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Abstract

The continuous development and advancement in networking, computing, software and 

web technologies have led to an explosive growth in distributed systems. To ensure bet­

ter quality of service (QoS), management of large scale distributed systems is important. 

The increasing complexity of distributed systems requires significantly higher levels of 

automation in system management. The core of autonomie computing is the ability to 

analyze data about the distributed system and to take actions. Such autonomic man­

agement should include some ability to anticipate potential problems and take action to 

avoid them that is, it should be proactive.

System management should be proactive in order to be able to identify possible faults 

before they occur and before they can result in severe degradation in performance. In 

this thesis, our goal is to predict policy violations and take actions ahead of time in 

order to achieve proactive management in a policy based system.We implemented differ­

ent prediction algorithm to predict policy violations. Based on the prediction decision, 

proactive actions are implemented in the system. Adaptive proactive action approach is 

also introduced to increase the performance of the proactive management system.

Keywords: Prediction, Policy Violation, Policy State Graph, Proactive Action.
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Chapter 1

Introduction and Motivation

1.1 Introduction

The continuous development and advancement in networking, computing, software and 

web technologies have led to complex distributed systems. To ensure better quality of 

service (QoS), management of large scale distributed systems and networks has become 

very important [Wikl0]. Distributed systems include network devices, compute nodes 

and resources, like memory, communication links among nodes in the network, etc. The 

management of these large systems is a challenging task for a variety of reasons in­

cluding communications among heterogeneous components, the dynamic characteristics 

of distributed systems etc. [HKV+98]. Current management technologies are consid­

ered to be reactive management, that is, they may take action after problems occur. 

These technologies collect management information from the system and may take ac­

tions or provide graphical user interfaces to assist a system manager in critical situations 

[KHD00]. Efficient management of such complex systems continues to be an important 

area of research.

1.2 Proactive Management

System management should be proactive for a complex distributed system in order to 

be able to identify possible faults before they occur and before they can result in severe 
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degradation in performance [FAR+97]. The aims of proactive systems management are 

to ensure the quality of the offered services, to increase system performance and increase 

reliability. Organizations can benefit from proactive management because it can help to 

decrease the investment in fault recovery, save time and increase service to customers. 

Normally, the task of management begins when any fault is encountered in the distributed 

system. The management team takes immediate action to try to determine the root cause 

of the fault. This type of management approach can be considered reactive management. 

Proactive system management attempts to predict faults in advance so that the probable 

fault could be avoided and the system can remain in a safe state.

The growth in network based services has increased the pressure on management 

systems. Rapid detection and resolution of problems has created pressure for system ad­

ministrators [HZS01]. In the next few years, production systems are expected to contain 

tens of hundreds of thousands of computing nodes and thousands of I/O nodes [Sit]. As 

network size increases, the types and numbers of faults also increase. Proactive manage­

ment could be a useful approach in this dynamic environment.

In order to try to identify problems in advance, one must rely on current and past 

data and then predict when a problem might occur. Prediction is a statement identifying 

some outcome which is expected in the future [Wikl0]. Some form of prediction is required 

for the development of a proactive management system.

1.3 Differences between Reactive and Proactive Man­

agement

The functionality of reactive and proactive system management is to identify system 

faults and provide solutions to rectify the problem. Though their overall objectives are 

the same, their approaches are different.
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In reactive management, faults are detected by the management system. The manage­

ment system collects real time information by monitoring the system. This information 

includes performance metrics, resource usage, application status, communication link 

performance etc. Network and system administrators can get information about the en­

tire system from the representative information and can do maintenance operations based 

on that information. An alarm is triggered if any sort of anomaly or abnormal condition 

is detected. By understanding the nature of alarms and severity level, the management 

system or the system administrator can take corrective actions to resolve the abnormal 

situation.

In a proactive approach, the management system attempts to predict faults in advance 

of their occurrence in the system. In this case, alarm messages might be generated to the 

system administrator to notify them that the system is expecting abnormal conditions 

within a short time. The management system uses prediction techniques to do this based 

on the available data from the system. If the prediction is correct, then the administrator 

or system could take action to avoid the potential problem. The system information 

collected is the same as that collected with the reactive method. Though prediction 

cannot be completely correct, the main advantage is that if it is successful a sufficiently 

often, then it can help avoid or reduce downtime costs and any loss of quality of service 

(QoS).

1.4 Policy Based Proactive Management

Policies are often used to specify the required or desired behaviour of a system and its 

applications. Policies can be used in an autonomie management system to adjust appli­

cation or system tuning parameters in order to meet operational requirements [BBV07]. 

In many systems, there may be multiple components where each component may have its 

own set of policies. When these policies are violated, the autonomie management system 

tries to identify the actions needed to take, based on the policies or in some cases, based 

on the past behaviour of the system [BB08]. This approach to management is essentially 
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policy based reactive system management. The nature of a reactive approach is that the 

management system takes action only after a policy is violated which can occur when 

there is a decrease in system performance, availability, reliability, etc. In contrast, an 

approach to systems management based on a policy based proactive approach attempts 

to predict a policy violation and then take proactive action before the violation actually 

occurs. Of course, with complex system behaviour and multi-component environments, 

predicting policy violation is a challenge.

1.5 Thesis organization

The remaining Chapters of this Thesis are organized as follows. The second Chapter 

looks at previous work on different prediction techniques in system management and 

policy based management. Chapter Three provides details about a reinforcement learning 

model which is the base of this thesis. It defines our notion of policy, an existing system 

architecture and the reinforcement learning process. Chapter Four outlines the research 

approach to policy based proactive system management and presents several algorithms 

for prediction and action selection based on the reinforcement learning model. Chapter 

Five describes an implementation and presents experimental result. Finally, Chapter Six 

presents some concluding comments and possible future work.



5

Chapter 2

Related Work

Most existing management systems collect management information about packet through­

put, delay and packet errors at input and output of network interfaces [HKV+98]. To 

implement end-to-end proactive system management, more information is required, like 

the current loads on computers, the types of processes accessing file systems, types of 

users and their access pattern profiles, security information, etc. The amount of infor­

mation collected for large distributed systems can be vast. It is very difficult for system 

administrators to efficiently use all of this of information to improve performance.

2.1 Background Knowledge

A large distributed system is a complex architecture where thousands of nodes are con­

nected to each other and each node has resources like processors, memory, and storage 

arrays etc. These resources communicate within the node and between nodes to try to 

provide the best performance. Prediction in proactive system management can be roughly 

categorized as falling into two broad categories - Resource Usage and Fault Management.

Prediction of resource allocation or utilization is required to ensure the better system 

performance. Prediction of resource usage can include estimation of CPU load, memory 

utilization, process workload, link performance, bandwidth usage, scheduling of resource 

or I/O operations, etc.
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In a distributed system, a fault is an abnormal condition in one or more of the sys­

tem components. A fault can be two of types: application/software fault or a hardware 

fault. When any application performance is degraded or if the application is not working 

properly, it is considered to be an application fault. For example, exceeding the thresh­

old limit of a specific parameter of a network application, an application being down, a 

specific application module down etc. are generally considered to be application faults. 

On the other hand, nodes consist of different types of hardware like processors, storage 

arrays, network cards etc. Hardware faults can include disk channel degradation in disk 

arrays, bad sectors in physical memory, processor malfunction etc.

A failure is a critical situation in a system when system components or the system 

itself becomes out of service status. For example, application crash is considered as 

application failure and abnormal system shutdown is considered as system failure.

2.2 Prediction Techniques in Proactive Systems Man­

agement

In recent years, researchers have explored different techniques to do different types of 

prediction. Most of the techniques have dealt with fault detection in systems where a 

fault is mostly an application or service problem. There have also been some prediction 

techniques used to predict resource usage, like CPU load, disk usage etc. The following 

describes some of the prediction techniques used in recent years.

2.2.1 Fuzzy Logic Controller

A fuzzy logic controller prediction method is used in [AGP06]. In this paper, the ap­

proach tried to predict computational demand or resource usage of CPU load, disk usage 

etc. in a utility computing environment system based on the past information. A web 

hosting company was considered a utility computing environment where customers create 
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CPU load or disk usage based on their needs.

The utility provider can sell more resources than it actually has; this is called over­

subscribing. The concept of over-subscribing resources in a utility computing environ­

ment depends on predictions of the use of resources by consumers and how it handles 

the chance or risk of over-subscriptions.

The use of a utility computing environment is changed by user requests which actu­

ally change the data used for prediction modeling. The proposed approach is based on 

genetic algorithms and fuzzy logic which allows for creation of robust prediction models 

which can be trained by scarce training data. This model is a non-linear model.

The prediction process of computation demand is divided into two steps:

• A Fuzzy Logic Controller (FLC) is used to generate a rule set from a data set 

(based on an open source fuzzy engine [Saz02]).

• A genetic algorithm (learning scheme) is used to generate a ranked list of potential 

solutions from the rule set generated by fuzzy logic.

Fuzzy Logic and the Fuzzy Logic Controller
Fuzzy logic (FL) is an extension of classical logic which provides an effective concep­

tual framework for handling decisions under uncertainty and imprecision, and is espe­

cially suitable for a scarce model data scenario [Zad65]. A fuzzy logic predictor/controller 

(FLC) introduced in [MA75] is essentially a function interpolator based on if/then rules 

and fuzzy reasoning.

The controller input (state variables) and output (control variables) are represented 

by linguistic variables (LV) which are real valued variables. For each LV value, the range 

of its value is several fuzzy sets. The output value is interpreted as the degree of member­

ship of the LV value to the corresponding fuzzy set. In Fuzzy Logic, the presentation of a 

LV value belongs to intervals with some degree of certainty, e.g. a value might belong to 
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the interval [a,b] with a certainty of 90 percent and to an interval [c,d] with a degree of 

30 percent. Note that Fuzzy Logic permits LVs to belong to multiple intervals which do 

not have to be exclusive. The rule set is defined based on the input and output variables. 

Classical design techniques for FLCs consist of the manual specification of the LVs, fuzzy 

sets, and rules by a domain expert.

An example of a rule set is given below [Saz02]:

If A is high then Z is negative 
If C is low or D is high then Z is positive

In this rule set, A, C and D are LV input variables and Z is an output variable and 

the fuzzy sets for all variables are high, low and positive, negative. Several rule sets are 

prepared by a domain expert based on the past information. A family of FLCs is defined 

to represent all possible solutions which is required for the genetic algorithm.

Genetic Algorithm (learning scheme)
A genetic algorithm is used to obtain a ranked list of potential solutions (rule set) from 

an FLC family. In genetic fuzzy systems[CHW+95], a genetic algorithm (GA) is used to 

improve the generated fuzzy sets and/or the if/then rules. A set of potential solutions 

(rule set) containing appropriate encodings of FLCs is retained. These solutions are 

randomly changed and merged yielding a new set of solutions. The fitness of each new 

solution is evaluated based on historical data. The fitness value is determined to decide 

whether the solutions will survive in the next generation or not. The process continues 

for a fixed number of iterations.

Initially, the population of the GA consists of randomly chosen members of the FLC 

family. The mutation is done by randomly changing every encoded part of the rule set. 

Different set of values can be used for each mutation type. For each of these mutation 

types, different probabilities can be set.
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Figure 2.1: MSE of the GaFuzzy(left) and MSE of the SMO(right) [AGP06
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The benefits of this approach include easy and compact encoding of the prior knowledge, 

which is human readable, and shows that good predictions are possible even with small 

training sets. This approach provides good results for dynamic computer systems and 

networks, such as utility computing environments. The main disadvantage of this ap­

proach is the manual rule creation. The rule creation process should be dynamic rather 

than manual.

2.2.2 Bayesian Network Approach

The probabilistic framework of a Bayesian network has been used to do prediction in 

several research studies[HJ98, DLJ+06, HEO1]. We focus on the work in [HJ98] which 

tries to predict network anomalies that typically precede a fault. Specifically, the authors 

propose an approach to predict node failure. The paper [HJ98] described an intelligent 

agent that collects information about a network node using SNMP (Simple Network 

Management Protocol). The intelligent agent learns the normal behaviour of each mea­

surement variable and combines the information into the probabilistic framework of a 

Bayesian network. This produces an image of the network’s health from the perception 

of the network node, which can be used to generate local corrective action or a message 

to a centralized network manager.

Structural Overview

Figure 2.2 illustrates how the intelligent agent approach works. It has two steps: obser­

vation processing and combination of information.
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Node’s viow of 
notwork bohavior

Figure 2.2: Structural Overview of the function of intelligent processing agent [HJ98]

Observation Processing
Each network node must build its own picture to generate the network’s health informa­

tion. To provide the picture of the node, the observation processing component processes 

the raw measurement variables and generates the probability of each measured variable at 

a given time. The component uses a change detection method to estimate the behaviour 

of the measurement variables. The goal is to detect the change in network behaviour 

which is related to a network fault. The process has three aspects: segmenting data, 

feature extraction and learning behaviour.

Segmenting Data
The observation processing component uses an algorithm [AB83] to segment the raw data 

into variable length pieces where each piece contains a portion of the time series data 

that is statistically similar. The algorithm assumes that the time series is from a piece­

wise wide-sense stationary Gaussian process [HJ98]. After segmentation, the signals are 

in stationary pieces. The benefit of using segmentation is that it temporally correlates 

the observations. Because many network signals are bursty, the temporal correlation can 

help the agent distinguish between a burst and a change in the signal’s nature.

Feature Extraction
The most common method of detecting abnormal behaviour is thresholds. The feature 

is not the value of the threshold itself, but the information on whether a particular 

measurement variable exceeded the threshold value or not. If the threshold has upper 

and lower bounds, then the feature is whether the measurement variable is within the 

threshold boundary or not. It is a hard task to determine the correct threshold value 
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because of the network’s dynamic behaviour. That is, the objective is to capture only the 

signal information that is related to abnormal network conditions. In order to do that, 

features that can use network traffic measurements to distinguish abnormal from normal 

network behaviour are required. Cynthia and Chuanyi choose features that change along 

with changes in the network performance and allow the normal behaviour model to 

continually adapt. The change detection method uses the parameters of a second-order 

autoregressive process AR(2) as features. The AR(2) process is defined as:

v(t) = a y(t - 1) + azy(t - 2)+ ∈ (t)

where y(t) is the value of the signal at time t, and ai and a2 are the AR parameters that 

are used as features, and ∈ (t) is noise or error term. Using the AR(2), the features are 

calculated for each node to generate the node picture.

Learning Behavior

The agent uses the features to create a description of normal behavior in the form of a 

probability distribution. In order to estimate the probability of each sample when the 

network is operating normally and when there is a fault, we need to know exactly when 

the network is operating normally from the node’s view. Information about the network 

problems is generated in the system log file which is used by the intelligent agent from 

learning perspective. The reports from the log file are used as measurement labels that 

identify when the fault occurred. These labels are used to learn the probability distri­

bution of each measurement variable when it is related to abnormal network function. 

The agent must also learn the probability distribution of variables which is related to 

normal network function. Normal behavior is defined as the variable behavior during the 

learning window when the agents learn about the probability distribution. During this 

learning period, it is assumed that agent will rarely learn about problematic behavior of 

network. Since problematic behavior is unknown, any sample that falls outside the range 

of AR(2) parameters is considered as abnormal behavior of the network.
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Combination of Information
The goal of this component is to combine the processed information generated by the 

observation processing component into higher level measures of network behavior from 

node’s view. Measurement variables are combined in the probabilistic framework of a 

Bayesian network[Pea88]. The structure of the Bayesian network is illustrated in Figure 

2.3.

Figure 2.3: Probabilistic framework of a Bayesian network [HJ98

The top level is a variable which describes the network’s entire health. The middle lev­

els are the internal network variables which signify different network functionality. The 

bottom levels are the MIB(Management Information Base) variables which are stored 

in the SNMP agent’s management information base. The arrow from top to bottom 

between the nodes represents the cause and effect relationship. Network and MIB vari­

ables are observed variables. Internal variables are not observed variables and it includes 

IF (which represents the network interface), IP (which represents the Internet Protocol) 

and UDP (which represents the User Datagram Protocol). These variables are associ­

ated with the MIB groups and have different network functionality. Figure 2.3 shows that 

the network health information directly influences network functionality information and 

network functionality also influences the MIB variables.

The approach assumes that the network health and network functionalities are in­

dependent, since each network function represents an independent functional network 

component. This conditional independence is assumed in order to simplify the problem 
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of combining information. All internal variables (IF, IP, UDP) and the network health 

variables are discrete variables and each has two states: normal and abnormal. The MIB 

variables are continuous. Detail probability calculation process is given in [HJ98.

Evaluation
In an experiment to evaluate the approach, seven months of log data was collected using 

SNMP queries. There were seven subnets and two routers in the network. Router 2 was 

connected to different sub networks and data was collected from Router 2. The system 

detected fault “Server not responding between 6:33 a.m. and 6:36 a.m. December 23, 

1996, where the server is a fileserver in the subnetwork. The results for the posterior 

probabilities estimated are shown in Figure 2.4. The x-axis represents the time in second 

and y-axes are the posterior probabilities of the abnormal behavior in (a) IF variables, 

(b) IP variable, (c) UDP variable and (d) network variable.

0.8 E 0 .8 
S
* 0.6
5
• 0.4

& 0.2
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Figure 2.4: Experiment result using 1 hour learning window [HJ98]

(b)
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The information from (a) to (c) is combined to determine the network information (d). 

The asterisk denotes the downtime period in the graph. It can be seen from the graph 
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(d) that the agent was able to detect abnormal behavior 12 minutes before the failure 

report of the server. Thus the experiment shows the validation of the approach.

2.2.3 Knowledge Based Approach

The work by Webber and Westphall [WW97] introduces an approach to identify potential 

problems in advance of any performance degradation of network applications using knowl­

edge based techniques as well as providing support for future decision making actions in 

a networked environment. This type of prediction falls into the fault management pre­

diction category, since it is related to application performance degradation. Their overall 

approach joins two different approaches to address proactive network management. First, 

they use remote monitoring and simulation tools[Fra96] and secondly they make use of 

a knowledge based approach [Roc96].

The prediction process starts by constructing baseline information (Figure 2.5, left). 

The network is monitored constantly to collect statistical samples and within a short pe­

riod of time it is possible to establish a network profile which is called a “baseline". The 

main components of this approach are the Management Platform, the Communication 

Service and the Proactive Module. The knowledge base system has been attached to the 

Verification Service module (Figure 2.5, right) for the diagnosis process. The Proactive 

Module is programmed to notify the management platform of any parameters that indi­

cate a decrease in the network performance. These parameters will then be analyzed in 

order to provide the corrective actions to be performed by the manager.

The baseline information is used to determine symptoms through comparisons with 

the real-time data which is provided by remote monitoring agent. The verification schema 

(Figure 2.5, right) collects data from remote agent in real-time and compares that with 

the baseline data. If some tendency toward trouble was detected, the system would 

notify the manager (or Management Platform) using the Communication Service. This 

activity is realized through the diagnosis process. The diagnosis process makes use of a 

set of trees which represents the knowledge base for the system. The tree has three levels.
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The lowest level of the tree is the Parameter Level, where the parameter state is 

identified and evaluated as function of its value, average and standard deviation. The 

middle level is the Diagnostic Level which contains diagnostics made through the analysis 

of parameters. At the top of the tree, the Suggestion Level, the final diagnostics are 

suggested for the network administrator.
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Figure 2.5: Architecture of Proactive Management Component (left) and Verification 
Schema (right)[WW97]

2.3 Other Approaches

Apart from the prediction technique and concept, failure prediction of large scale sys­

tem can also be classified into two categories: model-based and data driven[GZL+08]. 

A model-based prediction method is either an analytical or probabilistic model of the 

system. The model generates warning messages when it detects any deviation from the 

model in the system[HE01, HZS01, IYS86, HSM04, TA03, TV99]. For example, in [HE01] 

Bayesian based algorithm is used to predict disk failures. In [SZL05], a specific analytical 

method is developed for fast detection of faults in I/O systems.

On the other end, data-driven methods use data mining techniques to do failure pre­

diction. The method attempts to learn and classify failure patterns as rules from historical 

data rather than generating probabilistic models ahead of time[GLL+07, LZSS06, Sea03 . 

For example, one laboratory group used statistical learning techniques for failure diagno­

sis in Internet services [Lab]. Sahoo etal applied association rules to predict failure events 



17

in a 350-node IBM cluster[Sea03]. In [GLL+07, LLG+07], a meta learning based method 

is investigated by combining the merits of various data mining techniques.

The above mentioned prediction techniques mainly focus on static analysis by using 

one specific method. In this static analysis, the method generates static rule using fixed 

training set. In spite of effective fault forecasting, they do have drawbacks. Firstly, the 

source of failures are complex and unlimited, so it is very hard for a single method to 

detect all faults. Second, in order to obtain efficient failure patterns, the training set 

should be long (e.g. a year) which means failure prediction will start working after long 

training period. Thirdly, the method focuses on static analysis where the training set 

remain unchanged.

2.4 Policy Driven Proactive System Management

Proactive management in policy based systems or networks is a realtively new area of 

research. There has been very little work done in this research area. In [SML07], a math­

ematical predictive model is used to calculate estimated time before vertical handover 

in 4G heterogeneous network. The Architecture for Network Autonomy (ANA) [XTL07] 

attempts to realize a proactive policy based network management for autonomic com­

munications. In [BB08], reinforcement learning model is used in policy based systems to 

deal with critical situations in the system. The model takes action in critical situations 

based on the past experience when any policy is violated. This is a reactive approach. 

We use this model to develop a protective approach for policy based systems. Detail 

about the reinforcement learning model is described in Chapter 3.
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Chapter 3

Reinforcement Learning in Policy

Driven Autonomie Management

3.1 A Policy Based Management System

A policy based management system has been developed by Bahati[BB08], where rein­

forcement learning is used to determine the best use of a set of active (enabled) policies 

to meet different performance goals. The learning approach is based on the analysis of 

past experience of the system and the learning model is used to train the system to dy­

namically adapt the choice of policy actions for adjusting application and system tuning 

parameters in response to policy violations.

Reinforcement learning is a learning paradigm[SB98], where an agent learns how 

to best map situations to actions through trial and error interaction with its environ- 

ment(Figure 3.1). Reinforcement learning uses a “reward and punishment" approach, 

where for each action a numeric reward is generated by the agent which indicates the 

desirability of the agent being in a particular state. The only way to maximize this 

reward is to discover which action generates the most reward in a given state by trying 

them. The learning agent must also consider a trade off between whether it should use 

its current knowledge to select the best action to take (exploit) or to try new, perhaps 

as yet untried, actions (explore) in order to improve its performance in future.
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state st reward r.

Environment

Agent

action a

Figure 3.1: The agent-environment interaction in Reinforcement Learning [SB98

3.2 System Architecture

A detailed architectural view of the adaptive policy driven autonomie management sys­

tem of Bahati is illustrated in Figure 3.2. The adaptation strategies were evaluated on the 

behavior of a multi-tiered web server consisting of Linux[Lin], Apache[Pro], PHP[PHP 

and MySQL[Dat]. The functionalities of different components of the architecture are

described below:

E
Application )4 M

Manager

Event 
Analyser

■ Event 
Handler

Policy 
Tool

Event
Log

Base

Figure 3.2: System Architecture of Reinforcement Learning Model [BB08

Knowledge Base: The Knowledge base is a shared repository of management policies. 

It contains system context for events, rules for making trade offs, rules for making cor­
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rective actions, decision metrics and statistics of events. It is used to store information 

about event handlers and event consumers.

Monitor (M): Monitor components are used to get information about different resources 

(e.g. Apache, MySQL, PHP) of the system. Performance metrics are collected and then 

forwarded to the Monitor Manager.

Monitor Manager: The Monitor Manager gathers information from monitors. It also 

instantiates monitors for certain resources and reconfigures monitors at runtime by re­

trieving policies from the Knowledge Base. It forwards the monitor events to the Event 

Handler.

Event Handler: The Event Handler processes events from the Monitor Manager to 

determine whether the events might correspond to a policy violation. It then forwards 

the event information to the Policy Decision Point(PDP) and logs the information in the 

Event Log.

Event Log: The Event Log stores all the system activity for future reference, including 

information about events from the Event Handler, records decision made by PDP, actions 

enforced by PEP, etc.

Policy Decision Point(PDP): The PDP processes event messages to determine whether 

there is any policy violation in the system. It also selects corrective actions based on 

policy structure and on input from the EventAnalyzer and then forwards the actions to 

Policy Enforcement Point (PEP) to implement in the system.

EventAanalyzer: The Event Analyzer correlates events with respect to the contexts 

and performs statistical analysis of the information. It is also the component that is 

responsible for the reinforcement learning model and uses that model to help the PDP 

to take actions based on past experience.
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Policy Enforcement Point (PEP): The PEP enforces actions suggested by the PDP. 

It forwards the actions to the appropriate effectors to perform the actual adjustment.

Effector (E): Effectors implement the action in the system; multiple effectors exist for 

the different resources.

Policy Tool: The Policy tool is an application, implemented in Java. It is used to 

specify policy rules governing the behaviour of the autonomous management system. It 

provides a console for observing the behaviour of the web server like memory utilization, 

response time etc. Policies can be added or modified at runtime using the policy tool.

The implemented autonomie management system involves providing quality of ser­

vice support local to each host. Each local host has a single PDP which is responsible 

for system management according to policy specification. In a multi-tired Web-server 

environment, several components (i.e., a Web server, application server and a database 

server) may work together to provide a set of services. In that case, all those components 

running on a single host are managed by a local PDP, which is responsible for managing 

the whole system as expected by the policy structure or specification.

3.3 Autonomie Management Policies

Policies are used for management decisions in this autonomie management system. In 

this system, it is assumed that action policies are considered as event-triggered, a action­

condition rules [DDLS00]. An event triggers the evaluation of a rule of the form ’if [condi­

tions] then [actions]’. An event is generated when some condition of the state of a system 

become true. The appropriate action is chosen from the policy specification for that event.

A policy consists of several attributes including one or more conditions and an ordered 

list of actions to make adjustment of system tuning parameters. A policy rule has mainly 
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three parts: a name, conditions and actions.

expectation policy {RESPONSETIMEViolation (PDP, PEP)} 
if(APACHE:responseTime > 2000.0) & (APACHE:rsponseTimeTREND > 0.0) 
then (AdJustMaxCHents (+25) test{newMaxClients < 151} | 

AdjustMaxKeepAliveRequests(-30) test{newMaxKeepAliveRequests > 1} ∣ 
AdjustMaxBandwidth(-128) test {newMax Bandwidth > 255} }

Figure 3.3: A sample expectation policy for resolving Apache’s response time violation 
BB08]

Figure 3.3 is a sample policy rule where RE S PO N S ETIMEViolation is the name of the 

policy rule and it is an expectation type policy rule. This policy rule suggests a number of 

actions when Apache response time is greater than 2000 ms and the trend of the response 

time is increasing. The conditions of the policy rule specified in the ’if’ clause and the 

policy actions are defined after ’then’ clause; there can be one or more policy actions and 

an action may have a test associated with it. For example, AdjustMaxBandwidth(-128) 

is an action which decreases the bandwidth. Before executing the suggested action, the 

system performs the associated test to determine the validity of the action, i.e., if the 

action can be executed.

Policies are two types - Configuration policies and Expectation policies. Configuration 

policies describe those policies that are used to specify how to configure and install 

applications and services.

— 
configuration policy {InstaliCPUMonitor (MonitorManager +localhost )} 
if (INSTALL:CPUMonitor = true) 
then {./CPUMonitor test (IsCondiHonBnabled( CPUutilization ) = true}}

Figure 3.4: A configuration policy for installing CPU Monitor[BB08]

Figure 3.4 shows a sample configuration policy specifying that a monitor is required at 

system start up time to collect performance metrics on CPU utilization. Expectation 

policies define information used to ensure that operational requirements are met and 

expected conditions are not violated. Figure 3.3 presents one expectation policy for the 

Apache web server.
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3.4 Modelling Reinforcement Learning

In reinforcement learning, a model gives feedback which guides the learning agent in its 

interaction with its environment. In a policy-driven autonomie management domain, the 

actions are determined by the expectation policies that are violated. The performance 

and behavioral objectives are described by the conditions of the expectation policies. A 

policy-state-transition model is used based on a set of active policies to create a set of 

policy-states and the actions of the management system.

The management systems behavior is captured from the Event Log and used to build 

a policy-state transition graph (Figure 3.5). The structure is built dynamically as the 

events from different management components are recorded in the log file[BB08]. This 

information may include Monitor events, violation events, decisions made by PDP, actions 

made by PEP etc.

20

Figure 3.5: Policy-State Transition Graph [BB08

A state Si, consists of several attributes as given below:

si = (t,h,{m1,m2,....,mn})

where type (t) defines a state as ’violation’ or ’acceptable’, a health (h) value derived from 

the observed values for the state metrics in that policy state and a set of metrics. Each 

of the state metrics, mx, corresponds to a unique condition about mi determined from 

one of the enabled (active) expectation policies and consists of condition’s name, severity 

(which depends on the observed values of the metrics), and region (which maps the 
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condition severity into appropriate locality as defined by the policy condition). Sample 

state information is given below where responseTime and responseTimeTrend are two 

metrics of the state designated as mi and m2. Metric mi has two regions - region Rh. 

represents values greater than 2000 and region Rh, represents values less than or equal 

to 2000. A weight is associated with each region. Region Rh, is assigned a weight of 0 

and region Rh, is assigned a weight of 100. The higher weight value indicates a preferred 

region, i.e., where the metric is likely not to contributed to a policy violation. A lower 

weight indicates that the metric will cause a policy violation.

s1 = (tι, hι{AP AC H E : reponseTime > 2000.0, APACHE : responseTimeTrend > 

0.0y)

3.4.1 Learning by reinforcement

The main function of the PDP is to determine the actions we need to take when any 

expectation policy is violated. The PDP can request input from the Event Analyzer to 

help determine the actions. The Event Analyzer implements the reinforcement learning 

mechanism which uses two strategies - an Exploration Strategy and Exploitation Strat­

egy:

Exploration Strategy:
The learning agent might need to take management decisions in certain situations without 

depending on the past experience. This could happen for several reasons. For example, 

this could be part of the agent learning strategy to explore the environment and discover 

what action can be best for the current situation. It could also be because of the system 

has no past reference for the current situation.

Exploitation strategy:
The learning agent can suggest an action based on past experience and would update 

the action reward value. The main objective of the autonomie manager is to try to learn 

which actions work best in certain situations and trying to move the system towards 
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’acceptable’ states and avoid ’violation’ states. In order to achieve that, a numeric re­

ward r value for an action is determined after each time that particular action has been 

suggested by the learning agent. The action reward value is calculated using following 

equation:

n .
2 mi.w * [f (RM,)]2 i=1

where, St is the state visited after taking an action a in the previous state, n is the 

number of metrics and mi.w and Rh correspond to, respectively, the weight associated 

with metric mi and the region where metric mi measurement falls.

3.5 Towards Proactive Management

In the next Chapter, we elaborate on the state-graph reinforcement learning model. We 

describe how the state-graph is formed, what information is collected for each state and 

how the transitions are formed. We build on this to introduce our prediction approaches 

and strategy for proactive management.
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Chapter 4

Approach to Proactive Management

4.1 System Architecture

A detailed view of our architecture for a policy based proactive management system is 

depicted in the figure 4.1. The module named Proactive Decision Point (PRDP) is 

integrated with the previous architecture which was developed for research into adaptive 

policy-driven autonomie management system [BB08]. The PRDP is shown in figure 4.1, 

as the green colored box inside the EventAnalyzer module.

The PRDP collects system information from the EventAnalyzer and performs the 

prediction computations for the three different approaches that we have explored (the 

probability approach, the probability and reward approach and the reward approach); 

the three approaches are described in detail in following sections. After the prediction 

computation, the proactive decisions made by the PRDP are transferred to the PDP 

which carries out the necessary operation to execute the decisions. Finally, the PDP 

forwards the actions to the PEP to execute the proactive decisions. Before executing 

any proactive action, the PEP carries out its normal action execution procedure. If the 

chosen proactive actions do not meet the test conditions that need to be satisfied, then 

those proactive actions will not be executed. Otherwise, all proactive actions will be 

executed in the system.
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Figure 4.1: Policy Based Proactive Management System

The boxes colored purple have been modified from the previous system architecture (See 

Figure 3.2) in order to interact with PRDP. All blue color modules remain unchanged. 

All communication among proactive management modules are shown by green commu­

nication links.

4.2 Reinforcement Learning Model

The reinforcement learning model [BB08] is used as the basis for our approach to proac­

tive management. The aim of the reinforcement learning approach within the autonomie 

manager is to enable the manager to determine the best use of the set of active policies 

to ensure different performance criteria. The learning approach is based on the analysis 

of past experience of the system to dynamically adapt the choice of policy actions for 

adjusting applications and system tuning parameters to handle policy violations.

The EventAnalyzer scans the past information of the system from Eventlog to gen-



28

erate the state graph of the system. The log information is scanned through a specific 

period of time known as a management cycle. In each management cycle, the state graph 

information is updated based on the events that occurred in that management cycle.

The state graph captures different policy states of the system with a set of attributes 

and records transitions among different states after taking policy actions. Table 4.1 shows 

the information recorded about a single state (SO) which is taken from the state graph: 

State SO has three attributes - a set of metrics (M), a set of transitions (T) and set of 

actions (A), where TE A.

State[O]: ID[O]:

METRICID[0]: REGION[100]:
METRICID[1]: REGION[0]:
METRICID[2]: REGION[100]:
METRICID[3]: REGION[0]:
METRICID[4]: REGION[100]:
METRICID[5]: REGION[0]:

Transition[0]: ACTION[-1]: FREQUENCY[1]: NEXT STATE[0]
Transition[l]: ACTION[-1]: FREQUENCY[1]: NEXT STATE[1]
Transition[2]: ACTION[-1]: FREQUENCY[1]: NEXT STATE[2]

Action[42]: Q[3.64]: AdjustEaccMemSize - 1
Action[47]: Q[3.64]: AdjustKeyBufferSize - 1024000
Action[52]: Q[2.84]: AdjustMaxBandwidth + 64
Action[48]: Q[0.00]: AdjustQueryCacheSize - 1024000
Action[-1]: Q[85.08]: GammaAction

Table 4.1: A State Information of State Graph

Detail about these attributes have been discussed in more detail in Chapter 3. Transi­

tion attributes indicate the next possible states (S0, S1, S2) and the corresponding policy 

actions (the action identifier is —1 in this example) from state SO. Those actions are 
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selected from the set of Actions(A) attribute which is shown in third row of the table. 

The action list is generated from the set of policies for the state SO. The particular action 

frequency in the transition attribute indicates the number of times that action has been 

taken by the system. The Action reward value is represented in the third row of the 

table by the symbol Q. Notice that, the action —1 has the highest reward value since 

the system has only taken action —1 from the state SO.

After each management cycle, the system updates state graph information either by 

adding a new state or by updating the previous state information which includes an up­

date of the transition frequency and reward value of actions. After a certain number of 

management cycles the system may have a number of states and transition lists.

A sample transition graph is presented in the figure 4.2 where there are 9 states from 

S1 to S9 and a number of transitions. Blue colored states illustrate violation states and 

indicate that one or more policies were violated when the system was in those particular 

states. The arrow from one state to another represents the transition. Our approach uses 

this state graph information, which is generated by the reinforcement learning model to 

achieve proactive management in a policy based system. Our aim is to predict a policy 

violation in the system and take corrective action to avoid violations.

Figure 4.2: State Transition Graph [BB08

In this policy based system, a policy violation is considered as notion of fault though in 
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reality a ’fault’ in the system may result in a policy violation. In this thesis, our aim is 

to predict policy violation and take action ahead of time in order to achieve proactive 

management in policy based system. Thesis objective is to avoid policy violations and 

thus avoid faults. Failures are not considered in thesis. The proactive management 

part is divided into two parts - Policy Violation Prediction(PVP) and Proactive Action 

Execution(PAE). In the policy violation prediction part, the main function is predicting 

the state and which policy will be violated. In the PAE part, the activity depends on the 

decision from the PVP part. If the PVP predicts that a policy is likely to be violated 

then it will suggest an action to take which can hopefully take the system to a good or 

safe state and thus avoiding a policy violation. The PAE will try to execute proactive 

actions based on the suggestion from PVP.

4.3 Policy Violation Prediction (PVP)

The PVP is responsible for policy violation prediction and determining proactive actions. 

PVP only suggests proactive actions when it predicts a policy violation or violation state. 

If the PVP does not predict the violation of a policy then the proactive management 

component plays no role in that particular management cycle. We consider two different 

approaches in the way that the PVP performs for prediction - predicting a specific state 

with a policy violation and predicting only when there might be some policy violation.

For our current work, we have decided to predict two management cycles ahead. This 

means that if we are currently at management cycle t, then we will try to predict whether 

there will be any policy violations at management cycle t+2, i.e., management cycle 

[t,t+1,t+2]. In particular, we look at predicting and what will be the system state or the 

state id at cycle t+2. We consider three approaches to do this prediction: the probability 

approach, an approach that combines probability and reward and an approach based only 

on reward.
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4.3.1 Probability Approach

The probability approach determines the policy violation and state based on the action 

probability value. The action probability value is calculated from the action frequency 

value. The action frequency value indicates the number of times that an action has been 

taken from a particular state. Figure 4.3 illustrates the action probability value approach. 

The state graph is only a portion of the large graph of the system. There are number 

of policies are involved in each state of the graph 4.3. For example, expectation policy 

of Figure 3.3 is involved for violation state S4. A complete set of policies are given in 

Appendix A.Assume that, state SO is the current state at management cycle t, then we 

have the following information about SO from state graph (Figure 4.3):

A21 { a0, al, a2 }
FSR { 1. 2, 3 }

NSSA { SO, S1, S2 }

where, A is a set of transitions (actions), F is a set of frequencies and NS is a set of 

next states from current state SO. The values of sets A, F and NS are related to each 

other within state SO, that is, if we take action al then we will go to state S1 and the 

frequency of action a1 is 2. The action frequency values are shown in the Figure 4.3 

within brackets. In this particular state graph, we have 5 states, where normal or good 

states are SO, S1, S2, S3 and the policy violation state is S4 which is colored red. If we 

find that the system has a high probability to go to state S4 then we will take proactive 

actions to take the system to one of the good states SO, S1, S2, S3.
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Mgmt Cycle {t + 2}

[1]

Figure 4.3: Prediction Based on Action Probability Value

In order to find the action probability value, we sum all the action frequency values for 

a particular state. The total action frequency value for SO is 6 where actions a0, al and 

a2 have frequency values of 1,2 and 3 respectively. So, the probability value for actions 

a0, al and «2 are Ü.17, 0.33 and 0.50. The probability values indicate that if the system 

is in state SO at management cycle t, then the system may take action a2 to try to move 

forward to state S2 at management cycle t+1 since action a2 has the highest probability 

value.

The action probability value is based on the systems past behavior in that particular 

state. If any action frequency value is high, then it means the system has been most 

likely to take that action from that specific state. As we want to predict two cycles 

ahead (t + 2), we will do a similar action probability calculation for all possible next 

states (SO, S1, S2) from our current state which is SO. At t + 1, the state information 

for S1 and S2 is as follows:
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Attribute State S1 State S2
Transition A'2{ a4, a5 } AS22{ a3, a6, a7 }
Frequency F42{ 5,2 } F22{ 2, 4,1 }
Next State NS2{ S3, S4 } NSS2{ S1, S4, S3}T4% ‘ 7

The probability values from state S1 for action a4 and a5 are 0.71, 0.28. Similarly, the 

probability values from state S2 for actions a3 ,α6 and a7 are 0.28, 0.57 and 0.14, respec­

tively. This means that from state S1 and S2 the system is most likely to take action α4 

and α6 to move forward to state S3 and S4.

Predicting Only Policy Violations
When we want to predict only a policy violation then we multiply probability value of 

the t + 1st management cycle with t + 2nd management cycle for each action. At the 

t + 2 management cycle, if we end up with a violation state, then we add that action 

probability value to the violation prediction score. On the other hand, if we do not end 

up with a violation state then we add that action probability value to the safe predic­

tion score. At the end of the computation, if the violation prediction score is equal or 

higher than the safe prediction score, then our prediction is that the system is expecting 

a policy violation at the t + 2nd management cycle. The complete calculation process is 

illustrated in following table:
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Table 4.2 : Policy Violation Prediction based on Probability value

Current 
Sate 
at time 
(t)

Action 
to 
time 
(t+1)

(AS

Prob, 
to 
time 
(t+1)

[p1]

(8wd

Next 
State to 
time 
(t+1)

(NSAw)

Action 
to time
(t+2)

(A5.2)

Probability 
to time 
(t+2)

[P2]

(P2+2)

Next State 
to time 
(t+2)

[ns]

(NSS.2)

Total 
Probability 
Value at t+2

[f]

(p1 • p2)

Violation 
Prediction 
Score at t+2

E-

If ns is a 
violation state

Safe 
Prediction 
Score at t+2

LPs

If ns is nota 
violation state

SO

a0 0.17 SO

a0 0.17 SO 0.029 0.00 0.029

al 0.33 S1 0.057 0.00 0.086

a2 0.50 S2 0.085 0.∞ 0.171

al 0.33 S1
a4 0.72 S3 0.238 0.00 0.409

a5 0.28 0.092 0.092 0.409

a2 0.50 S2

a3 0.28 S1 0.14 0.092 0.549

a6 0.58 0.29 0.382 0.549

a7 0.14 S3 0.07

Table 4.2 shows the complete prediction computation process. Since the violation prediction(Pv) 

score (0.382) is lower than the safe prediction (Pg) score (0.619), the PVP is not expect­

ing any policy violation at the i + 2 management cycle. In the opposite case, the PVP 

would expect a policy violation and would generate a proactive action list and provide 

it to the PAE to execute the actions. The algorithm for predicting the policy violation 

based on only the probabilities is given below:

Algorithm 1: Predicting Policy Violation using Probability Approach

Input: Initialize ProactiveAnalysis(s) fors € S, where s is the current state

1: state — store the current state and its status information

2: transitionCountt+1 ÷- get the total number of transitions for s

3: totalFrequencyt+ι.= total action frequency for all actions from state s.

4: Pv:=Ps:=l:=0 {l is used for how many management cyles ahead to predict)



35

5: for i:=0 to transitionCountt+1 do

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

Al1 M [i]:=getProactiveActions(s,i)

NSA1 [U] [i]:=getProactiveNextState(A#1 [U] [i])

F(1 [l] [i] :=getProactiveActionsFrequency(A1 [l] [i])

p+1[4]:= F1[][]/total Frequencye+1
transitionCountt+2 — get the total number of transitions for NSAi[l][i 

totalFrequencyt+2= total action frequency for all actions from state NSA1[l][i

for k = 0 to transitionCountt+2 do
ANA+ll[ + 1][k]:=getProactiveActions(NS,1]é],k)

NSNSFalh[i + 1]k):=getProactiveNextState( ANZHallgz + 1][⅛])
FNZ*+'/ + 1][k]:=getProactiveActionsFrequency(ANg+lI[ + 1][k)

PMSS" + 1k):=FNS*M! + 1k/totalFrequenCV.+2

P:-=p2ailIlEA * pNXSZ-i"g + 1/A

if NSNZF1!l[ + 1](k] = VIOLATION then

Pv = Pv + P

else
21: Ps = PsAP

22: end if
23: end for

24: end for

25: if Pv > Ps then
26: proactiveActionExecution()

27: end if

The functions(get ProactiveActions(),getProactiveNextState() etc.) get the respective 

information and return the associated values. The decision for a state to be considered a 

VIOLATED STATE is made by searching in the information of the state list which is ini­

tialized at the beginning of the algorithm. The function of proactiveActionExecutionQ 

is described in greater detail when we discuss the PAE (Section 5.3). The parameters of 

that function are the action ID and action strength (reward value) of the management 
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cycles t +1 and t + 2.

Predicting State and Policy Violation
When we want to predict the state (or state identifier), the computation is different 

than above. In this approach, we try to find the highest probability value of actions at 

management cycles ⅛ + 1 and t + 2 and consider the specific states that could be reached 

at management cycle t + 2 from the current state. Using our previous example, if we 

consider the action with the highest probability value among all actions at management 

cycle t+1 then we get action a2 which has the highest probability value(0.50) from 

the current state SO. If we then move forward through a2, we move to state S2. At 

management cycle t + 2, then action a6 has the highest probability value(0.58) among 

all possible actions from state S2. So, if we move from the current state SO through a2 

then take action a6, this would take the system to state S4 at management cycle t + 2 

where S4 is a violation state. In this case, since we are predicting that the system will 

enter the violation state S4, we will generate a list of actions to provide to the PAE. The 

algorithm for this process is given below:

Algorithm 2: Predicting State and Policy Violation using Probability Ap­

proach

Input: Initialize ProactiveAnalysis(s) for all s ∈ S, where s is the current state

1: state — store the current state and its status information for VIOLATION checking

2: transitionCountt+1 — get the total number of transition for s

3: totalFrequencyt+ι:= total action frequency for all action from state s.

4: l:=0 {l is used for number of management cyle ahead for prediction}

5: for i = 0 to transitionCountt+1 do

6:

7:

8:

9:

ASi[l][i]:=getProactiveActions(s,i)

NS1[][]:=getProactiveNextState(AÇ1[][i])

F1 M ^] :=get Proactive ActionsFrequency (√lf+1 [/] [i]) 

p1 M [i]: =F41 [I] [i] /totalFrequencyt+1
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10: transitionCounty+2 — get the total number of transition for NSV1[l][i]

11: total Frequency^:= total action frequency for all action from state NSVi[l][i

12: for k = 0 to transitionCounty+2 do
13: ANZ+!l[ + 1][k]:=getProactiveActions(NS41(]4],k)

14: NSA2*1VF[ + l][fc] ^getProactiveNext State^^ + 1)k])

15: FNS+!"' + 1][k]:=getProactiveActionsFrequency(ANg+lldgz + 1][k])

16: pNS3-4Wp+ 1]/A)-=FNSE*V+ 1k/totalFrequencV:+2

17: P-=PfailAlH * PNS-"(+1V

18: end for

19: transitionCountt+2'-=0

20: flag-LT-STAGE — get the index of array NS which has highest probability value at 

t + 1st management cycle

21: flag?PP-STAGE — get the index of array NS which has highest probability value 

at t + 2nd management cycle

22: end for
23: transitionCount+1:=0

24: if NSN24411"+1][flagIST-STACE]) = VIOLATION ∣∣ NSN2*1"M(+-1] flag?NP-STAGE
= VIOLATION then

25: ProactiveActionExecution ()

26: end if

We analyze the accuracy of prediction of each method in Chapter 5.

4.3 .2 Probability and Reward Approach

This probability and reward approach is similar to the probability approach. The only 

difference is that the action reward value is multiplied with action probability value in 

management cycles t + 1 and t + 2. Decisions on policy violation and the state are based 

on the combined values. Figure 4.4 describes the reward value for all actions e.g. 23.34 

is the reward value of action al at state SO in management cycle t + 1. It also shows the 
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frequency value(2) of action al which is used to determine the action probability value.

Mgmt Cycle {t+ 2}

[1]

« ch

Figure 4.4: Prediction Based on Action Probability and Reward Value

The prediction computation process is almost that same as the probability approach. Ta­

ble 4.3 shows the complete prediction computation process. Since the violation prediction(PRv) 

score (72.03) is lower than the safe prediction (PRs) score (164.72), the PVP assumes 

no policy violation at management cycle t + 2. The same kind of decisions made here 

are the same as in the probability-only approach.
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Current 
Sate 
at time 
(t)

Action 
to time 
(t+1)

(AL

Probability 
and reward 
value to 
time (t+1)

[pr1]

„S . „S Pt+ι * rt+ι

Next 
State to 
time 
(t+1)

(NSSW

Action 
to time 
(t+2)

(A142

Probability 
and reward 
value to time 
(t+2)

M

Pt^ ∙ *22

Next 
State 
to time 
(t+2)

[ns]

(NSA»

Total 
Probability 
and Reward
Value at t+2

[PR]

(prl + pr2)

Violation
Prediction
Score at 
t+2

Emh,

If ns is a 
violation 
state

Safe 
Prediction 
S∞re at 
t+2

) PRs

If ns is not 
a violation 
state

SO

a0 0.17 *
10.05

SO

a0 0.17 * 10.05 SO 3.40 0.00 3.40

al 0.33 * 23.34 S1 9.40 0.00 12.80

a2 0.50 • 44.45 S2 23.92 0.00 36.72

al 0.33 • 
23.34

S1
a4 0.72 * 89.70 S3 72.28 0.∞ 109.00

a5 0.28 • 39.71 18.81 18.81 109.00

a2 0.50 •
44.45

S2

a3 0.28 • 33.45 S1 31.58 18.81 140.58

a6 0.58 * 53.45 53.22 72.03 140.58

a7 0.14 * 13.78 S3 24.14

Table 4.3: Policy Violation Prediction based on Probability and Reward Value

Algorithms for this approach are virtually the same as the probability-only approach 

except for the use of both the reward and probability values.

Algorithm 3: Predicting Policy Violations using Probability and Reward Ap­
proach

Input: Initialize Proactive Analysis(s) for all s ∈ S, where s is the current state

1; state ÷- store the current state and its status information

2: transitionCountt+1 — get the total number of transition for s

3: total Frequency^.= total action frequency for all action from state s.

4: PRv:=PRs:=l:=0 {l is used for number of management cyle ahead for prediction}

5: for i= 0 to transitionCountt+1 do
6: A1[l][]:=getProactiveActions(s,i)
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7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

ri [l] [i]: =getProactiveActionsReward (A%1 M [i] )

NS1[][]:= getProactiveNextState(A41[4] (i])
F(1 [U] [<l :=getProactive ActioiisFrequency (>L^bl [/] [i])

p+1[40:=F*1 [4]]/totalFrequencye+1

Prlt+M] = r2-1414 * 8-
transitionCountt+2 — get the total number of transition for NSA1[l][i]

total Fr equeπcyt+2'∙= total action frequency for all action from state NSA1[l][i

for k = 0 to transitionCountt+2 do
ANZ+llhg + 1][k]:=getProactiveActions(NS,1[/lé,k)
rMZ+klgz + 1][k]:=getProactiveActionsReward(ANg-a"lbg + ι][⅛])

NSMZHtk + 1]k]:=getProactiveNextState(AN241llg + 1]k])
FN2*1M + 1][k):=getProactiveActionsFrequency(AMg+(+.

pNS4al"M( + 1]k):=FNS*a"V( + 1]k/totalFrequencye+2

pr2NZ-ivg + 1A=FNZ-."V/ + 1k"PNE-"r + I][fc]
if NSN2F1!0[ + 1][k] = VIOLATION then

PRv = PRv + prisillle + pr2NS."( + 1
else

PRs = PRs + pri2,ilal + pr2NSF-"dp + 1)
end if

end for
27: end for

28: if PRy > PRs then
29: proactiveActionExecution()

30: end if

Algorithm 4: Predicting State and Policy Violation using Probability and
Reward Approach

Input: Initialize ProactiveAnalysis(s) for all s ES, where S is the current state

1: state — store the current state and its status information
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2: transitionCountt+1 — get the total number of transition for s

3: totalFrequencyt^i:= total action frequency for all action from state s.

4: l:=0 {1 is used for number of management cyle ahead for prediction}

5: for i = 0 to transitionCountt+1 do

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

A*1 [Z] [i]:=getProactiveActions(s,i)

ri [I] [i]:=getProactiveActionsReward(A$1 [U] [i])

NS41[I] [i]:=getProactiveNextState(A{1 W (i])

F(41 [U] [i] .∙=getProactiveActionsFrequency(√lf+1 [/] [i])

⅛1 [^] [4]:=F(41 W [i]/totalFrequencyt+1

priftalella = r2-1AW4 * PSailelid
transitionCountt+2 — get the total number of transition for NSS1[][i] 

total Frequency^:- total action frequency for all action from state NS1[l][i]

for k = 0 to transitionCountt+2 do
AMZ+lOl[i + 1][k):=getProactiveActions(NS41[]l],k) 

rNS+lAlegi + 1][k):=getProactiveActionsReward(ANZ+le[I + 1]k])

NSNS+1!Al[z + 1]k]:=getProactiveNextState(ANg+™lg + 1]k]) 

FNSH+1llg + 1]k]:=getProactiveActionsFrequency( ANZ+ll[ + 1]k])

PN4g+:UWg + 1k]:=FNS=+M"g + 1k/totalFrequenCy£+2

pr2MSF-1"g ÷ 1]^=^^^^ [z + 1A"PNXSZ-"V + UM
PR = pr2NZ-.""v + 1+ frt^MW

end for
23: transitionCountt+2:=0

24: flagST-STAGE — get the index of array NS which has highest probability value at 

t + 1st management cycle

25: flag?ND-STAGE — get the index of array NS which has highest probability value 

at t+ 2nd management cycle

26: end for

27: transitionCountt+1=0
28: if NSN2*.WM(+1] flagIET-STACE) = VIOLATION I NSNSZ*+1 flag?PP-STACE 

= VIOLATION then



30: end if
29: proactiveActionExecution()

4.3.3 Reward Approach

The reward approach only considers the action reward value for prediction analysis. The 

action reward value from management cycle t+1 is added to the reward values of actions 

at management cycle t+2. Policy violations are based only on the action reward value. 

Figure 4.5 describes the reward value for all actions e.g. 23.34 is reward value of action 

al at state S0 in management cycle +1.

Mgmt Cycle {t+2}

M

Figure 4.5: Prediction Based on Action Reward Value

The prediction computation process for this approach is illustrated in Table 4.4. Since 

the violation prediction (Rv) score (160.95) is lower than total safe prediction(Rs) score 

(357.09), the PVP is not expecting any policy violation at management cycle +2; de­

cisions here are similar to the previous approaches but only depend on the reward value.
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Current 
Sate 
at time 
(t)

Action 
to time 
(t+1)

(ALw)

Reward 
value to 
time (t+1)

[r1]

s rt+ι

Next 
State to 
time 
(t+1)

(NSEW)

Action to 
time 
(t÷2)

(AL.

Reward 
value to 
time (t+2)

[F2]

‘t+2

Next 
State 
to time 
(t+2)

[ns]

(NSS.2

Total 
Reward
Value at t+2

[R]

(r1 + r2)

Violation 
Prediction 
Score at 
t+2

Z-

If ns is 
violation 
state

Safe 
Prediction 
Score at t+2

Σ⅛

If ns is not 
violation 
state

SO

a0 10.05 SO

a0 10.05 SO 20.10 0.00 20.10

al 23.34 S1 33.39 0.00 53.49

a2 44.45 S2 54.49 0.00 107.98

al 23.34 S1
a4 89.70 S3 113.04 0.00 221.02

a5 39.71 S4 63.05 63.05 221.02

a2 44.45 S2

a3 33.45 S1 77.90 63.05 298.92

a6 53.45 97.90 160.95 298.92

a7 13.72 S3 58.17

Table 4.4 : Policy Violation Prediction based on Reward Value

Algorithms for this approach are similar to the others:

Algorithm 5: Predicting Policy Violation using Reward Approach

Input: Initialize Proactive Analysis(s) for all s ∈ S, where s is the current state

1: state — store the current state and its status information

2: transitionCountt+1 — get the total number of transition for s

3: Rv:=Rs:=l:=0 {l is used for number of management cyle ahead for prediction}

4: for i=0 to transitionCountt+1 do
5:

6:

7:

AlI[l] [i]:=getProactiveActions(s,i)

rei[l] [i]:=getProactiveActionsReward(A;[l] [i])

NSAi[l][]:=getProactiveNextState(A1[l][i])
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8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

F41 [l][]:==getProactiveActionsFrequency(A/1[][i])

transitionCount+2 — get the total number of transition for NSV1[][i]

for k = 0 to transitionCount+2 do
ANG+llg + 1][k]:=getProactiveActions(NSGi[i + 1][k],k)

rNS+legz + 1][k]:=getProactiveActionsReward(ANg+al"l[ + l][fc]) 
NSNZFalMg + 1](k]:=getProactiveNextState(ANS4+1v"( + 1](k])
if NSNZM( + 1]k = VIOLATION then

Ry =Rv+ rNZ-t + 1k1+r2419W
else
%=⅝+⅛ιw∣∣+1k-+r241AW

end if
end for

20: end for

21: if Rv ≥ Rs then
22: proactiveActionExecution()

23: end if

Algorithm 6: Predicting State and Policy Violation using Reward Approach

Input: Initialize ProactiveAnalysis(s) for all s ∈ S, where s is the current state

1: state — store the current state and its status information

2: transitionCountt+1 — get the total number of transition for s

3: l:=0 {l is used for number of management cyle ahead for prediction}

4: for i = 0 to transitionCountt+1 do
5:

6:

7:

8:

9:

10:

A1[l][]:=getProactiveActions(s,i)

ri [^] [^]:=getProactive ActionsRe ward( A^1 [Z][i])

NS1[][]:=getProactiveNextState(A1[][4])

transitionCount+2 — get the total number of transition for NSA1[l][i] 

totalFrequencyt+2∙= total action frequency for all action from state NSV1[][i] 

for k = 0 to transitionCount+2 do



45

11: A^’^^i ÷ 1][k):=getProactiveActions(NSGii + 1][k],k)

12: rNglAlgz + 1]k]:=getProactiveActionsReward(ANg+™lg + 1]k])

13: NSM24AMM[ + 1]k]:=getProactiveNextState(ANS4a"lz + 1]k])

14: R = rXSm"p + 1]∣⅛] + r2aHHA

15: end for
16: transitionCountt+2:=0

17: flag}T-STAGE — get the index of array NS which has highest probability value at 

t + 1st management cycle

18: flag?MD-STAGE — get the index of array NS which has highest probability value 

at t + 2nd management cycle

19: end for
20: transitionCountt+1=0
21: if NSM2*10+1][flagl"T-STACE) = VIOLATION ∣∣ NS,

= VIOLATION then
22: ProactiveActionExecution ()

23: end if

The accuracy of prediction is important. The result of proactivity depends on the accu­

racy of the prediction technique. In Chapter 5, we examine the prediction accuracy of 

our prediction approaches.
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Chapter 5

Proactive Action Execution and

Result Analysis

Before starting discussion about proactive action and result analysis (PAE), we first 

examine the accuracy of our prediction algorithms. The next section describes the testing 

environment and the section after that discusses prediction accuracy.

5.1 Experimental Environment

The experimental environment consists of networked workstations, each connected via an 

Ethernet switch (see Figure 5.1). A Linux workstation with a 2.0 GHz processor and 2.0 

Gigabytes of memory is used to host Apache Web Server, the Knowledge Base and the 

MySQL database server. An administrative console is used to run the policy tool. Three 

network workstations are used to run the traffic load tool for generating server requests. 

The three workstations represent load for gold, silver and bronze users and their service 

classes.
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MySQL

PolicyTool

Gold Silver Bronze

Figure 5.1: Experimental Environment[BB08

In order to implement service classes a Linux Traffic Controller (TC) Tool [Lin] is used to 

control the bandwidth associated with the gold, silver, and bronze service classes. Thus, 

given a ratio of bandwidth for each of the service classes, the bandwidth is shared accord­

ingly; for our experiments this ratio was 85:10:5. A tuning parameter MaxBandwidth 

determines bandwidth which need to be assigned to each service class.

Apache Jmeter [.Jme] is used as a traffic load generator. The Jmeter application runs 

in each of the workstations where each has a dynamic load testing plan. All workstation 

generate traffic load using the same plan. The load plan contains dynamic requests which 

create situations where the system resource usage is increased at a significant rate. We 

ran the experiment for 1 and 4 hour periods. Basically, 1 hour seemed to be a good 

amount of time to run through a number of requests so that the learning model would 

have some useful information. Then 4 hours was somewhat arbitrarily chosen.

5.2 Prediction Accuracy

In order to determine the accuracy of prediction techniques, we implemented algorithms 

discussed in Chapter 4. We consider three scenarios corresponding to the probability-only 

approach, probability and reward approach and reward-only approach.
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5.2.1 Scenario - 1: Probability-only

To test the accuracy of probability-only approach, Algorithm 1 and Algorithm 2 were 

implemented.The results presented are averages of 3 repetitions. The results are sum­

marized in Table 5.1. The resultant table has mainly two sections - state prediction 

true at management cycle t+1 and t+2 and prediction accuracy of the predicting state 

and policy violation approach and predicting policy violation approach. There were two 

length of testing periods - 1 hour and 4 hours. The set of policies which were used in the

experiment are given in the Appendix A.

Probability- 
Only 
Approach

1st stage(t+1) 
(onlystate ID) 

prediction TRUE

2nd stage(t+2) 
(onlystate ID) 

prediction TRUE

Prediction Accuracy
State ID & 
Violation 

Prediction TRUE
Only Violation 

Prediction TRUE

Testing Period( hrs)
1 4 1 4 1 4 1 4

Predicting 
State ID & 
Policy 
Violation

18.14% 23.10% 13.33% 17.11% 20.00% 3.90% N/A N/A

Predicting 
Only Policy 
Violation

N/A N/A N/A N/A N/A N/A 29.62% 26.66% 

—

Table 5.1 : Prediction Accuracy of Probability-only Approach

The first part of the table shows the results of true predictions for predicting a state at 

management cycle t+1 and t+2. In looking at the table, we see that the correct prediction 

of the state at management cycle t + 1 is slightly more than the management cycle at 

t + 2 in both testing periods. The result is not that good - 20.00% in the lhr testing 

period, but only 3.90% in the 4hr test period. In contrast, predicting the likelihood of a 

policy violation or not, shows better results - the accuracy is 29.62% and 26.66% in the 

lhr and 4hr test periods, respectively. This is not surprising, since predicting a specific 

state versus a condition over many states (violation or not) is much harder. Predicting 

only whether some policy violation is likely to occur has a better prediction accuracy.
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5.2.2 Scenario - 2: Probability and Reward

Algorithms 3 and 4 were implemented and their accuracy results measured; the result is 

shown in Table 5.2.

Probability 
and Reward 
Approach

1st stage(t+1) 
(onlystate ID) 

prediction TRUE

2nd stage(t+2) 
(onlystate ID) 

prediction TRUE

Prediction Accuracy
State ID& 
Violation 

Prediction TRUE
Only Violation 

Prediction TRUE

Testing Period ∣ hrs)
1 4 1 4 1 4 1 4

Predicting 
State ID & 
Policy 
Violation

16.74% 20.86% 15.48% 19.30% 28.57% 6.00 % N/A N/A

Predicting 
Only Policy 
Violation

N/A N/A N/A N/A N/A N/A 38.63% 36.17%

Table 5.2 : Prediction Accuracy of Probability and Reward Approach

This approach shows results similar to the probability-only approach. Predicting states 

is harder and results in lower prediction accuracy, though better than the prediction-only 

approach. Predicting only whether a policy violation occurs or not is better and is better 

than in the probability-only approach.

5.2.3 Scenario - 3: Reward-only

To test the accuracy of reward-only approach, Algorithms 5 and 6 were implemented and 

the result is shown in Table 5.3.
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Table 5.3 : Prediction Accuracy of Reward-only Approach

Reward-only 
Approach

1st stage(t+1) 
(onlystate ID) 

prediction TRUE

2nd stage(t+2) 
(onlystate ID) 

prediction TRUE

Prediction Accuracy
State ID & 
Violation 
Prediction 

TRUE

Only Violation 
Prediction 

TRUE

Testing Period ( hrs
1 4 1 4 1 4 1 4

Predicting 
State ID & 
Policy 
Violation

11.48% 6.91% 17.98% 13.75% 26.19% 7.69% N/A N/A

Predicting 
Only Policy 
Violation

N/A N/A N/A N/A N/A N/A 45.76% 37.03%

This approach shows similar results to the previous ones in predicting a state versus pre­

diction the likelihood of a violation or not. The prediction accuracy, however, is better 

than in the previous two approaches with an accuracy of 45.76% in the lhr testing period.

Given the results, it is clear that our prediction technique should only predict whether 

a policy violation is likely to occur or not. As a result, our proactive actions will be based 

on this.

5.3 Proactive Action Execution

Proactive action execution (PAE) depends on the decisions of the PVP and the accuracy 

of the predictions. Based on the analysis of accuracy presented in the previous section, 

we focus on Algorithms 1,3 and 5. Our approach consists of two parts: Proactive Action 

Generation and Adaptive Proactive Action.

5.3.1 Proactive Action Generation

In order to determine actions to take, the Proactive Action Generation (PAG) is included 

in each of Algorithms 1,3 and 5. The decision mechanism is the same for all approach, 
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so we will only describe the mechanism for the probability-only approach (Algorithms 1) .

If the violation prediction score (2 Pv) is equal or higher than the safe prediction 

score (2 Ps) at management cycle t + 2, then the algorithm will try to determine a pos­

sible safe state and the actions needed to be taken in order to reach that specific safe 

state from current state. One action is needed for management cycle t+1 and other one 

for t + 2. Thus, two actions are considered as the proactive action. If we have more than 

one safe state reachable from the current state, then the actions of the safe state which 

have highest probability value, are considered as proactive actions. If 2 Py is equal or 

higher than 2 Ps but there is no safe state from the current state, then PAG will transfer 

the control to the Adaptive Proactive Action (APA) part for a proactive action decision. 

The conditions for the system to take proactive actions are summarized in Table 5.4. 

The APA will suggest proactive actions for condition number 2,4 and 6.

Condition
No.

Curr. STATE
(Policy Violation)

2Pv 2 2Ps Safe state Avail. 
(From Curr. State)

Proac. Actions
Suggestion

1 Yes Yes Yes Yes
2 Yes Yes No Yes
3 Yes No Yes Yes
4 Yes No No Yes
5 No Yes Yes Yes
6 No Yes No Yes
7 No No Yes No
8 No No No No

Table 5.4 : Conditions for PAE to take proactive actions

No proactive actions are suggested for conditions 7 and 8, where neither the current state 

is a policy violation state nor 2 Pv > 2Ps condition is true. The APA proactive action 

generation process is described in the next sections.
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To implement proactive actions in the system, we need the action identifiers and action 

strength(reward) value at management cycles t+1 and t+2. In the modified Algorithm-1, 

the action identifier and action reward value are passed to proactiveActionExecution() 

function as parameters. In the proactiveActionExecution() function, an action mes­

sage is constructed in a specific format for the PDP and then is passed to the PEP for 

execution. Modified Algorithm-1, renamed Algorithm7 is given below:

Algorithm 7: Proactive Action Generation with PVP

Input: Initialize ProactiveAnalysis(s) for all s ∈ S, where s is the current state

1: state — store the current state and its status information for VIOLATION cher

2: transitionCountt+1 — get the total number of transition for s

3: totalFrequnecyt+1= total action frequency for all action from state s.

4: Pv:=Ps:=l:=0 {l is used for number of management cyle ahead for prediction}

5: for i := 0 to transitionCountt+1 do

6:

7;

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

All [l][i]:=getProactiveActions(s,i)

Aidi W [i] ^getProactiveNextState(½^1 [/] [i] )

ri [l][]:=getProactiveActionsReward(A{1 [Z][i])

NS41 W [i]: =getProact iveNextState( A1 [1 i )

F(1 PI [i]:=getProactiveActionsFrequnecy(A{1 [1] [i])

pf+ι [4 4]:=F41 Rl [i]/total Fr equnecyt+ι

transitionCountt+2 — get the total number of transition for NSA1[l][i] 

total Fr equnecyt+2∙= total action frequency for all action from state NSV1[][i]

for k = 0 to transitionCountt+2 do
AMZ+llg + 1][k]:=getProactiveActions(NSA1[]],k)

AidN2+1lAlg + 1]k]:=getProactiveNextState(ANg+bk[ + 1k)

r22+llz + 1]k]:=getProactiveActionsReward(ANS+al®l! + 1]k])

NSNZFhlz + 1]k]:=getProactiveNextState(ANZF+a!l + ι][fc])
FNS++1lbg + 1) k]:=getProactiveActionsFrequnecy(ANg+lb[i + 1]k]) 

pNS2+1M"qe + 1)k:=FNS810Me + 1)k]/totalFrequnecy:+1
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21: ⅛*J∣1N * P2Z***g + ilk
22: if NSNZalldg + 1]k] = VIOLATION then

23: Compute the set of VIOLATION states

24: Pr = Pr + P

25: else
26: Compute the set of GOOD or SAFE states

27: get the action ID and action strength (proactiveActionID1,proactiveActionID2,

28: proactiveActionStrength1,proactiveActionStrength2) to be in this SAFE STATE 

which has highest probability value among all possible good states from Cur­

rent state

29: Ps = P + P

30: safeCount — count the number of safe states

31: end if

32: end for

33: end for

34: if Py ≥ Ps then
35: if safeCount > 0 then
36: proactiveActionExecution(proactiveActionI D1,proactive ActionStrengthl,

37: proactiveActionID2,proactiveActionStrength2)

38: adaptiveProactiveAction( 1 ,proactiveActionID 1,proactive ActionStrengthl,

39: pr oactiveActionI D2,proactiveActionStrength2)

40: else
41: adaptiveProactiveAction (0 ,proactiveActionID 1 ,proactiveActionStrengthl,

42: pr oactive ActionI D2,proactive ActionStr ength.2)

43: end if
44: else
45: if s = VIOLATION then

46: adaptiveProactiveAction(0,proactiveActionID1 ,proactiveActionStrengthl,

47: proactiveActionI  D2,proactive ActionStrength2)

48: end if



54

49: end if

5.3 .2 Adaptive Proactive Action

The Adaptive Proactive Action (APA) part starts working as soon as the system takes 

its first proactive actions. It is invoked when PAG is not able to generate any proactive 

actions for a specific state. APA generates a proactive action list to keep track of all 

proactive actions taken in the past. This information includes the action identifier, the 

action reward value and its frequency.

The proactive action list is updated every time PAG generates new proactive actions. 

Since PAG generate the actions based on the probability and reward value, the generated 

proactive actions may not actually achieve our target e.g. PAG may generate a proactive 

action only because of their high probability or reward value which may throw the system 

in a violation state or may have no impact in critical situation. During the creation of the 

proactive action list, APA filters actions based on conditions and excludes those actions 

which have no effect (Gamma Actions) or which increase the resource usage limit when 

the system is experiencing low resource usage.

PAG uses the APA for proactive actions conditions 2,4 and 6 (see Table 5.4). The 

APA suggests two proactive actions, one for management cycle t + 1 and for cycle t+2, 

from the proactive action list based on the highest frequency value. The logic behind 

this is that proactive actions which have been executed most of the time in the past are 

likely to be useful in critical situations. The APA algorithm is given below:
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Algorithm 8: Adaptive Proactive Action

adaptiveProactiveAction(update,proactiveActionID1,proactiveActionStrengthl, 

pr oactiveActionI D2,proactiveActionStrength2)

1: countProactiveActionList — get the number of proactive action from List

2: negateAction — list of action which increase the resource usage and Gamma action

3: if update= 1 then
4: add or update action ID(proactiveActionListID), frequency(proactiveActionListFrequency) 

and strength(proactiveActionListStrength) to proactive action arrays

5: PointerFirstProactiveAction — get the index of proactive action ID (proactiveActionListID) 

list array which has highest action frequency value

6: pointerSecondProactiveAction — get the index of proactive action ID (proactiveActionListID) 

list array which has second highest action frequency value

7: countProactiveActionList — get the number of proactive actions in the list

8: else
9: if countProactiveActionList > 0 and update = 0 then

10:

11:

12:

13:

ProactiveActionExecution (pr oactiveActionListID[pointer FirstProactiveAction], 

pr OactiveActionListStr ength[pointer Fir st ProactiveAction], 

proactiveActionListI D∖pointer SecondProactiveAction], 

proactiveActionListStrength∖pointer SecondProactiveAction])

14: end if

15: end if

Algorithms 7 and 8 have been implemented and the experimental results are discussed 

in the next section where we compare policy based reactive management and proactive 

management approaches.
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5.4 Comparison of Proactive Approaches

In this section, we compare different proactive approaches with reactive management. 

The experiments are done for each of the lhr and 4hr testing periods for both the reactive 

management approach and the different proactive management approaches. The traffic 

load varies each experiment and so we run each experiment 3 times and average the 

result. Table 5.5 shows the average results. Since our aim is to reduce policy violations, 

we counted the number of policy violations that occurred during the testing period. 

When we use reactive management, we have 77 and 280 policy violations in the lhr and 

4hr time periods, respectively. But when we use the different approaches for proactive 

management, the number of policy violations is reduced to 60 and 221 around in lhr 

and 4hr time periods. The different proactive approaches produce very similar results. 

The combined probability and reward approach shows somewhat better results when 

compared to the other proactive approaches.

Approach Testing Period 1 hr Testing Period 4 hr

Reactive Management 77 280
Probability 62 220
Probability and Reward 57 219
Reward 61 226

Table 5.5 : Number of Policy Violation by different approach

Figures 5.2 and 5.3 show a graph for the lhr and 4hr test periods where the x axis of 

the graph represents the different management approaches and the y axis represents the 

number of policy violations that occurred.
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Figure 5.3: Number of Policy Violation by Different Approach (4hr Test Period)

In order to calculate the proactiveness achievement of different proactive management 

approaches on top of reactive management approach, the following table is given here. 

Though prediction accuracy of the reward approach is best among all three approach, 

when we implement proactive action; it is found that proactiveness of probability and 

reward approach achievement is slightly higher (21.79 %) than other two approach.
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Table 5.6 : Proactiveness achievement (%) by different Proactive approach

Approach
Policy Violation Saved 
(1 hr Testing Period)

Policy Violation Saved 
(4 hr Testing Period)

Proba bility 19.48 % 21.43 %
Probability and Reward 26.∞ % 21.79 %
Reward 20.77 % 19.29 %

The following Figure 5.4 demonstrates the scenario in a simple way. The amount of 

violation reduced (saved) by different proactive approaches is shown in the chart.

CPU utilization (Scenario-1) and the Apache response time (Scenario-2) are the two 

main metrics used to specify the policies in the experiments. Figures(5.5 to 5.8) show 

the CPU utilization and Figures (5.9 to 5.12) show the Apache response time for each of 

the proactive approaches for the lhr time period. The threshold value associated with 

the policy is depicted as a blue line in each graph.
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Figure 5.4: Policy Violations Saved by Different Proactive Management Approaches
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In the graphs(see 5.4.1 and 5.4.2), the x axis represents the time in seconds and the y 

axis represents value of CPU utilization and the Apache response time in milliseconds
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(ms). Peaks above the threshold line indicate policy violations. Observing the graphs 

one can see that the number of high peaks above the threshold value in the proactive 

management approaches is less than in the reactive management approach for both CPU 

utilization and Apache response time.
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5.4.1 Scenario - 1: CPU Utilization [Test Period: 1 hr
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5.4.2 Scenario - 2: Apache Response Time [Test Period: 1 hr
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In both scenarios, the combined probability and reward approach shows better results. 

The traffic load graphs of CPU utilization and Apache response time parameter for 4 hrs 

test period are given in Appendix B.

These results suggest that our proactive management approach can improve system 

performance; for the experiments shown the approaches saved almost 22% in the number 

of violations by predicting possible faults and taking action ahead of time.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusion

The increasing complexity of distributed systems requires significantly higher level of 

automation. The core of autonomie computing is the ability to analyze the data in real 

time and to take actions, including being able to anticipate potential problems.

In this research, a new proactive approach for policy based management system is 

introduced. Our research was divided into two phases: policy violation prediction and 

proactive action execution. Effective proactive management depends on the prediction 

technique. Given our state-graph based on reinforcement learning, we investigated three 

approaches to prediction - a probability only approach, a probability and reward ap­

proach and a reward only approach. We used the three approaches to explore prediction 

of the policy state or the possibility of a policy violation. We focused predicting two 

management cycles ahead. Based on the results, it was clear that our prediction tech­

nique should only predict whether a policy violation is likely to occur or not. The reward 

only approach provided the highest prediction accuracy in the scenarios we tested. We 

also developed strategies for determining which proactive action should be taken and also 

introduced an adaptive approach for doing this.

A comparative analysis was done between proactive and reactive policy based man­
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agement. Based on the scenarios and experiments carried out, our proactive management 

system is able to reduce the number of policy violations by almost 22% by predicting 

policy violations and by taking action ahead of time.

6.2 Future Work

Proactive management in policy based systems is a relatively new area to explore. The 

work undertaken in this thesis suggests that further research in this area could be helpful 

to reduce or avoid policy violations. As a result, there are number of areas which can be 

the focus of future work:

• Our prediction technique performs prediction for two management cycles ahead. 

Prediction can be done for three or four management cycles ahead, though likely 

at a reduction of accuracy. This would be interesting to explore.

• We have not fully explored the implications of the proactive actions taken. Some of 

these might be beneficial while others could be harmful, though no evidence to that 

effect showed up in our experiments. Nevertheless, an important area for future 

work would be to incorporate strategies to assess actions and perhaps even consider 

whether certain actions should be ’undone’.

• We explored policy violation prediction only. It might also be interesting to include 

prediction of resource usage by predicting the values of the metrics in the states 

Such an approach might assist in better determining just which action to take.

• There may be alternative strategies that could be implemented as part of the Adap­

tive Proactive Action approach. Different techniques might be used to generate 

alternative actions and/or do more to evaluate the result of those actions.

Proactive management seems promising in policy-based autonomie management. Pre­

dicting future conditions is a challenging task and further work is needed to explore the 

potential of this approach and to better understand some of the risks.
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Appendix A

Policy List

A.1 Policy List

if (APACHE:responseTime > 2000.0) & (APACHE:responseTimeTrend > 0.0) 
then { AdjustMaxClients (+25) test {newMaxClients < 151 } ∣ 
AdjustMaxKeepAliveRequests (-30) test {newMaxKeepAliveRequests > 0.0} ∣ 
AdjustMaxBandwidth (-128) test {newMaxBandwidth > 255.0}}

if (CPU:utilization > 85.0) & (CPU:utilizationTrend > 0.0)
then { AdjustMaxKeepAliveRequests (-30) test {newMaxKeepAliveRequests > 0.0} 
AdjustMaxBandwidth (-128) test {newMaxBandwidth > 255.0}}

if (MEMORY:utilization > 50.0) & (MEMORY:utilizationTrend > 0.0) 
then { AdjustMaxClients (-25) test {newMaxClients > 49.0 }

if (APACHE:responseTime > 2000.0) & (APACHE:responseTimeTrend > 0.0)
& (MEMORY:utilization > 50.0) & (MEMORYiutilizationTrend > 0.0) 
then { AdjustMaxKeepAliveRequests (-30) test {newMaxKeepAliveRequests > 0.0}}

if (CPU:utilization > 85.0) & (CPU:utilization Trend > 0.0)
& (MEMORYiutilization > 50.0) & (MEMORY:utilizationTrend > 0.0) 
then { AdjustMaxClients (-25) test {newMaxClients > 49.0 } }
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if (CPU:utilization > 85.0) & (CPUrutilizationTrend > 0.0)
& (APACHE:responseTime > 2000.0) & (APACHErresponseTimeTrend > 0.0) 
then { AdjustMaxKeepAliveRequests (-30) test {newMaxKeepAliveRequests > 0.0} ∣ 
AdjustMaxBandwidth (-128) test {newMaxBandwidth > 255.0}}

if (APACHErresponseTime > 2000.0) & (APACHErresponseTimeTrend > 0.0) 
then { AdjustEaccMemSize (+1) test {availableEaccMem > 1
& newEaccMemSize < 32} }

if (CPUrutilization > 85.0) & (CPUrutilizationTrend > 0.0) 
then { AdjustEaccMemSize (+1) test { availableEaccMem > 1 
& newEaccMemSize < 32} }

if (MEMORYrutilization > 50.0) & (MEMORYrutilizationTrend > 0.0) 
then { AdjustEaccMemSize (-11) test {newEaccMemSize > 16}}

if (APACHErresponseTime > 2000.0) & (APACHErresponseTimeTrend > 0.0) 
then { AdjustKeyBufferSize (+1024000) test { newKeyBufferSize < 3.2768E7 
& availableKeyBlocks < 1000.0} ∣ 
AdjustQueryCacheSize (+1024000) test {newQueryCacheSize > 3.2768E7 
& availableQueryCacheMem > 1024000.0} }

if (CPUrutilization > 85.0) & (CPUrutilizationTrend > 0.0)
then { AdjustThreadCacheSize (+50) test {newThreadCacheSize < 201.0} }

if (MEMORYrutilization > 50.0) & (MEMORYrutilizationTrend > 0.0) 
then { AdjustKeyBufferSize (-1024000) test {newKeyBufferSize > 1.6384E7} 
AdjustQueryCacheSize (-1024000) test {newQueryCacheSize > 1.6384E7} }
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Appendix B

Traffic Load Graph

B.1 CPU Utilization [Test Period: 4 hrs
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Figure B.1: Reactive Management Approach(CPU - 4 hr)
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B.2 Apache Response Time [Test Period: 4 hrs
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Figure B.5: Reactive Management Approach(Apache - 4 hr)
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Figure B.6: Proactive Management: Probability Approach(Apache - 4 hr)
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