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Abstract. In this paper, we investigate the multiple attribute decision making problems 
with fuzzy number intuitionistic fuzzy information. Firstly, some operational laws of 
fuzzy number intuitionistic fuzzy values, score function and accuracy function of fuzzy 
number intuitionistic fuzzy values are introduced. Then, we have developed two fuzzy 
number intuitionistic fuzzy Choquet integral aggregation operators: induced fuzzy number 
intuitionistic fuzzy choquet ordered averaging (IFNIFCOA) operator and induced fuzzy 
number intuitionistic fuzzy choquet ordered geometric (IFNIFCOG) operator. The promi-
nent characteristic of the operators is that they can not only consider the importance of 
the elements or their ordered positions, but also reflect the correlation among the elements 
or their ordered positions. We have studied some desirable properties of the IFNIFCOA 
and IFNIFCOG operators, such as commutativity, idempotency and monotonicity, and 
applied the IFNIFCOA and IFNIFCOGM operators to multiple attribute decision making 
with fuzzy number intuitionistic fuzzy information. Finally an illustrative example has 
been given to show the developed method.
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Introduction

Multiple attribute decision making (MADM) problems are wide spread in real life de-
cision situations. A MADM problem is to find a most desirable alternative from all 
feasible alternatives assessed on multiple attributes, both quantitative and qualitative 
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(Kersuliene et al. 2010; Wachowicz 2010; Zavadskas et al. 2010). Atanassov (1986) 
introduced the concept of intuitionistic fuzzy set(IFS), which is a generalization of the 
concept of fuzzy set (Zadeh 1965). The intuitionistic fuzzy set has received more and 
more attention since its appearance. Xu and Yager (2006) developed some geometric 
aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) op-
erator, the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator, and the 
intuitionistic fuzzy hybrid geometric (IFHG) operator and gave an application of the 
IFHG operator to multiple attribute group decision making with intuitionistic fuzzy 
information. Xu (2007a) developed the intuitionistic fuzzy weighted averaging (IFWA) 
operator, the intuitionistic fuzzy ordered weighted averaging (IFOWA) operator, and 
the intuitionistic fuzzy hybrid aggregation (IFHA) operator. Wei (2008) utilized the 
maximizing deviation method for intuitionistic fuzzy multiple attribute decision mak-
ing with incomplete weight information. Atanassov and Gargov (1989) introduced the 
concept of interval-valued intuitionistic fuzzy sets (IVIFSs) as a further generalization 
of that of IFSs, as well as of IVFSs. Atanassov (1994) defined some operational laws 
of the IVIFSs. Xu and Chen (2007) developed some arithmetic aggregation operators, 
such as the interval-valued intuitionistic fuzzy weighted averaging (IIFWA) operator, 
the interval-valued intuitionistic fuzzy ordered weighted averaging (IIFOWA) operator, 
and the interval-valued intuitionistic fuzzy hybrid aggregation (IIFHA) operator and 
gave an application of the IIFHA operator to multiple attribute group decision mak-
ing with interval-valued intuitionistic fuzzy information. Xu (2007b) developed some 
geometric aggregation operators, such as the interval-valued intuitionistic fuzzy weight-
ed geometric (IIFWG) operator and the interval-valued intuitionistic fuzzy geometric 
(IIFG) operator and gave an application of the IIFWG and IIFG operators to multiple 
attribute group decision making with interval-valued intuitionistic fuzzy information. 
Ye (2009) proposed Multicriteria fuzzy decision-making method based on a novel ac-
curacy function under interval-valued intuitionistic fuzzy environment. Wei (2009) in-
vestigated the dynamic intuitionistic fuzzy multiple attribute decision making problems 
and proposed the dynamic intuitionistic fuzzy weighted geometric (DIFWG) operator 
and uncertain dynamic intuitionistic fuzzy weighted geometric (UDIFWG) operator to 
aggregate dynamic or uncertain dynamic intuitionistic fuzzy information. Wei (2010a) 
investigated the multiple attribute group decision making (MAGDM) problems in which 
both the attribute weights and the expert weights take the form of real numbers, attri-
bute values take the form of intuitionisticfuzzy numbers or interval-valued intuition-
isticfuzzy numbers and proposed two new aggregation perators: induced intuitionistic 
fuzzy ordered weighted geometric (I-IFOWG) operator and induced interval-valued 
intuitionistic fuzzy ordered weighted geometric (I-IIFOWG) operator, and studied some 
desirable properties of the I-IFOWG and I-IIFOWG operators, such as commutativity, 
idempotency and monotonicity. An I-IFOWG and IFWG (intuitionisticfuzzy weighted 
geometric) operators-based approach is developed to solve the MAGDM problems in 
which both the attribute weights and the expert weights take the form of real numbers, 
attribute values take the form of intuitionisticfuzzy numbers. Further, they extended 
the developed models and procedures based on I-IIFOWG and IIFWG (interval-valued 
intuitionisticfuzzy weighted geometric) operators to solve the MAGDM problems in 
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which both the attribute weights and the expert weights take the form of real numbers, 
attribute values take the form of interval-valued intuitionisticfuzzy numbers. Li (2010) 
proposed Linear programming method for MADM with interval-valued intuitionistic 
fuzzy sets. Xu and Xia (2011) studied the inducedgeneralized aggregation operators 
under intuitionisticfuzzy environments. Choquet integral and Dempster-Shafer theory 
of evidence are applied to aggregate inuitionistic fuzzy information and some new 
types of aggregation operators are developed, including the induced generalized intu-
itionistic fuzzy Choquet integral operators and induced generalized intuitionistic fuzzy 
Dempster-Shafer operators. Then they investigated their various properties and some of 
their special cases. Additionally, they applied the developed operators to financial deci-
sion making under intuitionisticfuzzy environments. Some extensions in interval-valued 
intuitionisticfuzzy situations are also pointed out.
 Liu and Yuan (2007) introduced the concept of fuzzy number intuitionistic fuzzy set 
(FNIFS) which fundamental characteristic of the FNIFS is that the values of its mem-
bership function and non-membership function are triangular fuzzy numbers rather than 
exact numbers. Wang (2008a) propose the fuzzy number intuitionistic fuzzy weighted 
averaging (FNIFWA) operator, fuzzy number intuitionistic fuzzy ordered weighted av-
eraging (FNIFOWA) operator and fuzzy number intuitionistic fuzzy hybrid aggregation 
(FNIFHA) operator. Wang (2008b) propose some aggregation operators, including fuzzy 
number intuitionistic fuzzy weighted geometric (FNIFWG) operator, fuzzy number in-
tuitionistic fuzzy ordered weighted geometric (FNIFOWG) operator and fuzzy num-
ber intuitionistic fuzzy hybrid geometric (FNIFHG) operator and develop an approach 
to multiple attribute group decision making (MAGDM) based on the FNIFWG and 
the FNIFHG operators with fuzzy number intuitionistic fuzzy information. Wei et al. 
(2010a) developed the induced fuzzy number intuitionistic fuzzy ordered weighted geo-
metric (I-FIFOWG) operator and studied some desirable properties of the I-FIFOWG 
operators, such as commutativity, idempotency and monotonicity. An I-FIFOWG and 
FIFWG (fuzzy number intuitionistic fuzzy weighted geometric) operators-based ap-
proach is developed to solve the MAGDM under the fuzzy number intuitionistic fuzzy 
environment. Furthermore, they proposed the induced fuzzy number intuitionistic fuzzy 
ordered weighted averaging (I-FIFOWA) operator. 
All of the existing fuzzy number intuitionistic fuzzy aggregation operators only con-
sider situations where all the elements in the fuzzy number intuitionistic fuzzy set are 
independent. However, in many practical situations, the elements in the fuzzy number 
intuitionistic fuzzy set are usually correlative. Therefore, we need to find some new 
ways to deal with these situations in which the decision data in question are correla-
tive. The Choquet integral is a very useful way of measuring the expected utility of 
an uncertain event, and can be utilized to depict the correlations of the decision data 
under consideration. Motivated by the correlation properties of the Choquet integral, in 
this paper we propose some fuzzy number intuitionistic fuzzy aggregation operators, 
whose prominent characteristic is that they can not only consider the importance of the 
elements or their ordered positions, but also reflect the correlations of the elements or 
their ordered positions. To do so, the remainder of this paper is set out as follows. In the 
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next section, we introduce some basic concepts related to fuzzy number intuitionistic 
fuzzy sets and some operational laws of fuzzy number intuitionistic fuzzy numbers. In 
section 2 we have developed two induced fuzzy number intuitionistic fuzzy Choquet 
integral aggregation operators: induced fuzzy number intuitionistic fuzzy choquet or-
dered averaging (IFNIFCOA) operator and induced fuzzy number intuitionistic fuzzy 
choquet ordered geometric (IFNIFCOG) operator. In section 3, we have developed 
an approach to multiple attribute decision making based on IFNIFCOA operator and 
IFNIFCOG operator with fuzzy number intuitionistic fuzzy information. In section 4, 
an illustrative example is pointed out. In the last Section, we conclude the paper and 
give some remarks.

1. Preliminaries

Atanassov (1986) extended the fuzzy set to the IFS, shown as follows.
Definition 1. Given a fixed set { }1 2, , ,= nX x x x , an intuitionistic fuzzy set (IFS) is 
defined as (Atanassov 1986): 

 
( ) ( )( ), ,= ∈i A i A i iA x t x f x x X ,  (1)

which assigns to each elements xi a membership degree ( )A it x  and a non-membership 
degree ( )A if x  under the condition:

( ) ( )0 1≤ + ≤A i A it x f x , for all ∈ix X .
Atanassov and Gargov (1989) further introduced the interval-valued intuitionistic fuzzy 
set (IVIFS), which is a generalization of the IFS. The fundamental characteristic of the 
IVIFS is that the values of its membership function and non-membership function are 
intervals rather than exact numbers.
Definition 2. Given a fixed set { }1 2, , ,= nX x x x , then an IVIFSs A  over X is an 
object having the form:

 ( ) ( ){ }, , ,= ∈i A i A i iA x t x f x x X



 
 (2)

where ( ) [ ]0,1⊂A it x  and ( ) [ ]0,1⊂A if x  are interval numbers, and 

( ) ( )0 sup sup 1,≤ + ≤A i A it x f x

 ∀ ∈ix X .
Liu and Yuan (2007) introduced the concept of fuzzy number intuitionistic fuzzy set 
(FNIFS) which fundamental characteristic of the FNIFS is that the values of its member-
ship function and non-membership function are triangular fuzzy numbers.
Definition 3. Given a fixed set { }1 2, , ,= nX x x x , an FNIFS A  over X is an object 
having the form:
 ( ) ( ){ }, , ,= ∈i A i A i iA x t x f x x X

   (3)

 where ( ) [ ]0,1⊂A it x  and ( ) [ ]0,1⊂A if x  are triangular fuzzy numbers, and 

( ) ( ) ( ) ( )( ) [ ], , ,: 0,1= →A i i i it x a x b x c x X , ( ) ( ) ( ) ( )( ) [ ], , : 0,1= →A i i if x l x m x p x X ,

( ) ( )0 1≤ + ≤i ic x p x , ∀ ∈x X .
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For convenience, let ( ) ( ) ( ) ( )( ), , ,=A i i i it x a x b x c x  ( ) ( ) ( ) ( )( ), ,=A i i if x l x m x p x , so 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  and we call ( )ia x  an fuzzy num-

ber intuitionistic fuzzy value (FNIFV).
Definition 4. Let ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  and 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=j j j j j j ja x a x b x c x l x m x p x  be two FNIFVs, then

(1) ( ) ( )⊕ =i ja x a x   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , ,+ − + − + −i j i j i j i j i j i ja x a x a x a x b x b x b x b x c x c x c x c x

( ) ( ) ( ) ( ) ( ) ( )( ), ,i j i j i jl x l x m x m x p x p x ;

(2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ), , ,⊗ =i j i j i j i ja x a x a x a x b x b x c x c x   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ), ,+ − + − + −i j i j i j i j i j i jl x l x l x l x m x m x m x m x p x p x p x p x ;

(3) ( ) ( )( ) ( )( ) ( )( )( )1 1 ,1 1 ,1 1 ,
λ λ λ

λ = − − − − − −i i i ia x a x b x c x

( )( ) ( )( ) ( )( )( ), , , 0
λ λ λ

λ ≥i i il x m x p x ;

(4) ( )( ) ( )( ) ( )( ) ( )( )( ), , ,
λ λ λ λ
=i i i ia x a x b x c x  

( )( ) ( )( ) ( )( )( )1 1 ,1 1 ,1 1 , 0
λ λ λ

− − − − − − λ ≥i i il x m x p x .

Definition 5. Let ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  be a FNIFV, a 
score function S  of a FNIFV ( )ia x can be represented as follows (Wang 2008a):

 
( )( ) ( ) ( ) ( ) ( ) ( ) ( )2 2

4 4
+ + + +

= −i i i i i i
i

a x b x c x l x m x p x
S a x , ( )( ) [ ]1,1∈ −iS a x .  (4)

Definition 6. Let ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  be a FNIFV, an 
accuracy function H of a FNIFV ( )ia x  can be represented as follows:

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 2
4

+ + + + +
= i i i i i i

i
a x b x c x l x m x p x

H a x , ( )( ) [ ]0,1∈iH a x , (5)

to evaluate the degree of accuracy of the FNIFV: 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x , 

where ( )( ) [ ]0,1∈iH a x . The larger the value of ( )( )iH a x , the more the degree of ac-
curacy of the FNIFV ( )ia x is.
Based on the score function S and the accuracy function H, in the following, we shall 
give an order relation between two fuzzy number intuitionistic fuzzy values, which is 
defined as follows:

Definition 7. Let ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  and

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=j j j j j j ja x a x b x c x l x m x p x  be two FNIFVs, ( )( )is a x  
and ( )( )js a x  be the scores of ( )ia x  and ( )ja x , respectively, and let ( )( )iH a x  
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and ( )( )jH a x  be the accuracy degrees of ( )ia x  and ( )ja x , respectively, then if 

( )( ) ( )( )<i js a x s a x  , then ( )ia x  is smaller than ( )ja x , denoted by ( ) ( )<i ja x a x 

 
; if 

( )( ) ( )( )=i js a x s a x  , then

(1) if ( )( ) ( )( )=i jH a x H a x  , then ( )ia x  and ( )ja x  represent the same information, 
denoted by ( ) ( )=i ja x a x  ;

(2) if ( )( ) ( )( )<i jH a x H a x  , ( )ia x  is smaller than ( )ja x , denoted by ( ) ( )<i ja x a x 

 
.

However, the above aggregation operators with fuzzy number intuitionistic fuzzy infor-
mation is based on the assumption that the attribute of decision makers are independent, 
which is characterized by an independence axiom (Keeney, Raiffa 1976; Wakker 1999), 
that is, these operators are based on the implicit assumption that attributes of decision 
makers are independent of one another; their effects are viewed as additive. For real de-
cision making problems, there is always some degree of inter-dependent characteristics 
between attributes. Usually, there is interaction among attributes of decision makers. 
However, this assumption is too strong to match decision behaviors in the real world. 
The independence axiom generally can’t be satisfied. Thus, it is necessary to consider 
this issue.
Let ( )( )1,2, ,µ =ix i n be the weight of the elements ( )1,2, ,∈ =ix X i n , where µ is 
a fuzzy measure, defined as follows:
Definition 8 (Wang, Klir 1992). A fuzzy measure µ on the set X is a set function 

( ) [ ]: 0,1µ θ →x satisfying the following axioms:
(1) ( ) 0µ φ = , ( ) 1µ =X ;
(2) ⊆A B implies ( ) ( )µ ≤ µA B , for all , ⊆A B X ;
(3) ( ) ( ) ( ) ( ) ( )µ ∪ = µ + µ + ρµ µA B A B A B , for all , ⊆A B X and ∩ = φA B , 
     where ( )1,ρ∈ − ∞ .
Especially, if 0ρ = , then the condition (3) reduces to the axiom of additive measure:

( ) ( ) ( )µ ∪ = µ + µA B A B , for all , ⊆A B X and ∩ = φA B .
If all the elements in X are independent, and we have

( ) { }( )
∈

µ = µ∑
i

i
x A

A x , for all ⊆A X . 

Definition 9 (Grabisch et al., 2000). Let f be a positive real-valued function on X, and 
µ be a fuzzy measure on X. The discrete Choquet integral of f with respective to µ is 
defined by:

( ) ( ) ( )( ) ( )( )1
1

µ σ σ σ −
=

 = µ − µ  ∑
n

i i i
i

C f f A A ,

where ( ) ( ) ( )( )1 , 2 , ,σ σ σ n  is a permutation of ( )1,2, ,n , such that ( ) ( )1σ − σ≥i if f  

for all 2, ,=j n , ( ) ( ){ }σ σ= ≤k jA x j k , for 1≥k , and ( )0σ = φA .

G. Wei et al. An approach to multiple attribute decision making based on the induced Choquet integral ...
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It is seen that the discrete Choquet integral is a linear expression up to a reordering of 
the elements.
Definition 10 (Grabisch et al. 2000). Let f be a positive real-valued function on X 
and m be a fuzzy measure on X. The induced Choquet ordered averaging operator of 
dimension n is a function ( )I-COA : + + +× →R R R , which is defined to aggregate the 
set of second argument of a list of 2-tuples ( )1 1 2 2, , , , , ,n nu f u f u f according to 
the following expression:

  
( )

( ) ( )( ) ( )( )
1 1 2 2

1
1

I-COA , , , , , ,

,σ σ σ −
=

=

 −  ∑

m n n

n

j j j
j

u f u f u f

f m A m A



  (6) 

where ( ) ( ) ( )( )1 , 2 , ,σ σ σ n  is a permutation of ( )1,2, ,n , such that ( ) ( )1σ − σ≥i iu u  
for all 2, ,=j n , i.e., ( ) ( ),σ σj ju f is the 2-tuple with ( )σ ju the jth largest value in 

the set ( )1 2, , , nu u u , ( ) ( ){ }σ σ= ≤k jA x j k , for 1≥k , and ( )0σ = φA . 

2. Some induced aggregating operators based on the Choquet integral  
with fuzzy number intuitionistic fuzzy information

Wang (2008a) propose the fuzzy number intuitionistic fuzzy weighted averaging (FNIF-
WA) operator and fuzzy number intuitionistic fuzzy ordered weighted averaging (FNI-
FOWA) operator. 
Definition 11. Let ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  ( )1,2, ,=i n  
be a collection of FNIFVs, and let FNIFWA: →nQ Q , if

 

( ) ( ) ( )( )

( )( )

( )( ) ( )( ) ( )( )

( ) ( ) ( )

1 2

1

1 1 1

1 1 1

FNIFWA , , ,

1 1 ,1 1 ,1 1

, , ,

ω

=

ω ω ω

= = =

ω ω ω

= = =

=

⊕ ω =

 
− − − − − −  

 

 
  
 

∏ ∏ ∏

∏ ∏ ∏

i i i

i i i

n

n
i i

i

n n n

i i i
i i i

n n n

i i i
i i i

a x a x a x

a x

a x b x c x

l x m x p x

  




  (7)

where ( )1 2, , ,ω = ω ω ω T
n  be the weight vector of ( )( )1,2, ,=ia x i n

 , and 0ω >j  
, 

1
1

=
ω =∑

n

i
i

, then FNIFWA is called the fuzzy number intuitionistic fuzzy weighted aver-

aging (FNIFWA) operator. 
Example 1. Assume ( )0.2,0.1,0.3,0.4ω = , ( ) ( )1 0.1,0.2,0.3 , 0.5,0.6,0.7=a  

, 
( ) ( )2 0.4,0.5,0.6 , 0.3,0.3,0.4=a , ( ) ( )3 0.4,0.4,0.5 , 0.4,0.4,0.5=a , and 

( ) ( )4 0.3,0.4,0.5 , 0.3,0.4,0.4=a , then
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( )
(

)
(

1 2 3 4
0.2 0.1 0.3 0.4

0.2 0.1 0.3 0.4

0.2 0.1 0.3 0.4

0.2 0.1 0.3 0.4

0.2 0

FNIFWA , , ,

1 (1 0.1) (1 0.4) (1 0.4) (1 0.3) J

1 (1 0.2) (1 0.5) (1 0.4) (1 0.4) J
1 (1 0.3) (1 0.6) (1 0.5) (1 0.5) ,

0.5 0.3 0.4 0.3 ,
0.6 0.3

ω =

− − × − × − × −

− − × − × − × −
− − × − × − × −

× × ×

×

a a a a   

)
( ) ( )

.1 0.3 0.4

0.2 0.1 0.3 0.4
0.4 0.4 ,

0.7 0.4 0.5 0.4

0.308,0.376,0.477 , 0.362,0.421,0.478

× ×

× × × =

Definition 12. Let ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  ( )1,2, ,=i n  
be a collection of FNIFVs, An fuzzy number intuitionistic fuzzy ordered weighted av-
eraging (FNIFOWA) operator of dimension n  is a mapping FNIFOWA: →nQ Q , that 

has an associated weight vector ( )1 2, , ,= T
nw w w w  such that 0>jw  and 

1
1

=
=∑

n

j
j

w
 
. 

Furthermore:

 

( ) ( ) ( )( )

( )( )( )
( )( )( ) ( )( )( ) ( )( )( )

( )( ) ( )( ) ( )( )

1 2

1

1 1 1

1 1 1

FNIFOWA , , ,

1 1 ,1 1 ,1 1

, , ,

σ=

σ σ σ
= = =

σ σ σ
= = =

=

⊕ ω =

 
− − − − − −  

 

 
  
 

∏ ∏ ∏

∏ ∏ ∏

i i i

i i i

w n

n
i ii

n n nw w w

i i i
i i i

n n nw w w
i i i

i i i

a x a x a x

a x

a x b x c x

l x m x p x

  




  (8)

where ( ) ( ) ( )( )1 , 2 , ,σ σ σ n  is a permutation of ( )1,2, ,n , such that 

( )( ) ( )( )1σ − σ≥i ia x a x   for all 2, ,=i n . 

Example 2. Let ( ) ( )1 0.3,0.4,0.5 , 0.2,0.3,0.4=a , ( ) ( )2 0.3,0.3,0.3 , 0.4,0.5,0.6=a  
, 

( ) ( )3 0.5,0.5,0.5 , 0.3,0.3,0.3=a , and ( ) ( )4 0.1,0.2,0.2 , 0.6,0.7,0.8=a be four 
FNIFVs, by (4), we calculate the scores of ( )1,2,3,4=ja j :

( ) ( )
( ) ( )

1 2

3 4

0.1, 0.2,

0.2, 0.53.

= = −

= = −

S a S a

S a S a

 

 

 

Since 

( ) ( ) ( ) ( )3 1 2 4> > >S a S a S a S a    ,

thus
( ) ( ) ( )1 0.5,0.5,0.5 , 0.3,0.3,0.3σ =a , ( ) ( ) ( )2 0.3,0.4,0.5 , 0.2,0.3,0.4σ =a , 

( ) ( ) ( )3 0.3,0.3,0.3 , 0.4,0.5,0.6σ =a , ( ) ( ) ( )4 0.1,0.2,0.2 , 0.6,0.7,0.8 .σ =a
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Suppose that ( )0.2,0.3,0.4,0.1=w is the weighting vector of the FNIFOWA operator. 
Then, by (7), it follows that:

( )
(

)
(

1 2 3 4
0.2 0.3 0.4 0.1

0.2 0.3 0.4 0.1

0.2 0.3 0.4 0.1

0.2 0.3 0.4 0.1

0.2

FNIFOWA , , ,

1 (1 0.5) (1 0.3) (1 0.3) (1 0.1) J =

1 (1 0.5) (1 0.4) (1 0.3) (1 0.2) J
1 (1 0.5) (1 0.5) (1 0.3) (1 0.2) ,

0.3 0.2 0.4 0.6 ,
0.3 0.

=

− − × − × − × −

− − × − × − × −
− − × − × − × −

× × ×

×

w a a a a   

)
( ) ( )

0.3 0.4 0.1

0.2 0.3 0.4 0.1
3 0.5 0.7 ,

0.3 0.4 0.6 0.8

0.329,0.367,0.400 , 0.319,0.401,0.476 .

× ×

× × × =

Based on Definition 10, in what follows, we shall develop the induced fuzzy number 
intuitionistic fuzzy choquet ordered averaging (IFNIFCOA) operator based on the well-
known Choquet integral (Choquet 1953).
Definition 13. Let ( )1 2, , , nX x x x be a finite set, and µ be a fuzzy measure on X, and 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  ( )1,2, ,=i n be a collection of 

FNIFVs on X, and µ be a fuzzy measure on X . An induced fuzzy number intuitionistic 
fuzzy choquet ordered averaging (IFNIFCOA) operator of dimension n is a function 
IFNIFCOA: →nQ Q , which is defined to aggregate the set of second arguments of a 
collection of 2-tuples ( ) ( ) ( )( )1 1 2 2, , , , , ,n nu a x u a x u a x  

 according to the follow-
ing expression: 

 

( ) ( ) ( )( )
( )( ) ( )( )( ) ( )

1 1 2 2

11

IFNIFCOA , , , , , ,

,

µ

σ σ −=

=

 ⊕ µ −µ 
 

n n
n

jj jj

u a x u a x u a x

A A a x

  




  (9)

where ui in 2-tuple ( ),i iu a x is referred to as the order-inducing variable and ( )ia x  as 
the argument variable, ( ) ( ) ( )( )1 , 2 , ,σ σ σ n  is a permutation of ( )1,2, ,n , such that 

( ) ( )1σ − σ≥j ju u  for all 2, ,=j n , ( ) ( ) ( ) ( ){ }1 2, , ,=i iA x x x when 1≥i and ( )0σ = φA .
With the operation of fuzzy number intuitionistic fuzzy numbers, the IFNIFCOA opera-
tor can be transformed into the following from by induction on n:

( ) ( ) ( )( )

( )( ) ( )( )( ) ( )

( )( )( ) ( )( ) ( )( )
( )( )( ) ( )( ) ( )( )

( )( )( ) ( )( ) ( )( )

( )( )( ) ( )( ) ( )( )
( )( )( ) ( )( ) ( )( )

( )( )( ) ( )( ) ( )( )

1 1 1

1 1 1

1 1 1

1 1

1 1 , 1 1 , 1 1 ,

1 1 2 2

11

, ,

IFNIFCOA , , , , , ,

σ σ − σ σ − σ σ −
µ −µ µ −µ µ −µ

σ σ σ

= = =

σ σ − σ σ − σ σ −µ −µ µ −µ µ −µ

σ σ σ
= =

− − − − − −

µ

σ σ −=

=

 ⊕ µ −µ = 
 

 
 
 

∏ ∏ ∏

∏ ∏

i i i i i i

n n n
A A A A A A

i i i
i i i

i i i i i i
n nA A A A A A

i i i
j j

a x a x a x

n n

n
jj jj

l x m x p x

u a x u a x u a x

A A a x

  




1=

 
  
 

∏
n

j  (10)
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whose aggregated value is also a fuzzy number intuitionistic fuzzy number.
Especially, if ( ){ }( ) ( )( ) ( )( )1σ σ σ −µ = µ − µj j jx A A , 1,2, ,=i n , then IFNIFCOA opera-

tor reduce to IFNIF WA operator. If ( ) { }( )
∈

µ = µ∑
j

j
x A

A x , for all ⊆A X , where A is 

the number of the elements in the set A, then ( )( ) ( )( )1σ σ −= µ − µj j jw A A , 1,2, ,=i n  , 

where ( )1 2, , ,= T
nw w w w , 0≥jw , 1,2, ,=i n , and 

1
1

=
=∑

n

j
j

w , then, IFNIFCOA 
operator reduce to FNIFOWA operator.
It’s easy to prove that the IFNIFCOA operator has the following properties.
Theorem 1 (Commutativity). 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 2IFNIFCOA , , , IFNIFCOA , , ,µ µ ′ ′ ′=n na x a x a x a x a x a x     
  ,

where ( ) ( ) ( )( )1 2, , ,′ ′ ′ na x a x a x  
  is any permutation of ( ) ( ) ( )( )1 2, , , na x a x a x  

 .

Theorem 2 (Idempotency). If ( ) ( )=ja x a x   for all j, then:

( ) ( ) ( )( ) ( )1 2IFNIFCOA , , ,µ =na x a x a x a x   


Theorem 3 (Monotonicity). If ( ) ( )′≤j ja x a x   for all j, then:

( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

1 2

IFNIFCOA , , ,

IFNIFCOA , , ,

µ

µ

≤

′ ′ ′

n

n

a x a x a x

a x a x a x

  


  


Example 3. Assume we have four FNIFOWA pairs ( ),j ju a x  given:
 

( ) ( ) ( )( )1 1, 12, 0.3,0.4,0.5 , 0.1,0.2,0.3=u a x ,

( ) ( ) ( )( )2 2, 15, 0.4,0.5,0.5 , 0.1,0.1,0.2=u a x ,

( ) ( ) ( )( )3 3, 10, 0.2,0.3,0.3 , 0.3,0.4,0.5=u a x ,

( ) ( ) ( )( )4 4, 8, 0.2,0.3,0.4 , 0.4,0.5,0.6=u a x .

That we desire to aggregate using the weighting vector ( )0.2,0.4,0.1,0.3=w . Perform-
ing the ordering the FNIFOWA pairs with respect to the first component, we get:

( ) ( )( ) ( ) ( )( )1 1, 15, 0.4,0.5,0.5 , 0.1,0.1,0.2σ σ =u a x ,

( ) ( )( ) ( ) ( )( )2 2, 12, 0.3,0.4,0.5 , 0.1,0.2,0.3σ σ =u a x ,

( ) ( )( ) ( ) ( )( )3 3, 10, 0.2,0.3,0.3 , 0.3,0.4,0.5σ σ =u a x ,

( ) ( )( ) ( ) ( )( )4 4, 8, 0.2,0.3,0.4 , 0.4,0.5,0.6σ σ =u a x .

This ordering includes the ordered fuzzy number intuitionistic fuzzy numbers:

( )( ) ( ) ( )1 0.4,0.5,0.5 , 0.1,0.1,0.2σ =a x ,

( )( ) ( ) ( )2 0.3,0.4,0.5 , 0.1,0.2,0.3σ =a x ,
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( )( ) ( ) ( )3 0.2,0.3,0.3 , 0.3,0.4,0.5σ =a x ,

( )( ) ( ) ( )4 0.2,0.3,0.4 , 0.4,0.5,0.6σ =a x .

Suppose the fuzzy measure of attribute of ( )1,2,3,4=ia i and attribute sets of 
( )1,2,3,4=ia i as follows:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 2 3 4

1 2 1 3 1 4 2 3

2 4 3 4 1 2 3 1 2 4

1 3 4 2 3 4

0, 0.40, 0.25, 0.38, 0.25,

, 0.56, , 0.65, , 0.50, , 0.45,

, 0.39, , 0.40, , , 0.80, , , 0.75,

, , 0.72, , , 0.60

µ φ = µ = µ = µ = µ =

µ = µ = µ = µ =

µ = µ = µ = µ =

µ = µ =

a a a a

a a a a a a a a

a a a a a a a a a a

a a a a a a

   

       

         

      ( )1 2 3 4, , , , 1.00.µ =a a a a   

Then, by (10), it follows that:

( ) ( ) ( ) ( )( )
(

1 1 2 2 3 3 4 4

0.25 0.56-0.25 0.80-0.56 1-0.80

0.25 0.56-0.25 0.80-0.56 1-0.80

0.25 0.56-0.25

IFNIFCOA , , , , , , ,

1 (1 0.4) (1 0.3) (1 0.2) (1 0.1) J

1 (1 0.5) (1 0.4) (1 0.3) (1 0.2) J
1 (1 0.5) (1 0.5) (1 0

µ =

− − × − × − × −

− − × − × − × −
− − × − × −

u a x u a x u a x u a x   

)
(

)
( ) ( )

0.80-0.56 1-0.80

0.25 0.56-0.25 0.80-0.56 1-0.80

0.25 0.56-0.25 0.80-0.56 1-0.80

0.25 0.56-0.25 0.80-0.56 1-0.80

.3) (1 0.3) ,

0.1 0.1 0.3 0.3 ,
0.1 0.2 0.4 0.4 ,
0.2 0.3 0.5 0.5

0.269,0.370,0.420 , 0.162,0.228,0.339 .

× −

× × ×

× × ×

× × × =

Wang (2008b) propose the fuzzy number intuitionistic fuzzy weighted geometric 
(FNIFWG) operator and fuzzy number intuitionistic fuzzy ordered weighted geometric 
(FNIFOWG) operator. 
Definition 14. Let ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  ( )1,2, ,=i n  
be a collection of FNIFVs, and let FNIFWG: →nQ Q if:

 

( ) ( ) ( )( ) ( )

( ) ( ) ( )

( )( ) ( )( ) ( )( )

1
1 2

1 1 1

1 1 1

FNIFWG , , ,

, , ,

1 1 ,1 1 ,1 1 ,

=

ω
ω

ω ω ω

= = =

ω ω ω

= = =

= =

 
  
 

 
− − − − − −  

 

∏

∏ ∏ ∏

∏ ∏ ∏

i

i i i

i i i

n

i
i

n

n n n

i i i
i i i

n n n

i i i
i i i

a xa x a x a x

a x b x c x

l x m x p x

  


  (11)

where ( )1 2, , ,ω = ω ω ω T
n  be the weight vector of ( )( )1,2, ,=ia x i n

 , and 0ω >i , 

1
1

=
ω =∑

n

i
i

, then FIFWG is called the fuzzy number intuitionistic fuzzy weighted geo-

metric (FIFWG) operator. 
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Example 4. Assume ( )0.2,0.1,0.3,0.4ω = , ( ) ( )1 0.1,0.2,0.3 , 0.5,0.6,0.7=a  
, 

( ) ( )2 0.4,0.5,0.6 , 0.3,0.3,0.4=a , ( ) ( )3 0.4,0.4,0.5 , 0.4,0.4,0.5=a , and 

( ) ( )4 0.3,0.4,0.5 , 0.3,0.4,0.4=a , then:
( )

(

)
(

1 2 3 4
0.2 0.1 0.3 0.4

0.2 0.1 0.3 0.4

0.2 0.1 0.3 0.4

0.2 0.1 0.3 0.4

0.2 0.1 0.3 0.4

FNIFWG , , ,

0.1 0.4 0.4 0.3 ,

0.2 0.5 0.4 0.4 ,
0.3 0.6 0.5 0.5 ,

1 (1 0.5) (1 0.3) (1 0.4) (1 0.3) J
1 (1 0.6) (1 0.3) (1 0.4) (1 0.4) J
1

ω =

× × ×

× × ×
× × ×

− − × − × − × −

− − × − × − × −

a a a a   

)
( ) ( )

0.2 0.1 0.3 0.4(1 0.7) (1 0.4) (1 0.5) (1 0.4)

0.270,0.356,0.460 , 0.625,0.562,0.495 .

− − × − × − × − =

 

Definition 15. Let ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  ( )1,2, ,=i n  
be a collection of FNIFVs, An fuzzy number intuitionistic fuzzy ordered weighted geo-
metric (FNIFOWG) operator of dimension n is a mapping FNIFOWG: →nQ Q , that 

has an associated weight vector ( )1 2, , ,= T
nw w w w  such that 0>iw  and 

1
1

=
=∑

n

i
i

w
 
. 

Furthermore:

 

( ) ( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( )( ) ( )( )( ) ( )( )( )

1
1 2

1 1 1

1 1 1

FNIFOWG , , ,

, , ,

1 1 ,1 1 ,1 1 ,

σ
=

σ σ σ
= = =

σ σ σ
= = =

= =

 
  
 

 
− − − − − −  

 

∏

∏ ∏ ∏

∏ ∏ ∏

i

i i i

i i i

n

i
i

w
w n

n n nw w w
i i i

i i i

n n nw w w

i i i
i i i

a xa x a x a x

a x b x c x

l x m x p x

  


 

(12)

where ( ) ( ) ( )( )1 , 2 , ,σ σ σ n  is a permutation of ( )1,2, ,n , such that 

( )( ) ( )( )1σ − σ≥i ia x a x   for all 2, ,=i n . 

Example 5. Let ( ) ( )1 0.3,0.4,0.5 , 0.2,0.3,0.4=a , ( ) ( )2 0.3,0.3,0.3 , 0.4,0.5,0.6=a  
, 

( ) ( )3 0.5,0.5,0.5 , 0.3,0.3,0.3=a , and ( ) ( )4 0.1,0.2,0.2 , 0.6,0.7,0.8=a be four 
FNIFVs, by (4), we calculate the scores of ( )1,2,3,4=ja j :

( ) ( )
( ) ( )

1 2

3 4

0.1, 0.2

0.2, 0.53

= = −

= = −

S a S a

S a S a

 

 

Since 

( ) ( ) ( ) ( )3 1 2 4> > >S a S a S a S a    ,
thus
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( ) ( ) ( )1 0.5,0.5,0.5 , 0.3,0.3,0.3σ =a , ( ) ( ) ( )2 0.3,0.4,0.5 , 0.2,0.3,0.4σ =a , 

( ) ( ) ( )3 0.3,0.3,0.3 , 0.4,0.5,0.6σ =a , ( ) ( ) ( )4 0.1,0.2,0.2 , 0.6,0.7,0.8σ =a .

Suppose that ( )0.2,0.3,0.4,0.1=w is the weighting vector of the FIFOWG operator. 
Then, by (11), it follows that:

( )
(

)
(

1 2 3 4
0.2 0.3 0.4 0.1

0.2 0.3 0.4 0.1

0.2 0.3 0.4 0.1

0.2 0.3 0.4 0.1

0.2 0.3 0.4 0.1

FNIFOWG , , ,

0.5 0.3 0.3 0.1 ,

0.5 0.4 0.3 0.2 ,
0.5 0.5 0.3 0.2 ,

1 (1 0.3) (1 0.2) (1 0.4) (1 0.6) J
1 (1 0.3) (1 0.3) (1 0.5) (1 0.7) J

ω =

× × ×

× × ×
× × ×

− − × − × − × −

− − × − × − × −

a a a a   

)
( ) ( )

0.2 0.3 0.4 0.11 (1 0.3) (1 0.4) (1 0.6) (1 0.8)

0.214,0.291,0.297 , 0.541,0.451,0.353 .

− − × − × − × − =

In the following, we shall develop the induced fuzzy number intuitionistic fuzzy choquet 
ordered geometric (IFNIFCOG) operator based on the well-known Choquet integral 
(Choquet 1953).

Definition 16. Let ( )1 2, , , nX x x x be a finite set, and µ be a fuzzy measure on X, and 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , ,=i i i i i i ia x a x b x c x l x m x p x  ( )1,2, ,=i n be a collection of 

FNIFVs on X, and µ be a fuzzy measure on X. An induced fuzzy number intuitionistic 
fuzzy choquet ordered geometric (IFNIFCOG) operator of dimension n is a function 
IFNIFCOG: →nQ Q , which is defined to aggregate the set of second arguments of a 
collection of 2-tuples ( ) ( ) ( )( )1 1 2 2, , , , , ,n nu a x u a x u a x  

 according to the follow-
ing expression: 

 

( ) ( ) ( )( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 0 2 1 1

1

1 1 2 2

1 2

1

IFNIFCOG , , , , , ,

,

σ σ σ σ σ σ −

σ σ −

µ

µ −µ µ −µ µ −µ

σ σ σ

µ −µ

σ=

=

⊗ ⊗ ⊗ =

⊗

n n

j j

n n

A A A A A A
n

n A A
jj

u a x u a x u a x

a x a x a x

a x

  


  




 

(13)

where ui in 2-tuple ( ),i iu a x is referred to as the order-inducing variable and ( )ia x  as 
the argument variable, ( ) ( ) ( )( )1 , 2 , ,σ σ σ n  is a permutation of ( )1,2, ,n , such that 

( ) ( )1σ − σ≥j ju u  for all 2, ,=j n , ( ) ( ) ( ) ( ){ }1 2, , ,=i iA x x x when 1≥i and ( )0σ = φA .
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With the operation of fuzzy number intuitionistic fuzzy numbers, the IFNIFCOG opera-
tor can be transformed into the following from by induction on n:

( ) ( ) ( )( )

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )( )

( )( )( ) ( )( ) ( )( )
( )( )( ) ( )( ) ( )( )

( )( )( ) ( )( ) ( )( )

( )( )( ) ( )( ) ( )( )1

1

1 0 2 1 1

1

1 1 1

1 1 2 2

1 2

1

1 1 1

1 1

IFNIFCOG , , , , , ,

, , ,

σ σ −µ −µ

σ
=

σ σ σ σ σ σ −

σ σ −

σ σ − σ σ − σ σ −

µ

µ −µ µ −µ µ −µ

σ σ σ

µ −µ

σ=

µ −µ µ −µ µ −µ

σ σ σ
= = =

− −

=

⊗ ⊗ ⊗ =

⊗ =

 
 
 
 
∏ ∏ ∏

i i
n A A

i
i

n n

j j

i i i i i i

n n

A A A A A A
n

n A A
jj

n n nA A A A A A

i i i
j j j

l x

u a x u a x u a x

a x a x a x

a x

a x b x c x

  


  




( )( )( ) ( )( ) ( )( )
( )( )( ) ( )( ) ( )( )1 1

1 1

,1 1 ,1 1σ σ − σ σ −µ −µ µ −µ

σ σ
= =

− − − −
 
 
 

∏ ∏ ∏i i i i
n nA A A A

i i
i i

m x p x
 

(14)
whose aggregated value is also a fuzzy number intuitionistic fuzzy number.

Especially, if ( ){ }( ) ( )( ) ( )( )1σ σ σ −µ = µ − µj j jx A A , 1,2, ,=i n , then IFNIFCOG opera-

tor reduce to IFNIFWG operator. If ( ) { }( )
∈

µ = µ∑
j

j
x A

A x , for all ⊆A X , where A is 

the number of the elements in the set A, then ( )( ) ( )( )1σ σ −= µ − µj j jw A A , 1,2, ,=i n  , 

where ( )1 2, , ,= T
nw w w w , 0≥jw , 1,2, ,=i n , and 

1
1

=
=∑

n

j
j

w , then, IFNIFCOG op-
erator reduce to FNIFOWG operator.

It’s easy to prove that the IFNIFCOG operator has the following properties.

Theorem 4 (Commutativity). 

( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

1 2

IFNIFCOG , , ,

IFNIFCOG , , , ,

µ

µ

=

′ ′ ′

n

n

a x a x a x

a x a x a x

  


  


where ( ) ( ) ( )( )1 2, , ,′ ′ ′ na x a x a x  
  is any permutation of ( ) ( ) ( )( )1 2, , , na x a x a x  

 .

Theorem 5 (Idempotency). If ( ) ( )=ja x a x   for all j , then:

( ) ( ) ( )( ) ( )1 2IFNIFCOG , , ,µ =na x a x a x a x   
 .

Theorem 6 (Monotonicity). If ( ) ( )′≤j ja x a x   for all j , then:

( ) ( ) ( )( )
( ) ( ) ( )( )

1 2

1 2

IFNIFCOG , , ,

IFNIFCOG , , , .

µ

µ

≤

′ ′ ′

n

n

a x a x a x

a x a x a x

  


  


Example 6. Assume we have four FNIFOWG pairs ( ),j ju a x  given:
 

( ) ( ) ( )( )1 1, 12, 0.3,0.4,0.5 , 0.1,0.2,0.3=u a x ,

( ) ( ) ( )( )2 2, 15, 0.4,0.5,0.5 , 0.1,0.1,0.2=u a x ,
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( ) ( ) ( )( )3 3, 10, 0.2,0.3,0.3 , 0.3,0.4,0.5=u a x ,

( ) ( ) ( )( )4 4, 8, 0.2,0.3,0.4 , 0.4,0.5,0.6=u a x ,
that we desire to aggregate using the weighting vector ( )0.2,0.4,0.1,0.3=w . Performing 
the ordering the FNIFOWG pairs with respect to the first compoent, we get:

( ) ( )( ) ( ) ( )( )1 1, 15, 0.4,0.5,0.5 , 0.1,0.1,0.2σ σ =u a x ,

( ) ( )( ) ( ) ( )( )2 2, 12, 0.3,0.4,0.5 , 0.1,0.2,0.3σ σ =u a x ,

( ) ( )( ) ( ) ( )( )3 3, 10, 0.2,0.3,0.3 , 0.3,0.4,0.5σ σ =u a x ,

( ) ( )( ) ( ) ( )( )4 4, 8, 0.2,0.3,0.4 , 0.4,0.5,0.6σ σ =u a x .

This ordering includes the ordered fuzzy number intuitionistic fuzzy numbers:

( )( ) ( ) ( )1 0.4,0.5,0.5 , 0.1,0.1,0.2σ =a x ,

( )( ) ( ) ( )2 0.3,0.4,0.5 , 0.1,0.2,0.3σ =a x ,

( )( ) ( ) ( )3 0.2,0.3,0.3 , 0.3,0.4,0.5σ =a x ,

( )( ) ( ) ( )4 0.2,0.3,0.4 , 0.4,0.5,0.6σ =a x .

Suppose the fuzzy measure of attribute of ( )1,2,3,4=ia i and attribute sets of 
( )1,2,3,4=ia i as follows:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

1 2 3 4

1 2 1 3 1 4 2 3

2 4 3 4 1 2 3 1 2 4

1 3 4 2 3 4

0, 0.40, 0.25, 0.38, 0.25,

, 0.56, , 0.65, , 0.50, , 0.45,

, 0.39, , 0.40, , , 0.80, , , 0.75,

, , 0.72, , , 0.60

µ φ = µ = µ = µ = µ =

µ = µ = µ = µ =

µ = µ = µ = µ =

µ = µ =

a a a a

a a a a a a a a

a a a a a a a a a a

a a a a a a

   

       

         

      ( )1 2 3 4, , , , 1.00.µ =a a a a   

Then, by (14), it follows that:

( ) ( ) ( ) ( )( )
(

)

1 1 2 2 3 3 4 4

0.25 0.56-0.25 0.80-0.56 1-0.80

0.25 0.56-0.25 0.80-0.56 1-0.80

0.25 0.56-0.25 0.80-0.56 1-0.80

0.25 0.56-0

IFNIFCOG , , , , , , ,

0.4 0.3 0.2 0.1 ,

0.5 0.4 0.3 0.2 ,
0.5 0.5 0.3 0.3 ,

1 (1 0.1) (1 0.1)

µ =

× × ×

× × ×
× × ×

− − × −

u a x u a x u a x u a x   

(

)
( ) ( )

.25 0.80-0.56 1-0.80

0.25 0.56-0.25 0.80-0.56 1-0.80

0.25 0.56-0.25 0.80-0.56 1-0.80

(1 0.3) (1 0.3) J
1 (1 0.1) (1 0.2) (1 0.4) (1 0.4) J
1 (1 0.2) (1 0.3) (1 0.5) (1 0.5)

0.292,0.344,0.399 , 0.194,0.274,0.661 .

× − × −

− − × − × − × −

− − × − × − × − =
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3. An approach to multiple attribute decision making with fuzzy  
number intuitionistic fuzzy information

In this section, we shall develop an approach to multiple attribute decision making with 
fuzzy number intuitionistic fuzzy information as follows.
Let { }1 2, , ,= mA A A A  be a discrete set of alternatives, and { }1 2, , ,= nG G G G be the set 
of attributes, ( )1 2, , ,ω = ω ω ωn  is the weighting vector of the attribute ( )1,2, ,=jG j n  

, 

where [ ]0,1ω ∈j ,
1

1
=
ω =∑

n

j
j

.Suppose that ( ) ( ) ( ), , , , ,
× ×

= =ij ij ij ij ij ij ijm n m n
R r a b c l m p

  

is the fuzzy number intuitionistic fuzzy decision matrix, where ( ), ,ij ij ija b c  indicates 
the degree that the alternative Ai satisfies the attribute jG , ( ), ,ij ij ijl m p  indicates the 
degree that the alternative Ai doesn’t satisfy the attribute jG  ( ) [ ], , 0,1⊂ij ij ija b c , 

( ) [ ], , 0,1⊂ij ij ijl m p  , 1+ ≤ij ijc p ,  1,2, ,=i m , 1,2, ,=j n .

In the following, we apply the IFNIFCOA and IFNIFCOG operator to multiple attribute 
decision making with fuzzy number intuitionistic fuzzy information.
Step 1. Calculate the order-inducing variables ( ) ×ij m n

u to be used in the decision matrix 
for each alternative Ai and the attribute Gj. The experts use order-inducing variables to 
represent the complex attitudinal character involving the opinion of different members 
of the board of directors (Merigó, Gil-Lafuente 2009).
Step 2. If we emphasize the group’s influence, utilize the decision information given in 
matrix R , and the IFNIFCOA operator: 

( ) ( )
( ) ( ) ( )( )1 1 2 2

, , , , ,

IFNIFCOA , , , , , , ,

= =i j j j j j j

i i i i in in

r a b c l m p

u a x u a x u a x



  


                     1,2, , , 1,2, ,= =i m j n                                                          (15)

to derive the overall preference values ( )1,2, ,=ir i m
 of the alternative iA . Otherwise 

utilize the decision information given in matrix R , and the IFNIFCOG operator:

( ) ( )
( ) ( ) ( )( )1 1 2 2

, , , , ,

IFNIFCOG , , , , , , ,

= =i j j j j j j

i i i i in in

r a b c l m p

u a x u a x u a x



  


                     1,2, , , 1,2, ,= =i m j n                                                          (16)

to derive the overall preference values ( )1,2, ,=ir i m
 of the alternative Ai. 

Step 3. Calculate the scores ( ) ( )1,2, ,=iS r i m
  of the overall fuzzy number intuitionis-

tic fuzzy preference values ( )1,2, ,=ir i m
  to rank all the alternatives ( )1,2, ,=iA i m  

and then to select the best one(s) (if there is no difference between two scores ( )iS r  
and ( )jS r , then we need to calculate the accuracy degrees ( )iH r  and ( )jH r  of the 
overall fuzzy number intuitionistic fuzzy preference values ir  and jr , respectively, and 
then rank the alternatives Ai and Aj in accordance with the accuracy degrees ( )iH r  and 

( )jH r .
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Step 4. Rank all the alternatives ( )1,2, ,=iA i m  and select the best one(s) in accord-
ance with ( )iS r  and ( )iH r ( )1,2, ,=i m .
Step 5. End.

4. Illustrative example

In this section we shall present a numerical example to show potential evaluation of 
emerging technology commercialization with fuzzy number intuitionistic fuzzy infor-
mation in order to illustrate the method proposed in this paper. There is a panel with 
five possible emerging technology enterprises

 ( )1,2,3,4,5=iA i  to select. The experts 
selects four attribute to evaluate the four possible emerging technology enterprises: 
G1 is the technical advancement; G2 is the potential market and market risk; G3 
is the industrialization infrastructure, human resources and financial conditions; G4 
is the employment creation and the development of science and technology. The five 
possible enterprises ( )1,2,3,4,5=iA i  are to be evaluated using using the fuzzy num-
ber intuitionistic fuzzy numbers by the decision maker under the above four attributes, 
and construct, respectively, the decision matrices as listed in the following matrices 

( )( ) ( )
5 4

1,2,3
×

= =k
k ijR r k

  as follows:

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

0.2,0.3,0.4 , 0.3,0.4,0.4 0.5,0.6,0.7 , 0.1,0.1,0.1

0.3,0.4,0.5 , 0.1,0.2,0.3 0.4,0.5,0.5 , 0.1,0.1,0.2

0.1,0.2,0.3 , 0.3,0.4,0.5 0.3,0.4,0.5 , 0.2,0.2,0.3

0.4,0.5,0.6 , 0.1,0.1,0.1 0.7,0.7,0.7 , 0.1,0.1,0.1

0.6,0.6,0.7 , 0

=R

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( )

.1,0.1,0.1 0.4,0.4,0.4 , 0.1,0.2,0.3
0.5,0.5,0.6 , 0.1,0.1,0.2 0.4,0.5,0.6 , 0.1,0.1,0.1

0.3,0.4,0.5 , 0.1,0.2,0.3 0.1,0.2,0.3 , 0.3,0.4,0.5

0.6,0.7,0.8 , 0.1,0.1,0.1 0.1,0.1,0.2 , 0.4,0.5,0.6

0.4,0.5,0.5 , 0.1,0.2












( ) ( ) ( )
( ) ( ) ( ) ( )

.

,0.3 0.3,0.4,0.5 , 0.2,0.3,0.3

0.6,0.6,0.6 , 0.1,0.1,0.1 0.2,0.3,0.3 , 0.3,0.4,0.5












Then, we utilize the approach developed to get the most desirable alternative(s).
Step 1. Suppose the fuzzy measure of attribute of ( )1,2, ,=jG j n and attribute sets 
of G as follows:

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2 3 4 1 2

1 3 1 4 2 3 2 4

3 4 1 2 3 1 2 4

1 3 4 2 3 4 1 2 3 4

0.30, 0.35, 0.30, 0.22, , 0.70,

, 0.60, , 0.55, , 0.50, , 0.45,

, 0.40, , , 0.82, , , 0.87,

, , 0.75, , , 0.60, , , , 1.00

µ = µ = µ = µ = µ =

µ = µ = µ = µ =

µ = µ = µ =

µ = µ = µ =

G G G G G G

G G G G G G G G

G G G G G G G G

G G G G G G G G G G
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Step 2. The experts use order-inducing variables to represent the complex attitudinal 
character involving the opinion of different members of the board of directors (Merigó, 
Gil-Lafuente 2009). The results are shown in Table 1.

Table 1. Inducing variables

S1 S2 S3 S4

A1 12 18 16 15

A2 23 25 22 20

A3 18 20 24 14

A4 22 24 20 18

A5 24 18 21 16

Step 3. If we emphasize the group’s influence, we utilize the decision information given 
in matrix R , and the IFNIFCOA operator to obtain the overall preference values ir  of 
the alternatives ( )1,2, ,5=iA i  .

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

2

3

4

5

0.385,0.471,0.575 , 0.155,0.174,0.193 ,

0.306,0.407,0.469 , 0.122,0.178,0.285 ,

0.329,0.425,0.540 , 0.210,0.239,0.288 ,

0.516,0.568,0.613 , 0.113,0.132,0.139 ,

0.505,0.516,0.556 , 0.122,0.149,0.170 .

=

=

=

=

=

r

r

r

r

r











Step 4. Calculate the scores ( ) ( )1,2, ,5=iS r i
 of the overall fuzzy number intuition-

istic fuzzy preference values ( )1,2, ,5=ir i
 :

( ) ( ) ( ) ( ) ( )1 2 3 4 50.603, 0.413, 0.372, 0.874, 0.751= = = = =S r S r S r S r S r     .
Step 5. Rank all the alternatives ( )1,2,3,4,5=iA i  in accordance with the scores
( ) ( )1,2, ,5=iS r i

  of the overall fuzzy number intuitionistic fuzzy preference values 
( )1,2, ,5=ir i

 : 4 5 1 2 3A A A A A    , and thus the most desirable alternative is A4.
If we emphasize the individual influence, we utilize the decision information given in 
matrix R  and the IFNIFCOG operator to obtain the overall preference values ir  of the 
alternatives ( )1,2, ,5=iA i  .

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1

2

3

4

5

0.339,0.434,0.538 , 0.186,0.235,0.248 ,

0.272,0.382,0.456 , 0.140,0.208,0.310 ,

0.213,0.295,0.415 , 0.246,0.305,0.387 ,

0.462,0.540,0.600 , 0.119,0.152,0.165 ,

0.450,0.484,0.507 , 0.140,0.185,0.234 .

=

=

=

=

=

r

r

r

r

r
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Then, by applying Eqs (4) to calculate the scores ( ) ( )1,2, ,5=iS r i
 of the collective 

overall fuzzy number intuitionistic fuzzy preference values ( )1,2, ,5=ir i
 :

( ) ( ) ( ) ( ) ( )1 2 3 4 50.421, 0.313, 0.013, 0.777, 0.592= = = − = =S r S r S r S r S r     .

Therefore, the ranking order is 4 5 1 2 3A A A A A    . Thus, we can see that the most 
desirable alternative is still A4.
Especially, if the triangular fuzzy numbers ( ), ,j j ja b c and ( ), ,j j jl m p  are reduced to 
the interval numbers ,  j ja b  and ,  j jl m , then, the IFNIFCOA or IFNIFCOG op-
erator is reduced to the induced interval-valued intuitionistic fuzzy choquet ordered 
averaging (I-IVIFCOA) operator or induced interval-valued intuitionistic fuzzy cho-
quet ordered geometric (I-IVIFCOG) operator (Xu, Xia 2011); if = = = µj j j ja b c , 

= = = νj j j jl m p , then the IFNIFCOA or IFNIFCOG operator is reduced to the induced 
intuitionistic fuzzy choquet ordered averaging (I-IFCOA) operator or induced intuition-
istic fuzzy choquet ordered geometric (I-IFCOG) operator (Xu, Xia 2011).

Conclusions

The traditional induced Choquet integral aggregation operators are generally suitable 
for aggregating the information taking the form of numerical values, and yet they will 
fail in dealing with fuzzy number intuitionistic fuzzy information. In this paper, we 
have developed two induced fuzzy number intuitionistic fuzzy Choquet integral aggre-
gation operators: induced fuzzy number intuitionistic fuzzy choquet ordered averaging 
(IFNIFCOA) operator and induced fuzzy number intuitionistic fuzzy choquet ordered 
geometric (IFNIFCOG) operator. The prominent characteristic of the operators is that 
they can not only consider the importance of the elements or their ordered positions, 
but also reflect the correlation among the elements or their ordered positions. We have 
studied some desirable properties of the IFNIFCOA and IFNIFCOG operators, such as 
commutativity, idempotency and monotonicity, and applied the IFNIFCOA and IFNIF-
COGM operators to multiple attribute decision making with fuzzy number intuitionistic 
fuzzy information. Finally an illustrative example has been given to show the developed 
method. In the future, we shall continue working in the application of the fuzzy number 
intuitionistic fuzzy multiple attribute decision making to other domains.
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