16 research outputs found

    A Weld Defects Detection System Based on a Spectrometer

    Get PDF
    Improved product quality and production methods, and decreased production costs are important objectives of industries. Welding processes are part of this goal. There are many studies about monitoring and controlling welding process. This work presents a non-intrusive on-line monitoriment system and some algorithms capable of detecting GTAW weld defects. Some experiments were made to simulate weld defects by disturbing the electric arc. The data comes from a spectrometer which captures perturbations on the electric arc by the radiation emission of chosen lines. Algorithms based on change detection methods are used to indicate the presence and localization of those defects

    Exploring Infrared Sensoring for Real Time Welding Defects Monitoring in GTAW

    Get PDF
    This paper presents an evaluation of an infrared sensor for monitoring the welding pool temperature in a Gas Tungsten Arc Welding (GTAW) process. The purpose of the study is to develop a real time system control. It is known that the arc welding pool temperature is related to the weld penetration depth; therefore, by monitoring the temperature, the arc pool temperature and penetration depth are also monitored. Various experiments were performed; in some of them the current was varied and the temperature changes were registered, in others, defects were induced throughout the path of the weld bead for a fixed current. These simulated defects resulted in abrupt changes in the average temperature values, thus providing an indication of the presence of a defect. The data has been registered with an acquisition card. To identify defects in the samples under infrared emissions, the timing series were analyzed through graphics and statistic methods. The selection of this technique demonstrates the potential for infrared emission as a welding monitoring parameter sensor

    Optimal Parameters of Adaptive Segmentation for Epileptic Graphoelements Recognition

    Get PDF
    Manual review of EEG records, as it is per¬formed in common medical practice, is very time-consuming. There is an effort to make this analysis easier and faster for neurologists by using systems for automatic EEG graphoelements recognition. Such a system is composed of three steps: (1) segmentation, which is a subject of this article, (2) features extraction and (3) classification. Precision of classification, and thereby the whole recognition, is strongly affected by the quality of preceding segmentation procedure, which depends on the method of segmentation and its parameters. In this paper, Varri’s method for segmentation of real epileptic EEG signals is used. Effect of input parameters on segmentation outcome is discussed and parameters values are proposed to achieve optimal outcome suitable for the following classification and graphoelements recognition. Only the results of segmentation are presented in this paper

    Sequential Transient Detection for RF Fingerprinting

    Get PDF
    In this paper, a sequential transient detection method for radio frequency (RF) fingerprinting used in the identification of wireless devices is proposed. To the best knowledge of the authors, sequential detection of transient signals for RF fingerprinting has not been considered in the literature. The proposed method is based on an approximate implementation of the generalized likelihood ratio algorithm. The method can be implemented online in a recursive manner with low computational and memory requirements. The transients of wireless transmitters are detected by using the likelihood ratio of the observations without the requirement of any a priori knowledge about the transmitted signals. The performance of the method was evaluated using experimental data collected from 16 Wi-Fi transmitters and compared to those of two existing methods. The experimental test results showed that the proposed method can be used to detect the transient signals with a low detection delay. Our proposed method estimates transient starting points 20-times faster compared to an existing robust method, as well as providing a classification performance of a mean accuracy close to 95%

    Adaptive, scalable and reliable monitoring of big data on clouds

    Get PDF
    Real-time monitoring of cloud resources is crucial for a variety of tasks such as performance analysis, workload management, capacity planning and fault detection. Applications producing big data make the monitoring task very difficult at high sampling frequencies because of high computational and communication overheads in collecting, storing, and managing information. We present an adaptive algorithm for monitoring big data applications that adapts the intervals of sampling and frequency of updates to data characteristics and administrator needs. Adaptivity allows us to limit computational and communication costs and to guarantee high reliability in capturing relevant load changes. Experimental evaluations performed on a large testbed show the ability of the proposed adaptive algorithm to reduce resource utilization and communication overhead of big data monitoring without penalizing the quality of data, and demonstrate our improvements to the state of the art.Real-time monitoring of cloud resources is crucial for a variety of tasks such as performance analysis, workload management, capacity planning and fault detection. Applications producing big data make the monitoring task very difficult at high sampling frequencies because of high computational and communication overheads in collecting, storing, and managing information. We present an adaptive algorithm for monitoring big data applications that adapts the intervals of sampling and frequency of updates to data characteristics and administrator needs. Adaptivity allows us to limit computational and communication costs and to guarantee high reliability in capturing relevant load changes. Experimental evaluations performed on a large testbed show the ability of the proposed adaptive algorithm to reduce resource utilization and communication overhead of big data monitoring without penalizing the quality of data, and demonstrate our improvements to the state of the art

    Sensors for Quality Control in Welding

    Get PDF
    The classical inspection methods used for detecting and finding disturbances in welding process are based on direct measurement of its parameters as arc voltage, welding current, wire feed speed, etc. Using these inspection methods implies sensors insertion around the welding process and its presence could alter the metallic transference behavior and consequently an uneven quality as well as it can increase the production cost. For reducing these implications is necessary using a non intrusive inspection method. In this paper we will show nonintrusive methods to the weld quality inspection. These methods are based on sensor fusion, the extraction of global information coming from the interrelation data given by each sensor that, for example, sensing the spectroscopy radiation emission, the acoustic sensing of the electrical arc, the infrared emissions indicating the heat content of the weld. Finally, the fusion data will be applied to a statistical control for detecting and finding welding disturbances. The results will show that sensor fusion could be used as a tool to measure indirectly the weld quality in the GMAW process

    Predicting Policy Violations in Policy Based Proactive Systems Management

    Get PDF
    The continuous development and advancement in networking, computing, software and web technologies have led to an explosive growth in distributed systems. To ensure better quality of service (QoS), management of large scale distributed systems is important. The increasing complexity of distributed systems requires significantly higher levels of automation in system management. The core of autonomie computing is the ability to analyze data about the distributed system and to take actions. Such autonomic management should include some ability to anticipate potential problems and take action to avoid them that is, it should be proactive. System management should be proactive in order to be able to identify possible faults before they occur and before they can result in severe degradation in performance. In this thesis, our goal is to predict policy violations and take actions ahead of time in order to achieve proactive management in a policy based system.We implemented different prediction algorithm to predict policy violations. Based on the prediction decision, proactive actions are implemented in the system. Adaptive proactive action approach is also introduced to increase the performance of the proactive management system

    TailoredRE: A Personalized Cloud-based Traffic Redundancy Elimination for Smartphones

    Get PDF
    The exceptional rise in usages of mobile devices such as smartphones and tablets has contributed to a massive increase in wireless network trac both Cellular (3G/4G/LTE) and WiFi. The unprecedented growth in wireless network trac not only strain the battery of the mobile devices but also bogs down the last-hop wireless access links. Interestingly, a signicant part of this data trac exhibits high level of redundancy in them due to repeated access of popular contents in the web. Hence, a good amount of research both in academia and in industries has studied, analyzed and designed diverse systems that attempt to eliminate redundancy in the network trac. Several of the existing Trac Redundancy Elimination (TRE) solutions either does not improve last-hop wireless access links or involves inecient use of compute resources from resource-constrained mobile devices. In this research, we propose TailoredRE, a personalized cloud-based trac redundancy elimination system. The main objective of TailoredRE is to tailor TRE mechanism such that TRE is performed against selected applications rather than application agnostically, thus improving eciency by avoiding caching of unnecessary data chunks. In our system, we leverage the rich resources of the cloud to conduct TRE by ooading most of the operational cost from the smartphones or mobile devices to its clones (proxies) available in the cloud. We cluster the multiple individual user clones in the cloud based on the factors of connectedness among users such as usage of similar applications, common interests in specic web contents etc., to improve the eciency of caching in the cloud. This thesis encompasses motivation, system design along with detailed analysis of the results obtained through simulation and real implementation of TailoredRE system
    corecore