12,596 research outputs found

    Gene duplication in an African cichlid adaptive radiation

    Get PDF
    Background Gene duplication is a source of evolutionary innovation and can contribute to the divergence of lineages; however, the relative importance of this process remains to be determined. The explosive divergence of the African cichlid adaptive radiations provides both a model for studying the general role of gene duplication in the divergence of lineages and also an exciting foray into the identification of genomic features that underlie the dramatic phenotypic and ecological diversification in this particular lineage. We present the first genome-wide study of gene duplication in African cichlid fishes, identifying gene duplicates in three species belonging to the Lake Malawi adaptive radiation (Metriaclima estherae, Protomelas similis, Rhamphochromis “chilingali”) and one closely related species from a non-radiated riverine lineage (Astatotilapia tweddlei). Results Using Astatotilapia burtoni as reference, microarray comparative genomic hybridization analysis of 5689 genes reveals 134 duplicated genes among the four cichlid species tested. Between 51 and 55 genes were identified as duplicated in each of the three species from the Lake Malawi radiation, representing a 38%–49% increase in number of duplicated genes relative to the non-radiated lineage (37 genes). Duplicated genes include several that are involved in immune response, ATP metabolism and detoxification. Conclusions These results contribute to our understanding of the abundance and type of gene duplicates present in cichlid fish lineages. The duplicated genes identified in this study provide candidates for the analysis of functional relevance with regard to phenotype and divergence. Comparative sequence analysis of gene duplicates can address the role of positive selection and adaptive evolution by gene duplication, while further study across the phylogenetic range of cichlid radiations (and more generally in other adaptive radiations) will determine whether the patterns of gene duplication seen in this study consistently accompany rapid radiation

    The Role of Legal Services in the Antipoverty Program

    Get PDF
    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of the process of adaptive radiation in a few extant clades, but also from the maintenance of evolvability on vast time scales across the history of life, in key lineages

    Niche Occupation Limits Adaptive Radiation in Experimental Microcosms

    Get PDF
    Adaptive radiations have played a key role in the evolution of biological diversity. The breadth of adaptive radiation in an invading lineage is likely to be influenced by the availability of ecological niches, which will be determined to some extent by the diversity of the resident community. High resident diversity may result in existing ecological niches being filled, inhibiting subsequent adaptive radiation. Conversely, high resident diversity could result in the creation of novel ecological niches or an increase in within niche competition driving niche partitioning, thus promoting subsequent diversification. We tested the role of resident diversity on adaptive radiations in experimental populations of the bacterium Pseudomonas fluorescens that readily diversify into a range of niche specialists when grown in a heterogeneous environment. We allowed an undiversified strain to invade resident communities that varied in the number of niche specialists. The breadth of adaptive radiation attainable by an invading lineage decreased with increasing niche occupation of the resident community. Our results highlight the importance of niche occupation as a constraint on adaptive radiation

    Co-occurrence of ecologically similar species of Hawaiian spiders reveals critical early phase of adaptive radiation

    Get PDF
    Background: The processes through which populations originate and diversify ecologically in the initial stages of adaptive radiation are little understood because we lack information on critical steps of early divergence. A key question is, at what point do closely related species interact, setting the stage for competition and ecological specialization? The Hawaiian Islands provide an ideal system to explore the early stages of adaptive radiation because the islands span ages from 0.5–5 Mya. Hawaiian spiders in the genus Tetragnatha have undergone adaptive radiation, with one lineage (“spiny legs�) showing four different ecomorphs (green, maroon, large brown, small brown); one representative of each ecomorph is generally found at any site on the older islands. Given that the early stages of adaptive radiation are characterized by allopatric divergence between populations of the same ecomorph, the question is, what are the steps towards subsequent co-occurrence of different ecomorphs? Using a transcriptome-based exon capture approach, we focus on early divergence among close relatives of the green ecomorph to understand processes associated with co-occurrence within the same ecomorph at the early stages of adaptive radiation. Results: The major outcomes from the current study are first that closely related species within the same green ecomorph of spiny leg Tetragnatha co-occur on the same single volcano on East Maui, and second that there is no evidence of genetic admixture between these ecologically equivalent species. Further, that multiple genetic lineages exist on a single volcano on Maui suggests that there are no inherent dispersal barriers and that the observed limited distribution of taxa reflects competitive exclusion. Conclusions: The observation of co-occurrence of ecologically equivalent species on the young volcano of Maui provides a missing link in the process of adaptive radiation between the point when recently divergent species of the same ecomorph occur in allopatry, to the point where different ecomorphs co-occur at a site, as found throughout the older islands. More importantly, the ability of close relatives of the same ecomorph to interact, without admixture, may provide the conditions necessary for ecological divergence and independent evolution of ecomorphs associated with adaptive radiation
    corecore