plane sensor-processor array architecture

    Get PDF
    A mixed-signal Cellular Visual Microprocessor architecture with digital processors is described. An ASIC implementation is also demonstrated. The architecture is composed of a regular sensor readout circuit array, prepared for 3D face-to-face type integration, and one or several cascaded array of mainly identical (SIMD) processing elements. The individual array elements derived from the same general HDL description and could be of different in size, aspect ratio, and computing resources

    Autonomous Deployment of a Solar Panel Using an Elastic Origami and Distributed Shape Memory Polymer Actuators

    Get PDF
    Deployable mechanical systems such as space solar panels rely on the intricate stowage of passive modules, and sophisticated deployment using a network of motorized actuators. As a result, a significant portion of the stowed mass and volume are occupied by these support systems. An autonomous solar panel array deployed using the inherent material behavior remains elusive. In this work, we develop an autonomous self-deploying solar panel array that is programmed to activate in response to changes in the surrounding temperature. We study an elastic "flasher" origami sheet embedded in a circle of scissor mechanisms, both printed with shape memory polymers. The scissor mechanisms are optimized to provide the maximum expansion ratio while delivering the necessary force for deployment. The origami sheet is also optimized to carry the maximum number of solar panels given space constraints. We show how the folding of the "flasher" origami exhibits a bifurcation behavior resulting in either a cone or disk shape both numerically and in experiments. A folding strategy is devised to avoid the undesired cone shape. The resulting design is entirely 3D printed, achieves an expansion ratio of 1000% in under 40 seconds, and shows excellent agreement with simulation prediction both in the stowed and deployed configurations.Comment: 12 pages, 12 figure

    CCD/CMOS Sensors Introduction Articles

    Get PDF

    CCD/CMOS Sensors Introduction Articles

    Get PDF

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog
    • 

    corecore