1,867 research outputs found

    Adaptive transfer functions: improved multiresolution visualization of medical models

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00371-016-1253-9Medical datasets are continuously increasing in size. Although larger models may be available for certain research purposes, in the common clinical practice the models are usually of up to 512x512x2000 voxels. These resolutions exceed the capabilities of conventional GPUs, the ones usually found in the medical doctors’ desktop PCs. Commercial solutions typically reduce the data by downsampling the dataset iteratively until it fits the available target specifications. The data loss reduces the visualization quality and this is not commonly compensated with other actions that might alleviate its effects. In this paper, we propose adaptive transfer functions, an algorithm that improves the transfer function in downsampled multiresolution models so that the quality of renderings is highly improved. The technique is simple and lightweight, and it is suitable, not only to visualize huge models that would not fit in a GPU, but also to render not-so-large models in mobile GPUs, which are less capable than their desktop counterparts. Moreover, it can also be used to accelerate rendering frame rates using lower levels of the multiresolution hierarchy while still maintaining high-quality results in a focus and context approach. We also show an evaluation of these results based on perceptual metrics.Peer ReviewedPostprint (author's final draft

    Real-time quality visualization of medical models on commodity and mobile devices

    Get PDF
    This thesis concerns the specific field of visualization of medical models using commodity and mobile devices. Mechanisms for medical imaging acquisition such as MRI, CT, and micro-CT scanners are continuously evolving, up to the point of obtaining volume datasets of large resolutions (> 512^3). As these datasets grow in resolution, its treatment and visualization become more and more expensive due to their computational requirements. For this reason, special techniques such as data pre-processing (filtering, construction of multi-resolution structures, etc.) and sophisticated algorithms have to be introduced in different points of the visualization pipeline to achieve the best visual quality without compromising performance times. The problem of managing big datasets comes from the fact that we have limited computational resources. Not long ago, the only physicians that were rendering volumes were radiologists. Nowadays, the outcome of diagnosis is the data itself, and medical doctors need to render them in commodity PCs (even patients may want to render the data, and the DVDs are commonly accompanied with a DICOM viewer software). Furthermore, with the increasing use of technology in daily clinical tasks, small devices such as mobile phones and tablets can fit the needs of medical doctors in some specific areas. Visualizing diagnosis images of patients becomes more challenging when it comes to using these devices instead of desktop computers, as they generally have more restrictive hardware specifications. The goal of this Ph.D. thesis is the real-time, quality visualization of medium to large medical volume datasets (resolutions >= 512^3 voxels) on mobile phones and commodity devices. To address this problem, we use multiresolution techniques that apply downsampling techniques on the full resolution datasets to produce coarser representations which are easier to handle. We have focused our efforts on the application of Volume Visualization in the clinical practice, so we have a particular interest in creating solutions that require short pre-processing times that quickly provide the specialists with the data outcome, maximize the preservation of features and the visual quality of the final images, achieve high frame rates that allow interactive visualizations, and make efficient use of the computational resources. The contributions achieved during this thesis comprise improvements in several stages of the visualization pipeline. The techniques we propose are located in the stages of multi-resolution generation, transfer function design and the GPU ray casting algorithm itself.Esta tesis se centra en la visualización de modelos médicos de volumen en dispositivos móviles y de bajas prestaciones. Los sistemas médicos de captación tales como escáners MRI, CT y micro-CT, están en constante evolución, hasta el punto de obtener modelos de volumen de gran resolución (> 512^3). A medida que estos datos crecen en resolución, su manejo y visualización se vuelve más y más costoso debido a sus requisitos computacionales. Por este motivo, técnicas especiales como el pre-proceso de datos (filtrado, construcción de estructuras multiresolución, etc.) y algoritmos específicos se tienen que introducir en diferentes puntos de la pipeline de visualización para conseguir la mejor calidad visual posible sin comprometer el rendimiento. El problema que supone manejar grandes volumenes de datos es debido a que tenemos recursos computacionales limitados. Hace no mucho, las únicas personas en el ámbito médico que visualizaban datos de volumen eran los radiólogos. Hoy en día, el resultado de la diagnosis son los datos en sí, y los médicos necesitan renderizar estos datos en PCs de características modestas (incluso los pacientes pueden querer visualizar estos datos, pues los DVDs con los resultados suelen venir acompañados de un visor de imágenes DICOM). Además, con el reciente aumento del uso de las tecnologías en la clínica práctica habitual, dispositivos pequeños como teléfonos móviles o tablets son los más convenientes en algunos casos. La visualización de volumen es más difícil en este tipo de dispositivos que en equipos de sobremesa, pues las limitaciones de su hardware son superiores. El objetivo de esta tesis doctoral es la visualización de calidad en tiempo real de modelos grandes de volumen (resoluciones >= 512^3 voxels) en teléfonos móviles y dispositivos de bajas prestaciones. Para enfrentarnos a este problema, utilizamos técnicas multiresolución que aplican técnicas de reducción de datos a los modelos en resolución original, para así obtener modelos de menor resolución. Hemos centrado nuestros esfuerzos en la aplicación de la visualización de volumen en la práctica clínica, así que tenemos especial interés en diseñar soluciones que requieran cortos tiempos de pre-proceso para que los especialistas tengan rápidamente los resultados a su disposición. También, queremos maximizar la conservación de detalles de interés y la calidad de las imágenes finales, conseguir frame rates altos que faciliten visualizaciones interactivas y que hagan un uso eficiente de los recursos computacionales. Las contribuciones aportadas por esta tesis són mejoras en varias etapas de la pipeline de visualización. Las técnicas que proponemos se situan en las etapas de generación de la estructura multiresolución, el diseño de la función de transferencia y el algoritmo de ray casting en la GPU.Postprint (published version

    Real-time quality visualization of medical models on commodity and mobile devices

    Get PDF
    This thesis concerns the specific field of visualization of medical models using commodity and mobile devices. Mechanisms for medical imaging acquisition such as MRI, CT, and micro-CT scanners are continuously evolving, up to the point of obtaining volume datasets of large resolutions (> 512^3). As these datasets grow in resolution, its treatment and visualization become more and more expensive due to their computational requirements. For this reason, special techniques such as data pre-processing (filtering, construction of multi-resolution structures, etc.) and sophisticated algorithms have to be introduced in different points of the visualization pipeline to achieve the best visual quality without compromising performance times. The problem of managing big datasets comes from the fact that we have limited computational resources. Not long ago, the only physicians that were rendering volumes were radiologists. Nowadays, the outcome of diagnosis is the data itself, and medical doctors need to render them in commodity PCs (even patients may want to render the data, and the DVDs are commonly accompanied with a DICOM viewer software). Furthermore, with the increasing use of technology in daily clinical tasks, small devices such as mobile phones and tablets can fit the needs of medical doctors in some specific areas. Visualizing diagnosis images of patients becomes more challenging when it comes to using these devices instead of desktop computers, as they generally have more restrictive hardware specifications. The goal of this Ph.D. thesis is the real-time, quality visualization of medium to large medical volume datasets (resolutions >= 512^3 voxels) on mobile phones and commodity devices. To address this problem, we use multiresolution techniques that apply downsampling techniques on the full resolution datasets to produce coarser representations which are easier to handle. We have focused our efforts on the application of Volume Visualization in the clinical practice, so we have a particular interest in creating solutions that require short pre-processing times that quickly provide the specialists with the data outcome, maximize the preservation of features and the visual quality of the final images, achieve high frame rates that allow interactive visualizations, and make efficient use of the computational resources. The contributions achieved during this thesis comprise improvements in several stages of the visualization pipeline. The techniques we propose are located in the stages of multi-resolution generation, transfer function design and the GPU ray casting algorithm itself.Esta tesis se centra en la visualización de modelos médicos de volumen en dispositivos móviles y de bajas prestaciones. Los sistemas médicos de captación tales como escáners MRI, CT y micro-CT, están en constante evolución, hasta el punto de obtener modelos de volumen de gran resolución (> 512^3). A medida que estos datos crecen en resolución, su manejo y visualización se vuelve más y más costoso debido a sus requisitos computacionales. Por este motivo, técnicas especiales como el pre-proceso de datos (filtrado, construcción de estructuras multiresolución, etc.) y algoritmos específicos se tienen que introducir en diferentes puntos de la pipeline de visualización para conseguir la mejor calidad visual posible sin comprometer el rendimiento. El problema que supone manejar grandes volumenes de datos es debido a que tenemos recursos computacionales limitados. Hace no mucho, las únicas personas en el ámbito médico que visualizaban datos de volumen eran los radiólogos. Hoy en día, el resultado de la diagnosis son los datos en sí, y los médicos necesitan renderizar estos datos en PCs de características modestas (incluso los pacientes pueden querer visualizar estos datos, pues los DVDs con los resultados suelen venir acompañados de un visor de imágenes DICOM). Además, con el reciente aumento del uso de las tecnologías en la clínica práctica habitual, dispositivos pequeños como teléfonos móviles o tablets son los más convenientes en algunos casos. La visualización de volumen es más difícil en este tipo de dispositivos que en equipos de sobremesa, pues las limitaciones de su hardware son superiores. El objetivo de esta tesis doctoral es la visualización de calidad en tiempo real de modelos grandes de volumen (resoluciones >= 512^3 voxels) en teléfonos móviles y dispositivos de bajas prestaciones. Para enfrentarnos a este problema, utilizamos técnicas multiresolución que aplican técnicas de reducción de datos a los modelos en resolución original, para así obtener modelos de menor resolución. Hemos centrado nuestros esfuerzos en la aplicación de la visualización de volumen en la práctica clínica, así que tenemos especial interés en diseñar soluciones que requieran cortos tiempos de pre-proceso para que los especialistas tengan rápidamente los resultados a su disposición. También, queremos maximizar la conservación de detalles de interés y la calidad de las imágenes finales, conseguir frame rates altos que faciliten visualizaciones interactivas y que hagan un uso eficiente de los recursos computacionales. Las contribuciones aportadas por esta tesis són mejoras en varias etapas de la pipeline de visualización. Las técnicas que proponemos se situan en las etapas de generación de la estructura multiresolución, el diseño de la función de transferencia y el algoritmo de ray casting en la GPU

    Downsampling methods for medical datasets

    Get PDF
    Volume visualization software usually has to deal with datasets that are larger than the GPUs may hold. This is especially true in one of the most popular application scenarios: medical visualization. Typically, medical datasets are available for different personnel, but only radiologists have high-end systems that are able to cope with large data. For the rest of physicians, usually low-end systems are only available. As a result, most volume rendering packages downsample the data prior to uploading to the GPU. The most common approach consists in performing iterative subsampling along the longest axis, until the model fits inside the GPU memory. This causes important information loss that affects the final rendering. Some cleverer techniques may be developed to preserve the volumetric information. In this paper we explore the quality of different downsampling methods and present a new approach that produces smooth lower-resolution representations, yet still preserves small features that are prone to disappear with other approaches.Peer ReviewedPostprint (published version

    09251 Abstracts Collection -- Scientific Visualization

    Get PDF
    From 06-14-2009 to 06-19-2009, the Dagstuhl Seminar 09251 ``Scientific Visualization \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, over 50 international participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Progressive ray casting for volumetric models on mobile devices

    Get PDF
    Mobile devices have experienced an incredible market penetration in the last decade. Currently, medium to premium smartphones are relatively affordable devices. With the increase in screen size and resolution, together with the improvements in performance of mobile CPUs and GPUs, more tasks have become possible. In this paper we explore the rendering of medium to large volumetric models on mobile and low performance devices in general. To do so, we present a progressive ray casting method that is able to obtain interactive frame rates and high quality results for models that not long ago were only supported by desktop computers.Peer ReviewedPostprint (author's final draft

    View-dependent Exploration of Massive Volumetric Models on Large Scale Light Field Displays

    Get PDF
    We report on a light-field display based virtual environment enabling multiple naked-eye users to perceive detailed multi-gigavoxel volumetric models as floating in space, responsive to their actions, and delivering different information in different areas of the workspace. Our contributions include a set of specialized interactive illustrative techniques able to provide different contextual information in different areas of the display, as well as an out-of-core CUDA based raycasting engine with a number of improvements over current GPU volume raycasters. The possibilities of the system are demonstrated by the multi-user interactive exploration of 64GVoxels datasets on a 35MPixel light field display driven by a cluster of PCs.1037-1047Pubblicat

    Streaming visualisation of quantitative mass spectrometry data based on a novel raw signal decomposition method

    Get PDF
    As data rates rise, there is a danger that informatics for high-throughput LC-MS becomes more opaque and inaccessible to practitioners. It is therefore critical that efficient visualisation tools are available to facilitate quality control, verification, validation, interpretation, and sharing of raw MS data and the results of MS analyses. Currently, MS data is stored as contiguous spectra. Recall of individual spectra is quick but panoramas, zooming and panning across whole datasets necessitates processing/memory overheads impractical for interactive use. Moreover, visualisation is challenging if significant quantification data is missing due to data-dependent acquisition of MS/MS spectra. In order to tackle these issues, we leverage our seaMass technique for novel signal decomposition. LC-MS data is modelled as a 2D surface through selection of a sparse set of weighted B-spline basis functions from an over-complete dictionary. By ordering and spatially partitioning the weights with an R-tree data model, efficient streaming visualisations are achieved. In this paper, we describe the core MS1 visualisation engine and overlay of MS/MS annotations. This enables the mass spectrometrist to quickly inspect whole runs for ionisation/chromatographic issues, MS/MS precursors for coverage problems, or putative biomarkers for interferences, for example. The open-source software is available from http://seamass.net/viz/

    Enhancement of Single and Composite Images Based on Contourlet Transform Approach

    Get PDF
    Image enhancement is an imperative step in almost every image processing algorithms. Numerous image enhancement algorithms have been developed for gray scale images despite their absence in many applications lately. This thesis proposes hew image enhancement techniques of 8-bit single and composite digital color images. Recently, it has become evident that wavelet transforms are not necessarily best suited for images. Therefore, the enhancement approaches are based on a new 'true' two-dimensional transform called contourlet transform. The proposed enhancement techniques discussed in this thesis are developed based on the understanding of the working mechanisms of the new multiresolution property of contourlet transform. This research also investigates the effects of using different color space representations for color image enhancement applications. Based on this investigation an optimal color space is selected for both single image and composite image enhancement approaches. The objective evaluation steps show that the new method of enhancement not only superior to the commonly used transformation method (e.g. wavelet transform) but also to various spatial models (e.g. histogram equalizations). The results found are encouraging and the enhancement algorithms have proved to be more robust and reliable

    3D Mesh Simplification. A survey of algorithms and CAD model simplification tests

    Get PDF
    Simplification of highly detailed CAD models is an important step when CAD models are visualized or by other means utilized in augmented reality applications. Without simplification, CAD models may cause severe processing and storage is- sues especially in mobile devices. In addition, simplified models may have other advantages like better visual clarity or improved reliability when used for visual pose tracking. The geometry of CAD models is invariably presented in form of a 3D mesh. In this paper, we survey mesh simplification algorithms in general and focus especially to algorithms that can be used to simplify CAD models. We test some commonly known algorithms with real world CAD data and characterize some new CAD related simplification algorithms that have not been surveyed in previous mesh simplification reviews.Siirretty Doriast
    corecore