
J. Parallel Distrib. Comput. 79–80 (2015) 67–79

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Adaptive, scalable and reliable monitoring of big data on clouds
Mauro Andreolini ∗,1, Michele Colajanni 2, Marcello Pietri 2, Stefania Tosi 2
University of Modena and Reggio Emilia, Italy

h i g h l i g h t s

• Real time monitoring of cloud resources is crucial for system management.
• We propose an adaptive algorithm for scalable and reliable cloud monitoring.
• Our algorithm dynamically balances amount and quality of monitored time series.
• We reduce monitoring costs significantly without penalizing data quality.

a r t i c l e i n f o

Article history:
Received 15 November 2013
Received in revised form
8 May 2014
Accepted 18 August 2014
Available online 26 August 2014

Keywords:
Adaptivity
Monitoring
Cloud computing
Big data
Scalability

a b s t r a c t

Real-time monitoring of cloud resources is crucial for a variety of tasks such as performance analysis,
workload management, capacity planning and fault detection. Applications producing big data make
the monitoring task very difficult at high sampling frequencies because of high computational and
communication overheads in collecting, storing, and managing information. We present an adaptive
algorithm for monitoring big data applications that adapts the intervals of sampling and frequency of
updates to data characteristics and administrator needs. Adaptivity allows us to limit computational and
communication costs and to guarantee high reliability in capturing relevant load changes. Experimental
evaluations performed on a large testbed show the ability of the proposed adaptive algorithm to reduce
resource utilization and communication overhead of big data monitoring without penalizing the quality
of data, and demonstrate our improvements to the state of the art.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

An increasing number of applications deployed over the cloud
operates on big data that we consider a collection of data sets
so large and complex that it becomes difficult to gather, store,
analyze and visualize through traditional approaches [19,23].
To effectively manage large-scale data centers and cloud systems,
operators must understand the behavior of systems and applica-
tions behavior producing big data. This requires continuous real-
time monitoring integrated with on-line analyses that can be
related to performance, prediction, anomaly detection and SLA sat-
isfaction. In similar contexts, the monitoring system presents all

∗ Corresponding author.
E-mail addresses:mauro.andreolini@unimore.it (M. Andreolini),

michele.colajanni@unimore.it (M. Colajanni), marcello.pietri@unimore.it
(M. Pietri), stefania.tosi@unimore.it (S. Tosi).
1 Department of Physics, Computer Science and Mathematics, Modena 41125,

Italy.
2 Department of Engineering ‘‘Enzo Ferrari’’, Modena 41125, Italy.

http://dx.doi.org/10.1016/j.jpdc.2014.08.007
0743-7315/© 2014 Elsevier Inc. All rights reserved.
the features that are typical of an application producing and work-
ing on big data: volume, variety, velocity, veracity (the so called ‘‘4
Vs’’ of IBM scientists). Hence, a key challenge of a scalable mon-
itoring infrastructure is to balance the monitoring and analysis
costs incurred with the associated delays, against the benefits at-
tained from identifying and reacting timely to undesirable or non-
performing system states such as load spikes.

Previous attempts at reducing the overhead of a real-timemon-
itoring infrastructure present several drawbacks that make them
inapplicable to a context of cloud-based applications handling big
data. Some proposals for reducing the data set dimension oper-
ate on the whole time series (e.g., [8,32]). Others use fixed sam-
pling intervals and do not consider that in highly heterogeneous
systems the statistical characteristics of the monitored time series
change [12,4]. Another class of work focuses on specific classes of
performance indexes and it is not generalizable (e.g., [15]). Finally,
there are well designed architectures that do not scale to the vol-
ume of data requested by big data applications [6].

This paper introduces a novel real-time adaptive solution for
scalable and reliablemonitoring of applications producing big data.
It strives to achieve this goal by reducing the amount ofmonitoring

https://core.ac.uk/display/54012156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jpdc.2014.08.007
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.08.007&domain=pdf
mailto:mauro.andreolini@unimore.it
mailto:michele.colajanni@unimore.it
mailto:marcello.pietri@unimore.it
mailto:stefania.tosi@unimore.it
http://dx.doi.org/10.1016/j.jpdc.2014.08.007

68 M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79
data produced. By adapting sampling intervals to continuously
changing data characteristics, it reduces computational and
communication costs without a penalization on the reliability of
monitored data. Themain idea that drives the algorithm adaptivity
is simple. When the system behavior is relatively stable, our
solution settles for large sampling intervals so that the quantity
of data that is gathered and sent for further analysis is reduced.
When significant differences between samples occur, the sampling
interval is reduced so to capture relevant changes in system
performance. The proposed solution automatically chooses the
best settings for monitoring parameters, and it updates such
settings so to adapt to data characteristics. Moreover, monitoring
settings are adapted to the preference of the administrator.

The proposed algorithm gives system administrators the
possibility of choosing the best trade-off between reducing
computational and communication overhead and preserving the
reliability of monitored data. However, this reduction comes at
the cost of penalizing the reliability of monitored data because
discarding samples keeps the monitoring overhead low but limits
the possibility of capturing load changes promptly. Moreover,
monitoring solutions should adapt to the frequent changes in
the statistical characteristics of monitored datasets. An effective
monitoring solution has to support dynamic data acquisition from
heterogeneous sources, and to be adaptive to data characteristics
and operational needs [27].

This work extends our preliminary findings published in [22]
in three directions. We formulate the problem of real-time
monitoring in the big data field, where requirements of scalability
and reliability are mandatory. We improve the definitions of the
proposed adaptive monitoring solution and of its parameters,
with detailed descriptions of the algorithm phases. We add
an extensive evaluation of the algorithm performance and
a comprehensive comparison with respect to state-of-the-art
solutions. Experiments show that the proposed adaptive algorithm
is able to improve the ability of capturing relevant load changes
in up to 55% more than static solutions; in our experiments, the
misdetection of load spikes has been also very low (less than 5%).
Implementations of adaptive versions for existing solutions do not
achieve the performance of our proposal, that benefits an effective
tuning of monitoring parameters according to data characteristics
and administrator preferences. These results represent a major
improvement with respect to the state-of-the-art techniques
which either are reliable and resource intensive or tend to behighly
scalable byworsening the reliability of sampled data [12,19,13,32].

The remainder of this paper is organized as follows. Section 2
defines the problem of real-timemonitoring for big data on clouds.
Section 3 presents the proposed adaptive monitoring algorithm.
Section 4 introduces the experimental testbed used for the
evaluations. Section 5 analyzes experimental results achieved on
real scenarios involving big data applications. Section 6 compares
our proposal against the state-of-the-art monitoring solutions.
Section 7 concludes the paper with some final remarks.

2. Problem definition

In large data centers hosting big data applications the only
way to build a scalable monitoring infrastructure is to reduce
the amount of monitoring data without sacrificing its statistical
properties that are at the basis of any post-gathering analysis. Any
monitoring algorithm can be characterized according to this trade-
off. To this purpose, we introduce two parameters.

The first parameter G (Gain) is defined as one minus the
ratio between the number of samples collected by the considered
monitoring algorithm and the number of samples collected by the
baseline monitoring algorithm that samples data at the highest
possible frequency t0 (e.g., 1 s). Both monitoring algorithms are
supposed to operate over the same time interval that must be
sufficiently long to be statistically relevant. G assumes values in
the [0, 1] interval. Higher values of G denote algorithms aiming
to reduce the computational and communication overhead due to
monitoring.

G = 1 −
N(t)
N(t0)

. (1)

The second parameter, Q (Quality) quantifies the ability of an
algorithm to accurately represent load changes in system resources
(e.g., load spikes). A comprehensive metrics for estimating Q must
take into account two factors: the error introduced by monitors
using sampling intervals larger than t0 (that is, the distance
between the original monitored dataset and the reduced one) and
the ability to evidence load spikes in themonitored dataset. For this
reason, we define Q as a combination of the NRMSE (Normalized
Root Mean Square Error) [10], and the Fmeasure as the weighted
average of precision and recall in spike detection [30]:

Q =
Fmeasure + (1-NRMSE)

2
, (2)

where Fmeasure andNRMSE take values∈ [0, 1].Q assumes values
in the [0, 1] interval. A further motivation for combining two
parameters into Q instead of one is due to the fact that datasets in
the considered scenarios are highly variable. As stated in [25], the
NRMSE measure alone is unable to guarantee an accurate quality
measurewhen the statistic characterization of the dataset is highly
variable. For this reason, we integrate NRMSE with Fmeasure,
that measures the ability of the monitoring algorithm to identify
significant load spikes.

Fmeasure =
2 · precision · recall
precision + recall

. (3)

As detailed in [7], recall is the fraction of spike detections that are
successfully identified, while precision is the fraction of relevant
detections over the total number of spike detections. In this paper,
we consider as a ‘‘false positive’’ (FP) a load spike detected by
the monitoring algorithm when the original time series does
not exhibit one. This can happen because a generic monitoring
algorithm modifies the original time series and can accidentally
introduce load spikes in the representation of system load. It can
happen that precision is lower than 1. By combining the two
metrics, Fmeasure gives a global estimation of the detection quality.
An Fmeasure value close to 1 denotes a good detection quality,
while it is lower for algorithms with worse capability in capturing
load changes.

The trade-off of a monitoring algorithm can be expressed as a
weighted mean of G and Q through the E parameter (Evaluation):

E = w · G + (1 − w) · Q , (4)

wherew ∈ (0, 1) is a tuning constant chosen by the administrator.
As the amount of saved data impacts on the quality of the
representation, we must allow the system administrator to decide
how to regulate the trade-off between overhead reduction and
information reliability. Values of w > 0.5 put more emphasis on G
than on Q ; the opposite is true for w < 0.5; while w = 0.5 gives
equal importance to both parameters.

Existing monitoring methods (e.g., [12,15]) collect data at
fixed sampling intervals and forward new information to analysis
modules only if it differs from the previous collected one by some
static numeric threshold. Although this approach can achieve high
values of G by reducing the amount of gathered and transmitted
data, it may lead to highly inaccurate results and very low Q
values due to the missing of most of spikes in data. As an
example, Fig. 1 reports two scenarios. Fig. 1 offers a detailed

M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79 69
Fig. 1. Resource state representation for methods using low and high sampling intervals.
representation of the system behaviorwhere samples are gathered
at the lowest possible sampling interval (t0 = 1 s in the reported
example): here, we have maximum quality combined with very
high overhead (i.e., low G and high Q values). The bottom figure
denotes a system representation where overhead savings are
preferred with respect to information quality: here, using a high
sampling interval reduces the amount of collected data but at the
same time it loses evidence of the majority of load spikes (i.e., high
G and low Q values).

Even though there is no single best value of E for any context,
the example points out the need of a solution that is flexible
enough to adapt its monitoring parameters to data characteristics,
so to preserve themost useful information of the real system traces
but also to reduce the amount of collected data. Moreover, it is
mandatory for the monitoring solution to adapt the best choice of
its parameters in an autonomic way. The reason is that in cloud
environments monitored data flows are heterogeneous, typically
highly variable, and the volume is typically huge. These issues
make it impossible to anticipate the best monitoring parameters
settings for each scenario, and make it impracticable to rely on
human intervention. Hence, any static choice of the threshold
values and/or sampling intervals risks to be a significant source of
errors. In order to guarantee the best trade-off betweenmitigation
of monitoring overhead and information quality, we propose a
scalable and reliable real-time monitoring algorithm that adapts
its parameter settings to the characteristics of monitored data and
to administrator preferences.

3. Adaptive monitoring

The real-time adaptive monitoring algorithm proposed in this
paper consists of two phases: a training phase for the evaluation
of the best parameters setting for monitoring and an adaptive
monitoring phase that is the core algorithm of the proposed
monitoring solution. In Section 3.1, we define the parameters that
are used by the two phases of the algorithm, which are described
in Sections 3.2 and 3.3.

3.1. Parameters definition

The real-time adaptive algorithm analyzes monitored data and
distinguishes periods of relative stability from periods of high
variability. The idea is to reduce the quantity of monitored data
when a resource is relatively stable, and to increase it during
periods of high variability. In this way, we limit the computational
and communication overhead, and at the same time we guarantee
that important system changes are not missed. This algorithm
operates by dynamically setting two key variables: sampling
interval t , and variability∆. The sampling interval t determines the
time interval that elapses from the collection of two consecutive
samples. The lower the sampling interval, the higher the number
of data to gather and to transmit. We dynamically evaluate the
minimum sampling interval tm as the lowest value that the
sampling interval t can assume, and the maximum sampling
interval tM as the highest value of t . Clearly, tM ≥ tm. The variability
∆ represents the deviation among consecutive samples and it is
used to discriminate stable from variable states. When ∆ is low,
the monitored resource is considered to be in a stable state; when
∆ is high, the resource is considered as highly variable.Weevaluate
two parameters related to ∆.

1. The peak variability∆p is the threshold abovewhich a deviation
among consecutive samples determines a spike identification
that is, there is a spike when ∆ ≥ ∆p.

2. The tolerable variability ∆q is defined as the deviation that
must occur between consecutive samples for the monitored
time series to be considered highly variable, even more than in
presence of a load spike (∆q ≥ ∆p). When the variability of the
monitored data becomes too high, the sampling interval must
be reset to its minimum value tm in order to be able to capture
the statistical properties of the time series.

Setting the t and∆ variables and related thresholds determines the
dynamic behavior of the monitoring algorithm, that aims to find
out the best settings for t∗m, t

∗

M , ∆∗
p , ∆

∗
q in order to solve in the most

convenient way the trade-off between monitoring scalability and
data reliability.

3.2. Training phase

The adaptivemonitoring algorithmconsists of an initial training
phase that chooses adaptively the parameters t∗m, t

∗

M , ∆∗
p , ∆

∗
q that

are related to the minimum and maximum sampling intervals and
to the variability thresholds. The training phase evaluates the best
values in the ranges by choosing those that maximize E in Eq.
(4) over a subset of λ data samples used for training. This search
has a combinatorial complexity because, in the basic form, it has
to train all combinations of parameters over the number of data
used for training. This does not represent a real problem because
training is done occasionally. However, in Section 5 we show how
to choose λ and parameters ranges so to reduce computational
costs.Moreover,we can further reduce training computational cost
by adopting a binary search [16] that is able to pass to a logarithmic
complexity of the search.

The Algorithm 1 reports the pseudo-code of naive training and
the ranges of parameters used for training. Over a subsets of λ

70 M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79
training samples, it evaluates gain, quality, and E for all combina-
tions of tested parameters. In the initialization phase, the optimal
value of E (E∗), is set to 0 (line 1), the minimum sampling inter-
val tm is set to the lowest possible value t0 and Xtmp contains the
time series monitored at an interval of t0. The following for loop
(lines 4–12) iterates over the spectrum of values for the monitor-
ing interval t and the variations ∆. It invokes the data monitoring
algorithm (line 6), storing the resulting data series in theX variable.
It computes the quality parameter Q (line 7), the gain parameter G
(line 8) and evaluates the tradeoff E (line 9). Finally, it updates the
maximum value of E (line 11) and the corresponding parameters
(line 12). We use this setting for the core phase of the monitoring
algorithm.

Algorithm 1 Training phase
1: E∗

⇐ 0
2: tm ⇐ t0
3: Xtmp ⇐ [1:t0:λ]
4: for t{m,M} → [t0, 15 · tm] do
5: for ∆{p,q} → [σ 0, 1.5 · ∆p] do
6: X = AdaptiveMonitoring(tm, tM , ∆p, ∆q)
7: Q = QualityEvaluation(X ,Xtmp)
8: G = 1 - length(X) / λ
9: E = w · G + (1 − w) · Q
10: if E > E∗ then
11: E∗

⇐ E
12: {t∗m, t∗M , ∆∗

p, ∆∗
q} ⇐ {tm, tM , ∆p, ∆q}

Algorithm 2 computes the value of the Q parameter. In
the initialization phase, the initial point of the data series is
determined (line 1), the true and false positive counts are set to 0
(line 2), the NRMSE value is set to 0 (line 3) and the distancemean-
outliers in the original time series Xtmp is computed (line 4). Then,
a loop through all the points of the time series is executed (line
6–24) to compute the quality parameter Q . Lines 6–11 extract the
time series value x0 and the time i, while line 12 updates the sum
of square errors necessary to compute NRMSE. The true and false
positive counts are updated in line 13. Line 16, 18 and 20 compute
NRMSE, Precision and Recall, respectively. Line 22 computes the
Fmeasure and, finally, line 23 computes the Q parameter.

3.3. Adaptive monitoring phase

Algorithm 3 reports the pseudo-code of the adaptive monitor-
ing phase. In the initialization phase (lines 1–6), the monitoring
interval t is initially set to the minimum value t∗m (line 1) and the
variability ∆ is set to zero (line 2). The ϵinc variable, set to an ini-
tial value of ϵ = 10 in line 3, is used to trigger the sampling with
the lowest time interval possible (t0) of the time series X used to
retrain the parameters {tm, tM , ∆p, ∆q}. After ϵ · λ samples, X will
be sampled. The variable k counts the length of the time series X
used to retrain the parameters. When k > λ, sampling of X is com-
plete retraining can start. Initially, k is set to 0 (line 4). Finally, the
previous and the current time interval are initialized in line 5 and
6, respectively.

The monitoring algorithm operates in an endless loop (lines
7–38). In line 8, the deviation ∆ is updated with the difference of
the current and previous sample value. If no appreciable variability
is detected (|∆| ≤ ∆∗

p in line 8, jumping to line 19), the current
sample is not stored and the sampling interval can be further
increased, while avoiding that it exceeds the maximum possible
value t∗M chosen for the sampling interval (line 20). This upper
bound over the sampling interval is necessary to avoid missing of
isolated spikes on time series that present long periods of stability.
In this context, sampling intervals would tend to become higher
Algorithm 2 Quality Evaluation
1: i ⇐ t0
2: { TP, TN, FP, FN} ⇐ 0
3: NRMSE ⇐ 0
4: range ⇐ avg(Xtmp) ± 1.5· std(Xtmp)
5:
6: while i < λ · t0 do
7: pi ⇐ i
8: i ⇐ i + t0
9: xo ⇐ X[pi]
10: if ∃X[i] then
11: xo ⇐ X[i]

12: NRMSE ⇐ NRMSE +


Xtmp[i]−xo
max {|Xtmp[i]|,|xo|}

2

13:
14: {TP, TN, FP, FN} ⇐ {TP, TN, FP, FN}

+ ChangeDetector(range,Xtmp[i],xo)
15:

16: NRMSE ⇐


NRMSE

λ

17:
18: precision ⇐

TP
TP+FP

19:
20: recall ⇐ TP

TP+FN
21:
22: fmeasure ⇐

2·precision·recall
precision+recall

23:
24: Q ⇐

fmeasure+NRMSE
2

and higher, and isolated spikes would be easily missed by the
algorithm if no maximum sampling interval tM is set.

On the other hand, if the deviation is greater than the peak
variability (|∆| > ∆∗

p in line 10, jumping to line 11) a spike (or,
evenworse, a highly variable series) has been detected. In this case,
the monitored time series is augmented with the current sample
(line 11), since spikes must be included in the load representation.
If the deviation is higher than the maximum tolerable variability
(line 13), then the sampling interval must be reduced to the lowest
possible value t∗m chosen by the administrator (line 14); otherwise
(line 15), the interval is reduced accordingly. In the end (line 18),
the deviation is set back to 0 since the new sample has been
incorporated in the monitored time series. Lines 22–23 update the
previous and next time interval.

In highly variable contexts, the best settings of the parameters
{tm, tM , ∆p, ∆q} may become rapidly obsolete. Lines 25–38 of the
algorithm are responsible for the retraining of the parameters in
this case. After ϵ · λ samples have been collected by the adaptive
algorithm (line 25), a time series Xtmp will be sampled at the lowest
time interval t0. If a new time series has to be collected fromscratch
(line 26), it is initialized (lines 27 and 28). Lines 30 and 31 update
the time series Xtmp and the next time interval, respectively. If a
sufficient number of samples has been collected (at least λ in line
32) the quality parameter is evaluated for this series (line 33) and,
if it is bad (line 34) the parameters are retrained (line 35). Finally,
ϵ is incremented and k is reset to 0.

4. Experimental testbed and training

4.1. Testbed

As experimental testbed, we refer to a typical monitoring
architecture (e.g., [19,23,31,18,3,2]) consisting of multiple logical
layers as in Fig. 2: at the lowest layer, a set of resources on the
monitored nodes are scanned from some probes attached to a
collection agent (collection phase); then, the sampled metrics are
sent to the higher layer called collector nodes (sending phase). The
algorithm proposed in this paper can be applied at both phases. In
the collection phase, the system metrics are gathered on the basis

M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79 71
Fig. 2. Monitoring architecture.
Algorithm 3 Adaptive monitoring phase
1: t ⇐ t∗m
2: ∆ ⇐ 0
3: ϵinc ⇐ ϵ
4: k ⇐ 0
5: pi ⇐ λ
6: i ⇐ pi+t
7: while True do
8: ∆ ⇐ ∆ + (xi - xpi)
9:
10: if |∆| > ∆∗

p then
11: X ⇐ [X, xi]
12:
13: if |∆| > ∆∗

q then
14: t ⇐ t∗m
15: else
16: t ⇐ max(t∗m, t − t∗m)
17:
18: ∆ ⇐ 0
19: else
20: t ⇐ min(t∗M , t + t∗m)
21:
22: pi ⇐ i
23: i ⇐ i + t
24:
25: if i > ϵinc · λ then
26: if k = 0 then
27: Xtmp ⇐ []
28: ri ⇐ pi
29:
30: Xtmp ⇐ [Xtmp, xpi:t0:xi]
31: k ⇐ k + (i-pi)/t0
32: if k > λ then
33: Q⇐QualityEvaluation(X[ri, . . . , pi], Xtmp)
34: if Q < (1 − w) then
35: {t∗m, t∗M , ∆∗

p, ∆∗
q} ⇐ TrainingPhase(Xtmp)

36:
37: ϵinc ⇐ ϵinc + ϵ
38: k ⇐ 0

of the proposed adaptive algorithm and then sent to the collector
nodes: we adapt sampling intervals by choosing the best trade-off
betweendata quality and computation/communication overheads.
In the sending phase, the algorithm is applied to collected samples,
hence it is possible to adapt the parameters of the algorithm by
comparing the recently sampled data with previously collected,
analyzed and forwarded data.

In our experiments, we use the monitoring platform deployed
on Amazon EC2 [1] and Emulab [29], as described in [2]. Details
of the monitored nodes are the following: micro instance, 613 MB
memory, up to 2 EC2 Compute Units (Dual-Core AMDOpteron(tm)
Processor 2218 HE, cpu 2600 MHz, cache size 1024 kB), EBS
storage, and dedicated network bandwidth of 100 Mbps per
node. In the considered testbed, the monitored nodes execute
different applications such as Apache2, MySQL, Java and PHP
programs subject to TCP-W [28] and RUBiS [20] workload
models. MapReduce jobs and MongoDB queries are used for
data distribution and analysis. For each node, we monitor 25
different performance indicators (e.g., CPU, memory, network, and
disk) at system level and an average of 20 different performance
indicators at process level (for each running application). The
amounts of metrics associated to different performance indicators
are different: we monitor 20 K series related to the CPU, 26 K
to the memory, 46 K to the network, 11 K to the disk, and 37 K
to other metrics. Moreover, we have 12 specific statistics related
to Apache users, MySQL and MongoDB queries, MapReduce jobs.
The total data set consists of about 140 K monitored samples.
A detailed description of the monitoring infrastructure and the
metrics involved can be found in [21]. In the next section, we
present the results obtained from experiments lasting for about
12 h and performed over more than 1000 nodes.

4.2. Parameter setting

The proposed algorithm requires a phase of training over λ
samples for the estimation of the best parameters {t∗m, t∗M , ∆∗

p, ∆∗
q}.

We evaluate some performance with the goal of identifying the
best settings for training set size and training parameters and to
limit training costs.

4.2.1. Training set size
The training set size λ has a strong impact on the computational

cost of the algorithm. Hence, it is important to limit these costs
while guaranteeing high quality of the monitoring algorithm.
Initial experiments showed that the optimal setting of λ is
influenced by the emphasis given to gain and quality in the
determination of E in Eq. (4). Our algorithm does not attempt to

72 M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79
(a) Q . (b) G.

(c) E.

Fig. 3. Evaluation of the adaptive algorithm using different weights.
find the best trade-off scalability vs. reliability, but it leaves to
the system administrator the possibility to express a preference
for this trade-off by choosing how to set w in Eq. (4). We
recall that the higher the w, the higher the interest on gain
G (i.e., reducing overheads) than on quality Q , and vice versa.
According to the choice of w, we want to find the best training set
size that maximizes the trade-off. To this purpose, we evaluate the
performance of the proposed algorithm with respect to different
weights. We apply the adaptive monitoring algorithm to the
workload described in Section 4 by considering different sizes of
data used for training, spanning from λ = 5 to λ = 200 samples.
Fig. 3(a)–(c) report the average Q , G and E values of all the tests,
respectively. The results consider different trade-off preferences
that is, w = 0.25, w = 0.5, and w = 0.75.

Fig. 3(a) evidences that w = 0.25 gives the best quality results
Q with respect to other w settings. On the other hand, Fig. 3(b)
shows that the highest G results are obtained for w = 0.75, while
lower w values lead to worse gain results. The reason is that,
over short training sets, the values that differ by a small quantity
could be easily identified as load spikes. This leads to the choice of
short sampling intervals that are the cause of high quality and low
gain results. Vice versa, larger training sizes lead to choose wider
sampling intervals which determine a lower quality of data and a
higher gain.

By combining these results, Fig. 3(c) shows that the choice of
different training set sizes influences only slightly the algorithm
performance. For each w setting, the E values place between 80%
and 88% if we choose any λ between 10 and 200. This negligible
dependence of the adaptive algorithm on the training set size is
important because it evidences that the algorithm is robust enough
to adapt its parameters in order to obtain high quality results
despite the size of data sets used for training. These characteristics
allow us to limit the training set size to few samples (e.g., λ = 10)
thus reducing the costs during the training phase. Besides that, a
simple rule can be extracted from these results for the choice for
the best training set size with respect to the w setting. When w is
low (i.e.,w = 0.25), it is preferable to use low training set sizes (i.e.,
λ = 10). When w is high (i.e., w = 0.75), the training phase tends
to prefer high λ sizes (i.e., λ = 200). When an administrator does
not specify a preference between gain and quality (i.e., w = 0.5),
any value between 50 and 150 is a good choice for the training
set size. Where not otherwise specified, the experimental results
are related to scenarios where G and Q values have the same
importance that is, w = 0.5, and λ = 100.

4.2.2. Distribution of training parameters
Limiting the range of tested values for the parameters

tm, tM , ∆p, ∆q is a way to further reduce the computational cost
of training. Given t0 as the minimum sampling interval (e.g., 1 s),
we initially choose to evaluate tm and tM in the range [t0, 15 · t0]
and [tm, 15 · tm]. Given σ o as the standard deviation computed
over the first λ data, we start evaluating ∆p and ∆q in the ranges
[σ o, 1.5 · σ o

] and [∆p, 1.5 · ∆p], respectively. Since it would be
expensive to train all possible values in these ranges, we have
to choose a step between two consecutive values to train. In our
data sets, we could observe that a difference of 10% between two

M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79 73
(a) t . (b) ∆.

Fig. 4. Distribution of parameters.
consecutive values in the ranges produces high quality resultswith
limited computational costs.

After this initial setting, we evaluate algorithm performance
in order to reduce those ranges to subsets of values having
high probability to maximize E. To this purpose, we compute
the distribution of the parameters for sampling intervals and
thresholds that maximizes the E value of each series. As shown in
Fig. 4, the results are Gaussian distributions in which more than
90% of the parameters take small values. We see that t∗m ranges
between t0 and 5 · t0, while t∗M ranges between t∗m and 8 · t∗m. The
thresholds ∆∗

p and ∆∗
q range between σ o and 0.5 · σ o, and 0.2 · ∆∗

p
and 0.8 · ∆∗

p , respectively.
The Gaussian distributions support the reduction of parameters

ranges to smaller subsets and help us to further reduce the cost of
the algorithms during the training phase, inwhich large parameter
ranges seem not to be required. On the basis of these results, in the
following section we set [t0, 5 · t0] and [2 · t∗m, 10 · t∗m] for training
set sizes, and [σ o, 0.5 · σ o

] and [∆∗
p, 0.9 · ∆∗

p] for thresholds.
A further reduction of training overhead can be obtained by

adopting an adaptive binary search [16] of the best parameters
inside the subsets of ranges. The basic binary search is made
adaptive to series characteristics in order to find most peaks in the
series. By comparing the binary search results to those obtained
by the complete search, we obtain the same results in 93.08%
cases, but the computational cost of the training phase is reduced
to logarithmic. Similar results (±5%E) between the two searches
are achieved in the 6.51% of cases, while only in the 0.40% of
cases the differences between the results are higher than 5%. We
can conclude that an adaptive binary search allows us to reduce
the computational cost of the training phase while maintaining a
precision level higher than 99.2% in more than 99.6% of cases with
respect to the naive search.

5. Performance evaluation

In this section we report the most significant experimental
results for evaluating the performance of the proposed adaptive
monitoring algorithm. Evaluations are carried out with the goal
of analyzing the performance of the algorithm with respect to
different training parameters and types of series, and of comparing
results against those of existing monitoring methods.

5.1. Robustness to training parameters

The goal is to evaluate the impact of different values for the
sampling intervals tm and tM , and for the threshold parameters
∆p and ∆q. We would like the performance of our algorithm to
be slightly influenced by changes in the parameters setting. For
all series we choose the values of t∗m, t

∗

M , ∆∗
p , ∆∗

q that maximize
E. Then, we test the antecedent and subsequent values, and we
calculate the new E results. This iterative phase continues until the
difference between the previous E value and the new calculated
one overcomes the difference between the best and the currently
tested value.

In our testbed, the proposed algorithmachieves high robustness
levels with respect to small changes in parameters settings. In
96.51% of cases, introducing a difference of 20% between tested
parameter values leads only to a slight degradation (less than
15%) in the algorithm performance. Only in 3.47% of cases, the
performance decrease is between 15% and 25%with less than 0.02%
of cases where robustness is low.

5.2. Impact of series characteristics

Series belonging to different performance indicators present
various statistical characteristics that may lead to different
results of the adaptive monitoring algorithm. Hence, we evaluate
the performance of the adaptive monitoring algorithm against
different types of series, that is, CPU, memory, network, and
disk related series. In Fig. 5, we present some examples for each
performance indicator. At the top, each figure shows the series
sampled at the lowest sampling interval (i.e., t0 = 1 s in this
example), while the series at the bottom are sampled with our
adaptive monitoring algorithm.

Fig. 6 reports the average values of G, Q and E over all tested
series for each performance indicator. The results show that values
ofQ tend to be high for any series type and characteristics.Q values
are above 80% both for spiky series (such as CPU in Fig. 5(a)), for
series with high variability (such as network in Fig. 5(c)), for series
presenting a recurrent linear trend (such as memory in Fig. 5(b)),
and for stable series (such as disk in Fig. 5(d)). The high quality
results (i.e., ≥95%) when dealing with linear trends come from the
ability of our solution to adapt its parameters to capture even very
small shifts in series with low standard deviation. Adaptivity to
series standard deviation allows also to achieve high Q values in
series where variability is high, by capturing most of load spikes
while saving samples during stable periods.

The amount of saved samples can be appreciated by looking at
gain results in Fig. 6.G is high in series presenting stable states,with
its best values on disk related series characterized by long periods
of stability. On the contrary, G is low (i.e., 54%) on series presenting
recursive trends, since data always change and stable periods are
rare and short.

74 M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79
(a) CPU (idle). (b) Memory (buff).

(c) Network (txkBs). (d) Disk (block in).

Fig. 5. Examples of resource series sampled by using low intervals and the adaptive monitoring algorithm.
The combined effect of Q and G can be appreciated through the
E bars in Fig. 6, showing high performance results for all types of
series. E values are always higher than 78%, thus showing that the
proposed adaptive algorithm guarantees high performance for any
time series related to systems or processes performance indicators.

5.3. Performance comparison

In this section, we compare the results of our adaptive
monitoring algorithm to those obtained by the state-of-the-art
real-time algorithms. As terms of comparison, we consider: (1)
the static frequency sampling algorithm, (2) the delta encoding
and static thresholds algorithm, and (3) a hybrid algorithm which
uses our adaptive core and delta-encoding and static thresholds
technique.

5.3.1. Static frequency sampling algorithm
While our solution adaptively sets the best parameters values,

all state-of-the-art algorithms require the static setting of the
sampling interval t and/or of the variability∆. These static choices,
in turn, influence the performance of the monitoring algorithms.
Fig. 6. Results for different performance indicators.

The static frequency sampling algorithm depends upon the a-
priori choice of t . Table 1 reports the performance of the static
frequency sampling algorithm obtained from experiments over
all the 140 K series for different sampling intervals t . The gain
value is equal to 100 − (100/t)% (e.g., 50% when t = 2, 80% when
t = 5), thus making high t values preferable in order to improve

M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79 75
Table 1
Algorithm based on static frequency sampling.

t Fmeasure (%) 1-NRMSE (%) Q (%) G (%) E (%)

2 72.37 89.15 80.76 50.00 65.38
5 53.22 81.86 67.54 80.00 73.77

10 44.33 78.14 61.24 90.00 75.62
20 33.29 72.63 52.96 95.00 73.98

Fig. 7. Performance of static frequency sampling algorithm by using different
weights.

scalability. Despite that, for t ≥ 5 the quality of the static frequency
sampling algorithm becomes low, as well as its ability of capturing
spikes. Fmeasure ranges from 53% when t = 5 to 33% when t =

20. Moreover, also the error increases when the sampling interval
increases. It is interesting to observe that the static frequency
sampling algorithm never achieves an E value above 76%.

Themost important result of these experiments is the difficulty
in statically choosing a t value that can guarantee a good trade-off
between gain and quality over all types of series. Moreover, this
difficulty is enhanced by the dependency of results on different
values ofw in Eq. (4). Fig. 7 plots the E values obtained for different
w settings and for increasing t values. It is evident that when the
administrator sets high w values (i.e., >50%), wrong static choices
of t may lead to very poor results, with E values even lower than
25%.

5.3.2. Delta-encoding and static threshold algorithm
Also for the algorithm based on delta-encoding and static

thresholds, the sampling interval t is fixed, as well as the ∆

parameter. Hence, these values must be chosen a-priori.
Table 2 reports the algorithm performance with respect to

different settings of t and ∆. As expected, low t values bring to
high quality results and low gains, while high sampling intervals
cause low quality and high gains. Increasing the sampling interval
t increases the E value,with the best performancewhen t = 10 and
∆ = 10. Despite that, with this setting Fmeasure is extremely low
(i.e.,∼35%) thusmeaning thatmost spikes in the series aremissed.
These results demonstrate that different choices of the algorithm
parameters strongly affect performance results.

As we know, performance also depends on the emphasis given
by system administrators to G and Q in Eq. (4). Fig. 8 shows the
behavior of E when using different w values. Results are reported
with respect to different static choices of t and ∆. By giving more
emphasis on quality (i.e.,w = 0.25), E values are fairly stable, with
a standard deviation of results equal to 3.4. By using higher values
of w, the standard deviation increases to 7.4 when w = 0.5 and to
17.3 when w = 0.75.

This evaluation shows that the choice of parameters cannot be
independent of the setting ofw and stresses the need and potential
of adaptive algorithms over big data sizes and heterogeneous
environments.
Table 2
Delta encoding and static thresholds algorithm.

t ∆ Fmeasure (%) 1-NRMSE (%) Q (%) G (%) E (%)

1

0 100.00 100.00 100.00 5.93 52.97
1 90.86 99.58 95.22 12.89 54.06
2 89.94 99.16 94.55 21.47 58.01
5 83.94 96.43 90.19 43.82 67.01

10 63.18 87.50 75.34 72.48 73.91

2

0 72.36 89.14 80.75 53.26 67.01
1 65.16 89.12 77.14 56.47 66.81
2 64.68 89.11 76.90 61.13 69.02
5 62.92 87.85 75.39 70.88 73.14

10 52.68 86.62 69.65 82.14 75.90

5

0 53.21 81.86 67.54 81.14 74.34
1 48.05 81.84 64.95 82.40 73.68
2 48.04 81.83 64.94 83.74 74.34
5 47.02 81.72 64.37 87.29 75.83

10 45.17 81.50 63.34 91.88 77.61

10

0 44.34 78.14 61.24 90.52 75.88
1 40.12 78.14 59.13 91.21 75.17
2 39.64 78.14 58.89 91.95 75.42
5 39.11 78.14 58.63 93.88 76.26

10 35.73 78.16 56.95 96.29 76.62

0 1 2 5 10

30

40

50

60

70

80

90
E

 (
%

)

Δ

t=1

0 1 2 5 10

30

40

50

60

70

80

90

E
 (

%
)

Δ

t=2

0 1 2 5 10

30

40

50

60

70

80

90

E
 (

%
)

Δ

t=5

0 1 2 5 10

30

40

50

60

70

80

90

E
 (

%
)

Δ

t=10

w=25% w=50% w=75

Fig. 8. Performance of delta encoding and static thresholds algorithm by using
different weights.

5.3.3. Adaptive version of delta-encoding and static thresholds
algorithm

Since fixed sampling intervals and variability levels influence
the performance of the algorithm based on delta-encoding and
static thresholds, we decide to improve its implementation and
to make its parameter choice adaptive. To do this, we apply the
two phases of our adaptive monitoring algorithm to the naive
version of the delta-encoding and static thresholds algorithm.
A training phase over λ samples is used for the finding of the
best parameter values for t and ∆, and the monitoring phase is
performed to evaluate the algorithm performance. Table 3 reports
the best results obtained by the adaptive version. Experimental
results show that E values span from76.54%whenλ = 5 to 79, 37%
when λ = 100. If we compare these results to those in Table 2, we
see that the performance of the adaptive version is always higher
than that achievable through the static version of the algorithm.
Moreover, Fmeasure never falls below 65%, thus improving the
ability of the algorithm in capturing load spikes.

76 M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79
Table 3
Performance summary of the adaptive version of delta-encoding and static
thresholds algorithm.

λ Fmeasure (%) 1-NRMSE (%) Q (%) G (%) E (%)

5 75.45 81.39 78.42 69.56 73.99
10 74.92 81.25 78.09 77.87 77.98
25 74.14 81.11 77.63 76.11 76.87
50 71.64 81.30 76.47 81.69 79.08

100 68.90 80.49 74.70 84.04 79.37
150 69.53 78.26 73.90 83.31 78.60
200 65.14 75.12 70.13 83.80 76.97

Fig. 9. Performance of adaptive version of the delta encoding and static thresholds
algorithm by using different weights.

The performance improvement is also clear when looking at
the behavior of the adaptive and static versions of the delta-
encoding and static thresholds algorithm with respect to different
settings of w. By comparing Fig. 9 to Fig. 8, we see that making the
algorithm adaptive strongly increases E values and makes results
stable. In particular, the average E value of the adaptive version
is equal to 76.77%, 77.91% and 79.06% by using w = 0.25, 0.5 and
0.75, respectively. This is an improvement of 5.07%, 7.26% and
9.47% in performance with respect to the static version. Moreover,
adaptivity makes sure that wrong static parameter settings cannot
make the monitoring performance drop, with E values that never
go below 75%. Stability of the results is due to the adaptivity of the
algorithm that allows it to find the best parameter setting despite
of the value of w.

5.3.4. Algorithms comparison
We finally compare the results obtained by the state-of-the-

art algorithms with the results obtained by the proposed adaptive
monitoring algorithm. Since both the static frequency sampling
algorithm and the delta-encoding and static threshold algorithm
require the a-priori choice of their parameters, it becomes difficult
to directly compare their results to those of our adaptive solution
with respect to different parameter settings. A general comparison
that we can provide is related to the best performance achieved
by each algorithm, despite of the parameter setting that is used to
achieve it.

Table 4 summarizes the best results obtained by all the
considered algorithms. For the sake of a fair comparison, the best
results for all algorithms refer to a setting of w = 0.5. As we see
from the table, the adaptive monitoring algorithm overcomes the
performance of state-of-the-art algorithms, thanks to both low
errors and high Fmeasure results. The ability of limiting errors and
capturing most of spikes in series allows our algorithm to obtain
higher E valueswith respect to any other state-of-the-art solution.

A direct comparison can be done between the performance of
our solution to that of the adaptive version of the delta-encoding
and static thresholds algorithm, since both methods implement
our adaptive core algorithm. Fig. 10 compares the performance of
the two adaptive solutions in terms of Fmeasure, NRMSE, and E
metrics with respect to different λ sizes of the training set.

By looking at Fig. 10(a), we see that the adaptive solution
guarantees highperformance in capturing significant load changes,
with Fmeasure values always higher than 65%. Besides that, our
adaptive solution maintains an improvement of 20% in Fmeasure
results for all training set sizes. This result shows the importance
of our solution to adapt its parameter setting to the variability
in data. Thanks to this feature, our adaptive algorithm represents
a significant improvement in monitoring reliability. Reliability is
improved, also thanks to lower errors in sampling. Fig. 10(b) shows
that errors of adaptive solutions never overcome 25%, while our
solution reduces sampling errors with an improvement from 2% to
7% with respect to the adaptive version of an existing solution.

Finally, adaptivity ensures that E results are always greater than
74%, as we can see in Fig. 10(c). When using training set sizes
λ > 5, our adaptive monitoring algorithm has an average E value
> 82%, with an increase of more than 4% with respect to the other
adaptive solution. These results point out the benefits gained from
adaptation of parameters to data characteristics, that allows our
algorithm to capture relevant load changes in data and to achieve
high performance results even on highly variable time series.

5.3.5. Resource consumption
We finally compare the algorithms in terms of resource con-

sumption when collecting about 3 K metrics for each monitored
node. A detailed analysis of the impact on cost of data collec-
tion and transmission can be found in [21]. Here, we refer to the
CPU utilization. Fig. 11 shows a comparison of typical behaviors in
terms of CPU consumption when running different monitoring al-
gorithms.

Fig. 11(a) reports the CPU consumption of the static frequency
sampling algorithm and the delta-encoding and static threshold
algorithm, both in case of setting low (e.g., t = 1) and high (e.g.,
t = 1) sampling intervals. The static sampling frequency algorithm
has an average CPU consumption of 0.92% when using t = 1, and
of 0.09% when using t = 10, while the algorithm based on delta
encoding and static thresholds has an average CPU consumption
of 1.21% when using t = 1, and of 0.13% when using t = 10. For
the two static algorithms, these results show that CPU consump-
tion depends on the choice of the sampling interval t . The CPU
consumption is linear with respect to t , with different coefficients
in the two static algorithms. The algorithm based on delta encod-
ing and static thresholds has an overhead of 30% with respect to
the CPU consumption values of the static sampling frequency al-
gorithm.

When running our adaptivemonitoring algorithm, experiments
cause almost the same RAM consumption (9.4% ± 0.5%) of the col-
lection agents and have a negligible impact on the disk, while the
impact on network depends on the communication overhead of
the algorithms. If considering CPU consumption, the typical be-
havior caused by our adaptive algorithm is reported in Fig. 11. We
can see three phases in the trend of the CPU consumption. In the
first phase, λ training set values must be collected. During this
phase, the CPU consumption shows a growing trend until the end
of training set collection. Then, the adaptive monitoring algorithm
selects the best parameters and this selection motivates the ini-
tial high spike of CPU utilization. After the selection, the algorithm
consumption stabilizes around a fixed amount of CPU, that ranges
between those of the static frequency sampling algorithms using
t = tm and t = tM . These results show that the adaptivity of our so-
lution does not impact significantly on resource consumptions be-
cause CPU costs are comparable to those of existing static solutions.

M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79 77
Table 4
Best performance comparison.

Algorithm Fmeasure (%) 1-NRMSE (%) Q (%) G (%) E (%)

Static frequency sampling 44.33 78.14 61.24 90.00 75.62
Delta-encoding and static th. 35.73 78.16 56.95 96.29 76.62
Adaptive monitoring 89.99 83.48 86.74 81.09 83.92
(a) Fmeasure. (b) 1-NRMSE.

(c) E.

Fig. 10. Comparison between the proposed adaptive monitoring algorithm and our adaptive version of the delta-encoding and static thresholds algorithm.
2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

C
P

U
 (

%
)

200 400 600 800 1000
Time (x30s)

1200 1400 1600 1800

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

C
P

U
 (

%
)

200 400 600 800 1000
Time (x30s)

1200 1400 1600 1800

(a) Static algorithms. (b) Adaptive algorithm.

Fig. 11. Average CPU consumption of the monitoring algorithms.
6. Related work

Techniques for improving the scalability of data acquisition
in big data monitoring can be distinguished between lossy and
lossless. Lossless techniques that do not try to reduce the com-
plexity of the monitored data cannot achieve a scalability level
as high as methods which are customized to the nature of
time series, but they can be applied to data independently [32].
On the other hand, lossy techniques strive to reduce the data
set without compromising its fidelity; they can be distin-
guished between offline and online schemes. Offline tech-
niques need to obtain the whole series while the online
techniques process resource samples on the fly. Other tech-
niques, such as adaptive dimensionality [8], differ from the pro-
posed approach because they aim to reduce the dimensionality of
series.

78 M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79
The field of offline lossy techniques is rich in proposals, such
as Fast/Discrete Fourier [24] andWavelet [9] Transform, Piecewise
Aggregate Approximation [14], Singular ValueDecomposition [26],
Symbolization [17] and Histograms [5]. Some recent studies
achieve probabilistic or deterministic error bounds on individual
data samples [11], but these algorithms work by assuming the
knowledge of the entire time series [32]. Hence, they are unsuitable
to real-time monitoring contexts considered in this paper. Other
approaches based on linear segmentation (e.g., PLA [13], sliding
window [4]) impose a wait time during the reconstruction of the
series, because they use the first data point of a time series as the
starting data sample of a segment and use the next data samples to
evaluate the approximation error. The three main variants of this
algorithm improve the quality for specific datasets, but they are not
robust if we consider arbitrary datasets [13,32].

The state-of-the-art in the field of online lossy techniques
can be distinguished between delta-encoding techniques based
on static thresholds [12,15], and architecture-related aggregation
techniques [6]. The latter methods are strongly coupled with
the architectural layer and are inapplicable to a generic monitor
infrastructure. Furthermore, they can be efficient for specific
datasets, but they do not guarantee any robustness and quality
level with respect to datasets originated by different distribution
nor to different application scenarios as the proposed algorithms
do. The delta-encoding techniques based on static thresholds
are applicable to any monitor infrastructure, but the choice of a
static sampling frequency does not allow to solve the trade-off
between scalability and reliability that represents themain novelty
of the proposed approach. In [8] Keogh et al. introduce a novel
dimensionality reduction technique called Adaptive Piecewise
Constant Approximation (APCA) that approximates a known time
series by a set of constant value segments of varying lengths
such that their individual reconstruction errors are minimal. This
solution is unsuitable to our context because it operates on
the whole time series, hence it cannot be used for real-time
analyses involving millions of streams. In [12], Kamoshida et al.
implement a strategy for low cost data gathering: they collect
resource performance indexes only when they differ significantly
from previous values. However, their sampling interval is fixed
and does not take into account that, in highly heterogeneous
systems such as large data centers, sampling frequencies should
be adapted to accomodate changes in the statistical characteristics
of the monitored time series. In [15], Keralapura et al. address
the problem of monitoring aggregate frequency counts of events
and raising alarms based on static and adaptive threshold. In
particular, they characterize the overhead of monitoring as a
function of threshold values and are able to find the optimal
thresholds that guarantee minimal resource consumption by the
monitoring infrastructure. Of course, this approach is limited to
a particular class of performance indexes (frequency counts) and
is not generalizable. In [6], Boehm et al. discuss a hierarchical,
tree-based overlay network of monitoring processes where the
upper layer nodes analyze and reduce the monitoring samples
received by the lower layer nodes. In this way, a trade-off between
accuracy of the results and scalability of themonitoring process can
be achieved. However, according to the authors themselves, the
prototype currently does not scale to the volume of data requested
by big data applications.

7. Conclusions

We propose a real-time adaptive algorithm for scalable and
reliable big datamonitoring that is able to adapt sampling intervals
and update frequencies in order to minimize computational
and communication costs, while guaranteeing high accuracy in
capturing relevant changes in system behavior. These qualities
are mandatory when the system has to support collection, storing
and analysis operations of big datasets coming from large and
heterogeneous resourcemonitors. An extensive set of experiments
performed on real time series shows that the proposed adaptive
algorithm reduces the overheads ofmonitoringwithout penalizing
the quality of data with respect to the state-of-the-art algorithms.
We should consider that in a world where the exponential growth
of system components and data sizes is the norm, even the
scalability goal cannot take any rest. Our current research is
evaluating the limits of the proposed method and when it is
necessary to introduce quite alternative approaches.

References

[1] Amazon, Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2.
[2] M. Andreolini, M. Colajanni, M. Pietri, A scalable architecture for real-time

monitoring of large information systems, in: IEEE Second Symposium on
Network Cloud Computing and Applications, London, UK, 2012, pp. 143–150.

[3] M. Andreolini, M. Colajanni, S. Tosi, A software architecture for the analysis of
large sets of data streams in cloud infrastructures, in: IEEE 11th International
Conference on Computer and Information Technology, CIT, Paphos, Cyprus,
2011, pp. 389–394.

[4] U. Appel, A.V. Brandt, Adaptive sequential segmentation of piecewise
stationary time series, Inform. Sci. 29 (1) (1983) 27–56.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data
stream systems, in: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, 2002, pp. 1–16.

[6] S. Böhm, C. Engelmann, S.L. Scott, Aggregation of real-time system monitor-
ing data for analyzing large-scale parallel and distributed computing envi-
ronments, in: Proceedings of the 12th IEEE International Conference on High
Performance Computing and Communications, HPCC, 2010, Melbourne, Aus-
tralia, 2010, pp. 72–78.

[7] S. Casolari, S. Tosi, F.L. Presti, An adaptivemodel for online detection of relevant
state changes in Internet-based systems, Perform. Eval. 69 (5) (2012) 206–226.

[8] K. Chakrabarti, E. Keogh, S. Mehrotra, M. Pazzani, Locally adaptive dimension-
ality reduction for indexing large time series databases, ACM Trans. Database
Syst. 27 (2) (2002) 188–228.

[9] F.-P. Chan, A.-C. Fu, C. Yu, Haar wavelets for efficient similarity search of time-
series: with and without time warping, IEEE Trans. Knowl. Data Eng. 15 (3)
(2003) 686–705.

[10] J.R. Fienup, Invariant errormetrics for image reconstruction, Appl. Opt. 36 (32)
(1997) 8352–8357.

[11] M. Garofalakis, A. Kumar, Deterministic wavelet thresholding for maximum-
error metrics, in: Proceedings of the 23rd ACM SIGMOD Symposium on
Principles of Database Systems, 2004, pp. 166–176.

[12] Y. Kamoshida, K. Taura, Scalable data gathering for real-time monitoring
systems on distributed computing, 2008, pp. 425–432.

[13] E. Keogh, S. Chu, D. Hart, M. Pazzani, An online algorithm for segmenting time
series, in: Proceedings of IEEE International Conference on DataMining, ICDM,
2001, pp. 289–296.

[14] E.J. Keogh, M.J. Pazzani, A simple dimensionality reduction technique for
fast similarity search in large time series databases, in: Current Issues and
New Applications on Knowledge Discovery and Data Mining, Springer, 2000,
pp. 122–133.

[15] R. Keralapura, G. Cormode, J. Ramamirtham, Communication-efficient dis-
tributed monitoring of thresholded counts, in: Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, Chicago, IL, USA,
2006, pp. 289–300.

[16] D.E. Knuth, Art of Computer Programming, Volume 4, Fascicle 4, The:
Generating All Trees—History of Combinatorial Generation, Addison-Wesley
Professional, 2006.

[17] J. Lin, E. Keogh, S. Lonardi, B. Chiu, A symbolic representation of time
series, with implications for streaming algorithms, in: Proceedings of the 8th
ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, 2003, pp. 2–11.

[18] M.L. Massie, B.N. Chun, D.E. Culler, The ganglia distributedmonitoring system:
design, implementation, and experience, Parallel Comput. 30 (7) (2004)
817–840.

[19] S. Meng, L. Liu, Enhanced monitoring-as-a-service for effective cloud mana-
gement, IEEE Trans. Comput. 62 (9) (2013) 1705–1720.

[20] OW2 Consortium, RUBiS: Rice University Bidding System, 2013.
http://rubis.ow2.org.

[21] M. Pietri, S. Tosi, M. Andreolini, A. Balboni, Monitoring large cloud-based
systems, in: Proceedings of 4th International Conference on Cloud Computing
and Services Science, CLOSER, Barcelona, Spain, 2014.

[22] M. Pietri, S. Tosi, M. Andreolini, M. Colajanni, Real-time adaptive algorithm
for resource monitoring, in: Proceedings of 9th International Conference on
Network and Service Management, CNSM, Zurich, Switzerland, 2013.

http://aws.amazon.com/ec2
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref4
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref5
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref7
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref8
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref9
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref10
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref11
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref14
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref16
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref17
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref18
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref19
http://rubis.ow2.org

M. Andreolini et al. / J. Parallel Distrib. Comput. 79–80 (2015) 67–79 79
[23] A. Rabkin, R. Katz, Chukwa: a system for reliable large-scale log collection,
in: Proceedings of the 24th International Conference on Large Installation
System Administration, LISA’10, USENIX Association, Berkeley, CA, USA, 2010,
pp. 1–15.

[24] D. Rafiei, A. Mendelzon, Efficient retrieval of similar time sequences using DFT,
in: Proceedings of FODO Conference, Kobe, 1998, pp. 249–257.

[25] A.G. Ramakrishnan, S. Saha, Ecg coding by wavelet-based linear prediction,
IEEE Trans. Biomed. Eng. 44 (12) (1997) 1253–1261.

[26] Ravi Kanth, K.V. Divyakant Agrawal, Ambuj Singh, Dimensionality reduction
for similarity searching in dynamic databases, in: ACM SIGMOD Record. Vol.
27. No. 2, ACM, 1998, pp. 166–176.

[27] Y. Simmhan, S. Aman, A. Kumbhare, R. Liu, S. Stevens, Q. Zhou, V. Prasanna,
Cloud-based software platform for data-driven smart grid management,
Comput. Sci. Eng. (2013) 1–11.

[28] Transaction Processing Performance Council, TCP-W, 2013. http://www.tpc.
org/tpcw.

[29] University of Utah, Emulab—Total Network Testbed, 2013. http://www.
emulab.net.

[30] C.J. van Rijsbergen, Information Retrieval, Butterworths, London, 1979.
[31] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, M. Wolf, A flexible

architecture integrating monitoring and analytics for managing large-scale
data centers, in: Proceedings of the 8th ACM International Conference on
Autonomic Computing, New York, USA, 2011, pp. 141–150.

[32] Z. Xu, R. Zhang, R. Kotagiri, U. Parampalli, An adaptive algorithm for online time
series segmentation with error bound guarantee, in: Proceedings of the 15th
International Conference on ExtendingDatabase Technology, Berlin, Germany,
2012, pp. 192–203.

Mauro Andreolini is currently an assistant professor
at the Department of Physics, Computer Science and
Mathematics of the University of Modena, Italy. He
received his master degree (summa cum laude) at the
University of Roma, Tor Vergata, January, 2001 and his
Ph.D. in May, 2005 from the same institution. His research
focuses on the design, implementation and evaluation of
distributed and cloud-based systems, based on a best-
effort service or on guaranteed levels of performance.

His reviewing activity includes several international
peer-reviewed journals (including IEEE Transactions on

Parallel and Distributed Systems and ACM Performance Review).
He has been Program Committee member of international Conferences

(including ETNGRID 2006 and 2007) and has been in the organizing committee for
the IFIP PERFORMANCE2002 Conference.

He is a member of the IEEE and the ACM.
Michele Colajanni is full professor in computer engineer-
ing at the University of Modena and Reggio Emilia since
2000. He received the Master degree in computer science
from the University of Pisa, and the Ph.D. degree in com-
puter engineering from theUniversity of Roma in 1992. He
manages the Interdepartment Research Center on Security
and Safety (CRIS), and theMaster in ‘‘Information Security:
Technology and Law’’. His research interests include se-
curity of large scale systems, performance and prediction
models, Web and cloud systems.

Marcello Pietri obtained theMaster’s Degree in Computer
science on Oct. 2010, and the title of Engineer in Jan.
2012.

He worked some years for many companies, and
in particular in the Embedded and Wireless solutions
field.

He is currently a Ph.D. Student in Information and
Communication Technology (ICT) and he is going to finish
his Doctorate at the beginning of the 2014.

He is also working as Research Assistant at the
University of Modena, since Feb. 2012.

He published many papers and book chapters, especially about Monitoring and
Cloud Computing.

Stefania Tosi is a Ph.D. student in Information and Com-
munication Technologies at the University of Modena
and Reggio Emilia, Italy. She received her master degree
(summa cum laude and solemn commendation) in Com-
puter Science from the University of Modena and Reggio
Emilia in July 2010.

Her research interests include performance evaluation
of modern data centers and statistical models for data
management.

As visiting research scholar at the IBM T.J. Watson Re-
search Center in Yorktown Heights, New York, she has

been (and still is) actively involved in research projects related to performance an-
alytics in multi-cloud environments.

She has four publications in international journals and several proceedings of
key international conferences. She received a best paper award at WWW/Internet
2010.

http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref23
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref25
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref26
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref27
http://www.tpc.org/tpcw
http://www.tpc.org/tpcw
http://www.tpc.org/tpcw
http://www.tpc.org/tpcw
http://www.tpc.org/tpcw
http://www.emulab.net
http://www.emulab.net
http://www.emulab.net
http://www.emulab.net
http://refhub.elsevier.com/S0743-7315(14)00149-X/sbref30

	Adaptive, scalable and reliable monitoring of big data on clouds
	Introduction
	Problem definition
	Adaptive monitoring
	Parameters definition
	Training phase
	Adaptive monitoring phase

	Experimental testbed and training
	Testbed
	Parameter setting
	Training set size
	Distribution of training parameters

	Performance evaluation
	Robustness to training parameters
	Impact of series characteristics
	Performance comparison
	Static frequency sampling algorithm
	Delta-encoding and static threshold algorithm
	Adaptive version of delta-encoding and static thresholds algorithm
	Algorithms comparison
	Resource consumption

	Related work
	Conclusions
	References

