1,007 research outputs found

    Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function

    Get PDF
    Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.National Institutes of Health (U.S.) (grant UO1HL80711-05 to GB)National Institutes of Health (U.S.) (grant R01GM076689-01)National Institutes of Health (U.S.) (grant R01AR033236-26)National Institutes of Health (U.S.) (grant R01GM087677-01A1)National Institutes of Health (U.S.) (grant R01AI44902)National Institutes of Health (U.S.) (grant R01AI38282)National Science Foundation (U.S.) (grant CMMI-0645054)National Science Foundation (U.S.) (grant CBET-0829205)National Science Foundation (U.S.) (grant CAREER-0955291

    Optical Tweezers in Studies of Red Blood Cells

    Get PDF
    Optical tweezers (OTs) are innovative instruments utilized for the manipulation of microscopic biological objects of interest. Rapid improvements in precision and degree of freedom of multichannel and multifunctional OTs have ushered in a new era of studies in basic physical and chemical properties of living tissues and unknown biomechanics in biological processes. Nowadays, OTs are used extensively for studying living cells and have initiated far-reaching influence in various fundamental studies in life sciences. There is also a high potential for using OTs in haemorheology, investigations of blood microcirculation and the mutual interplay of blood cells. In fact, in spite of their great promise in the application of OTs-based approaches for the study of blood, cell formation and maturation in erythropoiesis have not been fully explored. In this review, the background of OTs, their state-of-the-art applications in exploring single-cell level characteristics and bio-rheological properties of mature red blood cells (RBCs) as well as the OTs-assisted studies on erythropoiesis are summarized and presented. The advance developments and future perspectives of the OTs’ application in haemorheology both for fundamental and practical in-depth studies of RBCs formation, functional diagnostics and therapeutic needs are highlighted

    The advancement of blood cell research by optical tweezers

    Get PDF
    Demonstration of the light radiation pressure on a microscopic level by A. Ashkin led to the invention of optical tweezers (OT). Applied in the studies of living systems, OT have become a preferable instrument for the noninvasive study of microobjects, allowing manipulation and measurement of the mechanical properties of molecules, organelles, and cells. In the present paper, we overview OT applications in hemorheological research, placing emphasis on red blood cells but also discussing OT applications for the investigation of the biomechanics of leukocytes and platelets. Blood properties have always served as a primary parameter in medical diagnostics due to the interconnection with the physiological state of an organism. Despite blood testing being a well-established procedure of conventional medicine, there are still many complex processes that must be unraveled to improve our understanding and contribute to future medicine. OT are advancing single-cell research, promising new insights into individual cell characteristics compared to the traditional approaches. We review the fundamental and practical findings revealed in blood research through the optical manipulation, stretching, guiding, immobilization, and inter-/intracellular force measurements of single blood cells

    Nano handling and measurement of biological cells in culture

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfillment of the requirements for the degree of Doctor of PhilosophyThis thesis systematically investigates the nano handling and measurement techniques for biological cells in culture and studies the techniques to realize innovative and multi-functional applications in biomedicine. Among them, the technique based on AFM is able to visualize and quantify the dynamics of organic cells in culture on the nano scale. Especially, the cellular shear adhesion force on the various locations of biological cells was firstly accurately measured in the research of the cell-substrate interaction in terms of biophysical perspective. The innovative findings are conductive to study the cell-cell adhesion, the cell-matrix adhesion which is related to the cell morphology structure, function, deformation ability and adhesion of cells and better understand the cellular dynamic behaviors. Herein, a new liquid-AFM probe unit and an increment PID control algorithm were implemented suitable for scanning the cell samples under the air conditions and the liquid environments. The influence between the surface of sample and the probe, and the damage of probe during the sample scanning were reduced. The proposed system is useful for the nano handling and measurement of living cells. Besides, Besides, to overcome the limitations of liquid-AFMs, the multiple optical tweezers were developed to integrate with the liquid-AFM. The technique based on laser interference is able to characterize the optical trap stiffness and the escape velocity, especially to realize the capture and sorting of multiple cells by a polarization-controlled periodic laser interference. It can trap and move hundreds of cells without physical contact, and has broad application prospects in cytology. Herein, a new experimental method integrated with the positioning analysis in the Z direction was used to improve the fluid force method for the calibration and characterize the mechanical forces exerted on optical traps and living cells. Moreover, a sensitive and highly efficient polarization-controlled three-beam interference set-up was developed for the capture and sorting of multiple cells. By controlling the polarization angles of the beams, various intensity distributions and different sizes of dots were obtained. Subsequently, we have experimentally observed multiple optical tweezers and the sorting of cells with different polarization angles, which are in accordance with the theoretical analysis

    Regulation of blood vessel stiffness by focal adhesions of vascular smooth muscle

    Full text link
    Thesis (Ph.D.)--Boston UniversityThe operation of the cardiovascular system is inherently mechanical. Changes in the stiffness of the vascular tree have been implicated in various pathophysiologic states, and increased aortic stiffening with age is an acknowledged biomarker and cause of cardiovascular disease. However, the sources and mechanisms of vascular stiffness are not well understood. While the extracellular matrix is generally regarded as the major component, little is known regarding how contractile, differentiated vascular smooth muscle cells (VSMCs) contribute to blood vessel stiffness. In this dissertation, I employed a multi-scale approach to test the hypothesis that VSM focal adhesions (FAs), subcellular structures linking the cortical cytoskeleton to the surrounding matrix, dynamically regulate the stiffness of veins and arteries. First, I measured cortical stiffness in VSMCs, which along with FA size, increased in response to contractile activation in a Src-dependent manner. To directly test the applicability of these results to tension and stiffness development at a higher length scale, I examined vascular mechanics by applying small sinusoidal stretches to vascular tissue. Agonistinduced contraction increased tissue stress and stiffness in a Src- and FAK-dependent manner. Subsequent phosphotyrosine screening and follow-up with phosphosite-specific antibodies confirmed the involvement of FA proteins, including FAK, Src, CAS, and paxillin. Taken together, these results identify the FA of the VSMC, in particular the F AK-Src signaling complex, as a significant regulator of vascular stiffness and stress, although the details of this regulation were found to differ between arteries and veins. To examine the role of focal adhesions in cardiovascular disease, I performed additional experiments in an aging model that suggest aberrant FA signaling may be an important component of aging induced cardiovascular disease. With the ultimate goal of reducing vascular stiffness by disrupting FA protein-protein interactions, I screened several candidate decoy peptides using a high-throughput cell-based assay. Overall, this work documents the FA as a regulator of vascular stiffness and a potential novel therapeutic target for stiffness in cardiovascular disease

    A one-step procedure to probe the viscoelastic properties of cells by Atomic Force Microscopy

    Get PDF
    The increasingly recognised importance of viscoelastic properties of cells in pathological conditions requires rapid development of advanced cell microrheology technologies. Here, we present a novel Atomic Force Microscopy (AFM)-microrheology (AFM2) method for measuring the viscoelastic properties in living cells, over a wide range of continuous frequencies (0.005 Hz ~ 200 Hz), from a simple stress-relaxation nanoindentation. Experimental data were directly analysed without the need for pre-conceived viscoelastic models. We show the method had an excellent agreement with conventional oscillatory bulk-rheology measurements in gels, opening a new avenue for viscoelastic characterisation of soft matter using minute quantity of materials (or cells). Using this capability, we investigate the viscoelastic responses of cells in association with cancer cell invasive activity modulated by two important molecular regulators (i.e. mutation of the p53 gene and Rho kinase activity). The analysis of elastic (G′(ω)) and viscous (G″(ω)) moduli of living cells has led to the discovery of a characteristic transitions of the loss tangent (G″(ω)/G′(ω)) in the low frequency range (0.005 Hz ~ 0.1 Hz) that is indicative of the capability for cell restructuring of F-actin network. Our method is ready to be implemented in conventional AFMs, providing a simple yet powerful tool for measuring the viscoelastic properties of living cells

    Developing an Optomechanical Approach for Characterizing Mechanical Properties of Single Adherent Cells

    Get PDF
    Mechanical properties of a cell reflect its biological and pathological conditions including cellular disorders and fundamental cellular processes such as cell division and differentiation. There have been active research efforts to develop high-throughput platforms to mechanically characterize single cells. Yet, many of these research efforts are focused on suspended cells and use a flow-through configuration. Therefore, adherent cells are detached prior to the characterization, which seriously perturbs the cellular conditions. Also, methods for adherent cells are limited in their throughput. My study is aimed to fill the technical gap in the field of single cell analysis, which is a high-throughput and non-invasive mechanical characterization of single adherent cells. I developed a multi-modal platform to mechanically characterize single adherent cells. The platform is based on optomechanical principle, which induces least perturbation on the cells and does not require cell detachment. Besides, multiple measurements can be performed on a single cell to track its mechanical behavior over time. Proposed platform can expand our understanding on the relationship between mechanical properties and cellular status of adherent cells. Single adherent cells are characterized optomechanically using the vibration-induced phase shift (VIPS). VIPS is a phase shift of apparent velocity of a vertically vibrating substrate measured with laser Doppler vibrometer (LDV), when the measurement laser passes through an adherent cell or any transparent objects on the substrate. The VIPS and height oscillation of a single cell on a vibrating substrate have negative correlation with the cell stiffness. An analytical model is established which demonstrates relationship between cell’s mechanical properties and its VIPS. With the VIPS measurements, at multiple frequencies on large population of cells, the statistical significant difference in the cell stiffness is confirmed after exposure to various drugs affecting cytoskeleton network. Also, a 3-dimensional finite element model is developed to extract the cell stiffness from VIPS. VIPS technique is used to reconstruct the detailed oscillation pattern of transparent objects such as water microdroplets and intracellular lipid droplets on a vibrating substrate, which can give us better understanding of mechanical behavior of biological transparent objects. In addition, using VIPS measurement mechanical interaction between extracellular matrixes (ECMs) and adherent cells is studied. Statistical significant difference in bonding straight of single cells and different ECMs is demonstrated
    • …
    corecore