488 research outputs found

    Circular Pythagorean fuzzy sets and applications to multi-criteria decision making

    Full text link
    In this paper, we introduce the concept of circular Pythagorean fuzzy set (value) (C-PFS(V)) as a new generalization of both circular intuitionistic fuzzy sets (C-IFSs) proposed by Atannassov and Pythagorean fuzzy sets (PFSs) proposed by Yager. A circular Pythagorean fuzzy set is represented by a circle that represents the membership degree and the non-membership degree and whose center consists of non-negative real numbers μ\mu and ν\nu with the condition μ2+ν21\mu^2+\nu^2\leq 1. A C-PFS models the fuzziness of the uncertain information more properly thanks to its structure that allows modelling the information with points of a circle of a certain center and a radius. Therefore, a C-PFS lets decision makers to evaluate objects in a larger and more flexible region and thus more sensitive decisions can be made. After defining the concept of C-PFS we define some fundamental set operations between C-PFSs and propose some algebraic operations between C-PFVs via general tt-norms and tt-conorms. By utilizing these algebraic operations, we introduce some weighted aggregation operators to transform input values represented by C-PFVs to a single output value. Then to determine the degree of similarity between C-PFVs we define a cosine similarity measure based on radius. Furthermore, we develop a method to transform a collection of Pythagorean fuzzy values to a PFS. Finally, a method is given to solve multi-criteria decision making problems in circular Pythagorean fuzzy environment and the proposed method is practiced to a problem about selecting the best photovoltaic cell from the literature. We also study the comparison analysis and time complexity of the proposed method

    An approach to multiple attribute decision making based on the induced Choquet integral with fuzzy number intuitionistic fuzzy information

    Get PDF
    In this paper, we investigate the multiple attribute decision making problems with fuzzy number intuitionistic fuzzy information. Firstly, some operational laws of fuzzy number intuitionistic fuzzy values, score function and accuracy function of fuzzy number intuitionistic fuzzy values are introduced. Then, we have developed two fuzzy number intuitionistic fuzzy Choquet integral aggregation operators: induced fuzzy number intuitionistic fuzzy choquet ordered averaging (IFNIFCOA) operator and induced fuzzy number intuitionistic fuzzy choquet ordered geometric (IFNIFCOG) operator. The prominent characteristic of the operators is that they can not only consider the importance of the elements or their ordered positions, but also reflect the correlation among the elements or their ordered positions. We have studied some desirable properties of the IFNIFCOA and IFNIFCOG operators, such as commutativity, idempotency and monotonicity, and applied the IFNIFCOA and IFNIFCOGM operators to multiple attribute decision making with fuzzy number intuitionistic fuzzy information. Finally an illustrative example has been given to show the developed method

    Implication functions in interval-valued fuzzy set theory

    Get PDF
    Interval-valued fuzzy set theory is an extension of fuzzy set theory in which the real, but unknown, membership degree is approximated by a closed interval of possible membership degrees. Since implications on the unit interval play an important role in fuzzy set theory, several authors have extended this notion to interval-valued fuzzy set theory. This chapter gives an overview of the results pertaining to implications in interval-valued fuzzy set theory. In particular, we describe several possibilities to represent such implications using implications on the unit interval, we give a characterization of the implications in interval-valued fuzzy set theory which satisfy the Smets-Magrez axioms, we discuss the solutions of a particular distributivity equation involving strict t-norms, we extend monoidal logic to the interval-valued fuzzy case and we give a soundness and completeness theorem which is similar to the one existing for monoidal logic, and finally we discuss some other constructions of implications in interval-valued fuzzy set theory

    Aggregation operators in group decision making: Identifying citation classics via H-classics

    Get PDF
    To analyze the past, present and future of a particular research field, classic papers are usually studied because they identify the highly cited papers being a relevant reference point in that specific research area. As a result of the possible mapping between high quality research and high citation counts, highly cited papers are very interesting. The objective of this study is to use the H-classics method, which is based on the popular h-index, to identify and analyze the highly cited documents published about aggregation operators in the research area of group decision making. According to the H-classics method, this research area is represented by 87 citation classics, which have been published from 1988 to 2014. Authors, affiliations (universities/institutions and countries), journals, books and conferences, and the topics covered by these 87 highly cited papers are studied.The authors would like to thank FEDER financial support from the Projects TIN2013-40658-P and TIN2016- 75850-P

    Managing Incomplete Preference Relations in Decision Making: A Review and Future Trends

    Get PDF
    In decision making, situations where all experts are able to efficiently express their preferences over all the available options are the exception rather than the rule. Indeed, the above scenario requires all experts to possess a precise or sufficient level of knowledge of the whole problem to tackle, including the ability to discriminate the degree up to which some options are better than others. These assumptions can be seen unrealistic in many decision making situations, especially those involving a large number of alternatives to choose from and/or conflicting and dynamic sources of information. Some methodologies widely adopted in these situations are to discard or to rate more negatively those experts that provide preferences with missing values. However, incomplete information is not equivalent to low quality information, and consequently these methodologies could lead to biased or even bad solutions since useful information might not being taken properly into account in the decision process. Therefore, alternative approaches to manage incomplete preference relations that estimates the missing information in decision making are desirable and possible. This paper presents and analyses methods and processes developed on this area towards the estimation of missing preferences in decision making, and highlights some areas for future research

    Saw-Dmss Model For Intuitionistic Fuzzy Multi Attribute Decision Making Problems

    Get PDF
    This work introduces a new SAW-DMSS (Simple Additive Weighting-Decision Making Support System) technique for decision-makers to choose the most ideal alternative that has been provided. This also deals with the problem based on SAW algorithm which is a multiple criteria decision making approach with weight determining methods which gives the weights to indicators which is partially or completely unknown or not presented by the decision makers. The SAW algorithm deals with the conflicts between indicators based on certain way to sort the scheme and choose the best scheme. A numerical example is proposed to illustrate the effectiveness of this algorithm. However, comparison of two weight determining methods based on Gaussian distribution and Linguistic quantifier guided aggregation is performed to make the result of evaluations more objective and accurate
    corecore