
Progressive Ray Casting for Volumetric Models on Mobile Devices

Jesús Dı́az-Garcı́aa, Pere Bruneta, Isabel Navazoa, Pere-Pau Vázqueza

aUniversitat Politècnica de Catalunya

Abstract

Mobile devices have experienced an incredible market penetration in the last decade. Currently, medium to premium smartphones
are relatively affordable devices. With the increase in screen size and resolution, together with the improvements in performance of
mobile CPUs and GPUs, more tasks have become possible. In this paper we explore the rendering of medium to large volumetric
models on mobile and low performance devices in general. To do so, we present a progressive ray casting method that is able to
obtain interactive frame rates and high quality results for models that not long ago were only supported by desktop computers.

Keywords: Direct Volume Rendering, Progressive Ray Casting, Mobile Devices

1. Introduction1

In the last years, thanks to their ubiquity and increasing2

computational power, laptops, smartphones, tablets and mobile3

devices in general, have become more and more suitable for ap-4

plications that require high quality visualization of volume data5

in real time. Medical visualization is one of the most important6

application fields. Unfortunately, despite the increase in com-7

putational power, visual quality and storage capacity, certain8

tasks such as high quality visualization and interactive explo-9

ration of medical models still represent a challenging problem10

for this kind of hardware.11

There has also been an increase of the published research12

about how to deal with visualization on mobile devices effi-13

ciently [1, 2]. However, many contributions have been striving14

to address some limitations of hardware constraints that are no15

longer a problem. A clear example of this is the recent addition16

of 3D textures into the OpenGL ES standard from version 3.0.17

Thus, we base our work on the usage of 3D textures along with18

GPU ray casting, which is the state-of-the-art technique used19

for volume visualization.20

Previous experiments have shown that, even though big mod-21

els might fit into the memory of such GPUs, the rendering per-22

formance achieved by mobile devices is still not enough. Usu-23

ally, the visualization of models with larger resolutions (≥ 5123)24

that still fit in the graphics memory of mobile devices, achieves25

low frame rates which are far from being interactive and prevent26

the user from experiencing a smooth exploration of the model.27

An easy way to gain interactivity when dealing with large28

models is sacrificing visualization quality by reducing both the29

displayed dataset and the viewport resolution. Each time the30

user stops interacting, it is desirable to obtain a high quality im-31

age of the resulting point of view. However, in order to achieve32

Email addresses: jesusdz@cs.upc.edu (Jesús Dı́az-Garcı́a),
pere@cs.upc.edu (Pere Brunet), isabel@cs.upc.edu (Isabel Navazo),
ppau@cs.upc.edu (Pere-Pau Vázquez)

a high resolution image, even the process of rendering a sin-33

gle frame is enough for a standard mobile device to stall until34

the GPU is free from rendering tasks and can return the con-35

trol to the application. Such stall, if long enough, leads to the36

operative system killing the application to guarantee that the37

device is not blocked. In [3, 4, 5], the authors notice this fact38

as a consequence of executing a high number of instructions in39

shader code. We noticed a similar behavior for camera views40

where rays performed a large number of samples, making the41

application crash after being blocked by rendering tasks during42

a certain amount of time (between 2 and 3 seconds in our ex-43

periments). Although this issue could be solved by detaching44

the rendering process from the main GUI thread, this is actu-45

ally not desirable in some scenarios such as in medical applica-46

tions, where high resolution results are expected to be provided47

as soon as possible. By offloading the rendering task from the48

GUI thread, application crashes can be avoided, yet long ren-49

dering processes will still provide delayed results, and this lack50

of feedback is likely to cause confusion.51

In this paper, we propose a solution that uses progressive52

GPU-aided ray casting algorithms to generate high quality ren-53

derings. This strategy prevents blocking and provides interac-54

tivity, distributing the rendering task over subsequent frames55

after every user interaction. The main contributions of our ap-56

proach are:57

• A multiresolution, scalable rendering scheme for volume58

models on mobile devices that uses a low resolution model59

during user interaction and a high resolution dataset for60

quality visualization when the camera stops.61

• A strategy pattern for incremental rendering that provides62

a smooth transition from the low resolution visualization63

to the high resolution visualization, preventing blocking64

to avoid undesirable application aborting and allowing65

for smooth interactions at any time.66

• The proposal of two new progressive ray casting methods67

Preprint submitted to Computers & Graphics July 12, 2018

© 2018 Elsevier . This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/ 



that fulfill the aforesaid goals, and their analysis, discus-68

sion, and a comparison with other existing techniques.69

The rest of the paper is structured as follows: Section 270

presents the previous work carried out in this field. Then, an71

overview of the architecture we have designed is explained in72

Section 3 and the detailed algorithms we use for progressive73

ray casting are presented in Section 4. Section 5 shows the74

results we have achieved, and then some conclusions and lines75

for future work are discussed in Section 6.76

2. Previous Work77

Nowadays, GPU ray casting is the state of the art technique78

in Volume Rendering [6]. Current desktop systems allow the79

rendering of huge models in real time, typically using compres-80

sion and/or out-of-core techniques [7, 8].81

Several publications deal with volume rendering of large82

scalar fields. For instance, Crassin et al. [9] propose an ap-83

proach based on an adaptive data representation, depending on84

the current view and occlusion information directly extracted85

from the rendering algorithm. In the same line, Fogal et al. [10]86

introduce an out-of-core, ray-guided GPU volume renderer that87

scales to large data and provide an evaluation and discussion of88

the trade-offs inherent to this kind of application. Both of these89

techniques rely on the fact that not all the information needs to90

be visualized at its maximum resolution (mainly due to camera91

perspective and occlusion). However, medical applications are92

meant to provide maximum quality without sacrificing interac-93

tivity.94

Callahan and Silva [11] present an image-space accelera-95

tion technique based on a bilateral upsampling filter to improve96

the quality of low-resolution ray casting images of unstructured97

volumes. They are able to preserve features at the edges of98

the models thanks to a guidance image obtained from the un-99

structured grid. Unfortunately, structured grids (which are the100

most typical format for medical images), cannot benefit from101

this technique straightforwardly.102

Although not explicitly working on mobile platforms, the103

following publications, target the issue of incremental ray cast-104

ing. Levoy [12] introduced an incremental way of performing105

volume ray casting based on an adaptive image space subdi-106

vision. In [13], Kratz et al. improved Levoy’s approach by107

introducing an error estimator from the field of finite element108

methods. In the same line, Frey et al. [14] presented a scheme109

for progressive rendering that adapts to different changes during110

data exploration. They demonstrate an automatic parameter op-111

timization scheme using a video metric to optimize their frame112

control. These techniques are mainly focusing on quality met-113

rics to lead the progressive refinement algorithm. However, the114

way they distribute rays is not tailored to improve performance,115

as we will discuss later in Section 4.3.116

Since mobile platforms are ubiquitous nowadays, the inter-117

est in using mobile devices for rendering volumetric models,118

especially medical datasets, is growing [15, 16]. Several pre-119

vious approaches have addressed volumetric models on mobile120

devices using two different strategies: server dependent meth-121

ods and local methods.122

Server dependent methods that heavily rely on the server123

side to perform all power consuming operations are called thin124

client architectures. Following this scheme, Lamberti et al. [17]125

communicate rotation and translation commands from client126

devices to the server, and obtain an MPEG video stream with127

the rendered results of medical images as a response. In [18],128

Hachaj et al. propose a similar solution also based on thin129

clients, and Gutenko et al. [19] use a more efficient and mod-130

ern video codec (H264) to encode the video stream. However,131

these methods have strong connection bandwidth requirements132

that we are interested in getting rid of.133

Balanced solutions distribute the tasks between the server134

side and the mobile device. In this line, Campoalegre et al. [20]135

perform a block-based transfer function aware compression of136

the target dataset, and are able to transmit the desired regions of137

interest to support adaptive ray casting on the client side.138

Other server dependent methods that take more advantage139

of client desktop machines and hand-held devices are called fat140

distribution schemes by some researchers [16], and they mainly141

rely on the server to provide the datasets after performing some142

expensive pre-processing tasks, but produce the renderings lo-143

cally. For instance, Congote et al. [21] presented a platform144

implementing this kind of architecture by means of the We-145

bGL standard. Mobeen et al. [4, 5] also developed various146

algorithms that perform a single-pass ray casting for the effi-147

cient visualization of medical models based on WebGL [22,148

23]. A detail-on-demand scheme is presented by Schultz and149

Bailey [24], where they allow the user to explore the entire150

dataset at its original resolution while simultaneously constrain-151

ing the 3D texture size so that it doesn’t exceed the GPU capa-152

bilities of the portable device.153

Finally, local rendering methods allow the visualization on154

mobile devices with no need of network connectivity. 3D tex-155

tures have been widely available in mobile GPUs just recently,156

so previous methods for rendering volumetric models have re-157

lied on 2D texture stacks or tiled 2D textures emulating 3D tex-158

tures. Among others, Fogal et al. [1] and Noon et al. [3] have159

developed tools using stacks of 2D textures representing the 3D160

volume. Congote et al. [21], Noguera et al. [25, 2, 26] and161

Movania et al [27], on the other hand, emulate 3D textures by162

using a mosaic layout of its slices within a set of 2D textures.163

More recently, when 3D textures have become widely available,164

both slicing and ray casting algorithms have been used. Balsa et165

al. [28] presented a practical comparison of volume rendering166

using several devices and algorithms, including ray casting with167

the use of 3D textures, which was far from interactive at that168

time. Also using 3D textures, Xin and Wong [29], presented169

an intuitive framework for volume data exploration, although170

they don’t work with datasets of resolutions higher than 1283.171

Furthermore, Schultz and Bailey [24] develop a multiresolution172

algorithm based on the use of a detail-on-demand subvolume173

selection with 3D textures.174

Nowadays, GPUs in hand-held devices are more capable, so175

focusing on fat and local rendering approaches by implement-176

ing the ray casting task on mobile phones seems more feasible.177

2



However, porting volume rendering to mobile devices may be178

challenged by three main limitations: GPU capabilities (as they179

could not provide the proper features to deal with the algorithms180

used to visualize volumetric models), RAM size (models might181

not fit in main memory), and GPU horsepower (even though182

models might fit the GPU memory, the frame rate achieved183

could be inefficient to adequately support interactivity). In this184

paper, we mainly concentrate on the latter limitation.185

3. Overview186

Our motivation is to address the problem of volume ren-187

dering of medical data on mobile and low performance de-188

vices through the development of a system that fulfills the re-189

quirements of medical experts, including being able to interact190

with large volume models, usually involving dataset resolutions191

larger than 5123. There is an increasing interest in exploring192

these volume models on mobile devices at full resolution. Fur-193

thermore, an essential prerequisite is that the application must194

achieve interactive frame rates even with large models, so the195

system must not stall or have performance drops that hinder the196

user interaction.197

We use GPU-aided ray casting to perform direct volume198

rendering (see Figure 1), as it is the state of the art technique199

for the task [6]. Volume ray casting is an image-based tech-200

nique that casts a ray from each pixel of the final image and201

computes, along each ray, the accumulated color by evaluat-202

ing samples in the volume dataset. A volume dataset typically203

consists of scalar values uniformly sampled in a finite three di-204

mensional space, forming a regular grid, as is the case with205

medical images. More precisely, the algorithm proceeds by206

sampling the volume data at regular intervals along each ray.207

Those sampled values are transformed into color by means of a208

transfer function that maps intensity values to RGBA data. Ray209

casting is a technique perfectly suited to be implemented on210

GPUs due to its highly parallelizable nature (the rendering in-211

tegral along rays can be computed separately by fragment pro-212

cessors). However, it should be emphasized that its complexity213

increases rapidly with the resolution of the volume data being214

sampled, especially if the algorithm requires the computation215

of gradients to perform good quality shading, which usually re-216

quires performing 6 extra texture lookups at each ray sample.217

Therefore, large datasets imply costly computations of the ray218

integral, which implies a bottleneck in the fragment shader per-219

forming that calculation.220

Our implementation of the ray casting algorithm uses sev-221

eral methods that help improving visual quality. Pre-integrated222

transfer functions [30] are used in order to avoid undesired wood-223

grain artifacts without sacrificing performance. In addition, we224

perform downsampling to achieve a low resolution dataset that225

allows interactive exploration and also whenever the original226

resolution dataset does not fit the GPU memory. We use a227

feature-preserving downsampling filter [31] that is able to pre-228

serve important features typically lost during the downsampling229

process. Finally, we use Adaptive Transfer Functions [32] to vi-230

sualize the coarser levels with higher accuracy.231

Furthermore, whenever possible we have incorporated ac-232

celeration techniques such as Empty Space Skipping (ESS) and233

Early Ray Termination (ERT) described by Krüger and West-234

ermann [33]. We perform ESS by means of starting the ray235

sampling at the boundaries of a proxy geometry that, given a236

certain transfer function, roughly adjusts to the non-transparent237

regions of the volume model (see Figure 2). This way, the ef-238

fective sampling space along rays is allowed to start later and239

finish before, discarding transparent regions. The second ac-240

celeration technique, ERT, finishes ray traversals whenever the241

computed color is considered to be opaque.242

The standard way used by medical experts to inspect med-243

ical images is based on orthographic projections. For this rea-244

son, we use orthographic cameras for all the implementations245

in this paper.246

Since our goal involves implementing a scalable system that247

is able to perform interactive high resolution ray casting of large248

models, we propose a framework based on multiresolution. Our249

solution uses a lower resolution dataset for the visualization250

while the user is exploring the model, which ensures interac-251

tive frame rates, and a high resolution dataset along with a pro-252

gressive refinement algorithm for high quality rendering of the253

desired regions of interest after each user interaction.254

The usage of a progressive rendering algorithm ensures that255

by splitting the ray casting into several frames, the control of ex-256

ecution is returned back to the application loop more frequently,257

so that it cannot stall for long periods of time, allowing the user258

to start new interactions at any time, even before the progressive259

rendering has finished (thus canceling the process).260

Based on this general strategy, we propose two different ap-261

proaches, depicted in Figures 3 and 5. Both share the same262

structure: during user interaction, rendering is performed us-263

ing low resolution ray casting (top row). Every time the user264

stops at a certain view, the progressive high resolution ray cast-265

ing starts so that the static image of the selected view evolves266

smoothly from the low resolution ray casting result to the full267

resolution image.268

The main differences between both strategies are the way269

the high resolution images are produced. In one case, the final270

image is obtained by rendering the high resolution dataset in271

separated slabs in front-to-back order (we call this technique272

Front-to-back Slabs, or FBSlabs). The second strategy, on the273

contrary, splits the viewport into several tiles and sorts them by274

cost in order to group them into batches of similar cost that can275

be efficiently rendered at each frame until a certain time budget276

is reached (we refer to this technique as Sorted Tiles, or STiles).277

4. Progressive ray casting strategies278

In this Section we present details on each of the two pro-279

posals for incremental rendering: FBSlabs and STiles.280

4.1. FBSlabs (Front-to-back slabs)281

This progressive algorithm splits each ray into several seg-282

ments of a fixed length and then starts rendering those segments283

in front to back order over subsequent frames after the user fin-284

ishes interacting. The algorithm renders the incremental high285

3



Figure 1: Overview of the ray casting algorithm. A ray emerging from the camera origin is generated for each pixel of the viewport passing through its center.
Segments of these rays intersecting the volume dataset, are in turn evaluated at several positions separated by regular intervals, obtaining scalar data from the dataset
and transforming it to color values accumulated over the ray traversal. Usually, several extra texture lookups are necessary at each sampling position to compute the
local gradient in order to calculate proper shading.

Figure 2: The proxy geometry bounding this volume model is shown in red (in
2D). We subdivide the bounding box of the volume model in a grid and generate
a mesh that envelopes those grid cells containing non-transparent data. We use
the proxy geometry in order to perform empty space skipping, allowing rays
to effectively start where non-transparent data is found, and finishing wherever
there is only transparent data remaining.

resolution results into a texture Thigh, the low resolution results286

into another texture Tlow and finally composites both textures to287

achieve the final image at each frame. These are the main steps288

followed by this algorithm:289

1. Low Resolution Ray Casting (during user interaction)290

• The ray casting color is stored in a 2D texture291

2. Progressive High Resolution Ray Casting292

(a) A 2D texture Thigh is cleared293

(b) The first sampling position for each ray (one per294

viewport pixel) is placed at the entry point on the295

proxy geometry bounding the volume model296

(c) A fixed number of ray casting steps are performed297

advancing over each ray (rendering a non-regular298

slab perpendicular to the viewing direction), and the299

resulting color is composited with the previous high300

resolution partial result in Thigh301

(d) The remaining part of the volume is rendered with302

low resolution ray casting, starting at the sample303

position where the previous step finished, and then304

stored into Tlow305

(e) The current image is generated by compositing Thigh306

on top of Tlow with alpha blending307

(f) In the next frame, a frame counter is increased and308

the process resumes ray casting from (c) until the309

sampling positions exceed the volume boundaries310

In Figure 3, step 1 indicates that the low resolution render-311

ing is generated by a standard ray casting algorithm, with no312

modifications, into a 2D texture Tlow.313

Then, in step 2 of Figure 3, a chain of partial ray castings314

is performed in separated slabs to render the high resolution315

dataset progressively. A 2D texture Thigh is used to store the316

progressive state of the high resolution rendering process. To317

4



Figure 3: Schematic overview of the FBSlabs algorithm. The first step (1) of the figure depicts the initial low resolution standard ray casting performed while the
user is moving the camera. Each time the interaction stops (2), the high resolution image is incrementally composited by rendering slabs in front-to-back order, one
at a time every frame. Then, at each frame, this high resolution image is composited on top of the remaining part of the model rendered at low resolution.

Low res. 25% 50% 75% High res.

Figure 4: Vix dataset (5122×250 high res., 1282×63 low res.). This sequence of images shows the transition effect between the low resolution and the high resolution
ray castings obtained by the FBSlabs method. The top row shows the renderings as shown in the application, whereas in the bottom row, the low resolution part
of the same images is lightened in order to reveal the updated portions of the image more clearly. See the accompanying video for a more clear example of this
transition.

5



start the process, in the first frame after the user interaction fin-318

ished, the initial segments of all rays emerging from the view-319

port pixels are rendered in Thigh. Those ray segments start at320

the entry points on the proxy geometry, and perform a fixed321

number of samples (N = 40 in our case) in each ray casting322

frame, making each slab have a fixed thickness. During the323

next frames, the same slab rendering process is repeated. At324

each frame, in order to resume the high resolution ray casting325

where the previous frame finished, we only need to know the326

current frame counter (number of frames since the progressive327

ray casting started), as each slab is rendered with a fixed num-328

ber of samples and a constant sampling space between them.329

Note that the camera is configured to perform an orthographic330

projection of the scene, as commonly used in medicine. This331

way the generated slabs remain piecewise planar as they origi-332

nate from the proxy geometry. A perspective projection could333

be used otherwise without causing any trouble, this way lead-334

ing to pseudo-spherical slabs as they get far from the starting335

point at the proxy geometry. The blending state is configured336

to add color in a front to back order in order to update Thigh337

with each rendered slab. In Tlow, the remaining part of the ray338

casting is computed at low resolution, which implies almost no339

penalty in time. At each frame, the resulting partial image Thigh340

is composited over the low resolution image Tlow using alpha341

blending. The high resolution ray casting is completely finished342

whenever all the ray segments rendered exit the proxy geome-343

try. We conservatively approximate this moment by repeating344

this iterative process until the computed rays are longer than the345

diagonal of the volume bounding box. Figure 4-top shows the346

transition effect of this technique (in Figure 4-bottom, color is347

modified to better perceive the boundary between the low reso-348

lution and the high resolution rendered parts).349

4.2. STiles (Sorted tiles)350

This progressive ray casting algorithm first decomposes the351

high resolution image space into square blocks of pixels (tiles)352

and then renders them progressively over subsequent frames353

(see Figure 5). The rationale behind this method comes from354

the tile-based behaviour of the GPU rasterizer and cache usage.355

Analogously to FBSlabs, the low resolution rendering is stored356

into a low resolution texture Tlow and the high resolution results357

are incrementally rendered into a high resolution texture Thigh.358

The algorithm pipeline proceeds through the following steps:359

1. Low Resolution Ray Casting (during user interaction)360

• The ray casting color is stored in a 2D texture Tlow361

• The ray cost (number of ray samples) is stored in362

the alpha channel of Tlow363

2. Tile Sorting (once after interaction finished)364

• Once the user interaction stops, the screen space365

is split into tiles, and then, tiles are sorted by cost366

(using a series of compute shaders), generating two367

correlation maps that allow converting between un-368

sorted and sorted tile coordinates.369

3. Progressive High Resolution Ray Casting370

(a) The high resolution ray casting of a few tiles (ren-371

dered in order) is performed, until a fixed time bud-372

get is reached373

(b) The current image is composited, selecting either374

the high resolution pixels from Thigh when already375

computed, or the low resolution ones from Tlow oth-376

erwise377

(c) In the next frame, the process is resumed from (a)378

until all the tiles are rendered379

During user interaction, a standard low resolution ray cast-380

ing for interactive rendering is performed in a fragment shader381

(see step 1 of Figure 5). At each pixel, together with the low382

resolution color in the RGB channels, the number of ray sam-383

ples is stored in the alpha channel of the output texture Tlow as384

an estimation of the ray cost. This ray cost approximation is385

crucial for the main goal of the algorithm.386

The second step starts once the user stops interacting. The387

viewport is then divided into small tiles, and these tiles are in388

turn sorted according to the ray cost hint provided by the previ-389

ous stage (see step 2 of Figure 5), by means of a few compute390

shaders that implement a GPU radix sort algorithm [34]. The391

sorting pipeline proceeds in three steps, each one carried out by392

a compute shader: i) Group counting, ii) Group offset setting393

and iii) Sorting. During the first step i), the tiles are classi-394

fied into groups depending on its cost, so that we finally have395

a counter of the number of tiles belonging to each group. We396

consider the cost of a tile to be the number of ray samples (pre-397

viously stored in the alpha channel of Tlow) at the center of the398

tile. The second stage ii) scans these counters to establish an399

offset for each group of tiles, so that they can be later placed400

in an output texture without overlapping. Finally, the third and401

last step iii) proceeds by sorting tiles, placing them into the right402

position defined by their group offset, depending on their cost.403

The actual outputs of this compute shader are two texture maps404

that allow translating from sorted to unsorted tile coordinates405

and vice versa.406

Finally, the last step of STiles corresponds to the progressive407

ray casting, carried out again by a fragment shader. It renders408

a variable number N of screen tiles, in order, in a separated409

2D texture alias of sorted tiles. Thanks to the coordinate maps410

produced in the sorting stage, the tiles can be rendered in strict411

order. The variable number of tiles depends on a fixed time412

budget (0.1 seconds in our case). The algorithm proceeds by413

rendering a window of N tiles. After rendering these N tiles,414

the elapsed time is measured in order to know if the time bud-415

get has been exceeded, and in this case, it does not render any416

more tiles during this frame, otherwise it renders N more tiles417

until the time budget is reached. The final image is compos-418

ited by either selecting, for each pixel, the high resolution ray419

casting color if available (again, using the coordinate maps pro-420

duced in the sorting stage to know its position in the sorted tiles421

texture), or the low resolution ray casting color otherwise. This422

last step is repeated in successive frames, rendering as many423

tiles as possible without exceeding the fixed time budget, un-424

til the whole high resolution ray casting image has completely425

substituted the low resolution one (see step 3 of Figure 5). Fig-426

6



Figure 5: Schematic overview of the STiles algorithm. The first step (1) of the figure depicts the initial low resolution standard ray casting performed while the user
is moving the camera (the ray cost hint is stored in the alpha channel). Each time the interaction stops (2), the screen space is split into tiles and sorted according
this ray cost hint, and two coordinate maps that are able to convert from one space to another are generated. The incremental rendering (3) proceeds frame by frame,
rendering tiles in order and compositing the final image by selecting pixels either from the low resolution texture or from the high resolution tiled texture.

Low res. 25% 50% 75% High res.

Figure 6: Vix dataset (5122 × 250 high res., 1282 × 63 low res.). This sequence of images shows the transition effect between the low resolution and the high
resolution ray castings obtained by the STiles method. The top row shows the renderings as shown in the application, whereas in the bottom row, the low resolution
part of the same images is lightened in order to reveal the order in which the image is updated. See the accompanying video for a more clear example of this
transition.

7



ure 6-top shows the transition effect of this technique (in Fig-427

ure 6-bottom, color is modified to better perceive the boundary428

between the low resolution and the high resolution pixels).429

4.3. Discussion430

We have described two different strategies based on GPU431

ray casting for the incremental rendering of high resolution vol-432

ume datasets. Both are fast and complete the rendering of the433

final image quick enough to be considered good candidates for434

our purposes. One of the main strengths of the FBSlabs method435

is its low requirements regarding GPU specifications and OpenGL436

version. As our architecture is based on the use of 3D textures,437

a minimum version of OpenGL ES 3.0 is needed, but a dif-438

ferent implementation that makes use of 2D textures to store439

the dataset in GPU memory could support lower versions of440

OpenGL. In this sense, STiles has stricter requirements, de-441

manding a minimum version of OpenGL ES 3.1 on mobile de-442

vices, due to the usage of compute shaders, which were not443

available in previous versions. For this reason, not only old444

graphics chips, but also WebGL platforms, are not allowed to445

use STiles.446

We have decided to implement the sorting step of STiles447

with a GPU radix sort [34] using compute shaders. This sorting448

strategy performs efficiently enough for our purposes, yielding449

negligible computation times so the interactivity is not compro-450

mised. An implementation of this method in CUDA was also451

demonstrated to outperform other sorting algorithms in mod-452

ern GPUs [35]. Another version based on fragment shaders453

could have been implemented with the aim of enabling older454

devices to execute STiles [36]. However, too many rendering455

passes are required to carry out the task (with a complexity of456

O(n log2 n + log n)), yielding a serious penalty on mobile GPUs457

and providing less interactive results.458

We have also implemented some other alternatives for pro-459

gressive ray casting with less satisfactory results. One of our460

first experiments was based on a naive separation of the high461

resolution viewport into several tiles. We configured various462

splitting sizes: we found a grid of 8 × 8 = 64 tiles to be the op-463

timal case for this technique, which was raising the completion464

time to at least one second due to the number of frames (64)465

needed to finish the rendering. Unfortunately, the transition be-466

tween the low and high resolution images was not pleasant due467

to its blocky appearance. This effect could be alleviated by in-468

creasing the number of tiles, but this would increase the total469

rendering time. Furthermore, we implemented and tested an470

early version of STiles that consisted in sorting individual rays471

instead of tiles, also using compute shaders. Although the idea472

of sorting seemed sound, the performance also dropped (see473

Section 5.1). Again, we believe that this is due to the fact that474

dealing with single rays breaks texture access coherence.475

Another approach we implemented was a simple form of476

progressive ray casting (we name it Simple in what follows).477

It is a screen space refinement method that consists in start-478

ing with a low resolution ray casting image (the same used in479

STiles), and then progressively sampling new high resolution480

rays on the screen surface at each frame until a time budget is481

expired, finishing when all the pixels of the high resolution im-482

age have been computed. The high resolution pixels computed483

at each frame are accumulated in an extra texture so that they484

can be reused in subsequent frames. We have tested two differ-485

ent sampling schemes previously used in literature: first, a sam-486

pling scheme where the rays are generated randomly (referred487

to as Simple random in the figures), and second, another one488

where the rays are selected using a regular distribution (labeled489

as Simple structured). The number of refinement steps is vari-490

able and depends on the number of rays computed at each frame491

without exceeding the fixed time budget, which is directly re-492

lated to the complexity of the rendering process (i.e. resolution493

of the model, opacity of the transfer function, viewport reso-494

lution, etc). The transition effect between the low resolution495

and the high resolution images was highly smooth, up to the496

point of almost not noticing the transition. We used the same497

performance optimizations used in the other methods presented498

(i.e. ERT and ESS). However, the performance of this approach499

was worse than our proposed methods (see Section 5.1). Our500

hypothesis is that the pseudo-random distribution of rays was501

preventing all kinds of cache usage on the GPU, thus increas-502

ing the rendering time at each frame and achieving a much less503

interactive experience. We present an evaluation of this method504

in Section 5 together with the evaluation of the proposed tech-505

niques.506

5. Results507

Rendering high quality images of a relatively large dataset508

on low performance devices such as mobile devices is a task509

that requires a significant amount of time. We have proposed510

an incremental approach that splits this process into separated511

steps that are completed over subsequent frames, so that each512

step can be executed during an application frame not exceed-513

ing an acceptable amount of time. This avoids blocking the514

application and provides smooth interactivity, allowing the in-515

terruption of the high quality rendering at any time if the user516

desires to continue interacting. Our two proposed methods ac-517

complish this task quickly and in a visually pleasant way. So,518

from the point of view of the user, the only visible difference519

is the transition from the low quality image to the high quality520

image.521

We performed several experiments to measure the advan-522

tages of both approaches in terms of performance (Section 5.1)523

and visual quality (Section 5.2). The experiments were run on524

two mobile devices, a Motorola Nexus 6 (equipped with an525

Adreno 420 GPU and a screen resolution of 1440 × 2560) and526

an Huawei Nexus 6P (equipped with an Adreno 430 GPU and527

a screen resolution of 1440× 2560). On both devices, the view-528

port resolutions were scaled to half the screen size on both axes529

for the high resolution ray castings (720 × 1280, which is still530

a good resolution due to the small pixel size given on these de-531

vices’ screens) and to one eight of the screen size for the low532

resolution ray castings (180 × 320). We used datasets of dif-533

ferent resolutions with transfer functions having different levels534

of transparency: Vix (5152 × 256), Head (5122 × 485), Obelix535

(2562 × 780), Chamaleon (5123) and Melanix (2562 × 602).536

8



Figure 7: Average completion time (in seconds) of progressive ray casting
methods run on different devices for several datasets. These times are an av-
erage measure calculated by performing the transition process from 3 different
zoom levels with different screen pixel coverages, and 20 different camera po-
sitions uniformly distributed on the surface of a surrounding sphere for each
zoom level (60 camera configurations in total). Note that the measurements
for the Classic RC complete faster in average, which is the expected behaviour
as the rendering task is not split over several frames. However, this does not
implies better interactivity than progressive methods, because these distribute
the workload over several frames, returning the control to the application more
frequently. Note also the high bars in the Classic RC, indicating that some
renderings were not completed due to an application crash.

5.1. Transition from Low-Res to High-Res: Performance537

FBSlabs distributes the workload over time by splitting the538

rays into segments. At each frame of this progressive method, a539

limited number of ray casting samples is fixed, so the maximum540

number of samples within the ray casting shader, for a single541

frame, is O(Vw × Vh × N), where Vw × Vh is the total number542

of pixels in the viewport and N is the fixed number of samples543

to take from each ray segment during a single frame of the in-544

cremental rendering. We have fixed N = 40 in our experiments545

so that a small loop is performed for each pixel in the viewport546

at each frame. Besides the rendering of each slab, the amount547

of time required for blending both, the low resolution and the548

high resolution images, is negligible. Some results are shown in549

Figure 7 (FBSlabs series). In average, our experiments obtain550

completion times under 1 second for the tested models.551

We have tried to improve FBSlabs in order to store per-ray552

accumulated opacity after each frame so that a global ERT is553

enabled. However, this implemetation requires an extra pass554

to copy the high resolution results into another texture that can555

be queried during the next frame to know whether or not the556

current ray/pixel was completed and can be discarded. Unfor-557

tunately, this extra pass incurs a penalty that incurs in a time558

penalty that is larger than the benefits obtained from ERT. The559

algorithm can still perform per-slab early ray termination, but it560

will not avoid starting the ray traversal for the next slab in the561

next frame.562

In STiles, the workload is split into screen-space tiles that563

can have different costs depending on the length of the rays564

they contain, and sorted before proceeding to the progressive565

ray casting step. The sorting step cost is actually negligible and566

it is computed only once after each user interaction (see step 2567

Figure 8: Charts showing the accumulated time over subsequent frames in
STiles for two datasets. The lines correspond to different levels of camera
zoom, corresponding Zoom 0 to the smallest, and Zoom 2 to the largest screen
pixel coverage. A fixed number of tiles is rendered at each frame, and the tiles
have been previously sorted by increasing cost. Last frames obviously take
longer to finish.

of Figure 5). We base our strategy on the experimental results568

shown in Figure 8. If tiles are sorted by increasing cost, it can569

be observed that the accumulated time of the incremental ren-570

dering along subsequent frames (when a fixed number of tiles is571

rendered at each frame) increases in a non-linear way, due to the572

obvious fact that rendering the first tiles is faster than rendering573

the last ones. Our strategy, based on the charts in Figure 8, is to574

render more tiles in the first frames and a lower number of tiles575

in the last frames to compensate for their higher cost. Based576

on the shape of the curves in these charts, we estimate a tile577

budget for each subsequent frame that guarantees an estimated578

time budget of 0.1 seconds per frame. Estimated tile budgets579

are decreasing from the first frame to the last one, resulting on580

a greater number of tiles being rendered in the first frames and581

on a stable frame rendering time. As shown in Figure 7, we582

achieve completion times faster than FBSlabs method (approx-583

imately half the time for all the tested datasets on all devices).584

One could argue that rendering tiles in ascending order in585

STiles implies rendering big empty regions of the screen first586

(which should have cost zero) whenever the footprint of the587

proxy geometry is much smaller than the actual screen reso-588

lution. The ideal procedure would be to directly discard those589

tiles without effective work to process, or those not overlapping590

the proxy geometry. However, discarding tiles with zero cost591

9



Nexus 6
Simple FBSlabs STiles Classic RC

Min Max Avg Min Max Avg Min Max Avg Min Max Avg
Vix 8.03635 11.6122 8.84522 10.7524 32.6419 20.6254 12.5105 23.0776 16.5257 2.24384 11.2076 4.97987
Head 8.16621 11.1880 9.73117 17.5999 37.4925 25.4241 11.0722 23.2729 16.2087 3.30920 11.4138 6.44491
Obelix 7.85773 10.2932 8.83859 13.8662 40.3193 23.9071 9.29148 26.8632 17.0683 ] 13.3783 6.71495
Chamaleon 7.90516 10.8366 9.75879 17.1355 37.2815 25.3579 13.5114 23.7053 16.8985 2.04548 6.94170 4.48132
Melanix 7.92802 10.2918 8.65489 15.1961 42.8415 25.5537 13.0587 28.4416 19.7347 4.16008 19.5485 9.98187

Nexus 6P
Simple FBSlabs STiles Classic RC

Min Max Avg Min Max Avg Min Max Avg Min Max Avg
Vix 9.04296 10.8118 9.65829 18.3297 47.705 28.8664 13.4198 24.1418 16.6214 3.84157 16.7853 7.96326
Head 7.8058 10.5197 9.65324 23.0565 51.6828 31.5486 13.7861 24.4392 17.263 4.03957 14.8991 8.70402
Obelix 8.65025 12.5418 9.68395 17.7137 48.3289 26.762 9.68402 26.2899 16.4421 ] 19.3723 9.07656
Chamaleon 8.82493 12.9486 9.59793 17.1363 47.9752 26.1988 12.1175 21.7779 15.7702 2.34358 11.5424 6.37945
Melanix 9.18801 13.3794 10.1308 18.5456 54.088 26.9182 13.1736 32.586 20.3036 4.99895 22.5877 12.6974

Table 1: These frame rates reflect the interactivity of the presented progressive ray casting methods with respect to a classic non-progressive ray casting algorithm on
two different mobile devices. All progressive methods perform interactively in all cases during the generation of the high resolution image, being FBSlabs the more
interactive, followed by STiles and being the Simple progressive method in third place. Note, however, that the frame rates provided by a classic non-progressive
ray casting provides worse frame rates and hence bad interactivity in average, and provoking occasional application crashes as shown in Figure 7.

is not reliable, as tile costs are computed from a low-resolution592

image rendering, and furthermore, we actually classify each tile593

by the cost queried from a single sample position at its center.594

However, this issue is not a problem, as the rendering of empty,595

and almost empty tiles, completes instantly when the fragment596

shader discards rays not intersecting the proxy geometry, so it597

is actually normal completing all the empty regions and part of598

the effective ray casting workload during the first frame.599

As previously commented, we tested an initial version of600

STiles that consisted in sorting individual rays, achieving poorer601

performance. We were then inspired by an analysis of the ras-602

terization patterns followed by several GPUs in [37], where the603

authors were able to reveal the order in which pixels are ren-604

dered by the GPUs by means of using atomic counters in a frag-605

ment shader. Based on this observation we performed an anal-606

ysis of the performance by running some tests, packing groups607

of rays in tiles of several sizes (see Figure 9). As expected,608

increasing the tile size boosts performance. The rationale be-609

hind this is that packing neighbouring rays together takes ad-610

vantage of the 3D texture cache. Following this argumentation,611

performing the whole rendering at once would achieve an op-612

timal result. However, the measurements shown in Figure 9613

are averaged over a big variety of camera configurations where614

some renderings are generated very quickly and others can take615

much longer (e.g. the Body model seen from above through its616

longest axis), and they could provoke the aforementioned appli-617

cation crash issue if not split over time. We finally decided to618

use a minimum tile size of 8×8 pixels, as the performance gain619

considerably decreases for larger tile sizes. As shown in Sec-620

tion 5.2, this tile size achieves a good compromise between the621

rendering time and the perceived transition between different622

frames.623

We also tested the performance of the Simple progressive624

ray caster. The achieved completion times were the higher625

among all methods (see Figure 7). This is due to the distribu-626

tion pattern followed to generate rays for the high resolution ray627

casting. It does not take into consideration any locallity pattern,628

breaking the spatial coherence and not making possible the use629

of the 3D texture cache, finally increasing the total completion630

time. In addition, we executed performance tests of a classic631

non-progressive ray casting algorithm to compare the achieved632

times with the result of our proposed progressive methods. The633

average rendering times obtained may seem lower than our two634

proposals (see Figure 7, Classic RC). However, these are av-635

eraged numbers only from successful frames. Other images,636

taking longer to be rendered stall the application until finish-637

ing, not giving the user the opportunity to interact. Some others638

cannot even be averaged as they make the application crash due639

to long stalls (this is the case of the Obelix dataset when vi-640

sualized along its longest axis, as the used transfer function is641

barely opaque, and that generates very long rays). Furthermore,642

it is desirable to receive partial results of the final image right643

after finishing interacting (even if it takes a bit longer to com-644

plete the image), which gives the user a hint to perceive that the645

application is actually working. This performance is again not646

offered by classic non-progressive ray casting algorithms.647

Some extra tests were performed in order to measure and648

compare the interactivity of the presented progressive ray cast-649

ing methods. As seen in Table 1, all progressive methods present650

an acceptable frame rate in all cases during the generation of the651

high resolution image, being FBSlabs the more interactive, fol-652

lowed by STiles, and being the Simple progressive method in653

third place. Note, however, that the classic non-progressive ray654

casting provides worse frame rates and hence bad interactivity655

in average, and provokes application crashes occasionally, as656

shown in Figure 7.657

5.2. Transition from Low-Res to High-Res: Visual Effect658

The visual effect of the transition between low resolution659

and high resolution images obtained by FBSlabs and STiles is660

quite different. Figures 4, 6, 14, 15, 16 and 17 show the progres-661

sion of each method during the transition time with renderings662

of several datasets, visualized with transfer functions designed663

with different colors and opacities. The accompanying video664

depicts the progression effect over time better.665

10



Figure 9: These charts show the overall completion times (in seconds) obtained
for the STiles algorithm under several tile size configurations. The tests were
run on two different devices (Huawei Nexus 6P on the top, Motorola Nexus 6
at the bottom) with several datasets. The tested tile sizes were: 12, 22, 42, 82,
162 and 322. We can see how the completion time decreases as the tile size
increases. More precisely, the performance gain is particularly low for sizes
greater than 82, which is actually the size of the rasterization patterns used by
those GPUs.

The progressive FBSlabs method has the effect of the high666

resolution image appearing on top of the low resolution one (see667

Figure 11, FBSlabs) and completes gradually replacing the low668

resolution image in front-to-back order. During the incremen-669

tal rendering, the final color that is presented onto the screen is670

the composition of the high resolution image on top of the re-671

maining part of low resolution image using alpha blending. An672

issue regarding this way of compositing images is that we are673

mixing viewport resolutions. In the context of ray casting, this674

means two things. The first one is the fact that the rays in the675

low-resolution image do not perfectly match rays in the high-676

resolution image. And the second one is that we are performing677

an upsampling of the low-resolution image, so we are interpo-678

lating color to match the sizes of both images. This sometimes679

results in slight seam artifacts revealed in the boundary between680

the high resolution and the low resolution models.681

STiles also reveals the final high quality image gradually,682

but in this case, small tiles with the corresponding part of the683

high resolution image appear in a pseudo-random order (see684

Figure 11, STiles). It also gives the impression of completing685

the result in some sort of front-to-back order (or back-to-front686

order, it actually depends on the sorting strategy) but each tile687

Figure 10: This chart shows the measured average perceptual error (and its stan-
dard deviation) on the transition process (going from the low-resolution image
to the high-resolution image). The perceptual metric used is the structural dis-
similarity metric (DSSIM). The average error was computed using pairs of con-
secutive frames in several series of the incremental ray casting process. We can
observe that the transition becomes perceptually more evident (i.e. has a higher
error measure) as the tile size increases, being significantly greater for tile sizes
greater than 82 (note that 162 has a considerably higher standard deviation).

with high resolution color that has been computed completely688

replaces the initial low resolution color, instead of composit-689

ing the high resolution color over the low resolution color as in690

FBSlabs (see the accompanying video to appreciate the effect691

over time). We can choose between sorting tiles in increasing692

or decreasing order of ray cost. In the first case, tiles with small693

cost (e.g. those with rays that become completely opaque very694

quickly) are rendered first. This way, models visualized with695

transfer functions designed to reveal opaque isosurfaces exhibit696

a transition effect that gives the perception of most parts of the697

final image appearing first and then the silhouettes appearing in698

the end. A reverse sorting strategy, starting from tiles with an699

estimated high cost and then rendering tiles in decreasing or-700

der gives the contrary visual effect: first, translucent areas and701

most silhouettes are revealed, and then opaque areas with little702

translucent component are computed in last place. We decided703

to sort tiles by increasing order because, in most cases, the ef-704

fect it achieves is more desirable, and furthermore, the transi-705

tion achieved gives the perception of completing sooner due to706

the fact of rendering more tiles in the first frames.707

As explained in Section 5.1, we empirically determined a708

lower boundary of the tile size (in pixels) based on an analy-709

sis of the GPU rasterization pattern [37] and a series of exper-710

iments regarding performance (Figure 9). These experiments711

show a tendency to gain performance when increasing the tile712

size. However, STiles performs a tile-based rendering, and it713

consequently presents a blocky transition effect that becomes714

more evident when the tiles are too large. To determine an ap-715

propriate tile size, we also performed a series of experiments716

to measure the transition changes over time using a perceptual717

structural dissimilarity metric (DSSIM). Figure 10 shows aver-718

aged perceptual differences over time. The perceptual differ-719

ences shown in the chart are obtained by comparing each in-720

termediate frame with the previous one. Based on the obtained721

results, we decided to fix the tile size to 8 × 8, as the perceptual722

11



FBSlabs STiles Final image

Figure 11: Detail of an intermediate step during the high resolution transition process (Head dataset 5122 × 485 high res., 1282 × 122 low res.). In FBSlabs, the
transition boundary is more evident and reveals patterns generated by the fact that ray sampling proceeds front-to-back from the proxy geometry. The boundary is
less perceivable in STiles, which furthermore has a pseudo-random transition pattern that makes it less evident over time.

Figure 12: Perceptual changes of progressive methods over time. Vertical col-
ored lines indicate the completion time in each case. The data was taken from
rendering the Vix and the Obelix datasets (see Figures 6 and 16) and comparing
each frame with the final image (ground truth). It can be observed that STiles is
the fastest method and has a smooth convergence to the ground truth.

Figure 13: Perceptual changes of STiles over time using different tile sizes.
Data taken from rendering the Vix dataset (see Figures 4 and 6) and comparing
each pair of subsequent frames in the timeline. Larger tile sizes achieve higher
perceptual changes between subsequent frames. This is actually normal consid-
ering that the final image completion is usually achieved in less frames when
using larger tile sizes. Note that tiles of size 8 × 8 and smaller achieve similar
measures over time, yet tiles of size 8×8 take less frames to finish among those
small tile sizes (and less time, see Figures 9 and 7).

12



differences increase for larger tile sizes. This size is actually the723

lower boundary determined in the previous section, and also the724

size of the tiles generated by the rasterization process on these725

GPUs. This size is small enough so that the blocky nature of726

this method is not evident or annoying during the transition be-727

tween the low resolution and the high resolution images.728

We did another set of tests to measure and evaluate the qual-729

ity of transition on several datasets, also using perceptual met-730

rics (DSSIM). Figure 12 shows the perceptual transition profile731

of the FBSlabs and STiles progressive methods, and of the two732

different approaches of the Simple progressive ray caster, one733

distributing rays in a pseudo-random order (random), and an-734

other in a more structured way (structured). These tests were735

done using the Vix and the Obelix datasets (see Figures 6 and736

16), which are visualized using transfer functions with different737

levels of transparency. The charts show the perceptual image738

variation of each frame with respect to the final (ground truth)739

image. The vertical lines indicate the completion time of each740

method. In both charts, we can see how STiles is the fastest741

method, and its more uniform convergence to zero indicates that742

it produces a more smooth transition. We can also observe how743

FBSlabs shows a less uniform slope in its overall time interval744

in the charts, and after approaching the ground truth, it keeps745

on executing during several frames until the whole model has746

been rendered. This quick convergence is due to the front-to-747

back nature of the method, as the front part of the model usu-748

ally covers most part of the image, yet the back part of it has749

smaller visual impact on the final result. This results in a sud-750

den change in the first frames and very subtle variations in the751

last ones. The Simple random and Simple structured techniques,752

like STiles, also have a smooth and constant visual transition ef-753

fect, but their total completion times are longer. Summarizing,754

these observations confirm the perception we had when analyz-755

ing the running application and our preference towards STiles,756

as it quickly converges to the final image and keeps a gradual757

and smooth transition over time.758

Figure 13 shows DSSIM measurements of each frame of the759

progressive rendering with respect to its previous frame for dif-760

ferent tile size configurations in STiles. In this case, the charts761

show that the biggest tile sizes achieve a higher error, meaning762

that the transition is less smooth and more perceivable. How-763

ever, tiles of size 8×8 and smaller have a similar profile. Taking764

this into account and considering the performance results in the765

previous section (see Figure 9), we decided to use tiles of size766

8 × 8 as the default option.767

5.3. Discussion768

Both FBSlabs and STiles are usable when generating pro-769

gressive renderings of volume data. The presented performance770

tests show that they enable less powerful devices to render big771

volumes of data otherwise not feasible. Table 2 summarizes the772

main features of the two proposed algorithms. We recommend773

using STiles over FBSlabs whenever possible. It fits devices774

with OpenGL ES 3.1 (needed for the compute shaders). The775

results obtained for STiles are better both in performance and776

in visual quality as demonstrated in the previous sections. It777

completes the high quality image in less time than FBSlabs and778

the perceptual variation over time as the transition advances is779

smaller, a fact that matches our visual assessment (see the ac-780

companying video). Not far from it, however, FBSlabs is a781

good candidate to use in less powerful devices that do not pro-782

vide compute shaders (only available from OpenGL ES 3.1).783

Furthermore, even when running on more capable hardware,784

FBSlabs is a good choice on platforms such as WebGL, whose785

standard still does not support modern features such as compute786

shaders. Moreover it could even be adapted for older devices787

that do not provide 3D textures using a scheme based on flat788

3D textures or stacked 2D textures, for instance.789

6. Conclusions and Future Work790

In this paper, we have proposed a multiresolution architec-791

ture based on ray casting aimed at achieving the interactive ren-792

dering of volume ray casting in less powerful devices, such as793

mobile phones and PCs with low-end and old graphics chips.794

We use a low resolution dataset to perform interactive visual-795

izations during user interaction, and the higher resolution ver-796

sion of the same dataset (that still fits the target’s GPU mem-797

ory) to perform a high quality visualization each time the user798

stops interacting. We use a set of techniques such as a feature-799

preserving downsampling filter and adaptive transfer functions800

in order to improve the quality of coarse resolution datasets.801

Our main contributions are two scalable methods for the802

progressive ray casting of high resolution datasets that are able803

to decouple the rendering process into separated batches that804

can be rendered over subsequent frames: FBSlabs and STiles.805

These algorithms are able to provide an interactive user ex-806

perience without application stalls at any time. Based on the807

performed experiments, we conclude that STiles achieves bet-808

ter results in both performance and visual quality than FBSlabs,809

as presented in Section 5. FBSlabs is, however, a good candi-810

date for less up to date devices that do not provide modern GPU811

features (e.g. compute shaders).812

Regarding STiles a slight improvement would be the ability813

to split the current individual ray batches into several parts. It814

is not likely that our algorithms are going to deal with volume815

datasets large enough to make the device stall by only render-816

ing a single ray group. However, that could happen if rays were817

long enough, which could be solved by also allowing incremen-818

tal rendering of individual tiles.819

Current sizes of really large datasets (≥ 10243) cannot fit820

current GPUs’ memory specifications. A possible way to ex-821

tend our architecture is the implementation of an out-of-core822

block based scheme that allows fetching blocks as needed dur-823

ing the high resolution rendering process, so our progressive824

rendering algorithm could require the needed blocks from the825

storage memory or server at each frame. At first sight it seems826

that the implementation of a block-based on-demand architec-827

ture like this could be easier to extend FBSlabs, which already828

performs an object space partition to carry out the progressive829

rendering, rather than STiles, which is a screen space approach.830

13



Si
m

pl
e

FB
Sl

ab
s

ST
ile

s

Low res. 25% 50% 75% High res.

Figure 14: Illustration of the transition in the presented algorithms for the Head dataset (5122 × 485 high res., 1282 × 122 low res.). These figures do not correspond
to the actual rendering, but we modified them in order to show which parts of the image are updated over subsequent frames in both algorithms: the region that has
not yet been updated with the high quality rendering is shown with a semi-transparent look. Note that Simple has the more incremental transition. Note also that
FBSlabs has homogeneous boundaries that are easier to perceive during the progression than STiles, and STiles provides a pseudo-random transition pattern that is
more difficult to notice during the incremental rendering (see Figure 11).

14



Si
m

pl
e

FB
Sl

ab
s

ST
ile

s

Low res. 25% 50% 75% High res.

Figure 15: Melanix dataset (2562 × 602 high res., 642 × 151 low res.). Transition effect of the two proposed incremental ray casting algorithms using a transfer
function with almost opaque colors.

15



FBSlabs STiles
OpenGL
version

Requires OpenGL ES 3.0 or lower if the 3D
volume is managed with 2D textures.

Requires OpenGL ES 3.1 because it needs
compute shaders.

Transition
effect

High-resolution image appearing front to
back. Major changes occur during the first
frames. More perceivable seams between
low-resolution and high-resolution models.

Better DSSIM perceptual results. Transi-
tion occurs more regularly distributed over
time. Pseudo-random substitution pattern of
the low-res image by the high-res one.

Transition
time

Good average completion times. A small
number of ray casting samples is fixed at each
frame. High interactivity rate.

Better average completion times. A time bud-
get is fixed for each frame that cannot be ex-
ceeded. At each step, as many tiles as possible
are rendered. Good interactivity rate.

Table 2: Characteristic features of FBSlabs and STiles methods for progressive ray casting.

7. Acknowledgements831

The authors wish to thank the anonymous reviewers. Their832

valuable comments and suggestions helped improving the pa-833

per. The material in this paper is based upon work supported by834

the Spanish Ministerio de Economia y Competitividad and by835

FEDER (EU) funds under the Grants No. TIN2014-52211-C2-836

1-R and TIN2017-88515-C2-1-R.837

References838

[1] Fogal T, Krüger J. Tuvok, an Architecture for Large Scale Volume Ren-839

dering. In: Proceedings of the 15th International Workshop on Vision,840

Modeling, and Visualization. 2010,URL: http://www.sci.utah.edu/841

~tfogal/academic/tuvok/Fogal-Tuvok.pdf.842

[2] Noguera J, Jiménez J. Visualization of very large 3d volumes on mobile843

devices and webgl. In: 20th WSCG international conference on computer844

graphics, visualization and computer vision. WSCG. Citeseer; 2012,.845

[3] Noon CJ. A Volume Rendering Engine for Desktops, Laptops, Mobile846

Devices and Immersive Virtual Reality Systems using GPU-Based Vol-847

ume Raycasting. Master’s thesis; Iowa State University; 2012.848

[4] Mobeen MM, Feng L. Ubiquitous medical volume rendering on mobile849

devices. In: International Conference on Information Society (i-Society850

2012). 2012, p. 93–8.851

[5] Movania MM, Chiew WM, Lin F. On-site volume rendering with GPU-852

enabled devices. Wirel Pers Commun 2014;76(4):795–812.853

[6] Hadwiger M, Kniss JM, Rezk-salama C, Weiskopf D, Engel K. Real-854

Time Volume Graphics. Natick, MA, USA: A. K. Peters, Ltd.; 2006.855

ISBN 1568812663.856

[7] Balsa Rodrı́guez M, Gobbetti E, Iglesias Guitián JA, Makhinya M, Mar-857

ton F, Pajarola R, et al. State-of-the-Art in Compressed GPU-Based Di-858

rect Volume Rendering. Computer Graphics Forum 2014;33(6):77–100.859

[8] Beyer J, Hadwiger M, Pfister H. A Survey of GPU-Based Large-Scale860

Volume Visualization. Proceedings EuroVis 2014 2014;.861

[9] Crassin C, Neyret F, Lefebvre S, Eisemann E. Gigavoxels: Ray-guided862

streaming for efficient and detailed voxel rendering. In: Proceedings of863

the 2009 Symposium on Interactive 3D Graphics and Games. I3D ’09;864

New York, NY, USA: ACM; 2009, p. 15–22.865

[10] Fogal T, Schiewe A, Krüger J. An analysis of scalable GPU-based ray-866

guided volume rendering. In: Large-Scale Data Analysis and Visualiza-867

tion (LDAV), 2013 IEEE Symposium on. IEEE; 2013, p. 43–51.868

[11] Callahan SP, Silva CT. Accelerating unstructured volume rendering869

with joint bilateral upsampling. J Graphics, GPU, & Game Tools870

2009;14(1):1–15. URL: https://doi.org/10.1080/2151237X.871

2009.10129271.872

[12] Levoy M. Volume rendering by adaptive refinement. The Visual873

Computer 1990;6(1):2–7. URL: http://dx.doi.org/10.1007/874

BF01902624.875

[13] Kratz A, Reininghaus J, Hadwiger M, Hotz I. Adaptive screen-space sam-876

pling for volume ray-casting. Tech. Rep. 11-04; ZIB; Takustr.7, 14195877

Berlin; 2011.878

[14] Frey S, Sadlo F, Ma KL, Ertl T. Interactive progressive visualization879

with space-time error control. IEEE Transactions on Visualization and880

Computer Graphics 2014;20(12):2397–406.881

[15] Schiewe A, Anstoots M, Krüger J. State of the Art in Mobile Volume882

Rendering on iOS Devices. In: Bertini E, Kennedy J, Puppo E, editors.883

Eurographics Conference on Visualization (EuroVis) - Short Papers. The884

Eurographics Association; 2015,.885

[16] Noguera JM, Jiménez JR. Mobile volume rendering: Past, present886

and future. IEEE transactions on visualization and computer graphics887

2016;22(2):1164–78.888

[17] Lamberti F, Sanna A. A solution for displaying medical data models on889

mobile devices. SEPADS 2005;5:1–7.890

[18] Hachaj T. Real time exploration and management of large medical vol-891

umetric datasets on small mobile devices—evaluation of remote volume892

rendering approach. International Journal of Information Management893

2014;34(3):336–43.894

[19] Gutenko I, Petkov K, Papadopoulos C, Zhao X, Park JH, Kaufman A,895

et al. Remote volume rendering pipeline for mHealth applications. vol.896

9039. 2014, p. 903904–.897

[20] Campoalegre L, Brunet P, Navazo I. Interactive visualization of medical898

volume models in mobile devices. Personal and Ubiquitous Computing899

2013;17(7):1503–14.900

[21] Congote J, Segura A, Kabongo L, Moreno A, Posada J, Ruiz O. Interac-901

tive visualization of volumetric data with webgl in real-time. In: Proceed-902

ings of the 16th International Conference on 3D Web Technology. ACM;903

2011, p. 137–46.904

[22] Mobeen MM, Feng L. High-performance volume rendering on the ubiq-905

uitous webgl platform. In: High Performance Computing and Communi-906

cation & 2012 IEEE 9th International Conference on Embedded Software907

and Systems (HPCC-ICESS), 2012 IEEE 14th International Conference908

on. IEEE; 2012, p. 381–8.909

[23] Movania MM, Lin F. Real-time volumetric lighting for webgl. WebGL910

Insights 2015;:261.911

[24] Schultz C, Bailey M. Interacting with large 3d datasets on a mobile de-912

vice. IEEE Computer Graphics and Applications 2016;36(5):19–23.913

[25] Noguera JM, Jiménez JR, Ogáyar CJ, Segura RJ. Volume rendering914

strategies on mobile devices. In: GRAPP/IVAPP. 2012, p. 447–52.915

[26] Noguera JM, Jiménez JJ, Osuna-Pérez MC. Development and evaluation916

of a 3d mobile application for learning manual therapy in the physiother-917

apy laboratory. Computers & Education 2013;69:96–108.918

[27] Mobeen MM, Feng L. Mobile visualization of biomedical volume919

datasets. J Internet Technol Secur Trans 2012;1(2):52–60.920

[28] Balsa Rodrı́guez M, Alcocer PPV. Practical volume rendering in mobile921

devices. In: International Symposium on Visual Computing. Springer;922

2012, p. 708–18.923

[29] Xin Y, Wong HC. Intuitive volume rendering on mobile devices. In: 2016924

9th International Congress on Image and Signal Processing, BioMedical925

Engineering and Informatics (CISP-BMEI). 2016, p. 696–701.926

[30] Engel K, Kraus M, Ertl T. High-quality pre-integrated volume render-927

ing using hardware-accelerated pixel shading. In: Proceedings of the928

ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware.929

HWWS ’01; New York, NY, USA: ACM. ISBN 1-58113-407-X; 2001,930

p. 9–16.931

[31] Dı́az-Garcı́a J, Brunet P, Navazo I, Pérez F, Vázquez P. Feature-932

16



preserving downsampling for medical images. In: EuroVis, posters.933

2015,.934

[32] Dı́az-Garcı́a J, Brunet P, Navazo I, Perez F, Vázquez PP. Adaptive trans-935

fer functions. Vis Comput 2016;32(6-8):835–45.936

[33] Krüger J, Westermann R. Acceleration Techniques for GPU-based Vol-937

ume Rendering. In: Proceedings of the 14th IEEE Visualization 2003938

(VIS’03). VIS ’03; Washington, DC, USA: IEEE Computer Society.939

ISBN 0-7695-2030-8; 2003, p. 38–.940

[34] Harada T, Howes L. Introduction to GPU Radix Sort. 2011.941

[35] Satish N, Harris M, Garland M. Designing efficient sorting algorithms942

for manycore gpus. In: 2009 IEEE International Symposium on Parallel943

Distributed Processing. 2009, p. 1–10.944

[36] Kipfer P, Westermann R. Improved gpu sorting. In: Pharr M, editor. GPU945

Gems 2. Addison-Wesley; 2005, p. 733–46.946

[37] JeGX . OpenGL 4.2 Atomic Counters: Rasterization Pattern, Helper for947

Rendering Optimization (Windows, Linux). http://www.geeks3d.948

com/20131031/opengl-4-2-atomic-counters-rasterization-949

pattern - helper - for - rendering - optimization - windows -950

linux/; 2013. [Online; accessed 14-December-2016].951

17



Si
m

pl
e

FB
Sl

ab
s

ST
ile

s

Low res. 25% 50% 75% High res.

Figure 16: Obelix dataset (2562 × 780 high res., 642 × 195 low res.). Transition effect of the Simple, FBSlabs and STiles incremental ray casting algorithms using a
transfer function with some opaque colors (bones, kidneys, etc) and semitransparent colors (skin).

18



Si
m

pl
e

FB
Sl

ab
s

ST
ile

s

Low res. 25% 50% 75% High res.

Figure 17: Chameleon dataset (5123 high res., 1283 low res.). Transition effect of the two proposed incremental ray casting algorithms using a transfer function
with some opaque colors (bones, muscles, etc) and semitransparent colors (skin). Although we are mainly focusing on medical datasets, the presented algorithms
are perfectly suited for any other kinds of volume datasets such as this one.

19


