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As data rates rise, there is a danger that informatics for high-throughput LC-MS becomes more opaque and inaccessible to

practitioners. It is therefore critical that efficient visualisation tools are available to facilitate quality control,

verification, validation, interpretation, and sharing of raw MS data and the results of MS analyses. Currently, MS data
is stored as contiguous spectra. Recall of individual spectra is quick but panoramas, zooming and panning across whole

datasets necessitates processing/memory overheads impractical for interactive use. Moreover, visualisation is challenging if
significant quantification data is missing due to data-dependent acquisition of MS/MS spectra. In order to tackle these

issues, we leverage our seaMass technique for novel signal decomposition. LC-MS data is modelled as a 2D surface
through selection of a sparse set of weighted B-spline basis functions from an over-complete dictionary. By ordering and

spatially partitioning the weights with an R-tree data model, efficient streaming visualisations are achieved. In this paper,

we describe the core MS1 visualisation engine and overlay of MS/MS annotations. This enables the mass spectrometrist
to quickly inspect whole runs for ionisation/chromatographic issues, MS/MS precursors for coverage problems, or pu-

tative biomarkers for interferences, for example. The open-source software is available from http://seamass.net/viz/.
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1 Introduction

MS/MS has become the pervasive technique for access to the
proteome and metabolome. The demand for faster and deeper

analysis has resulted in progressive technology advancements
that have escalated the rate and size of data output tremen-

dously, and this is unlikely to slow [1]. Moreover, MS practi-

tioners continue to plan larger and more multifaceted exper-
imental designs to attain power and sensitivity to confidently

answer complex biological questions in systems biology and

medicine. While the bioinformatics and biostatistics fields are
endeavouring to keep pace with this data explosion with more
intricate and automated analyses to interpret the data, there

is a danger that the process becomes more and more opaque and
inaccessible to MS practitioners and so more likely to be used

as a ‘black box’. It is therefore vitally important that tools and

platforms are available that allow expert user verification, val-
idation and interpretation of results in the context of the raw
acquired spectra, otherwise bias, errors and false

assumptions in acquisition and processing will be routinely

overlooked.



Visualisation techniques constitute a core aspect of biolog-
ical data analysis, for they provide a direct and user-friendly

means to gain insight and interpretation of the properties of
the data. Starting with the inspection of the raw data, visual-

isation methods assist in exploring the experimental results
more effectively than by simply examining numbers in large

tables and lists [2,3], which lack the spatial organisation and
conceal the quality control aspects that the human eye can

easily recognise. It is widely acknowledged that integrated

data and results visualisation is of significant benefit to inter-
pretation in proteomics and metabolomics [1,4,5] supporting

quality control for the identification of issues and artefacts

caused by experimental design, acquisition and processing.

Here, human cognition is harnessed to assist users in under-
standing the underlying phenomena and casual relationships
in their data. Most commercial and academic LC-MS software

packages therefore contain a variety of 1D, 2D and 3D visual-
isations of varying sophistication.

LC-MS data have three or four components: chromato-

graphic retention time (RT), m/z, ion count (intensity) and

more recently, ion mobility. Manual data interpretation is cur-
rently predominantly performed using 1D visualisation with

mass spectral plots (intensity over m/z for a specific RT) and

extracted ion chromatograms (XICs: intensity over RT for a

specific m/z). Annotated 1D spectral plots are the mainstay of

visual interpretation, particularly for MS/MS fragmentation
spectrum appraisal, e.g., for identifying PTMs, or de novo

sequencing [6]. Nevertheless, exploring the data by looking at
1D plots does not lead to an optimum comprehension of the
quality of quantitative data. Instead, one would like to have a

complete view across m/z and RT, i.e., examining intensities
across a 2D domain. Image-based visualisation and interpre-
tation is the natural method to handle 2D electrophoresis

gels. For LC-MS data, the first 2D ‘virtual gel’ representation
was proposed by Li et al. [7]. These days, typical visualisa-
tions aim to integrate raw data with peak segmentation and
quantification results, and with MS/MS product ion spectra

and identification results through annotation of their pre-
cursors [8]. They can also incorporate differential displays
or tilings to compare fractions or biological replicates. For

both LC-MS and GC-MS, 3D topographical ‘terrain render-
ing’ has been demonstrated as a valuable addition [9]. More

advanced cognitive visualisations have also recently be pro-
posed, for example with annotated pathway analysis results

[10] and where metrics are encoded by shape, size and colour
of glyphs [11]. Finally, it is perhaps not surprising that MS
Imaging data in particular has spawned a wealth ofvisualisa-

tion research, where dimensionality reduction, segmentation
and false colour have been used to create ‘virtual histopathol-

ogy’ maps to aid clinical diagnosis [4].
Since the Proteomics Standards Initiative mzML data in-

terchange format [12] organises full-scan data as a contiguous

list of raw spectra, recall of individual spectra is fast due to the

indexing scheme and their relatively small size. However, a
common task is to view XICs to assess the chromatographic

separation of a biochemical. For datasets not stored as XICs

(i.e., non-SRM data), visualisation requires every MS spec-

trum in the dataset to be extracted. Moreover, generating a
2D image (‘virtual gel’) of an LC-MS dataset requires every

single datapoint to be loaded, despite the limited pixel den-
sity of the user’s display. To mitigate some ofthese issues, 3D

visualisations in the commercial Progenesis package (Nonlin-
ear Dynamics, Waters Inc.) are rendered from small regions

of interest around delineated peaks. However, the rendering
is still not instantaneous, thus restricting productivity and

user motivation.

Current streaming visualisation technologies for large-
scale spatial data such as Deep Zoom (http://www.microsoft.

com/silverlight/deep-zoom/), Zoomify (http://zoomify.
com/) and Google Maps (http://maps.google.com) use the

image pyramid as a basic building block for displaying

large images in an efficient way. A typical image pyramid
decomposes an image at multiple dyadic resolutions (i.e.,
multiscale), and at each resolution the image is tessellated

into axis-aligned tiles. For visualisation, the resolution

closest to the viewport resolution is selected and only visible

tiles are selected for display. Setting the parameter values
of the pyramid such as the number of levels and tile size

allows control of the data transfer rate. Attaining reasonable

streaming performance requires each tile to be compressed
with a progressive coding scheme so that a coarse version of

each tile is displayed as soon as possible and then iteratively
refined as more data is received.

There are several issues with these approaches for visual-
ising LC-MS data. Firstly, MS analysis should not be com-

promised by lossy image compression methods that make
assumptions based on the acuity of human vision. Secondly,

progressive image compression ranks image features for dis-
play by their spatial extent, but in MS peaks are more cog-

nitively important than background regions, yet have very

localised extent. Thirdly, compression of each separate tile
leads to visible discontinuities at tile boundaries until the

data is fully loaded. Finally, MS datasets are not structured

over a regular Cartesian grid like conventional images or com-

puter monitors: irregular sampling in the m/z dimension de-
pends on the Orbitrap signal intensity or the TOF quadratic

calibration equation [14], whereas data point position in the

RT dimension depend on any adaptive scan times of prior
MS/MS acquisitions. Tools that generate ‘virtual gel’ images
need to ensure that no inaccuracies are produced by the re-

sampling or rebinning process, particularly when displaying

peak apexes at accurate mass.
While issues surrounding dataset loading have not been

tackled so far, streaming and display of data already resid-
ing in memory has been studied. 3D approaches are based

on multiresolution terrain modelling with on-demand view-
dependent rendering [15]. A tree or graph-based mesh is de-

signed so that inhomogeneous resolutions can be extracted at

run-time based on a curvature and/or image-based error crite-
rion. Lossaso and Hoppe’s seminal approach [16] presents an

optimised GPU representation where the meshes are fixed

based on the level-of-detail (LOD) reducing in increasingly



sized rectangular hoops centred on the viewer. However,
cracks requiring stitching appear between LODs. Since dis-

played LOD is purely view dependent and not based on cog-
nitive importance of peaks, Corral and Pfister [17] decided to

compute the maximum rather than average intensities at each
LOD. This mitigates the problem for peaks in the foreground,

but as a side effect peaks widen as they become more distant.
In more recent work for metabolomics, Linsen et al. [14] use a

maximum intensity wavelet decomposition equivalently, but

only display a single LOD.
In this paper, we describe a next-generation engine for fast

and flexible visualisation of large-scale raw quantitative LC-

MS data. By decomposing the MS signal into its constituent

components and ordering these parts by their cognitive im-
portance, we are able to provide accurate visualisations at low
data rates: Early approximate reconstructions permit fast re-

sponse to initiation, panning and zooming, while later recon-
structions reveal detailed peak shape and tertiary structures.

The intention is that our platform can replace the simpli-

fied raw data handling currently adopted by current viewers,
fusing our fast streaming visualisations with their existing
advanced annotation overlays.

2 Materials and methods

As illustrated in Fig. 1A, we propose an asymmetric scheme

for providing fast visualisation of raw profile-mode LC-MS
data. Initially, each dataset is pre-processed with our signal

decomposition algorithm into a sparse set of image ‘build-
ing blocks’, which are then indexed both spatially and by

their cognitive importance through an R-tree representation
and stored back to disk. This is a computationally intensive

process but is only required once and therefore has been

implemented as a ProteoWizard [18] filter so that it can be
performed in parallel with conversion to mzML, e.g., on ac-

quisition or on upload to a public repository. Subsequently,

our lightweight viewer can interactively visualise this data

rapidly and efficiently. To facilitate interpretation of the data,
the viewer harnesses the ability of the signal decomposition
algorithm to adaptively interpolate missing MS1 spectra. MS1

spectra are missed when the instrument is switched into iso-

lation mode to acquire MS/MS or MSn identification spectra.
This is particularly noticeable with data-dependent acquisi-
tion (DDA), where the instrument selects the most intense

MS1 peaks for isolation, fragmentation and analysis.

2.1 Sparse signal decomposition for LC-MS data

Sparse signal decomposition approaches rely on the ability
to deconstruct a signal parsimoniously into a weighted linear

combination of elementary signals, or atoms, from a dic-

tionary of such signals [19]. In the LC-MS informatics field,
these methods have so far been utilised extensively for denois-

ing [20] and feature detection [21]. For denoising, multiscale

wavelet dictionaries are extremely popular due to their math-

ematical properties that enable an optimal decomposition to
be calculated in linear time under a Gaussian noise assump-

tion. Wavelet denoising works on the principle that smooth
structured signal can be represented by a sparse (small) set of

shifted and scaled wavelets of large weight, while Gaussian
noise is distributed weakly across wavelets of all shifts and

scales. Most noise can therefore be removed by thresholding
minor weights to zero.

Since the greater the weight, the greater the contribution
to the overall signal, the same technique is valuable for signal
compression and prioritising coefficients for streaming visu-
alisation. However, we believe that Gaussian wavelet meth-

ods are not appropriate for streaming visualisation of LC-
MS data. Firstly, a recent study on TOF instrumentation has
shown that ion counting statistics dwarf other noise compo-

nents [22]. This suggests a Poisson noise model rather than
Gaussian, which immediately offers two advantages: Firstly,

negative counts are unattainable. Secondly, Poisson variance
is equal to its mean, which is supported by observations that

MS signal variance drops as m/z increases in linear TOF in-

struments, since the mean data-point intensity decreases due
to peak spread [23]. Note that while Orbitrap instruments

sample ion counts indirectly through induction of a current
that captures the frequencies of oscillation of all ions simul-
taneously, the statistics of discrete and finite ion counts still
ensure that the signal has an underlying pseudo-Poisson dis-
tribution.

Secondly, wavelet filters have zero mean by design. This
enables wavelets at each scale to approximate the signal with-
out introducing bias: Wavelets of finer scale improve on the

signal approximation by adding to and subtracting from it in
equal measure. Therefore, LC-MS visualisation with a wavelet
decomposition would lead to early approximate reconstruc-

tions exhibiting erroneous ion signals that would then be
removed by later refinements. Conversely, each atom in our
multiscale B-spline basis function dictionary is restricted to
have a non-negative weight by the Poisson model. In this way,

they act as ‘building blocks’ that additively construct the LC-
MS signal. We believe that multiscale uniform B-spline basis
functions of3rd order (cubic) have the ability to model generic

LC-MS signals closely: As shown for an XIC decomposition in
Fig. 1B, uniform B-spline basis functions approximate Gaus-

sian peaks, but unlike Gaussians are not infinite in width (in
fact, B-spline basis functions converge to Gaussian functions

as the order increases to infinity). Furthermore, background
signal and peak shoulders can be modelled by consecutive B-

spline basis functions spaced at 1/(order+1) intervals, which

is mathematically equivalent to the piecewise polynomial of

global continuity with shortest support, which is called a B-
spline curve [24].

In our seaMass software, we adopt an overcomplete set
of separable tensor-product B-spline basis functions to ef-
ficiently model correlated signals across m/z and RT di-
mensions. We treat the raw input data as irregularly spaced
ion count bins. Discrete kernels are generated to map the



Figure 1. (A ) Flow chart of the proposed asymmetric visualisat ion plat form for LC-MS data. A server or workstation is employed to

decompose the dataset and store the result in an R-tree format for archival. Lightweight clients can then efficiently read and visualise this

format interactively. (B) Top: A sparse set of multiscale B-spline basis functions selected by seaMass to accurately fit an XIC. Bottom: The

client simply adds these basis functions up to reconstruct the XIC for visualisation. (C) The basis functions are partit ioned by m/z, RT, and

weight coefficient using an R-tree index structure. These are streamed out to the client’s display in decreasing order of weight.

continuous B-spline basis functions onto these discrete bins.
In effect, this fits a continuous, maximally smooth 2D sur-
face to the raw data so that missing regions (due to DDA

MS/MS acquisition) are implicitly imputed. The algorithm

relies on shrinkage hyper-parameter X, which controls the
trade-off between fitting accuracy and the size of the result-

ing sparse coefficient set. For further technical details of the
methodology, please see [25].

2.2 R-tree representation for data streaming

To retrieve the B-spline coefficients spatially and by cognitive

importance within a tolerable latency time, an efficient spatial
data index structure is necessary. As two popular methods,

Octree [26] is widely used in graphics applications, while the

R-tree [27] is the most commonly employed spatial indexing
structure in the database community. Both can represent 3D
data and therefore organise the B-spline basis functions from

the sparse decomposition both spatially in m/z and RT, and
by basis function weight, which is our proxy for cognitive
importance.

An Octree is a 3D data generalisation of a binary tree. Each

node represents the volume formed by an axis-aligned 3D
cuboid and has up to eight children, each corresponding to
one equally sized octant of the parent cuboid. While Octrees

provide extremely fast spatial querying, their encoding is sub-

optimal when the encoded data is not spread evenly across
the three dimensions. Moreover, since Octrees can index only
regions of fixed size, we would need to construct a different

Octree to encode the coefficients of each scale of B-spline
basis function.

The R-tree is an extension of the one-dimensional B-
tree for multi-dimensional data. As illustrated in Fig. 1C,
3D R-trees provide a spatial index of axis-aligned cuboids

of any size by deriving hierarchically nested and possi-

bly overlapping containing cuboids. The tree is height bal-
anced, with each node corresponding to one hard disk chunk
(e.g., 4kb) for optimal random access. Several libraries ex-

ists that implement R-tree for storing and processing spa-

tial data outside of databases. For performance consider-
ations we adopted the lightweight libspatialindex library
(http://libspatialindex.github.io/), which provides improved

R* splitting heuristics for improved query efficiency [27].

2.3 Lightweight visualisation client with dynamic

multiresolution coring

Data flow in the visualisation client is illustrated in Fig. 1A.
For each desired viewpoint, the R-tree index is queried and

the spatial locations of a packet of basis functions are deliv-
ered in order of their weight. Delivery of multiple consecutive

packets enables dynamic multiresolution coring during the
decompression process: Main image features, i.e., intense

peaks and background, will be displayed in initial frames,

with finer details built up incrementally. To minimise com-
putation, coarser B-spline basis functions are transformed
to a single-scale B-spline surface at the scale closest to the

viewport resolution using a convenient property that enable



them to be transformed between scales analytically [34]. This

surface is then sampled to the display, before the remaining

finer scale basis functions are rasterised directly.

3 Results

We demonstrate the usage of our visualisation platform
on exemplar ToF and Orbitrap datasets. The Clinical Pro-

teomic Tumor Analysis Consortium (NCI/NIH) generated
Orbitrap data used in this publication. LC-TOF-MS data from
an Agilent 6530 Q-TOF was acquired in CADET, University

of Manchester. The datasets are available for download at

http://seamass.net/viz/.
Initially, we objectively assessed how close the recon-

structed incremental streaming visualisations are to the
original raw data. This is dependent on the shrinkage hyper-
parameter X used in the sparse signal decomposition algo-

rithm. As shown in Fig. 2A, if the iterative algorithm is run

exhaustively (2000 iterations, solid curves), a wide range ofthe

shrinkage parameter (2−4 to 2−9) leads to similar mean abso-
lute errors between the raw and reconstructed data points as

more basis functions are utilised, except that lower shrinkage

values lead to a final reconstruction with less error. However,
running seaMass on complete datasets for 2000 iterations is

not computationally feasible. For a complete Agilent 6530 Q-
TOF dataset, 180 iterations of seaMass takes 3 h on an Intel

Xeon E5 2630 v3 (2.4Ghz). As expected for sparse decomposi-
tion methods, a higher shrinkage parameter converges in less

iterations (dotted curves). In particular, the decomposition
for a shrinkage of 2−4 is similar between 100 and 2000

iterations. For this, the mean absolute error for the final
visualisation is around 1.5 ion counts. Note that this is

effectively a light denoising of the data, as the decomposition

is not capturing the non-smooth, random Poisson noise
component. These residuals are only of interest when

zoomed in, and can be streamed after the structure has been

delivered. The nature of the error is illustrated more closely

in Fig. 2B, where the percentage error is plotted across the
raw ion count range. Here, it is seen that the percentage
error is inflated for data points with ion count less than 10,

and reduces as peak intensity increases. A shrinkage of 2−4is

used in the remainder of this paper. Figure 2C illustrates the

streaming rate for viewports from overview (range 1024 m/z

by 32 min RT) to deep zoom (4 m/z by 2 min) when reading

from a standard 7200 rpm hard disk. R-tree decoding from
disk was approximately linear but not significantly correlated

with viewport size, varying from 118 048 basis functions

per second for

4 m/z by 2 min to 530 214 for 64 m/z by 8 min. Image recon-
struction for display at a resolution of 800 × 600 pixels took
approximately the same time or was faster than decoding,
ranging from 324 399 basis functions per second for 256 m/z
by 16 min to 1 829 750 for the 4 m/z by 2 min zoom. These
streaming rates are well within the requirement for real-time
interactive visualisations.

Figure 3 shows surface reconstructions of the seaMass
signal decomposition from a complete sparse set of basis

functions. These images illustrate the effectiveness of the
missing data imputation, which relies on seaMass selecting

basis functions ofmaximal scale to fit the available data, which
in effect minimises changes in curvature where data is absent.

Figure 4 shows how a zooming procedure is handled in our
platform. Data visualisation usually starts with an overview of

the whole dataset before zooming/panning to specific areas

of interest or focusing on specific biochemical signals directly
through tables of analysis results. In Fig. 4A, 5000 coefficients

are streamed out for each frame of this Orbitrap data. After a

few frames, most of the peaks are revealed; only some subtle

changes (most of them noise) appear in subsequent frames.
It is not necessary to continue panning and/or zooming the
dataset until the last frame of the current view displayed: the

user can interrupt a data stream at any moment to check other
details in a selected region of interest. A similar scenario is

observed with the TOF dataset (Fig. 4B), except to note that

there is dramatically more background information present
in this data. Because of this, 40 000 basis functions were
streamed out for each frame update. It can be seen that the

overview visualisation does not noticeably improve after ten

frames (400 000 basis functions). This is a dramatic reduction

on the 14 191 701 data points present in the original.
Figure 5 demonstrates some potential QC procedures that

are facilitated with our platform. Figure 5A compares two

small regions of a pair of label-free proteomics runs for
differential expression. Coincident peptides are visible that
may affect quantification in this region. Figure 5B shows a

panorama of a complete run where it can clearly be seen that

some problems with the ionisation led to signal dropout in
the early stages of the chromatographic run. In Fig. 5C we

overlaid the locations of the MS/MS spectra translucently on
top of the imputed reconstruction and annotated the precur-

sor location. From this presentation we see that despite the
abundance of this visualised peptide, it was almost not se-

lected for fragmentation: only its tail was subject to MS/MS

analysis.

4 Discussion

This paper presents a novel platform to interactively explore

raw profile-mode quantitative LC-MS data with a 2D visu-

alisation similar to Google Maps, but with an asymmetric
encoding/decoding scheme specialised to the needs of MS.
The LC-MS signal is decomposed into weighted B-spline basis

functions that each represent a non-negative baseline compo-

nent, peak, or peak shoulder. These building blocks are sorted
and stored using an R-tree data structure that enables opti-

mised retrieval both spatially and by their overall contribution
to the signal.

This computationally intensive but one-time batch pre-
processing step is key to subsequent interactive visualisation

with minor computational burden (Fig. 2C) and a memory



Figure 2. (A) For the small TOF region illustrated, comparison of the mean absolute error between the raw data points and the incremental

add ition of basis functions to the visualisation by decreasing order of importance. Curves show seaMass sparse decompositions with

shrinkage hyperparameter X between 2-4 and 2-9 . Dotted and solid curves represent results after 100 and 2000 seaMass iterations,

respectively. (B) For the completed visualisations with X between 2-4
and 2-9

, the percentage error between seaMass and the raw data

point is plotted against the magnitude of each raw ion count. (C) For a complete TOF dataset, streaming rates for R-tree reading from disk

(solid curves) and image reconstruction for display at 800 x 600 (dashed curves) for viewport sizes from overview to deep zoom.

overhead of around 200 Mb (which is predominantly for the

R-tree cache). Furthermore, this enables datasets larger than 2
Gb to be opened on computers with 32bit operating systems,
which are still very common, whereas existing tools require

workstations with large memories in order to load datasets

fully, and take minutes to do so. The signal decomposition
is also key to the quality of the reconstructions that we can
provide with only a small number of the most important ba-

sis functions, as illustrated in Figs. 3 and 4. This is crucial

to our ensuing goal, which will be to attain remote visualisa-

tions across the Internet at interactive and adaptive rates, to

demonstrate the potential for seamless access to data
stored in public raw data repositories such as
ProteomeXchange [1].

In this study, we have shown that our seaMass decompo-

sition approach realises a mean absolute encoding error of
around 1.5 ion counts per datapoint. As a sparse signal de-
composition approach, seaMass is effectively a transformer

coder that is able to achieve statistically lossless compression.

i

Figure 3. Left: Raw data for a reg ion

of a TOF and Orbit rap dataset. DDA

MS/MS acquisitions are shown as dark

blue (zero counts). Note that Orbitrap

data also exhibits expansive regions of

zero counts in the MS1 spectra. Right:

Surface reconstructions from the gen-

erated basis functions, demonstrating

the missing data imputat ion.



Figure 4. Inspection use case demonstrated

on (A) Orbitrap and (B) TOF datasets. In each

frame, a 1 D view of the spectrum highlighted

by a red line in the 2D view is shown, clar-

ifying the incremental data display as basis

functions are streamed.

of LC-MS data. ‘Statistically lossless’ is defined as reflecting
the original data within some bound of absolute error. This

suggests that our proposed data representation has the merit

to potentially become a compressed archival format for LC-
MS data similar to the recent NumPress approach [35] but

with a significantly more advanced predictive coding scheme
and the additional advantage of being visualisation ready. By

additionally storing the difference delta between the seaMass

reconstruction and the original dataset, full lossless compres-
sion would be achieved. Investigation into a joint visualisation
and data archival format along these lines is left for future
work.

Only 2D visualisation is demonstrated in this paper.

2D visualisation is optimised to show many data points



Figure 5. (A) Comparison of two label-free runs to check putative differential expression. (B) This overview display reveals an ionisation

issue in the fi rst few minutes of the run. (C) Example of an overlay of MS/MS spectra (t ranslucent areas) and precursor locat ion (black

mark) on the imputed reconstruction of a peptide.

simultaneously. However, it is difficult to grasp intensity

variations from just the colour of the points and so 3D vi-

sualisation can be useful in providing alternative cues. 3D
visualisation support would be entirely a client-side provision

and is a topic for future work. Moreover, our signal decom-
position algorithm and R-tree data representation provide a

solid foundation for 3D visualisation: For a particular view-
port, the sorted multiscale weights are mapped to a single

scale by using the analytical B-spline operations. Therefore,
unlike geometry clipmap or tile-based approaches [17], 3D vi-
sualisation based on our data model does not need to handle

tile tessellation or crack stitching.

Current proteome informatics and statistical methodology

provide detailed and comprehensive reporting, but the scale
and opacity of the data can mask unexpected results as well

as making it easy to overlook important details. It has re-

cently been proposed that traditional QC procedures can be
complemented with new automated tools for generating QC

metrics [36]. We suggest that visual analytics integrated into
these tools, or provided separately, may aid existing and new

QC tasks by harnessing the human advanced visual infor-
mation processing system [37]. Current LC-MS visualisation

tools are limited by their loading and handling of complete

datasets, which severely limits productivity and precludes the
integrated comparison of whole experiments. In our visuali-
sation engine memory overheads are mitigated, enabling the

possibility of implementing novel visualisation schemes in-

tegrating results and raw data across complete experiments.
This could greatly facilitate QC, verification, validation and
expert interpretation of MS analyses, beyond that of what we

have illustrated in Fig. 5. If suitable advanced visualisations

were developed for MS data analysis, from initial QC to raw

data display, peak picking, feature detection, and statistical
analysis, analysts may be able to discover not only expected

but also unexpected results earlier. The ultimate goal of our
platform is therefore to facilitate visual analytics as well as

online interactive visualisations for ever-bigger MS datasets.
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