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Abstract Information fusion of fuzzy numbers has played a
vital role in the decision support systems under the environ-
ment of q-rung orthopair fuzzy set (q-ROFS), which is an ef-
fective extension of intuitionisitic fuzzy set (IFS) and fuzzy
set (FS). The goals of the present work are to build a family
of new aggregation operators (AOs) under q-ROF environ-
ment and apply them to MADM problems. First, the extend-
ed Archimedean coupla (EAC) and extended Archimedean
co-coupla (EACC) are proposed to handle q-ROF informa-
tion, consequently, the operational law of q-ROFNs are de-
fined based on EAC and EACC. In order to comprehensively
consider the relationship between attributes, the q-rung or-
thopair fuzzy Banzhaf Choquet-Copula AOs (BCCAq) and
q-rung orthopair fuzzy Banzhaf Choquet-Copula geometric
operators (BCCGq) are introduced on the basis of the oper-
ation of q-rung orthopair fuzzy numbers (q-ROFNs); Con-
sequently, some special cases of BCCAq /BCCGq operators
are investigated when the generators of coupla take differen-
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t functions which satisfy the condition of the generators of
copulas. In addition, to determine the fuzzy measure (FM) of
attribute sets objectively, the improved maximum deviation
method and Banzhaf function model are built. Finally, the
corresponding decision-making approaches are constructed
based on the proposed AOs and proposed models. Proposed
approaches can overcome effectively the FMs of attribute
sets are given by decision makers subjectively and can al-
so effectively address the some decision making problem-
s (DMPs), in which the weights of attributes incompletely
unknown (completely unknown), whilst the correlation are
also existed among all attribute sets.

Keywords q-rung orthopair fuzzy set (q-ROFS) · Extended
Archimedean Copula and Extended Archimedean Co-
copula · Banzhaf function · fuzzy measure · Aggregation
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1 Introduction

1.1 Background and Motivations

With the development of social economy, decision-making
problems (DMPs) become more and more complex. In or-
der to make the best decision, it is often necessary to eval-
uate the candidate schemes in many aspects. As an impor-
tant branch of management science and engineering, multi-
attribute decision making (MADM) theory and model have
been widely used in various fields of social economy and
management. The so-called MADM is to evaluate the candi-
date scheme according to a series of criteria, and then select
the best option. In recent years, the theory of MADM has
been widely valued by scholars at home and abroad, and has
been widely used in investment scheme selection, disease di-
agnosis, supplier selection and people’s daily life. With the
increasing complexity of DMPs and decision making envi-
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ronment, how to improve the reliability and scientifically of
decision is a fundamental and important problem in modern
decision-making science. Because decision-making is driv-
en by information, that is, information driven management
decision-making, how to effectively express, manage and in-
tegrate expert decision-making information is a hot topic in
the field of MADM hotspot issues. When using MADM the-
ory to solve DMPs, it is necessary to accurately express the
evaluation information of decision-makers. Due to the com-
plexity and fuzziness of DMPs and the limitations of human
cognitive process, it is difficult for decision-makers to ex-
press their decision-making opinions with accurate values.

In the actual decision-making problems (DMPs), there
are a lot of uncertain, imprecise and fuzzy information. The
representation and management of these information has al-
ways been the core of the DMPs. IFS [2], an important and
effective extension of fuzzy set (FS) [1], is considered to be
an appropriate tool for processing this information. An IF-
S Φ in a finite universe of discourse Z is written as Φ =
{⟨z,(αΦ (z) ,βΦ (z))⟩|z ∈ Z}, in which αΦ : Z → [0,1] and
βΦ : Z → [0,1] with condition 0 ≤ αΦ (z)+βΦ (z) ≤ 1. We
denote (αΦ (z) ,βΦ (z)) as (αΦ ,βΦ), which is called an in-
tuitionisitic fuzzy number (IFN). Some decision approach-
es based on IFS are very suitable to deal with DMPs [3,4,
5,6,7,8,9,10,11] only owing to 0 ≤ αΦ + βΦ ≤ 1. How-
ever, in real DMPs, although the decision makers to ex-
press their preferences by employing the pair (αΦ ,βΦ), but
it maybe not fufill 0 ≤ αΦ + βΦ ≤ 1 and beyond the up-
per bound 1. At this point, these decision approaches will
be invalid under these circumstances. However, Yager [12]
proposed the Pythagorean fuzzy set (PFS) theory to han-
dle with these circumstances. PFS is an extension of IFS
by slackening the condition 0 ≤ α2

Φ +β 2
Φ ≤ 1. What’ more,

Yager[13] introduced a new and more general concept q-
rung orthopair fuzzy set (q-ROFS), which is an extension
of IFS and PFS by further slackening the condition 0 ≤
αq

Φ +β q
Φ ≤ 1, where q ≥ 1 and (αΦ (z) ,βΦ (z)) is known as

an q-rung orthopair fuzzy number (q-ROFN) and expressed
by (αΦ ,βΦ) for convenience. We must also note that q-
ROFSs express more extensive fuzzy information; Whilst,
q-ROFSs are more maneuverable and more appropriate for
dealing with uncertainties information. Therefore, some de-
cision making approaches based on q-ROF information are
arousing the attentions of researchers.

According to the existing MADM approaches with q-
ROF information, the motivations of the current work are
highlighted below:

• MADM approaches not only consider the relationship
between adjacent attribute combinations, but also capture
the interaction among elements globally. However, some ex-
isting MADM approaches under q-ROF environment only
consider the relationship between adjacent attribute com-

binations, but not capture the interaction among elements
globally.

• In some MADM problems in which the attributes (or
criteria) are independent, this assumption is too strong to be
fulfilled in some MADM problems; In fact, some attributes
maybe dependent in real decision problems, how to reflect
the interaction among the attributes in process of decision
information fusion needs to be explored in depth.

• Some existing MADM approaches for dealing with q-
ROF information are valid under the hypothesis that experts
have given the fuzzy measure (or weight information) of at-
tribute sets in advance, and can not be directly used to MAD-
M problems with unknown or partially unknown fuzzy mea-
sures. Therefore, it is necessary to build algorithm for deter-
mining the Banzhaf values related to fuzzy measure under
completely unknown or partially unknown fuzzy measures.

1.2 Literature review

Since the q-ROFSs appearances in 2017, this new tool for
dealing with uncertainty has attracted many scholar’s atten-
tions. So far, the researches of q-ROFSs are main focused
on the following aspects: (1) Aggregation operators (AOs):
Liu [14] introduced the q-ROF AOs and applied them to
MAGDM, on this basis of q-ROF AOs, Liu et al [15,16]
introduced the BMOs and ABOs under q-ROF environmen-
t, respecitvely, whislt, corresponding MAGDM methods are
also constructed on the basis of these AOs; Liu et al [17]
further introduced the power Bonferroni operators under q-
ROF environment and applied these AOs to MAGDM prob-
lems; Yang [18] introduced the partitioned BMOs under q-
ROF environment and applied to MADM problems. Some
authors introduced the Heronian operators [19] in q-ROFS
and its extensions [20] are also done. Du [21] introduced
weighted power means and applied it to MADM problems,
whilst, Ju [22] defined the a new AOs under q-ROF envi-
ronment named generalized power weighted AOs and corre-
sponding MAGDM approaches have been also constructed;
Xing [23] also introduced a new kind of weighted AOs under
q-ROF environment named point weighted AOs; Wang [24,
25] defined Hamy mean operators and Muirhead means un-
der q-ROF environment, respectively, and corresponding de-
cision making approached are also designed; Wei [26] intro-
duced Maclaurin symmetric mean operator in q-ROFSs and
applied to eemerging technology commercialization; Peng
[27] introduced a new operation so-called exponetial opera-
tion and corresponding AOs are also defined; Jana [28] in-
troduced novel AOs based on Dombi operation in q-ROFSs;
Joshi [29] defined confidence level q-ROF AOs and applied
to MCDM problems. (2) Some preference relations: Li [30]
introduced the preference relations in q-ROFSs, Zhang[31]
introduced additive consistency of q-ROF preference rela-
tion based on a new method, whilst, Zhang[32] also intro-
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duced Multiplicative consistency of q-ROF preference rela-
tion. (3) Information measures: Peng [33] introduced some
information measure of q-ROFS, Wang [34] introduced the
similarity measure of q-ROFS and Liu [35] also introduced
the cosine similarity measure, Du [36,37] investigated the
distance measures and correlation coefficient of q-ROFSs,
respectively. (4)Some studied related to analysis: Shu [38],
Gao [39,40] investigated the integrations, derivatives, dif-
ferentials and differential calculus in q-ROFSs, respective-
ly. (5) Some extensions of q-ROFSs: the extensions of q-
ROFSs are focused on interval-valued q-ROFS [41], linguis-
tic q-ROFSs [42,43,44,45], uncertain linguistic q-ROFSs
[46,47,63] and 2-tuple linguistic set under q-ROF environ-
ment [48].

As a basis of AOs under any fuzzy environment, the op-
erations play a vital role in information fusion. In the above
mentioned AOs under q-ROF environment, the operational
law of any two q-ROFNs are built on the t-norms (TNs) and
t-conorms (TCs). Commonly, TNs are applied to integrate
MD of fuzzy sets, while copulas are tools to deal with prob-
ability distributions. Besides, there exist also TNs which are
copulas and vice versa. Thus, it’s of reality significance to
investigate the application of copulas to fuzzy sets. Copulas
[49] can not only reveal the dependence among attributes,
but also prevent information losing in the midst of aggre-
gation. Just as TNs and TCs, Couplas and Co-couplas are
flexible because DMs can select different types of Couplas
and Co-couplas to define the operations under fuzzy en-
vironment, and the results obtained from these operations
are closed; Whilst, Coupla functions are flexible to capture
the correlations among attributes in DMPs. Based upon thse
significant advantages, Couplas have been applied to some
DMPs [50,51,52,53]. In traditional MADM approaches, it
is often assumed that attributes are independent of each oth-
er, that is, attribute weights are additive. However, in some
practical MADM problems, attributes are not completely in-
dependent, but interrelated and interactive. The fuzzy mea-
sure (FM) proposed by Sugeno [54] provides an effective
method for dealing with the related MADM problems whose
attributes are interrelated and interactive. Since FM’s ap-
pearance, FM becomes more and more attractive and has
been applied in many fields. The Choquet integral w. r. t.
FM is a very effective approach to measure the expected
utility of uncertain events and can be used to describe the
interaction of input parameters, and also has achieved in tri-
umph in MADM [55,56,57,58,59,60,61,62,63,64]. These
Choquet-based AOs can reflect the importance of various
input data or their locations, and can be able to consider the
relationship between among data itself or their locations.

1.3 Contributions and Structure

Based on the above motivations and literature analyses, the
goal of the present work is to synthesize EACs (EACC-
s), Banzhaf-based Choquet integral and q-ROFS to devel-
op a novel MADM approach with q-ROF information in
which weight information partially known or completely un-
known, the proposed decision approach can capture the in-
teraction among elements globally. The main contributions
of the present work listed as below:

(1) the extended Archimedean Copulas (EACs) and ex-
tended Archimedean Co-copulas (EACCs) are proposed to
handle q-ROF information by extending the classical Cop-
ulas (Co-copulas) to q-ROF environment, and the novel op-
erations of q-ROFNs based on EACs (EACCs) which can
reflect the relevance are defined;

(2) to construct corresponding Banzhaf-based Choquet
AOs and geometric operators regarding the proposed opera-
tions to fuse some decision making information with q-ROF
environment along with their properties;

(3) a novel decision approach for MADM problems with
q-ROF information under fuzzy measure information par-
tially known or completely unknown, the algorithm for de-
terminations of fuzzy measures is designed prior to MADM
decision approach. In these three main aspects, constructing
novel operations is the core issue.

For the above goals, the structure of this work is ar-
ranged as follows. Some notions on Choquet integral are re-
viewed firstly in Section 2. A new version of Copulas and
Co-copulas (named EACs and EACCs) which can tackle
the q-ROF information are given in Section 3. In Section 4,
we introduce the q-rung orthopair fuzzy Banzhaf Choquet-
Coupla AOs (BCCAq) based on EACs and EACCs together
with their properties, some special BCCAqs have also been
developed. In Section 5, the q-rung orthopair fuzzy Banzhaf
Choquet-Coupla geometric operator (BCCGq) based upon
EACs and EACCs is proposed together with their properties,
some special BCCGqs have also been developed. The algo-
rithm of MADM with q-ROF information based on BCCAq

/ BCCGq is constructed in Section 6. Case analysis will be
carried out and some advantages of the proposed MADM
approach based on BCCAq / BCCGq operators are analysed
in Section 7 and the conclusion will be obtained in Section
8.

2 Choquet Integral and Banzhaf Values

We briefly review Chouqet integral and Banzhaf values in
this part.

Sugeno[54] defined fuzzy measure (FM), which can be
used to define a weight on each combination of criteria in
Choquet integral model. In this section, the concepts of FM
and Choquet integral are first reviewed.
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Definition 1 [54] Let X be a nonempty set and P(X) be
the power set of X. A function s : P(X)→ [0,1] is called a
fuzzy measure on X, if φ satisfies conditions:

(1) s( /0) = 0,s(X) = 1;
(2) For all E,F ∈ P(X) and E ⊂ F, then s(E)≤ s(F).

FM can not only express the weight of attribute and at-
tribute set, but also the relationship between them. Let X be
the criteria index set in a MADM problem, for all E,F ∈
P(X), E

∩
F = /0: (1) If s(E ∪ F) = s(E) + s(F), then it

means that there is no interaction between E and F , which
is independent; (2) If s(E ∪F)> s(E)+ s(F), then it means
that there is an complementary relation between E and F ;
(3) If s(E ∪F) < s(E)+ s(F), then it means that there is a
redundancy relation between E and F .

In associated MADM problems, the role of the attribute
set E ∈P(X) in decision-making is not only determined by
s(E) itself, but also related to other attribute sets. If s(E)= 0,
then the attribute set E is not important. However, for the
attribute set F ∈P(X), if s(E

∪
F)−s(F)> 0, then it means

that the attribute set E is important. As an effective tool to
handle with the some problems with associated properties,
generalized Banzhaf value can be used as a comprehensive
consideration of the importance of attribute set E.

Definition 2 [65] Let P(X) be a power set of X and s
be the FM on X. Then, for all E ∈ P(X), the generalized
Banzhaf value is given as follows:

B(E) = ∑
F⊂X\E

s(E
∪

F)− s(F)

2|X |−|E| . (1)

where X \E is the difference set of X and E, |X | and |E| are
the cardinality of X and E, respectively.

Generalized Banzhaf value not only reflects the contri-
bution value of single attribute or attribute set to the w-
hole alliance, but also reflects the average contribution of
single attribute or attribute set to the whole alliance. When
E = {xi}, B(E) reduces to Banzhaf function[66]

B(E) = ∑
F⊂X\{xi}

s({xi}
∪

F)− s(F)

2|X |−1 . (2)

A well-known AO is Choquet integral operator w. r. t.
FM can be used to model the importance of criteria set X
and aggregate fuzzy interactive information. In what fol-
lows, if no specific, Sn is always the set of all permutations
of (1, · · · ,n).

Definition 3 [54] Let X be a nonempty set, f : X →R+ be a
function and s be a FM on X. The discrete Choquet integral
operator of f w.r.t. s is defined as

CIφ( f ) =
n

∑
k=1

[ f (x(l))− f (x(l−1))]s(∆(l)) (3)

where (l) ∈ Sn s. t. f (x(l)) ≤ f (x(l+1)) for all l ∈ {1, · · · ,n}
and ∆(l) = {x( j)| j = l, l +1, · · · ,n}, ∆(0) = /0.

The equivalent form of the Choquet integral can be de-
scribed as follows:

CIφ( f ) =
n

∑
k=1

[s(∆(l))− s(∆(l+1))] f (x(l)) (4)

where (l) ∈ Sn s. t. f (x(l))≤ f (x(l+1)) for all k ∈ {1, · · · ,n}
and ∆(l) = {x( j)| j = l, l +1, · · · ,n}, ∆(n+1) = /0.

It can be seen from the above-definition that the Choquet
integral operator has a salient features: that is, it consider
the interaction (correlation) between attribute and attribute
index sets in real DMPs.

3 Copulas and Co-copulas for q-ROF information

3.1 Extended Archimedean Copula (Co-copula)

In existing Copula and Co-copula have been applied to some
AOs under some fuzzy environment, but, it fails to manage
q-ROF information (when q> 2). In this section, we will ex-
tend the Copulas and Co-copula for the sake of handing with
q-ROF information. The classical Copula [50] is defined as
follows:

Definition 4 [50] A mapping C from [0,1]2 to [0,1] is called
a Copula if, for all c,d,c

′
,d

′ ∈ [0, t],
(C1) C(c,d)+C

(
c
′
,d

′
)
≥ C

(
c,d

′
)
+C

(
c
′
,d
)

;

(C2) C(c,0) = C(0,c) = 0;
(C3) C(c,1) = C(1,c) = c.

Definition 5 [50] Let ε be a continuous and strictly de-
creasing function from [0,1] to [0,+∞) with ε(1) = 0, ψ :
[0,+∞)→ [0, t]. If ε,ψ satisfy the following condition,

ψ(c) =

{
ε−1(c), c ∈ [0,ε(0)];
0, c ∈ [ε(0),+∞).

and

C (c,d) = ψ(ε(c)+ ε(d)). (5)

The Copula C is called called Archimedean Copula (AC).

The generator ε of an AC if a function from [0,1] to R+

and ε−1 is the function from R+ to [0,1] with ε(0) = +∞
and ε(1) = 0. In line with Genest et al [68], the C can be
expressed as

C (c,d) = ε−1(ε(c)+ ε(d)). (6)

Remark 1 We extend Archimedean copula to handle some
q-ROF information, so we call the Archimedean Copula as
extended Archimedean copula (EAC). In what follows, all
copulas are EACs if no specific.

In order to handle some DMPs with q-ROF informa-
tion, we introduce the following extended Archimedean co-
copula (EACC):
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Definition 6 Let C be a EAC, then extended Archimedean
co-copula (EACC) is defined as

C ∗(c,d) = q
√

1−C q( q
√

1− cq, q√1−dq). (7)

Prior to introducing the novel operations of q-ROFNs,
following conclusion is given firstly.

Theorem 1 For any c1,c2,d1,d2 ∈ [0,1], cq
i + dq

i ≤ 1(i =
1,2), then 0 ≤ C q (c1,c2)+(C ∗ (d1,d2))

q ≤ 1.

Proof. Obviously, 0 ≤ C q (c1,c2) + (C ∗ (d1,d2))
q. So

we just need C q (c1,c2)+(C ∗ (d1,d2))
q ≤ 1.

According to the definitions of EAC and EACC, we get

C q (c1,c2)+(C ∗ (d1,d2))
q

= C q (c1,c2)+

((
1−C q

(
q
√

1−dq
1 ,

q
√

1−dq
2

)) 1
q
)q

=
((

ε−1 (ε(c1)+ ε(c2))
))q

+1−
(

ε−1
(

ε
(

q
√

1−dq
1

)
+ ε
(

q
√

1−dq
2

)))q

As ε is strictly decreasing and cq
i + dq

i ≤ 1(i = 1,2), it fol-
lows that

ε (c1)+ ε (c2)≥ ε
(

q
√

1−dq
1

)
+ ε
(

q
√

1−dq
2

)
.

Therefore

ε−1 (ε (c1)+ ε (c2))≤ ε−1
(

ε
(

q
√

1−dq
1

)
+ ε
(

q
√

1−dq
2

))
.

So, we get

C q (d1,d2)+(C ∗ (d1,d2))
q =

((
ε−1 (ε(c1)+ ε(c2))

))q

+1−
(

ε−1
(

ε
(

q
√

1−dq
1

)
+ ε
(

q
√

1−dq
2

)))q

≤
((

ε−1 (ε(c1)+ ε(c2))
))q

+1−
((

ε−1 (ε(c1)+ ε(c2))
))q

= 1.

3.2 Some EACs and EACCs for q-ROFNs

In this part, according to the generators, we introduce some
special extended Archimedean Copulas (EACs) and extend-
ed Archimedean Co-copulas (EACCs) for q-ROFNs.

(Case I) Let generator of the EAC be ε (a) = (−lnaq)θ ,

where ε−1 (a) =
q
√

e−a
1
θ and θ ≥ 1.

It follows from the generator of EAC CG that

CG(a,b) =
q
√

e−((−lnaq)θ+(−lnbq)θ )
1
θ
.

According to the definition of EAC, we get

C ∗
G(a,b) =

q

√
1−
(

e−((−ln(1−aq))θ+(−ln(1−bq))θ )
1
θ
)
.

When θ = 1, CG and C ∗
G reduce to q-rung TN CG(a,b) = ab

and TC C ∗
G(a,b) =

q
√

aq +bq −aqbq.
(Case II) Let generator of the EAC CC be ε (a)= a−qθ −

1, where ε−1 (a) = (a+ 1)−
1

qθ , where θ > 0. According to
the generator of CC, we get

CC (a,b) =
(

a−qθ +b−qθ −1
)− 1

qθ

and

C ∗
C (a,b) =

q

√
1−
(
(1−aq)−θ +(1−bq)−θ −1

)− 1
θ
.

When θ = 1, CC reduces to TN Tκ and C ∗
C reduces to

Hamacher TC SH under the q-ROF environment

Tκ (a,b) =
ab

q
√

1+(1−aq)(1−bq)
,

SH (a,b) = q

√
aq +bq −2aqbq

1−aqbq .

(Case III) Let generator of the EAC CF be

ε (a) = ln
(

e−θaq −1
e−θ −1

)
,

where ε−1 (a) = q
√

(− 1
θ )ln(e

a (e−θ −1)+1) and θ ̸= 0.
According to the generator of the CF , we get

CF (a,b) = q

√
(− 1

θ
)ln
[
(e−θaq −1)(e−θbq −1)

e−θ −1
+1
]
.

and

C ∗
F (a,b) = q

√
1+

1
θ

ln
[
(e−θ(1−aq)−1)(e−θ(1−bq)−1)

e−θ −1
+1
]
.

(Case IV) Let generator of the EAC CA be

ε (a) = ln
(

1−θ(1−aq)

aq

)
,

where ε−1 (a) = q
√

1−θ
ea−θ , θ ∈ [−1,1]. According to the gen-

erator of CA, we get

CA (a,b) =
ab

q
√

1−θ(1−aq)(1−bq)
.

C ∗
A (a,b) = q

√
1− (1−aq)(1−bq)

1−θaqbq .

When θ = −1, CC reduce to TN Tκ and C ∗
C reduce to Ein-

stein TC Sκ under the q-ROF environment

Tκ (a,b) =
ab

q
√

1+(1−aq)(1−bq)
,

Sκ (a,b) =
q

√
aq +bq

1+aqbq .
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(Case V) Let generator of the EAC CJ be

ε (a) =−ln
(

1− (1− tq)θ
)
,

where ε−1 (a) = q
√

1− (1− e−t)−
1
θ , where θ ≥ 1. Accord-

ing to the generator of CJ , we get

CJ(a,b) =
q

√
1−
(
(1−aq)θ +(1−bq)θ − (1−aq)θ (1−bq)θ

) 1
θ
.

C ∗
J (a,b) =

q
√

(aqθ +bqθ − (ab)qθ )
1
θ .

4 q-Rung Orthopair Fuzzy Banzhaf Choquet-Copula
Aggregation Operators

4.1 BCCAq operator

In this part, we will give the q-Rung orthopair fuzzy Banzhaf
Choquet-Copula aggregation operators (BCCAq) based on
the q-ROFNs and EACs introduced in Section 3. In what
follows, denote

A= {κi = (ui,vi) |i = 1, · · · ,n}

B=
{

κ
′
i =
(

u
′
i,v

′
i

)
|i = 1, · · · ,n

}
as two collections of q-ROFNs if no specific. Prior to in-
troducing the BCCAq operator, the novel operations of q-
ROFNs based on EACs (EACCs) are defined as follows:

Definition 7 Suppose A = (u1,v1) and B = (u2,v2) are two
q-ROFNs, the operations of A and B are defined as follows:

(L1)A⊕C B = (C ∗ (u1,u2) ,C (v1,v2)) ;

(L2)A⊗C B = (C (u1,u2) ,C
∗ (v1,v2)) ;

(L3)kA =

((
1−
(

ε−1
(

kε
(

q
√

1−uq
)))q) 1

q
,ε−1 (kε (v))

)
,

(L4)Ak =

(
ε−1 (kε (u)) ,

(
1−
(

ε−1
(

kε
(

q
√

1− vq
)))q) 1

q

)
.

It is easy to verify that ⊕C ,⊗C satisfy commutative law
and associative law. According Theorem 1 and above defi-
nitions, it is easy obtain the following theorem.

Theorem 2 Let A and B be two q-ROFNs, then for any k >
0, A⊕C B, A⊗C B, kA, Ak are all q-ROFNs.

Definition 8 Let κl ∈ A. A BCCAq is a function from An to
A and

BCCAq (κ1,κ2, · · · ,κn)

= (⊕C )
n
l=1
(
B
(
∆(l)
)
−B

(
∆(l+1)

))
κ(l). (8)

where (l)∈ Sn such that κ(1) ≤ ·· · ≤ κ(n) and ∆(l) = {( j)| j =
l, · · · ,n}, ∆(n+1) = /0, B(∆(l)) is the generalized Banzhaf val-
ue w. r. t. FM s(∆(l)), l = 1, · · · ,n.

For the sake of convenience, in what follows, we denote
Wl as B

(
∆(l)
)
−B

(
∆(l+1)

)
if no specific.

Theorem 3 Let κl ∈ A. Then

BCCAq (κ1,κ2, · · · ,κn)

=

(1−

(
ε−1

(
n

∑
l=1

Wlε( q
√

1−uq
(l))

))q) 1
q

,

ε−1

(
n

∑
l=1

(
Wlε(v(l))

)))
, (9)

where where (l) ∈ Sn such that κ(1) ≤ ·· · ≤ κ(n) and ∆(l) =
{( j)| j = l, · · · ,n}, ∆(n+1) = /0, B(∆(l)) is the generalized
Banzhaf value w. r. t. FM s(∆(l)), l = 1, · · · ,n.

Proof Mathematical induction will be adopt to prove Theo-
rem 3.

(1) It is obvious that Theorem 3 holds when n = 1.
(2) Assume that theorem 3 holds when n = k, that is,

BCCAq (κ1,κ2, · · · ,κk)

=

(1−

(
ε−1

(
k

∑
l=1

Wlε( q
√

1−uq
(l))

))q) 1
q

,

ε−1

(
k

∑
l=1

(
Wlε(v(l))

)))
.

Then, when n = k+1, we get

BCCAq (κ1,κ2, · · · ,κk+1)

= (⊕C )
k
l=1Wlκ(l)⊕C Wk+1κ(k+1)

=

(1−

(
ε−1

(
k

∑
l=1

Wl)ε( q
√

1−uq
(l))

))q) 1
q

,

ε−1

(
k

∑
l=1

(
Wlε(v(l))

)))

+

((
1−
(

ε−1
(

Wlε
(

q
√

1−uq
)))q) 1

q
,ε−1 (Wlε (v))

)

=

(1−

(
ε−1

(
k+1

∑
l=1

Wlε( q
√

1−uq
(l))

))q) 1
q

,

ε−1

(
k+1

∑
l=1

(
Wlε(v(l))

)))
.

Therefore, theorem 3 holds for all n ∈ N+.

Theorem 4 Let κl ∈ A, (l) ∈ Sn such that κ(1) ≤ ·· · ≤ κ(n).

BCCAq (γκ1,γκ2, · · · ,γκn) = γ (BCCAq (κ1,κ2, · · · ,κn)) .

where l = 1, · · · ,n.

Proof By the Theorem 1, 2, we get

γal =

((
1−
(

ε−1
(

γε
(

q
√

1−uq
l

)))q) 1
q

,ε−1 (γε (vl))

)
,
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therefore,

BCCAq (γκ1,γκ2, · · · ,γκn)

=

(1−

(
ε−1

(
γ

(
n

∑
l=1

Wl

)
ε( q
√

1−uq
(l))

))q) 1
q

,

ε−1

(
γ

(
n

∑
l=1

Wl

)
ε
(
v(l)
)))

.

Since

γ (BCCAq (κ1,κ2, · · · ,κn))

= γ

(1−

(
ε−1

(
n

∑
l=1

Wlε( q
√

1−uq
(l))

))q) 1
q

,

ε−1

(
n

∑
l=1

(
Wlε(v(l))

)))

=

(1−

(
ε−1

(
γ

(
n

∑
l=1

Wl

)
ε( q
√

1−uq
(l))

))q) 1
q

,

ε−1

(
γ

(
n

∑
l=1

Wl

)
ε
(
v(l)
)))

= BCCAq (γκ(1),γκ(2), · · · ,γκ(n)
)
.

Theorem 5 Let κl ∈A and κ =(u,v) be a q-ROFN, (l)∈ Sn
such that κ(1) ≤ ·· · ≤ κ(n), then

BCCAq (κ1 ⊕C κ,κ2 ⊕C κ, · · · ,κn ⊕C κ)
= BCCAq (κ1,κ2, · · · ,κn)⊕C κ.

where l = 1, · · · ,n.

Proof As

κl ⊕C κ

=

((
1−
(

ε−1
(

ε
(

q
√

1−uq
l

)
+ ε
(

q
√

1−uq
)))q) 1

q

,

ε−1 (ε (vl)+ ε (v))
)
,

then

BCCAq (κ1 ⊕C κ,κ2 ⊕C κ , · · · ,κn ⊕C κ)

=

(1−

(
ε−1

(
n

∑
l=1

Wl

(
ε( q
√

1−uq
(l))
)
+ ε( q

√
1−uq)

))q) 1
q

,

ε−1

(
n

∑
l=1

Wl
(
ε
(
v(l)
)
+ ε (v)

)))
.

Since ∑n
l=1 Wl = 1, so we get

BCCAq (κ1 ⊕C κ,κ2 ⊕C κ , · · · ,κn ⊕C κ)

=

(1−

(
ε−1

(
n

∑
l=1

Wl

(
ε( q
√

1−uq
(l))
))

+ ε( q
√

1−uq)

)q) 1
q

,

ε−1

(
n

∑
l=1

Wl
(
ε
(
v(l)
))

+ ε (v)

))
.

And

BCCAq (κ1,κ2, · · · ,κn)⊕C κ

=

(1−

(
ε−1

(
n

∑
l=1

Wl

(
ε( q
√

1−uq
(l))
))

+ ε( q
√

1−uq)

)q) 1
q

,

ε−1

(
n

∑
l=1

Wl
(
ε
(
v(l)
))

+ ε (v)

))
.

Therefore,

BCCAq (κ1 ⊕C κ,κ2 ⊕C κ, · · · ,κn ⊕C κ)
= BCCAq (κ1,κ2, · · · ,κn)⊕C κ.

It is easy to obtain the following theorems from Theorem
4 and Theorem 5.

Proposition 1 Let κi ∈A and κ = (u,v) be a q-ROFN, (l)∈
Sn such that κ(1) ≤ ·· · ≤ κ(n), then

BCCAq (γκ1 ⊕C κ,γκ2 ⊕C κ, · · · ,γκn ⊕C κ)
= γBCCAq (κ1,κ2, · · · ,κn)⊕C κ.

where l = 1, · · · ,n.

Proposition 2 Let κi ∈ A and κ ′
i ∈ B, (l) ∈ Sn such that

κ(1) ≤ ·· · ≤ κ(n) and κ ′
(1) ≤ ·· · ≤ κ ′

(n), then

BCCAq
(

κ1 ⊕C κ
′
1,κ2 ⊕C κ

′
2, · · · ,κn ⊕C κ

′
n

)
= BCCAq (κ1,κ2, · · · ,κn)⊕C BCCAq

(
κ

′
1,κ

′
2, · · · ,κ

′
n

)
.

where l = 1, · · · ,n.

Proposition 3 Let κi ∈ A, (l) ∈ Sn such that κ(1) ≤ ·· · ≤
κ(n), If κi = κ = (u,v), then

BCCAq (κ1,κ2, · · · ,κn) = κ = (u,v) .

where l = 1, · · · ,n.

Proof If κi = κ = (u,v) for l = 1, · · · ,n, then

BCCAq (κ1,κ2, · · · ,κn)

=

(1−

(
ε−1

(
n

∑
l=1

Wlε( q
√

1−uq
(l))

))q) 1
q

,

ε−1

(
n

∑
l=1

(
Wlε(v(l))

)))
.

=

(1−

(
ε−1

(
n

∑
l=1

Wlε( q
√

1−uq)

))q) 1
q

,

ε−1

(
n

∑
l=1

(Wlε(v))

))
.

=

((
1−
(

ε−1
(

ε( q
√

1−uq)
))q) 1

q
,ε−1 (ε(v))

)
.

=(u,v)

=κ .
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Definition 9 Let κi ∈ A, κ ′
i ∈ B, A and B are said to be

comonotonic if
κ(1) ≤ ·· · ≤ κ(n) if and only if κ ′

(1) ≤ κ ′
(2) ≤ ·· · ≤ κ ′

(n),

where (l) ∈ Sn such that u(l) ≤ u
′
(l),v(l) ≥ v

′
(l) and l =

1, · · · ,n.

Proposition 4 Let κi ∈ A,κ ′
i ∈ B, (l) ∈ Sn such that κ(1) ≤

·· · ≤ κ(n), if κi and κ ′
i are comonotonic, then

BCCAq (κ1,κ2, · · · ,κn)≤ BCCAq
(

κ
′
1,κ

′
2, · · · ,κ

′
n

)
.

where l = 1, · · · ,n.

Proof On the one hand, since ui ≤ u
′
i, we get q

√
1−uq

(l) ≥
q
√

1− (u′
(l))

q. And ε (x) and ε−1 (x) are monotonicity de-

creasing function, thus ε
(

q
√

1−uq
(l)

)
≤ ε

(
q
√

1− (u′
(l))

q
)

,
furthermore,

n

∑
l=1

(
Wlε

(
q
√

1−uq
(l)

))
≤

n

∑
l=1

(
Wlε

(
q
√

1− (u′
(l))

q
))

.

And so

ε−1

(
n

∑
l=1

(
Wlε

(
q
√

1−uq
(l)

)))

≥ ε−1

(
n

∑
l=1

(
Wlε

(
q
√

1− (u′
(l))

q
)))

,

and(
1−

(
ε−1

(
n

∑
l=1

(
Wlε

(
q
√

1−uq
(l)

))))q) 1
q

≤

(
1−

(
ε−1

(
n

∑
l=1

(
Wlε

(
q
√

1− (u′
(l))

q
))))q) 1

q

.

On the other hand, since vl ≥ v
′
l , we get ε(vl) ≤ ε(v′

l),
and so(

n

∑
l=1

Wlε(vl)

)
≤

(
n

∑
l=1

Wlε(v
′
l)

)
.

Then

ε−1

(
n

∑
l=1

Wlε(vl)

)
≤ ε−1

(
n

∑
l=1

Wlε(v
′
l)

)
.

that is, BCCAq (κ1,κ2, · · · ,κn)≥ BCCAq
(

κ ′
1,κ

′
2, · · · ,κ

′
n

)
.

According to Proposition 3 and Proposition 4, it is easy
to obtain the following property.

Proposition 5 Let κi ∈ A, (l) ∈ Sn such that κ(1) ≤ ·· · ≤
κ(n), then

(mini (ui) ,maxi (vl)) ≤ BCCAq (κ1,κ2, · · · ,κn)

≤ (maxi (ui) ,mini (vl)) ,

where l = 1, · · · ,n.

4.2 Some Special aggregation operators via different
Copulas

In this part, some special cases of BCCAqs based on different
copulas and co-copulas will be given as follows.

(Case 4.2-1) If the generator of C is ε (a) = (−lnaq)θ ,

where ε−1 (a) =
q
√

e−a
1
θ and θ ≥ 1. The BCCAq reduces to

the following:

BCCAq
G (κ1,κ2, · · · ,κn)

=

 q

√
1− e−

(
∑n

l=1 Wl

(
−ln(1−uq

(l))
θ
)) 1

θ
,

q

√
e−
(

∑n
l=1 Wl

(
−ln(vq

(l))
θ
)) 1

θ

 .

(Case 4.2-2) When the generator of C is ε (a) = a−qθ −
1, where ε−1 (a) = (a+ 1)−

1
qθ , where θ > 0. The BCCAq

reduces to the following:

BCCAq
C(κ1,κ2, · · · ,κn) = (u,v)

where

u =
q

√√√√1−

(
n

∑
l=1

Wl

(
(1−uq

(l))
−θ −1

)
+1

)− 1
θ

,

v =
q

√√√√( n

∑
l=1

(
Wl

(
v−qθ
(l) −1

)
+1
))− 1

θ

(Case 4.2-3) If the generator of C is

ε (a) = ln
(

e−θaq −1
e−θ −1

)
,

where ε−1 (a) = q
√

(− 1
θ )ln(e

a (e−θ −1)+1) and θ ̸= 0. It
follows that BCCAq reduces to

BCCAq
F(κ1,κ2, · · · ,κn) = (u,v) .

where

u = q

√√√√√1+
1
θ

ln

1+(e−θ −1)

 n

∏
l=1

(
e−θ(1−uq

(l))

e−θ −1

)Wl
,

v = q

√√√√√− 1
θ

ln

1+(e−θ −1)
n

∏
l=1

(
e−θvq

(l)

e−θ −1

)Wl
.

(Case 4.2-4) If the generator of C is

ε (a) = ln
(

1−θ(1−aq)

aq

)
,
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where ε−1 (a) = q
√

1−θ
ea−θ , θ ∈ [−1,1]. The BCCAq reduces

to the following:

BCCAq
A(κ1,κ2, · · · ,κn) = (u,v) ,

where

u = q

√√√√√√ ∏n
l=1

(
1−θuq

(l)

)Wl
−∏n

l=1

(
1−uq

(l)

)Wl

∏n
l=1

(
1−θuq

(l)

)Wl
−θ ∏n

l=1

(
1−uq

(l)

)Wl
,

v = q

√√√√√√ (1−θ)∏n
l=1

(
vq
(l)

)Wl

∏n
l=1

(
1−θ(1− vq

(l))
)Wl

−θ ∏n
l=1

(
vq
(l)

)Wl

(Case 4.2-5) When the generator of CJ is

ε (a) =−ln
(

1− (1− tq)θ
)
,

where ε−1 (a) = q
√

1− (1− e−t)−
1
θ , where θ ≥ 1. It follows

that BCCAq reduces to

BCCAq
J(κ1,κ2, · · · ,κn) = (u,v) .

where,

u =
q

√√√√(1−
n

∏
l=1

(
1−uqθ

(l)

)Wl

) 1
θ

,

v =
q

√√√√1−

(
1−

n

∏
l=1

(
1− (1− vq

(l))
θ
)Wl

) 1
θ

.

5 q-Rung orthopair Fuzzy Banzhaf Choquet-Copula
geometric operators

5.1 BCCGq operators

In this section, a novel aggregation operator named q-Rung
orthopair fuzzy Banzhaf Choquet-Copula geometric opera-
tor (BCCGq) will be given along with their properties.

Definition 10 Let κl ∈ A. A BCCGq is a function from An

to A and

BCCGq (κ1,κ2, · · · ,κn)

= (⊗C )
n
i=1

((
κ(l)
)(B(∆(l))−B(∆(l+1)))

)
. (10)

where (l)∈ Sn such that κ(1) ≤ ·· · ≤ κ(n) and ∆(l) = {( j)| j =
l, · · · ,n}, ∆(n+1) = /0, B(∆(l)) is a generalized Banzhaf val-
ues w.r.t. FM s(∆(l)), l = 1, · · · ,n.

For the sake of convenience, in what follows, we denote Wl
as B

(
∆(l)
)
−B

(
∆(l+1)

)
if no specific.

Theorem 6 Let κl ∈ A, (l) ∈ Sn such that κ(1) ≤ ·· · ≤ κ(n).
Then

BCCGq (κ1,κ2, · · · ,κn)

=

(
ε−1

(
n

∑
l=1

(
Wlε(u(l))

))
,

(
1−

(
ε−1

(
n

∑
l=1

Wlε( q
√

1− vq
(l))

))q) 1
q
 . (11)

where ∆(l) = {( j)| j = l, · · · ,n}, ∆(n+1) = /0.

Proof Theorem 6 will be proved by mathematical induction
method.

(1) It is obvious that Theorem 6 holds when n = 1.
(2) Suppose theorem 6 holds when n = k, that is,

BCCGq (κ1,κ2, · · · ,κk)

=

(
ε−1

(
k

∑
l=1

(
Wlε(u(l))

))
,

(
1−

(
ε−1

(
k

∑
l=1

Wlε( q
√

1− vq
(l))

))q) 1
q
 .

Then, when n = k+1, we get

BCCGq (κ1,κ2, · · · ,κk+1)

=(⊕C )
k
l=1

((
κ(l)
)Wl
)
⊕C

((
κ(k+1)

)Wk+1
)

=

(
ε−1

(
k

∑
l=1

(
Wlε(u(l))

))
,

(
1−

(
ε−1

(
k

∑
l=1

Wlε( q
√

1− vq
(l))

))q) 1
q


+

(
ε−1 (Wlε (u)) ,

(
1−
(

ε−1
(

Wlε
(

q
√

1− vq
)))q) 1

q

)

=

(
ε−1

(
k+1

∑
l=1

(
Wlε(u(l))

))
,

(
1−

(
ε−1

(
k+1

∑
l=1

Wlε( q
√

1− vq
(l))

))q) 1
q
 .

Therefore, theorem 6 holds for all n ∈ N+.

Proposition 6 Suppose κl ∈A and γ > 0, (l) ∈ Sn such that
κ(1) ≤ ·· · ≤ κ(n).

BCCGq (κγ
1 ,κ

γ
2 , · · · ,κ

γ
n
)
= (BCCAq (κ1,κ2, · · · ,κn))

γ . (12)

where l = 1, · · · ,n.

Proof By the Theorem 1, 2, we get

κγ
(l) =

(
ε−1 (γε

(
u(l)
))

,
(

1−
(

ε−1
(

γε
(

q
√

1− vq
(l)

)))q) 1
q

)
,



10 Yi Liu et al.

therefore,

BCCGq (κγ
1 ,κ

γ
2 , · · · ,κ

γ
n
)

=

(
ε−1

(
γ

(
n

∑
l=1

Wl

)
ε
(
u(l)
))

,

(
1−

(
ε−1

(
γ

(
n

∑
l=1

Wl

)
ε( q
√

1− vq
(l))

))q) 1
q
 .

And so,

(BCCGq (κ1,κ2, · · · ,κn))
γ

=

(
ε−1

(
n

∑
l=1

(
Wlε(v(l))

))
,

(
1−

(
ε−1

(
n

∑
l=1

Wlε( q
√

1−uq
(l))

))q) 1
q
γ

=

(
ε−1

(
γ

(
n

∑
l=1

Wl

)
ε
(
u(l)
))

,

(
1−

(
ε−1

(
γ

(
n

∑
l=1

Wl

)
ε( q
√

1− vq
(l))

))q) 1
q


=BCCGq (κγ
1 ,κ

γ
2 , · · · ,κ

γ
n
)
.

Proposition 7 Let κl ∈A and κ = (u,v) be a q-ROFN, (l)∈
Sn such that κ(1) ≤ ·· · ≤ κ(n), then

BCCGq (κ1 ⊗C κ,κ2 ⊗C κ, · · · ,κn ⊗C κ)
= BCCGq (κ1,κ2, · · · ,κn)⊗C κ.

where l = 1,2, · · · ,n.

Proof As

κl ⊗C κ =
(
ε−1 (ε (ul)+ ε (u)) ,(

1−
(

ε−1
(

ε
(

q
√

1− vq
l

)
+ ε
(

q
√

1− vq
)))q) 1

q
)
,

then

BCCGq (κ1 ⊗C κ,κ2 ⊗C κ, · · · ,κn ⊗C κ)

=

(
ε−1

(
n

∑
l=1

Wl
(
ε
(
u(l)
)
+ ε (v)

))
,

(
1−

(
ε−1

(
n

∑
l=1

Wl

(
ε( q
√

1− vq
(l))
)
+ ε( q

√
1− vq)

))q) 1
q
 .

Since ∑n
l=1 Wl = 1, so we get

BCCGq (κ1 ⊗C κ,κ2 ⊗C κ, · · · ,κn ⊗C κ)

=

(
ε−1

(
n

∑
l=1

Wl
(
ε
(
u(l)
))

+ ε (v)

)
,

(
1−

(
ε−1

(
n

∑
l=1

Wl

(
ε( q
√

1− vq
(l))
)
+ ε( q

√
1− vq)

))q) 1
q
 .

And

BCCGq (κ1,κ2, · · · ,κn)⊗C κ

=

(
ε−1

(
n

∑
l=1

Wl
(
ε
(
u(l)
))

+ ε (u)

)
,

(
1−

(
ε−1

(
n

∑
l=1

Wl

(
ε( q
√

1− vq
(l))
)
+ ε( q

√
1− vq)

))q) 1
q
 .

Therefore,

BCCGq (κ1 ⊗C κ,κ2 ⊗C κ, · · · ,κn ⊗C κ)
= BCCGq (κ1,κ2, · · · ,κn)⊗C κ.

According to Proposition 6 and Proposition 7, it is easy
to obtain the following property.

Proposition 8 Suppose κl ∈A and κ = (u,v) is a q-ROFN,
(l) ∈ Sn such that κ(1) ≤ ·· · ≤ κ(n), then

BCCGq (κγ
1 ⊗C κ,κγ

2 ⊗C κ, · · · ,κγ
n ⊗C κ

)
= (BCCGq (κ1,κ2, · · · ,κn))

γ ⊗C κ.

where l = 1, · · · ,n.

Proposition 9 Let κl ∈ A,κ ′
i ∈ B, (l) ∈ Sn such that κ(1) ≤

·· · ≤ κ(n) and κ ′
1 ≤ κ ′

2 ≤ ·· · ≤ κ ′
n, then

BCCGq
(

κ1 ⊗C κ
′
1,κ2 ⊗C κ

′
2, · · · ,κn ⊗C κ

′
n

)
=(BCCGq (κ1,κ2, · · · ,κn))⊗C

(
BCCGq

(
κ

′
1,κ

′
2, · · · ,κ

′
n

))
.

where l = 1, · · · ,n.

Proposition 10 Let κl ∈ A, (l) ∈ Sn such that κ(1) ≤ ·· · ≤
κ(n). If κl = κ = (u,v) for l = 1, · · · ,n, then

BCCGq (κ1,κ2, · · · ,κn) = κ = (u,v) .

where l = 1, · · · ,n.

Proof If κl = κ = (u,v) for l = 1, · · · ,n, then

BCCGq (κ1,κ2, · · · ,κn)

=

(
ε−1

(
n

∑
l=1

(
Wlε(u(l))

))
,

(
1−

(
ε−1

(
n

∑
l=1

Wlε( q
√

1− vq
(l))

))q) 1
q


=

(
ε−1

(
n

∑
l=1

(Wlε(u))

)
,

(
1−

(
ε−1

(
n

∑
l=1

Wlε( q
√

1− vq)

))q) 1
q


=

(
ε−1 (ε(u)) , q

√
1−
(

ε−1
(

ε( q
√

1− vq)
))q

)
= (u,v) = κ.
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Proposition 11 Let κl ∈A,κ ′
l ∈B. If κl and κ ′

l are comono-
tonic, then

BCCGq (κ1,κ2, · · · ,κn)≤ BCCGq
(

κ
′
1,κ

′
2, · · · ,κ

′
n

)
.

Proof On the one hand, since u(l) ≤ u
′
(l), we get ε(u(l)) ≥

ε(u′
(l)), and so(

n

∑
l=1

Wlε(u(l))

)
≥

(
n

∑
l=1

Wlε(v
′
(l))

)
.

Then

ε−1

(
n

∑
l=1

Wlε(u(l))

)
≤ ε−1

(
n

∑
l=1

Wlε(u
′
(l))

)
.

On the other hand, since v(l) ≥ v
′
(l), we get q

√
1− vq

(l) ≤
q
√

1− (v′
(l))

q. And ε (x) and ε−1 (x) are monotonicity de-

creasing function, thus ε
(

q
√

1− vq
(l)

)
≥ ε

(
q
√

1− (v′
(l))

q
)

,
furthermore,

n

∑
l=1

(
Wlε

(
q
√

1− vq
(l)

))
≥

n

∑
l=1

(
Wlε

(
q
√

1− (v′
(l))

q
))

.

And so

ε−1

(
n

∑
l=1

(
Wlε

(
q
√

1− vq
(l)

)))

≤ ε−1

(
n

∑
l=1

(
Wlε

(
q
√

1− (v′
(l))

q
)))

.

and

(
1−

(
ε−1

(
n

∑
l=1

(
Wlε

(
q
√

1− vq
(l)

))))q) 1
q

≥

(
1−

(
ε−1

(
n

∑
l=1

(
Wlε

(
q
√

1− (v′
(l))

q
))))q) 1

q

.

that is, BCCGq (κ1,κ2, · · · ,κn)≥ BCCGq
(

κ ′
1,κ

′
2, · · · ,κ

′
n

)
.

The following property can be obtained easily from Propo-
sition 10 and Proposition 11.

Proposition 12 Let κi ∈ A, (l) ∈ Sn such that κ(1) ≤ ·· · ≤
κ(n). Then

(mini (ui) ,maxi (vl)) ≤ BCCGq (κ1,κ2, · · · ,κn)

≤ (maxi (ui) ,mini (vl)) .

where l = 1, · · · ,n.

5.2 Family of BCCGq

In this part, some special cases of BCCGqs based on differ-
ent EACs and EACCs will be given as follows:

(Case 5.2-1) When generator of the EAC CG is ε (a) =

(−lnaq)θ , where ε−1 (a) =
q
√

e−a
1
θ and θ ≥ 1. The BCCGq

reduces to the following:

BCCGq
G (κ1,κ2, · · · ,κn)

=

 q

√
e−
(

∑n
l=1 Wl

(
−ln(uq

(l))
θ
)) 1

θ
,

q

√
1− e−

(
∑n

l=1 Wl

(
−ln(1−vq

(l))
θ
)) 1

θ

 .

(Case 5.2-2) If the generator of the EAC is

ε (a) = a−qθ −1,

where ε−1 (a) = (a+ 1)−
1

qθ , where θ > 0. The BCCGq re-
duces to the following:

BCCGq
C(κ1,κ2, · · · ,κn) = (u,v) .

where

u =
q

√√√√( n

∑
l=1

(
Wl

(
u−qθ
(l) −1

)
+1
))− 1

θ

,

v =
q

√√√√1−

(
n

∑
l=1

Wl

(
(1− vq

(l))
−θ −1

)
+1

)− 1
θ

.

(Case 5.2-3) When the generator of the EAC CF is

ε (a) = ln
(

e−θaq −1
e−θ −1

)
,

where ε−1 (a) = q
√

(− 1
θ )ln(e

a (e−θ −1)+1) and θ ̸= 0. It
follows that BCCGq reduces to

BCCGq
F(κ1,κ2, · · · ,κn) = (u,v) .

where

u = q

√√√√√− 1
θ

ln

1+(e−θ −1)
n

∏
l=1

(
e−θuq

(l) −1
e−θ −1

)Wl
,

v = q

√√√√√1+
1
θ

ln

1+(e−θ −1)
n

∏
l=1

(
e−θ(1−vq

(l))−1
e−θ −1

)Wl

+1

.

(Case 5.2-4) When generator of the EAC CA be ε (a) =
ln
(

1−θ(1−aq)
aq

)
, where ε−1 (a) = q

√
1−θ
ea−θ , θ ∈ [−1,1]. The

BCCGq reduces to the following:

BCCGq
A(κ1,κ2, · · · ,κn) = (u,v)
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where,

u = q

√√√√√√ (1−θ)∏n
l=1

(
uq
(l)

)Wl

∏n
l=1

(
1−θ(1− vq

(l))
)Wl

−θ ∏n
l=1

(
uq
(l)

)Wl
,

v = q

√√√√√√ ∏n
l=1

(
1−θuq

(l)

)Wl
−∏n

l=1

(
1− vq

(l)

)Wl

∏n
l=1

(
1−θuq

(l)

)Wl
−θ ∏n

l=1

(
1− vq

(l)

)Wl
.

(Case 5.2-5) When generator of the EAC CJ is

ε (a) =−ln
(

1− (1− tq)θ
)
,

where ε−1 (a) = q
√

1− (1− e−t)−
1
θ with θ ≥ 1. The BCCGq

reduces to the following:

BCCGq
J(κ1,κ2, · · · ,κn) = (u,v) .

where

u =
q

√√√√1−

(
1−

n

∏
l=1

(
1− (1−uq

(l))
θ
)Wl

) 1
θ

,

v =
q

√√√√(1−
n

∏
l=1

(
1− vqθ

(l)

)Wl

) 1
θ

.

6 Approach for MADM with q-ROF information

In this part, we will give an approach for MADM with q-
ROF information. Generally speaking, MADM problem is
devoted to seek the best one from finite alternatives. MAD-
M approach with the intent of managing the MADM prob-
lems with q-ROF information, especially the MADM prob-
lems. In general, a MADM problem consists of the follow-
ing parts: (1) Alternatives set: Ξ = {Ψ1, · · · ,Ψm}; (2) At-
tributes (Criteria) set: A = {κ1, · · · ,κn} with weight vector
(w1, · · · ,wn) with ∑n

i=1 wi = 1. Decision maker evaluate al-
ternative Ψi ∈ Ξ (i = 1,2, · · · ,m) by applying q-ROFNs, the
attribute values of alternative Ψi under the attribute κ j can be
presented by a q-ROFN γi j = (ui j,vi j), where uq

i j + vq
i j ≤ 1.

The decision matrix is listed as follows

R = (γi j)m×n =


(u11,v11) (u12,v12) · · · (u1n,v1n)
(u21,v21) (u22,v22) · · · (u2n,v2n)

. . . . . . . . . . . .

(um1,vm1) (um2,vm2) · · · (umn,vmn)



6.1 Determination of Attributes (sets)’ FM

Maximizing Deviations Method has been widely used in
MADM model to ordain the weight of attribute. In this sec-
tion, we use this model to ordain the attributes weight in

MADM problems with q-ROF information. Firstly, we give
the distance measure between two q-ROFNs:

Let A = (u1,v1) and B = (u2,v2) be two q-ROFNs. Then
Euclidean distance (d(A, B)) of A and B is given as:

d (A,B) =
1
2

[∣∣∣∣(u1)
q − (u2)

q
∣∣∣∣2 + ∣∣∣∣(v1)

q − (v2)
q
∣∣∣∣2] 1

2
, (13)

Based on the above defined distance measures of two
q-ROFNs, we establish the maximizing deviation model to
determine the FM of attribute or attribute set. There are two
cases need to be discussed.

(1) Fuzzy measure incompletely unknown
When the FM of attribute is incompletely unknown, the

FMs of each attribute and power sets can obtained by the
following non-linear programme model

maxD(B) =
n

∑
j=1

m

∑
i=1

m

∑
k=1

d
(
γi j,γk j

)
B({κ j}).

s.t


s({κ j}) ∈ Rκ j , j = 1, · · · ,n;
s( /0) = 0,s(C) = 1;
s(E)≤ s(F),∀E,F ⊆ A,E ⊆ F.

(14)

where d
(
γi j,γk j

)
is the distance of q-ROFNs γi j and γk j,

s({κ j}) is FM of the attribute κ j, B({κ j}) is the Banzhaf
function of attribute κ j and Rκ j is the range of FM of at-
tribute κ j.

(2) Fuzzy measure completely unknown
When the FM of attribute is completely unknown, we

can determine the FM of each attribute and power set by the
following algorithm:

Step 1. Building non-linear programme model to obtain
optimal weight vector (w1,w2, · · · ,wn) of attributes;

maxD(B) =
n

∑
j=1

m

∑
i=1

m

∑
k=1

d
(
γi j,γk j

)
w j.

s.t

{
∑n

j=1 (w j)
2 = 1,

w j ≥ 0, j = 1, · · · ,n.
(15)

where d
(
γi j,γk j

)
is the distance of q-ROFNs γi j and γk j.

Step 2. Let s(ai) = si. We need to determine the value of
λ by the following equation:

λ +1 =
n

∏
l=1

(1+λ si). (16)

Step 3. Calculate the FM of all attributes and attribute sets
by the following equation:

s(E
∪

F) = s(E)+ s(F)+λ s(E)s(F). (17)

Step 4. Calculate the (generalized) Banzhaf values of at-
tributes and attribute sets by the Eq. (1).
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6.2 An algorithm for MADM with q-ROF information

In this subsection, an algorithm for MADM problems with
q-ROF information will be devised and is stated as follows:

Algorithm for MADM with q-ROF information

Step 1. A modified decision matrix R̂ = (γ̂i j)m×n is ob-
tained by in the light of Eq.(17):

γ̂i j = (ûi j, v̂i j) =

{
γi j = (ui j,vi j) ,κ j is benefit type
(γi j)

c = (vi j,ui j) ,κ j is cost type.
(18)

Step 2. Reorder all q-ROFNs in term of the following
comparison rule [15] of q-ROFNs.

Let a ∈ A, score function Sc(a) = uq − vq and accuracy
function Ac(a) = uq + vq. For any a,b ∈ A,

If Sc(a)> Sc(b), then a > b;
If Sc(a)< Sc(b), then a < b;
If Sc(a) = Sc(b) and Ac(a)> Ac(b), then a > b;
If Sc(a) = Sc(b) and Ac(a)< Ac(b), then a < b;
If Sc(a) = Sc(b) and Ac(a) = Ac(b), then a = b.

Step 3. Determining the FM of attribute set A by the fol-
lowing Steps:

Step 3-1: Building non-linear programme model to
obtain optimal weight vector of attribute by model (14) or
model (15);

Step 3-2: Determining the value of λ by the Eq. (16);
Step 3-3: Determining the FM of all attributes and

attribute sets by Eq. (1).
Step 4. Determining the generalized Banzhaf values of

attribute set A.
Step 5. Aggregating all γ̂i j = (ui j,vi j)( j = 1, · · · ,n) in

the ith row of the decision matrix (γ̂i j)m×n into collective
values γi = (ui,vl)(i = 1, · · · ,m) of the alternatives Ai by
proposed BCCAq operators or BCCGq operators.

Step 6. Calculating the score values of alternatives by
score function and accuracy function.

Step 7. Sorting the alternatives according to the principle
of comparison, and gaining the best alternative.

According to algorithm of MADM with q-ROF men-
tioned above, the flowchart of decision process can be de-
signed as Fig.1.

7 Case Study

In this section, we will give a MADM problem in which
three cases will be considered. Consequently, the influence
of parameters change on the ranking order will be conduct-
ed; Finally, the comparison analysis will be carried out with
existing MADM methods and merits of the proposed ap-
proaches also summarized in this section.

Fig. 1 The flowchart of MADM approach with q-ROF information

7.1 Illustrative Examples

Renewable energy is an important components of the ener-
gy system. It has the characteristics of wide distribution of
resources, great development potential, small environmental
impact and sustainable utilization. It is conducive to the har-
monious development of human and nature. At present, the
development and utilization of renewable energy has proved
to be a significant measure to ensure energy security, en-
hance environmental protection and tackle climate change.
With the development of economy and society, the global
energy demand continues to grow, and the energy resources
and environmental problems become increasingly salient.
Accelerating the development and utilization of renewable
energy has become the only way for the world to deal with
the increasingly serious energy and environmental problem-
s. In 2019, China’s consumption of renewable energy in-
creased by more than any other country, to 25% percent of
the total. Solar energy generation consumption accounted
for 50% of China’s total renewable energy growth, followed
by wind power, which accounted for about 40%. There are
five clean energy generation projects in Sichuan Province
of China, they are: Ψ1 : Solar energy; Ψ2: Natural gas; Ψ3
Hydroelectricity; Ψ4: Non-fossil energy; Ψ5: Wind energy.
Among these projects, four attributes should be considered:
κ1: technical capability; κ2: Environment; κ3: Policy envi-
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ronment, that is, consistency of the project with current na-
tional policies; κ4: Economic. The original decision matrix
with q-ROF information is listed in Table 1.

Table 1 Original q-ROF decision matrix

Alternatives κ1 κ2 κ3 κ4

Ψ1 (0.5, 0.4) (0.5, 0.3) (0.2, 0.6) (0.4, 0.4)
Ψ2 (0.7, 0.3) (0.7, 0.2) (0.6, 0.2) (0.6, 0.2)
Ψ3 (0.5, 0.4) (0.6, 0.4) (0.6, 0.2) (0.5, 0.3)
Ψ4 (0.8, 0.2) (0.7, 0.2) (0.4, 0.2) (0.5, 0.2)
Ψ5 (0.4, 0.3) (0.4, 0.2) (0.4, 0.5) (0.4, 0.6)

Example 1 In above decision making problem, if the at-
tributes are mutual independence, and the weight vector of
attributes is (0.3,0.2,0.4,0.1), we can solve the DMP by the
following decision process.

Decision-making Process for Example 1

Step 1. Because all attributes are benefit-type, so the nor-
malized decision matrix is the same with original decision
making matrix;

Step 2. Calculating the score values of q-ROFNs and re-
order the decision making matrix is listed in Table 2.

Table 2 Modified q-ROF decision matrix

Alternatives κ(1) κ(2) κ(3) κ(4)

Ψ1 (0.2, 0.6) (0.4, 0.4) (0.5, 0.4) (0.5, 0.3)
Ψ2 (0.6, 0.3) (0.6, 0.2) (0.7, 0.3) (0.7, 0.2)
Ψ3 (0.5, 0.4) (0.5, 0.3) (0.6, 0.4) (0.6, 0.2)
Ψ4 (0.4, 0.2) (0.5, 0.2) (0.7, 0.2) (0.8, 0.2)
Ψ5 (0.4, 0.6) (0.4, 0.5) (0.4, 0.3) (0.4, 0.2)

Step 3. Determining the FM of each attribute (or at-
tribute sets). As all attributes are mutual independence and
the weight vector of the attribute is (0.3,0.2,0.4,0.1), there-
fore

s(κ1) = 0.3,s(κ2) = 0.2,s(κ3) = 0.4,s(κ4) = 0.1,

s(κ1,κ2) = 0.5,s(κ1,κ3) = 0.7,s(κ1,κ4) = 0.4,

s(κ2,κ3) = 0.6,s(κ2,κ4) = 0.3,s(κ3,κ4) = 0.5,

s(κ1,κ2,κ3) = 0.9,s(κ1,κ2,κ4) = 0.6,s(κ1,κ3,κ4) = 0.8,

s(κ2,κ3,κ4) = 0.7,s(κ1,κ2,κ3,κ4) = 1.

Step 4. Calculating the generalized Banzhaf value of at-
tribute sets, the results are

B(κ1) = 0.3,B(κ2) = 0.2,B(κ3) = 0.4,B(κ4) = 0.1,

B(κ1,κ2) = 0.5,B(κ1,κ3) = 0.7,B(κ1,κ4) = 0.4,

B(κ2,κ3) = 0.6,B(κ2,κ4) = 0.3,B(κ3,κ4) = 0.5,

B(κ1,κ2,κ3) = 0.9,B(κ1,κ2,κ4) = 0.6,

B(κ1,κ3,κ4) = 0.8,B(κ2,κ3,κ4) = 0.7,

B(κ1,κ2,κ3,κ4) = 1.

Step 5. Aggregating individual decision matrix R̃ = (γ̂i j)5×4
into a collective decision matrix R̂ = (γ̂i)5×1 by Eq.(21)(We
choose Gumbel type aggregation operator when θ = 1 and
q = 2) and listed in Table 3.

Table 3 Overall LPF Decision matrix

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

(0.4504, 0.3046) (0.7297, 0.1421) (0.7386, 0.0732) (0.7286, 0.0648) (0.519, 0.2544)

Step 6. Calculating the score function:

Sc(Ψ1) = 0.1100, Sc(Ψ2) = 0.5171, Sc(Ψ3) = 0.5401,
Sc(Ψ4) = 0.5267, Sc(Ψ5) = 0.2047.

Step 7. Sorting the alternatives on the basis of the com-
parison principle, the rank of alternatives is Ψ3 >Ψ4 >Ψ2 >
Ψ5 >Ψ1, and so Ψ3 is the best alternative, which means that
Hydroelectricity is the best choice in Sichuan Province.

Example 2 In Example 1, if the attributes are not mutual
independence, but there are certain relationships among the
attributes, and the FM of attributes is

s({κ1}) ∈ [0.3,0.4],s({κ2}) ∈ [0.15,0.25],

s({κ3}) ∈ [0.2,0.25],s({κ4}) ∈ [0.25,0.5]

we can solve the decision making problem by the following
decision process.

Decision-making Process for Example 2
Step 1-Step 2 are the same as Example 1.

Step 3. Construct the nonlinear program model to deter-
mine the fuzzy measure.

Step 3.1. Calculate the distance of two q-ROFNs and
construct the following nonlinear program model according
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to Eq. (35)

maxD(B) =−0.505(s(κ1)− s(κ2,κ3,κ4))

−0.655(s(κ2)− s(κ1,κ3,κ4))

−0.665(s(κ3)− s(κ1,κ2,κ4))

−0.695(s(κ4)− s(κ1,κ2,κ3))

−0.1(s(κ3,κ4)− s(κ1,κ2))

−0.09(s(κ2,κ4)− s(κ1,κ3))

−0.06(s(κ2,κ3)− s(κ1,κ4))+1.26.

s.t


s({κ1}) ∈ [0.3,0.4],s({κ2}) ∈ [0.15,0.25],
s({κ3}) ∈ [0.2,0.25],s({κ4}) ∈ [0.25,0.5];
s( /0) = 0,s(κ1,κ2,κ3,κ4) = 1;
s(E)≤ s(F),∀E,F ⊆ A,E ⊆ F.

Step 3.2. Solve above nonlinear programme model
and get the FM:

s(κ1) = 0.3,s(κ2) = 0.15,s(κ3) = 0.2,s(κ4) = 0.25,

s(κ1,κ2) = s(κ1,κ3) = s(κ1,κ4) = 1,s(κ2,κ3) = 0.2,

s(κ2,κ4) = s(κ3,κ4) = 0.25,s(κ1,κ2,κ3)

= s(κ1,κ2,κ4) = s(κ1,κ3,κ4) = s(κ2,κ3,κ4)

= s(κ1,κ2,κ3,κ4) = 1.

Step 4. Determining the generalized Banzhaf values and
list as follows:

B(κ1) = 0.625,B(κ2) = 0.2,B(κ3) = 0.2125,

B(κ4) = 0.2375,B(κ1,κ2) = 0.825,

B(κ1,κ3) = 0.8375,B(κ1,κ4) = 0.8625,

B(κ2,κ3) = 0.4125,B(κ2,κ4) = 0.4375,

B(κ3,κ4) = 0.45,B(κ1,κ2,κ3) = 0.875,

B(κ1,κ2,κ4) = 0.9,B(κ1,κ3,κ4) = 0.925,

B(κ2,κ3,κ4) = 0.85,B(κ1,κ2,κ3,κ4) = 1.

Step 5. Aggregating individual decision matrix R̃ = (γ̂i j)5×4
into a collective decision matrix R̂ = (γ̂i)5×1 by Eq.(21)(We
choose Gumbel type aggregation operator when θ = 1 and
q = 2) and listed in Table 4.

Table 4 Overall q-ROF Decision matrix

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

(0.4807, 0.2385) (0.7746, 0.0873) (0.6143, 0.1983) (0.8662, 0.0129) (0.5221, 0.2438)

Step 6. Calculating the score values of Ψi(i = 1, · · · ,5),
Sc(Ψ1) = 0.1742, Sc(Ψ2) = 0.5943, Sc(Ψ3) = 0.3380,

Sc(Ψ4) = 0.7501, Sc(Ψ5) = 0.2131.
Step 7. Sorting the alternatives, the rank of alternatives

is Ψ4 >Ψ2 >Ψ3 >Ψ5 >Ψ1, and so Ψ4 is the best alternative.
As can be seen from the above results that the ranking

order is not the same with results obtained by other decision-
making approach [12,14,69,70]. The reasons for the dif-
ferent order are as follows: In Example 2, s(κ1,κ2) = 1 >

s(κ1)+ s(κ2) = 0.45, s(κ1,κ3) = 1 > s(κ1)+ s(κ3) = 0.5,
s(κ1,κ4) = 1 > s(κ1)+ s(κ4) = 0.55, that is, there are com-
plementary relationships between attribute C1 and C2, C1
and C3, C1 and C4. However, these approach [12,14,69,70]
just tackle some MADM problems in which all attributes
are mutually independent, that is, all attribute should satisfy
the condition: s(E

∪
F) = s(E)+ s(F). Obviously, the result

obtained by these approach [12,14,69,70] is unreasonable
under the condition that the attributes are not mutual inde-
pendence.

Example 3 In Example 1, if the attributes are not mutual
independence and the FM is completely unknown, we can
solve the DMP by the following decision process.

Decision-making Process for Example 3.
Step 1-Step 2 are the same as Example 1.
Step 3. Constructing the nonlinear program model to de-

termine the FM.
Step 3-1. Calculating the distance of two q-ROFNs and

construct the following nonlinear program model according
to Eq. (36)

maxD(B) = 3.02w1 +2.42w2 +2.38w3 +2.26w4.

s.t

{
∑4

j=1 (w j)
2 = 1,

w j ≥ 0, j = 1,2,3,4.

to obtain the optimal weight vector of attributes
(w1,w2,w3,w4) = (0.9512,0.7622,0.7496,0.7118).

Step 3-2. Let s(κ1) = 0.9512,s(κ2) = 0.7622,s(κ3) =
0.7496,s(κ4) = 0.7118. We can obtain the λ =−0.9991.

Step 3-3. Calculating the FMs of attributes and at-
tribute sets and listed as follows:

s(κ1) = 0.9512,s(κ2) = 0.7622,s(κ3) = 0.7496,

s(κ4) = 0.7118,s(κ1,κ2) = 0.9891,s(κ1,κ3) = 0.9884,

s(κ1,κ4) = 0.9866,s(κ2,κ3) = 0.9409,s(κ2,κ4) = 0.9320,

s(κ3,κ4) = 0.9283,s(κ1,κ2,κ3) = 0.9979,

s(κ1,κ2,κ4) = 0.9975,s(κ2,κ3,κ4) = 0.9836,

s(κ1,κ2,κ3,κ4) = 1.

Step 3-4. Determining the generalized Banzhaf values and
list as follows:

B(κ1) = 0.9512,B(κ2) = 0.7622,B(κ3) = 0.7496,

B(κ4) = 0.7118,B(κ1,κ2) = 0.3987,

B(κ1,κ3) = 0.3944,B(κ1,κ4) = 0.3821,

B(κ2,κ3) = 0.3182,B(κ2,κ4) = 0.3094,

B(κ3,κ4) = 0.3017,B(κ1,κ2,κ3) = 0.6431,

B(κ1,κ2,κ4) = 0.6239,B(κ1,κ3,κ4) = 0.6176,

B(κ2,κ3,κ4) = 0.5162,B(κ1,κ2,κ3,κ4) = 1.

Step 5. Aggregating individual decision matrix R̃ = (γ̂i j)5×4
into a collective decision matrix R̂ = (γ̂i)5×1 by Eq.(17)(We
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Table 5 Overall q-ROF Decision matrix

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

(0.4359, 0.2977) (0.7443, 0.1191) (0.6105, 0.2138) (0.7050, 0.0554) (0.5018, 0.2930)

choose Gumbel type aggregation operator when θ = 1 and
q = 2) and listed in Table 5.

Step 6. Calculating the score values of Ψi(i = 1, · · · ,5):
Sc(Ψ1) = 0.1014, Sc(Ψ2) = 0.5426, Sc(Ψ3) = 0.3270,

Sc(Ψ4) = 0.4940, Sc(Ψ5) = 0.1659.
Step 7. Ranking the alternatives on the basis of the com-

parison rules, the order of alternatives is Ψ2 > Ψ4 > Ψ3 >
Ψ5 >Ψ1, and so Ψ2 is the best alternative.

7.2 Discussions of Parameters

In this subsection, the effect of parameter changes on the
results will be discussed. We take Example 3 as an example
to analysis the effect of parameter under the FM completely
unknown.

(1) When θ = 1 in Gumbel type AOs, the influences of
parameter q on the ranking of alternatives, the sorting results
are listed in Table 6.

Table 6 Overall assessment of alternatives by BCCAq when q changes
and ranking order

Parameter S(Ψi)(i = 1,2, · · · ,5) Ranking order
Sc(Ψ1) Sc(Ψ2) Sc(Ψ3) Sc(Ψ4) Sc(Ψ5)

q = 2 0.1014 0.5426 0.3270 0.4940 0.1659 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
q = 5 0.0129 0.1533 0.0591 0.1494 0.0148 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
q = 10 0.0004 0.0171 0.0030 0.0337 0.0002 Ψ4 >Ψ2 >Ψ3 >Ψ1 >Ψ5
q = 20 3.1279E-07 0.0003 1.25612E-05 0.0029 1.82727E-08 Ψ4 >Ψ2 >Ψ3 >Ψ1 >Ψ5
q = 100 -2.39251E-53 1.11022E-16 -1.0198E-67 4.83646E-11 -4.90573E-54 Ψ4 >Ψ2 >Ψ3 >Ψ5 >Ψ1

It is showed from Table 6 that the desirable one will be
slightly changed between Ψ2 and Ψ4.

(2) We fix q = 2 in the Gumbel type AOs, the influences
of parameter θ on the ranking of alternatives, the sorting
results are listed in Table 7.

Table 7 Overall assessment of alternatives by BCCAq when θ changes
and ranking order

Parameter S(Ψi)(i = 1,2, · · · ,5) Ranking order
Sc(Ψ1) Sc(Ψ2) Sc(Ψ3) Sc(Ψ4) Sc(Ψ5)

θ = 1 0.1014 0.5426 0.3270 0.4940 0.1659 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
θ = 2 0.3669 0.6692 0.5359 0.6571 0.4241 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
θ = 5 0.4433 0.5781 0.5165 0.5811 0.4676 Ψ4 >Ψ2 >Ψ3 >Ψ5 >Ψ1
θ = 10 0.4067 0.4767 0.4442 0.4795 0.4189 Ψ4 >Ψ2 >Ψ3 >Ψ1 >Ψ5
θ = 100 0.2956 0.3028 0.2994 0.3032 0.2969 Ψ4 >Ψ2 >Ψ3 >Ψ5 >Ψ1

It is showed from Table 7 that the desirable one will be
changed slightly still between Ψ2 and Ψ4 when θ changes.
The ranking results also can be showed in following Fig. 2.

Fig. 2 Overall assessment of alternatives by BCCAq when θ changes
and ranking order

Remark 2 (1) It follows from Table 6 that the value of the
parameter q should not be too large when a type of AOs is
chosen to fusion decision information, because the bigger
the q, the smaller the difference in scores of alternatives.

(2) It follows from Table 7 and Fig. 2 that the value of
the parameter θ should not be too large when a type of AOs
is chosen to fusion decision information, because the bigger
the θ , the smaller the difference in scores of alternatives.
It is seen from Fig.2 that there are better discrimination of
score of alternatives when θ ∈ [1,10]. This merely means
that degree of differentiation of the scores of alternatives, but
does not mean that the orders of alternatives will change.

7.3 Analyses and Comparisons

In the upcoming contents, proposed MADM approach will
be analyzed and comparisons with existing approaches also
be investigated.

Firstly, In our proposed AOs, which are a family of AOs
with five different types. Therefore, we can use some special
cases of the proposed five AOs to sort alternatives when q =
2 and θ takes different value.

(1) There always be an accompanied parameter in differ-
ent BCCAqs. We use different types of the proposed BCCAq

AOs, the ranking results are listed in the following Table 8.

Table 8 Overall assessment of alternatives by BCCAq and ranking or-
der

AOs Type Parameters S(Ψi)(i = 1,2, · · · ,5) Ranking order
Sc(Ψ1) Sc(Ψ2) Sc(Ψ3) Sc(Ψ4) Sc(Ψ5)

Gumbel θ = 1 0.1014 0.5426 0.3270 0.4940 0.1659 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Clayton θ = 1 0.0561 0.4754 0.2819 0.4699 0.1352 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Frank θ =−1 0.1996 0.6800 0.4611 0.6239 0.2853 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Ali-Mikhai-Hap θ = 1 0.1223 0.5781 0.3505 0.5104 0.1953 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Joe θ = 1 0.1014 0.5426 0.3270 0.4940 0.1659 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1

It is seen from Table 8 that the order of alternatives re-
mains unchanged when different types EACs and EACCs
are chosen. The ranking results obtained by different types
of AOs, the results can be showed in Fig.3.
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Fig. 3 Overall assessment of alternatives by different BCCAq and rank-
ing order

(2) In Section 6, we introduced the BCCGq aggregation
operators. We use different types of BCCGq operators in
Step 5, all ranking results are listed in the following Table
9 under q = 2.

Table 9 Overall assessment of alternatives by BCCGq and ranking or-
der

AOs Type Parameters S(Ψi)(i = 1,2, · · · ,5) Ranking order
Sc(Ψ1) Sc(Ψ2) Sc(Ψ3) Sc(Ψ4) Sc(Ψ5)

Gumbel θ = 1 -0.3777 0.0731 -0.03209 0.0126 -0.3717 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Clayton θ = 1 -0.3392 0.1594 0.0223 0.0684 -0.2969 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Frank θ =−1 -0.3888 0.0556 -0.0489 -0.0026 -0.3805 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Ali-Mikhai-Hap θ = 1 -0.3976 0.0919 -0.058 -0.0095 -0.4023 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Joe θ = 1 -0.3777 0.0688 -0.03209 0.0126 -0.3717 Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1

It is seen from Table 9 that the order of alternatives re-
mains unchanged when different types EACs and EACCs
are chosen. The ranking results obtained by different types
of AOs, the results can be showed in Fig.4.

Secondly, compared with some existing methods.
(1) Xing et. al [70] introduced Pythagorean Choquet-

Frank AOs and built related decision making approach, the
weight of all attributes are known in this approach. How-
ever, Tao et al [51] put forward to a new decision model
based intuitionistic fuzzy Coupla AOs and the weight infor-
mation completely unknown in this DMP. In order to com-
pare with Xing’s method and Tao’s approach, respectively,
we analyze the efficiency of our proposed method from the
following two aspects, that is, FM known and FM complete-
ly unknown:

(Case I. FM information known.) We use the proposed
MADM approach to address the following DMP which is
from reference [70]. All original data is from this work. We
also use the FMs of all attributes or attribute sets. And the
Banzhaf values of attributes and attribute sets are calculated

Fig. 4 Overall assessment of alternatives by different BCCGq and
ranking order

and listed as follows:

B(κ1) = 0.1795,B(κ2) = 0.2725,B(κ3) = 0.1798,

B(κ4) = 0.3675,B(κ1,κ2) = 0.452,B(κ1,κ3) = 0.3593,

B(κ1,κ4) = 0.547,B(κ2,κ3) = 0.4523,

B(κ2,κ4) = 0.64,B(κ3,κ4) = 0.5473,

B(κ1,κ2,κ3) = 0.6315,B(κ1,κ2,κ4) = 0.82,

B(κ1,κ3,κ4) = 0.727,B(κ2,κ3,κ4) = 0.82,

B(κ1,κ2,κ3,κ4) = 1.

we use Gumbel type AO to address this MADM problem
when θ = 1 and q = 2, the aggregation results are listed in
Table 10.

Table 10 Aggregation Results

Ψ1 Ψ2 Ψ3 Ψ4

(0.7910,0.4086) (0.7960, 0.1490) (0.8037, 0.1801) (0.8254, 0.1757)

And so the score values are Sc(Ψ1) = 0.4587,Sc(Ψ2) =
0.6114,Sc(Ψ3) = 0.6135,Sc(Ψ4) = 0.6504.

Therefore, we can obtain the rank of all alternatives is
Ψ4 >Ψ3 >Ψ2 >Ψ1, which is the same with [70]’s method.
It also shows the effectiveness and feasibility of our method
under weight known.

(Case II. FM information completely unknown.) We
use the proposed MADM approach to address the following
DMP which is from the reference [51]. All original data is
from this work and the weight information is completely un-
known. The decision processes of this DMPs are the same
with Exampl 3, so, the processes of the DMPs are omitted
here. The Banzhaf values of attributes and attribute sets are
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calculated and listed as follows:

B(κ1) = 0.1617,B(κ2) = 0.2188,B(κ3) = 0.1409,

B(κ4) = 0.1821,B(κ5) = 0.1333,B(κ1,κ2) = 0.3744,

B(κ1,κ3) = 0.3027,B(κ1,κ4) = 0.3439,

B(κ1,κ5) = 0.2951,B(κ2,κ3) = 0.3598,

B(κ2,κ4) = 0.4009,B(κ2,κ5) = 0.3512,

B(κ3,κ4) = 0.3230,B(κ3,κ5) = 0.2806,

B(κ4,κ5) = 0.3154,B(κ1,κ2,κ3) = 0.5505,

B(κ1,κ2,κ4) = 0.5854,B(κ1,κ2,κ5) = 0.5471,

B(κ1,κ3,κ4) = 0.4995,B(κ1,κ3,κ5) = 0.4894,

B(κ1,κ4,κ5) = 0.4910,B(κ2,κ3,κ4) = 0.5617,

B(κ2,κ3,κ5) = 0.5076,B(κ2,κ4,κ5) = 0.5530,

B(κ3,κ4,κ5) = 0.4685,B(κ1,κ2,κ3,κ4) = 0.7785,

B(κ1,κ2,κ3,κ5) = 0.7144,B(κ1,κ2,κ4,κ5) = 0.7680,

B(κ1,κ3,κ4,κ5) = 0.6695,B(κ2,κ3,κ4,κ5) = 0.7404,

B(κ1,κ2,κ3,κ4,κ5) = 1.

we use Gumbel type AO when θ = 1 and q = 2, the aggre-
gation results are list in the following Table 11.

Table 11 Aggregation Results

Ψ1 Ψ2 Ψ3 Ψ4

(0.7003,0.1337) (0.5969, 0.0663) (0.7787, 0.0802) (0.7708, 0.0963)

And so the score values are Sc(Ψ1) = 0.4725,Sc(Ψ2) =
0.3519,Sc(Ψ3) = 0.6000,Sc(Ψ4) = 0.5849.

Therefore, we can obtain the rank of all alternatives are
Ψ3 >Ψ4 >Ψ1 >Ψ2, which is the same with [51]’s method.
It also shows the effectiveness and feasibility of our method
under the weight information (fuzzy measure information)
completely unknown.

(2) Our proposed approaches can also be used to ad-
dress the MAGDM problems. We take Chen’s [71] as an
example to show this view. We use our proposed BCCAq

operators to fusion decision information. In this MAGDM
problems, there are three experts E1,E2,E3 whose weight
vector is (0.33,0.34,0.33), four alternatives Ψ1,Ψ2,Ψ3,Ψ4
and three attributes κ1,κ2,κ3 with weight (0.4,0.2,0.4). In
this MAGDM problems, all attributes and experts are inde-
pendent. We use Gumbel Type AO to fuse decision informa-
tion under q = 2 and θ = 1. The procedure can be summa-
rized as follows:

Firstly, we need to calculate the Banzhaf values of the
attribute sets and list as follows:

B(κ1) = 0.4, B(κ2) = 0.2, B(κ3) = 0.4, B(κ1,κ2) = 0.6,
B(κ1,κ3) = 0.8, B(κ2,κ3) = 0.6, B(κ1,κ2,κ3) = 1.

Secondly, we use the Gumbel type BCCAq operator to
synthesize the individual decision matrix to a collective in-
dividual decision matrix and list as the Table 12.

Table 12 Collective decision matrix

Alternatives E1 E2 E3

Ψ1 (0.5576, 0.14956) (0.6676, 0.2091) (0.8443, 0.10506)
Ψ2 (0.7559, 0.1855) (0.7738, 0.2209) (0.9378, 0.0394)
Ψ3 (0.7624, 0.1630) (0.8478, 0.0798) (0.8516, 0.0805)
Ψ4 (0.7906, 0.1587) (0.8013, 0.0816) (0.7739, 0.1077)

Thirdly, we determine the Banzhaf values of experts and
expert sets,

B(E1) = 0.33, B(E2) = 0.34, B(E3) = 0.33, B(E1,E2) =
0.67, B(E1,E3)= 0.68, B(E2,E3)= 0.67, B(E1,E2,E3)= 1.

Fourthly, synthesize all collective decision matric into
the overall decision matrix by using the Gumbel type BCCAq

operators under q = 2 and θ = 1, the results are listed in
Table 13.

Table 13 Overall Decision matrix

Ψ1 Ψ2 Ψ3 Ψ4

(0.7583, 0.0794) (0.8896, 0.0676) (0.8719, 0.0561) (0.8522, 0.0513)

Finally, we calculate the score value of all alternatives
and listed as follows:

Sc(Ψ1) = 0.5688, Sc(Ψ2) = 0.7868, Sc(Ψ3) = 0.7571,
Sc(Ψ4) = 0.7235.

Therefore, the order is Ψ2 >Ψ3 >Ψ4 >Ψ1, which is the
same with Chen’s method [71]. This example is also show
that our proposed method can also be applied to MAGDM
problems.

(3) Our proposed method can be easily extended to
interval-valued q-ROFS. As we all know, the operations
are the basis of the fuzzy AOs. However, the operations of q-
ROFNs can be easily extended to interval-valued q-ROFSs
(IVq-ROFSs) and the EACs and EACCs can be carried out
in IVq-ROFSs by some feasible transforming technology,
therefore, the proposed AOs also can be easily to apply in
IVq-ROFSs or other fuzzy sets. Besides the above method-
s, there are some existing MADM approaches. We use the
following existing MADM approach to address the same
MADM problems in Example 1, the results are list as fol-
lows:

Thirdly. The merits of proposed methods.
• (1) Compared with some decision making approaches

[12,14,69,72], these decision making approaches can deal
with some DMPs in which attribute values are represented
by IFNs (or PFNs) and mutually independent of each oth-
er. However, these mentioned methods can not deal with
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Table 14 The comparisons of different operators

Methods Weights Independence of attributes Ranking order

IFWA operator [72] K Yes Ψ3 >Ψ4 >Ψ2 >Ψ5 >Ψ1
PFWA operator [12] K Yes Ψ3 >Ψ4 >Ψ2 >Ψ5 >Ψ1

PFEWA operator [69] K Yes Ψ3 >Ψ4 >Ψ2 >Ψ5 >Ψ1
PFEWG operator [69] K Yes Ψ3 >Ψ4 >Ψ2 >Ψ5 >Ψ1

Existing q-ROFWA operator [14] K Yes Ψ3 >Ψ4 >Ψ2 >Ψ5 >Ψ1
Methods q-ROFWG operator [14] K Yes Ψ3 >Ψ4 >Ψ2 >Ψ5 >Ψ1

PFCFA [70] K Yes Ψ3 >Ψ4 >Ψ2 >Ψ5 >Ψ1
q-ROF Neural AOs [73] PK No Ψ4 >Ψ2 >Ψ3 >Ψ5 >Ψ1

IFCAA operator [51] CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1

Gumbel type BCCAq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Clayton type BCCAq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Frank type BCCAq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1

Ali-Mikhail-Hap type BCCAq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Proposed Joe type BCCAq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Methods Gumbel type BCCGq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1

Clayton type BCCGq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Frank type BCCGq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1

Ali-Mikhail-Hap type BCCGq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1
Joe type BCCGq CU No Ψ2 >Ψ4 >Ψ3 >Ψ5 >Ψ1

In this table, K means Known, PK means partially Known, CU means
Completely Unknown.

the MADM problem with complementary or redundant at-
tributes. In addition, these mentioned methods can only deal
with the MADM problem with known attribute weight in-
formation known. Therefore, these methods can solve the
MADM with known attribute weight and independent at-
tributes ( such as example 1), but can not deal with the
problem with weight information partially known ( such as
example 2) and weight information completely unknown
(such as Example 3). Our proposed methods not only can
deal with some DMPs under weight information known, but
also can handle DMPs where weight information partially
known and completely unknown, the details comparison in-
formation can be founded in Table 14.

• (2) Our proposed BCCAq operator can not only consid-
er the relationship between adjacent attribute combinations,
but also comprehensively consider the relationship between
attributes. In our Gumbel type BCCAq operators, when q =
2, θ = 1 and all attributes are mutually independent, Gum-
bel type BCCAq operators will reduce to PFWA [12]. When
θ = 1 and all attributes are mutually independent in our
Gumbel type BCCAq operators, Gumbel type BCCAq and
Gumbel type BCCGq operators will reduce to q-ROFWA
[14] and q-ROFWG[14], respectively. Moreover, the mod-
el based on maximum deviation and Banzhaf function con-
structed in this work can objectively solve the FM of at-
tribute sets.

• (3) We can seen from the above discussions that our
proposed methods can not only handle MADM problems
with q-ROF information, but also effectively solve MAGDM
problems under q-ROF environment. Whilst, the proposed
BCCAq / BCCGq operators can be easily extended to IVq-
ROF environment and other types of fuzzy information.

8 Conclusions

In real MADM problems, the relationships between adja-
cent attribute combinations not only be considered, the in-
teraction among elements globally should also be captured.
However, some existing MADM approaches under q-ROF
environment seems to be invalid on this point, they only
consider the relationship between adjacent attribute com-
binations, but not capture the interaction among elements
globally. Whilst, some attributes maybe dependent in real
decision problems, how to reflect the interaction among the
attributes in process of decision information fusion needs to
be explored in depth. Some existing MADM approaches for
dealing with q-ROF information are valid under the hypoth-
esis that experts have given the fuzzy measure (or weight
information) of attribute sets in advance, and can not be di-
rectly used to MADM problems with unknown or partially
unknown fuzzy measures. Therefore, the goal of the present
work is to synthesize EACs (EACCs), Banzhaf-based Cho-
quet integral and q-ROFS to develop a novel MADM ap-
proach with q-ROF information in which weight informa-
tion partially known or completely unknown, the proposed
decision approach can effectively address above mentioned
drawbacks. Firstly, the EAC and EACC are extended to han-
dle q-ROFNs and the operations of q-ROFNs based on EAC
and EACCs are given. In order to comprehensively consid-
er the relationship between attributes, the BCCAq / BCCGq

are introduced on the basis of the operations of q-ROFNs;
Consequently, some special cases of BCCAq / BCCGq are in-
vestigated when the generators of EACs take different types
function which satisfied the condition of the generators of
copulas. In addition, to determine the FM of attribute set-
s objectively, the improved maximum deviation method and
Banzhaf function model are built. Finally, the corresponding
decision-making approaches are constructed based on the
proposed AOs and proposed models. Proposed approaches
can overcome effectively the fuzzy measures of attribute sets
are given by decision makers subjectively and can also effec-
tively address the some DMPs, in which the weight informa-
tion are incompletely unknown or completely unknown and
the relationship are existed among all attribute sets.

In line with the developed q-ROFN’s operation laws, one
of the merit advantages is that, on the one hand, the proposed
operations can contribute more choices for decision makers
and the mutuality among attributes can also be determined,
on the the other hand, the family of AOs are more flexible
to reflex the decision makers’ attitude by adding a param-
eter θ . Therefore, the proposed operators are constructed
by combining traditional mean with any copulas and cor-
responding co-copulas, and the relationships among all at-
tribute are comprehensively considered, so a broader ability
for modeling practical issues can be available. In multigran-
ularity fuzzy linguistic modeling, it is allowed to use mul-
tiple LTSs in fuzzy linguistic modeling, because it allows
each expert to use his LTS to express his/her preferences, so
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it has been widely used in the field of GDM. A new linguis-
tic computational model [74] is introduced to manage multi-
granular linguistic distribution assessments for its applica-
tion to large-scale MAGDM problems. Large-scale group
decision is an important branch in modern decision theo-
ry In large-scale group decision making process, there is a
mass of heterogeneous information. Therefore, in our future
study, with the help of academic thought of multigranularity
group consensus decision making, we will investigate group
consensus decision model of heterogeneous linguistic infor-
mation.
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