2,822 research outputs found

    Adaptive geometric features based filtering impulse noise in colour images

    Get PDF
    An adaptive geometric features based filtering (AGFF) technique with a low computational complexity is proposed for removal of impulse noise in corrupted color images. The effective and efficient detection is based on geometric characteristics and features of the corrupted pixel and/or the pixel region. A progressive restoration mechanism is devised using multi-pass non-linear operations. Through extensive experiments conducted using a wide range of test color images, the proposed filtering technique has demonstrated superior performance to that of well-known benchmark techniques, in terms of objective measurements, the visual image quality and the computational complexity

    REMOVAL OF GAUSSIAN AND IMPULSE NOISE IN THE COLOUR IMAGE PROGRESSION WITH FUZZY FILTERS

    Get PDF
    This paper is concerned with algebraic features based filtering technique, named as the adaptive statistical quality based filtering technique (ASQFT), is presented for removal of Impulse and Gaussian noise in corrupted colour images. A combination of these two filters also helps in eliminating a mixture of these two noises. One strong filtering step that should remove all noise at once would inevitably also remove a considerable amount of detail. Therefore, the noise is filtered step by step. In each step, noisy pixels are detected by the help of fuzzy rules, which are very useful for the processing of human knowledge where linguistic variables are used. The proposed filter is able to efficiently suppress both Gaussian noise and impulse noise, as well as mixed Gaussian impulse noise. The experiments shows that proposed method outperforms novel modern filters both visually and in terms of objective quality measures such as the mean absolute error (MAE), the peaksignal- to-noise ratio (PSNR) and the normalized color difference (NCD). The expectations filter achieves a promising performance

    An overview of multi-filters for eliminating impulse noise for digital images

    Get PDF
    An image through the digitization process is referred to as a digital image. The quality of the digital image may be degenerating due to interferences on the acquisition, transmission, extraction, etc. This attracted the attention of many researchers to study the causes of damage to the information in the image. In addition to finding cause of image damage, the researchers also looking for ways to overcome this problem. There are many filtering techniques that have been introduced to deal the damage to the information in the image. In addition to eliminating noise from the image, filtering techniques also aims to maintain the originality of the features in the image. Among the many research papers on image filtering there is a lack of review papers which are an important to facilitate researchers in understanding the differences in each filtering technique. Additionally, it helps researchers determine the direction of research conducted based on the results of previous research. Therefore, this paper presents a review of several filtering techniques that have been developed so far

    Hybrid Deep Learning Framework for Reduction of Mixed Noise via Low Rank Noise Estimation

    Get PDF
    In this paper, an innovative hybridized deep learning framework (EN-CNN) is presented for image noise reduction where the noise originates from heterogeneous sources. More specifically, EN-CNN is applied to the benchmark natural images affected by a mixture of additive white gaussian noise (AWGN) and impulsive noise (IN). Reduction of mixed noise (AWGN and IN) is relatively more involved as compared to removing simply one type of noise. In fact, mitigating the impact of a mixture of multiple noise types becomes exceedingly challenging due to simultaneous presence of different noise statistics. Although, various effective deep learning approaches and the classical state-of-the-art approaches like WNNM have been used to suppress AWGN noise only, the same techniques are not suitable in case of mixed noise. In this context, EN-CNN can not only infer changed noise statistics but can also effectively eliminate residual noise. Firstly, EN-CNN employs the classical method of neighborhood filtering followed by non-local low rank estimation to respectively reduce IN noise and estimate the residual noise characteristics after reducing IN noise. As a result of this step, we obtain a pre-processed image with residual noise statistics. Secondly, convolutional neural network (CNN) is applied to the pre-processed image based on the noise statistics inferred in the first step. This two pronged strategy, in conjunction with the deep learning mechanism, effectively handles the mixed noise suppression. As a result, the suggested framework yields promising results as compared to various state-of-the-art approaches.publishedVersio

    Fuzzy metrics and fuzzy logic for colour image filtering

    Full text link
    El filtrado de imagen es una tarea fundamental para la mayoría de los sistemas de visión por computador cuando las imágenes se usan para análisis automático o, incluso, para inspección humana. De hecho, la presencia de ruido en una imagen puede ser un grave impedimento para las sucesivas tareas de procesamiento de imagen como, por ejemplo, la detección de bordes o el reconocimiento de patrones u objetos y, por lo tanto, el ruido debe ser reducido. En los últimos años el interés por utilizar imágenes en color se ha visto incrementado de forma significativa en una gran variedad de aplicaciones. Es por esto que el filtrado de imagen en color se ha convertido en un área de investigación interesante. Se ha observado ampliamente que las imágenes en color deben ser procesadas teniendo en cuenta la correlación existente entre los distintos canales de color de la imagen. En este sentido, la solución probablemente más conocida y estudiada es el enfoque vectorial. Las primeras soluciones de filtrado vectorial, como por ejemplo el filtro de mediana vectorial (VMF) o el filtro direccional vectorial (VDF), se basan en la teoría de la estadística robusta y, en consecuencia, son capaces de realizar un filtrado robusto. Desafortunadamente, estas técnicas no se adaptan a las características locales de la imagen, lo que implica que usualmente los bordes y detalles de las imágenes se emborronan y pierden calidad. A fin de solventar este problema, varios filtros vectoriales adaptativos se han propuesto recientemente. En la presente Tesis doctoral se han llevado a cabo dos tareas principales: (i) el estudio de la aplicabilidad de métricas difusas en tareas de procesamiento de imagen y (ii) el diseño de nuevos filtros para imagen en color que sacan provecho de las propiedades de las métricas difusas y la lógica difusa. Los resultados experimentales presentados en esta Tesis muestran que las métricas difusas y la lógica difusa son herramientas útiles para diseñar técnicas de filtrado,Morillas Gómez, S. (2007). Fuzzy metrics and fuzzy logic for colour image filtering [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1879Palanci

    Contents lists available at ScienceDirect Pattern Recognition

    Get PDF
    journal homepage: www.elsevier.com/locate/pr Edge-preserving smoothing using a similarity measure in adaptive geodesi

    Digits Recognition on Medical Device

    Get PDF
    With the rapid development of mobile health, mechanisms for automatic data input are becoming increasingly important for mobile health apps. In these apps, users are often required to input data frequently, especially numbers, from medical devices such as glucometers and blood pressure meters. However, these simple tasks are tedious and prone to error. Even though some Bluetooth devices can make those input operations easier, they are not popular enough due to being expensive and requiring complicated protocol support. Therefore, we propose an automatic procedure to recognize the digits on the screen of medical devices with smartphone cameras. The whole procedure includes several “standard” components in computer vision: image enhancement, the region-of-interest detection, and text recognition. Previous works existed for each component, but they have various weaknesses that lead to a low recognition rate. We proposed several novel enhancements in each component. Experiment results suggest that our enhanced procedure outperforms the procedure of applying optical character recognition directly from 6.2% to 62.1%. This procedure can be adopted (with human verification) to recognize the digits on the screen of medical devices with smartphone cameras
    corecore