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This paper introduces a novel image-dependent filtering approach derived from concepts known in math-
ematical morphology and aiming at edge-preserving smoothing of natural images. Like other adaptive
methods, it assumes that the neighbourhood of a pixel contains the essential information required for
the estimation of local features in the image. The proposed strategy essentially consists in a weighted
averaging combining both spatial and tonal information. For that purpose, a twofold similarity measure
is calculated from local geodesic time functions. This way, no prior operator definition is required since
a weighting neighbourhood and a weighting kernel are determined automatically from the unfiltered
input data for each pixel location. By designing relevant geodesic masks, two adaptive filtering algorithms
are derived that are particularly efficient at smoothing heterogeneous areas while preserving relevant
structures in greyscale and multichannel images.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As a special case of filtering, image smoothing is commonly ap-
plied in a processing chain to improve the visual appearance in an
image and to simplify subsequent image processing stages such as
feature extraction, image segmentation or motion estimation [1,2].
The problem of image smoothing is to reduce undesirable distor-
tions, due to the presence of noise or the poor image acquisition
process, and that negatively affects image analysis and interpreta-
tion processes, while preserving important features such as homo-
geneous regions, discontinuities, edges and textures [3–5]. In this
context, edge-preserving smoothing (EPS) techniques have been ex-
tensively used in computer vision and image processing in order to
improve the performance of higher level processing stages [3,4,6].
There have been in particular substantial efforts in developing adap-
tive operators where the filter parameters can vary over different
regions of the processed image. Indeed, such operators are desirable
when both the image and the inherent noise have non-stationary be-
haviour. They can adapt to local image variation, so that they intrin-
sically allow the processing of image pixels with different strategies
depending on the region they are positioned.
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Strong relations have been established between a number of
widely used adaptive EPS filters for digital image processing [4,7,8].
A generic idea underlying most of them is to update a pixel's in-
tensity through a local weighted averaging of its neighbour pixels'
intensities within a reduced processing window. Two important is-
sues when designing this kind of filters are the selection of the pro-
cessing window and the determination of the proper weights for
averaging in accordance with the local features found in the image
such as discontinuities or noise. In this paper, we propose an EPS ap-
proach derived from concepts known in mathematical morphology
(MM) that does not require the definition of any processing window
or any weights as it determines them automatically and adaptively
from the input image. For that purpose, a pairwise discrete geodesic
time function computed over an appropriate geodesic mask provides
an adaptive neighbourhood and a local measure of the twofold spa-
tial and tonal similarity around every pixel, so that the smoothing
operation at a given pixel depends not only on the spatial location
of its neighbour pixels but also on their tonal distance to it. Based on
this approach, two efficient image-dependent algorithms are derived
that are able to exploit different radiometric, geometrical and mor-
phological image characteristics for EPS filtering. These algorithms
are particularly suited to enhance the visual information in discrete
images (e.g. remote sensed and medical data) while avoiding the
creation of spurious artifacts through diffusion-like processes.

The rest of the paper is organised in the following manner.
Section 2 presents a review of related works on adaptive EPS fil-
tering and establishes a link with the EPS filter based on similarity
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measures in adaptive geodesic neighbourhoods. In Section 3, we re-
call the fundamental notions of MM geodesic path and geodesic time
within the discrete framework. We present the design of appropri-
ate discrete adaptive neighbourhoods accounting for the local image
content. In Section 4, we introduce the new filtering methodology
based on the estimation of local geodesic time and derive from it
two EPS algorithms. An extension of the algorithms to handle multi-
channel images is presented in Section 5. In Section 6, experiments
are led on natural images and results are discussed. The conclusion
and a description of future foreseen developments are presented in
Section 7.

2. Related literature

This section establishes a relationship between several relevant
areas of EPS filtering and our approach. The idea of adaptive filtering
itself is not new, and many different methods have been proposed
over the years for EPS. Detailed overviews and evaluations can be
found in [4,6,9,10]. Themost common form of smoothing of an image
f : Z2 → Z is a low-pass filtering, which can be expressed as the
discrete convolution operation in the spatial domain [1]:

[f ⊗ K](x) =
∑

y∈Z2

K(x, y)f (y), (1)

where x = (x, y) is the spatial location, f (x) is the local intensity in
x and K is a kernel function (also called `window') that is assumed
to be normalised:

∑
y∈Z2K(x, y) = 1, and of finite size as it is often

desirable to estimate the true f (x) from a local neighbourhood [8].
Depending on the functional form of K, different weighted averaging
can be performed. The most straightforward and fastest technique
consists in performing linear smoothing [1] by applying a kernel
K invariant (i.e. with fixed size and weights) over space. Such ap-
proach assumes stationarity: the image is regarded as consisting of
many regions in which the signal is stationary and ergodic. It yields
good results when all the pixels in the window come from the same
`population' as the central pixel, as it uniformly smooths out the im-
age. Difficulties arise when the window overlaps a discontinuity: on
the boundaries between two regions, it leads to significant blurring
caused by averaging of distinct populations. The main drawback is
that image stationarity is not guaranteed, even within small neigh-
bourhoods. The use of an invariant kernel K is not suited for images
featuring structural information on various scales and with differ-
ent shapes. This undesirable effect can be reduced using adaptive
smoothing techniques that tune themselves to the contextual details
of the image [3,11,12].

Adaptive techniques can apply both linear and nonlinear
algorithms but are mainly characterised by filters that adjust to the
local features, e.g. noise or discontinuities, detected over every lo-
cation on the image. Such filters are more robust than non-adaptive
filters and, therefore, they are appropriate for EPS. They can be sub-
divided into two main operator classes [13]: the adaptive–weighted
operators [14] and the spatially adaptive operators [15]. The oper-
ator of the first class typically involves a fixed-size sliding window
with coefficients depending on the local image statistics. The adap-
tive neighbourhood of the second class surrounds the central pixel,
but its shape and size depend on the local image content rather than
being arbitrarily defined. Following Eq. (1) the adaptive strategy
implies to locally varying the kernel over image regions: around a
pixel x to be updated, one uses a kernel K = Kx with proper weights
and size depending on the actual image variability in the neighbour-
hood of x. But how should one find the proper domain and weights
for the kernel?

The issue of finding the proper area for the kernel was addressed
by the so-called sigma filters [16] and the structure-adaptive

anisotropic filter [17]. Ideally, the kernels should be wide in direc-
tions of homogeneous intensity and narrow in directions with im-
portant structural edges. To this end, other smoothing algorithms
adapt the local kernel using both the location of the nearby sam-
ples and their intensity values [3,6]. The bilateral filter, introduced in
[5] as a generalisation of the Gaussian convolution, exploits the idea
of averaging pixel greylevels with weights depending on distances
in the range and space domains. Namely, the kernel Kx takes into
account two factors: spatial distances ds(x, y) and tonal distances
dt(f (x), f (y)). Introducing a tonal weight, the mixing of different in-
tensity `populations' is prevented. Such approach achieves both a
strong denoising effect and an efficient sharpening of image. Strong
connections have been established in the literature [4] between the
bilateral filter and other nonlinear filtering strategies based on adap-
tive smoothing [3], M-estimators [6], Beltrami flow [18], local-mode
finding [19] or mean-shift analysis [20]. In particular, the weighted
averaging performed through Eq. (1) turns out to be an implemen-
tation of PDE-based diffusion [21], where the diffusion function is
guided by local gradient strengths [7]. As a defining characteristic,
iterative operations are often involved in these latter approaches,
which, coupled with the fact that adaptive smoothing algorithms
generally converge to a piecewise constant image [21], causes what
we refer to as the termination problem, e.g. the difficulty to deter-
mine a suitable stopping time, at least in a general and automatic
manner.

Following the line of thought of [5], we introduce a single-step
adaptive approach that associates to every pixel of the input image
a weighted convolution of sample points within an adaptive neigh-
bourhood, where the weights depend not only on the spatial dis-
tances but also on the tonal distance to the considered pixel. The
adaptive concept results from both the spatial adjustment of the op-
erational kernel and the adjustment of the weights upon the kernel,
as it estimates adaptively the neighbour sample points and the as-
sociated weights from the input data. Unlike the bilateral filter, it
enables to account for the correlation between the location of the
pixels and their values during the averaging process. Compared to
other nonlinear techniques involving iterative operations [21], the
proposed approach presents the advantage of not depending upon
any termination time.

3. Defining adaptive geodesic neighbourhoods

Geodesic transforms are classical operators in image analysis
[22–24]. We propose to use the geodesic time-based approach
known in MM to build adaptive neighbourhood in the image graph.

3.1. Geodesic time on discrete graph

The geodesic distance between two points of a 2D connected set
is defined as the length of the shortest (so-called geodesic) path(s)
linking these points and remaining in the set [22,24]. The concept of
geodesic time [25] generalises this idea for two pixels x and y on a
greylevel image g (the geodesic mask): it is estimated as the smallest
amount of time necessary for travelling from x to y over any path P
lying on the hyperplane defined by the values of g. In this context,
the image g is seen as a `height map', e.g. a surface embedded in a
3D space, with the third coordinate given by its greylevel values.

As digital images are defined on discrete grids, the intensity val-
ues along a continuous path may not be known. This is why the
geodesic time is related to cost functions in digital graphs and is
practically computed on discrete paths [25,26]. Let us define a path
P=Px→y, with length l−1 going from x to y:P is a l-tuple (x1, . . . ,xl)
of pixels such that x1 =x, xl =y, and (xi−1,xi) defines adjacent pixels
for all i ∈ [2, l]. The time corresponds then to a cost function, denoted
by �, for moving on the discrete greylevel mask g alongP. Each pair
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[xi,xi+1] of P is assigned a cost value �i(g)= �(g,xi,xi+1) defined as
a function of the length |xi − xi+1| and of the intensities g(xi) and
g(xi+1). Here, the length |xi − xi+1| refers to the elementary step in
the image graph: it is typically the Euclidean distance or the optimal
Chamfer distance [27]. The total time for travelling over the image
g along P is then equal to the sum of all the local costs.

�g(P) =
l−1∑
i=1

�i(g). (2)

Following, the geodesic time separating x and y is expressed by:
�g(x, y)=min{�g(P)|P is a path linking x to y}. This definition is eas-
ily extended for computing the geodesic time between a point x and
a reference set Y of g: �g(x,Y)=miny∈Y�g(x, y) (with the special case
�g(x,Y) = 0 when x ∈ Y). By associating each point x of the mask g
with its geodesic time to the reference set Y , the geodesic time func-
tion can finally be defined as

[Tg(Y)](x) = �g(x,Y). (3)

There is a formal resemblance between this function and the con-
tinuous framework of the eikonal equation [28] since both involve
the sweeping of the image by a propagating front. In particular, the
reciprocal of the local speed of propagation in [28] is analogous to
the cost function � underlying the calculation of Tg(Y).

3.2. Locally adaptive geodesic neighbourhoods

Using the previous definitions, a new family of adaptive neigh-
bourhoods accounting for the local variability in an image f can be
built. The key issue is the selection of a mask g and a cost function �
that appropriately combine both spatial and tonal information in f .

Following the adaptive neighbourhood paradigm of [12], we de-
rive two distinct classes of neighbourhoods that account for the local
image content (Fig. 1):

• Neighbourhoods based on the �-time—Aiming at generalising the
concept of grey-weighted distance transform [23,29], the time ��

g (P)
necessary for travelling on a path is defined in [25] as the surface
area under this path. By applying this definition locally and setting
the mask to the image gradient: g = ∇f , pixels separated by high
gradient magnitude values are considered to be `further' away than
those separated by low values. Indeed, this way, the incremental
cost ��

i (∇f ) is implicitly assumed to be1

��
i (∇f ) = 1

2 (|∇f (xi)| + |∇f (xi+1)|) · |xi − xi+1|, (4)

so that the time propagates through the lowest values of |∇f |: the
lower it is, the faster the propagation.

• Neighbourhoods based on the �-time—In order to account for both
the distance between points and the roughness of the surface, the
authors of [30] rather use the weighted distance on curves space so
that ��

g (P) minimises the changes in greylevel values. With this
approach and a mask set to the image itself: g = f , two pixels
are close if there exists a path linking them along which intensity
variations are low. The cost ��

i (f ) is given by

��
i (f ) = 1

2 |f (xi) − f (xi+1)| · |xi − xi+1|. (5)

1 Note that the �-time is not a distance: according to Eq. (4), it is possible for
the cost ��

i to be null between two adjacent pixels. However, it can be remedied
by using an addition instead of a multiplication in the estimation of the elementary
costs. The same applies to ��

i , see Eq. (5).

The intuitive interpretation of this definition is that it represents
the minimal amount of ascents and descents to be travelled to
reach a neighbour pixel [30]. It also represents a measure of the
shortest path drawn on the projection of the 2D image onto the
spatial–tonal domain.2

These definitions can be connected to various MM techniques
[13,31]. In particular, the �-neighbourhoods can be seen as an
extension of the geodesic dilation of [25], obtained by threshold-
ing the geodesic time function computed over greylevel images.
The �-derived windows coincide with the so-called morphological
amoebas of [32] where the neighbourhoods are calculated by in-
troducing a distance defined over greylevel values only. It is also
closely related to the minimal path of [33]. More generally, this
latter approach can be related to the notions of connected com-
ponents, flat and quasi-flat zones [34], where spatially adaptive
neighbourhoods are built through specific criterion mapping (e.g.
on intensity or local contrast). The geodesic approach leads to ef-
ficient implementation because classical shortest path algorithms
can be applied such as the Dijkstra's graph search algorithm [23,26].
The computational complexity of the �-time T�

g (x) estimated
from a single pixel x can be reduced to O(n logn), where n is the
number of pixels reached from x in the spatial domain, through
the use of priority queue data structures [24,26]. Such structures
take advantage of the fact that images are finite and guarantee
that pixels are processed only once. The �-time computation is
also essentially Dijkstra's algorithm, slightly modified to allow for
multiple passes over pixels. Indeed, the incremental cost ��

i (g)

depends on the cost of the previous P�
x1→xi , thus one cannot in

general redefine g as the sum of fixed weights, as it is the case
when implementing ��

i . The geodesic mask is in fact constantly
updated through the propagation of the time �� [26,30]. Therefore,
the implementation of T�

g (x) has a complexity of O(kn logn), the
graph connectivity index k being the maximal number of visits of a
pixel.

We can observe the way neighbourhoods adapt to the image
context on the geodesic level-sets of Fig. 2. In particular, in the first
column, the closest neighbourhood of the marker pixel is essen-
tially composed of pixels belonging to the road, e.g. to the same
elongated structure. In the second column, the pixels across the
road do not belong to the closest neighbourhood of the marker
as the cost of crossing the road is high when considering either
the gradient or the image variations. For noisy and homogeneous
regions (third and fourth columns), the neighbourhoods are rather
isotropic. The geodesic times can pull pixels belonging to the same
class closer and propel those belonging to different classes fur-
ther away. It has the ability to find the neighbourhood with an
arbitrary shape and can preserve the intrinsic structure of the
image. This is a particularly desirable property for local adaptive
filtering.

4. Designing geodesic filtering kernels

According to Section 2, the most common strategy encountered
in EPS consists in building local adaptive kernel functions [1,4]. We
propose to exploit the information carried out by the geodesic time
to estimate a local similarity measure accounting for the image vari-
ability and use it define the kernel.

2 The geodesic time introduced herein in the discrete case can also easily be
extended to the continuous framework. Namely, when considering a continuous
path P and a mask g : R

2 → R, the geodesic �- and �-functions are, resp. expressed
as: ��

g (P) = ∫
P |g(t)|dt and ��

g (P) = ∫
P |(dg(t))/dt|dt, with | · | a norm on R.
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Fig. 1. Geodesic time propagation over a greylevel satellite image. Left: a marker pixel x is located at the intersection of two roads in the image (red mark); middle: T�
g (x)

estimated using the spatial gradient g=∇f ; right: T�
g (x) computed over the image variations g= f . A cyclic greylevel palette has been used for visualising the geodesic fronts.

Fig. 2. Examples of local geodesic neighbourhoods. Top: excerpts (21 × 21 pixels) of the image of Fig. 1 with a marker pixel x located in the centre (red square); the
level-sets of the time functions T�

g (x) (middle) and T�
g (x) (right), resp. estimated using g = ∇f and f , are quantised in the range [0,15], from low (0) to high (15) time

values. From left to right: x is, resp. located on a thin linear structure, near a strong discontinuity, inside a homogeneous textured area and in a noisy region.

4.1. Local pairwise similarity

In EPS, a similarity measure between the central pixel and its
neighbourhood pixels is usually used to adjust the contribution of
each pixel to the filtering kernel. Introducing such a measure is a
good way to circumvent mixing different intensity populations, and,
thus, critically determines the performance of the filter. A possible
approach to measure similarity consists in using both the location
of the nearby samples and their intensity values. We observe in
particular that calculating the tonal weight dt in bilateral filtering
[5] implicitly introduces an estimate of the local gradient between
neighbour pixels.

Similarly, we propose here a local pairwise similarity between
a pixel x and any pixel y in its neighbourhood measured as a
(positive monotonically) decreasing function of the geodesic time

between them

K(x, y) = �([Tg(x)](y)), (6)

so that the shorter the time between x and y, the stronger their
similarity. The underlying idea is that the geodesic time function
Tg(x) estimated at every pixel location x will define the intrinsic
neighbourhood relationship(s) between x and its neighbours when
the 2D image is projected onto the 3D (spatial–tonal) `height map'. A
large number of functions � have been proposed in the literature for
EPS techniques [6,8]. In bilateral filtering [5], the constituent weights
are usually Gaussian functions, but others are not excluded [35].

4.2. Geodesic kernels

EPS is performed by applying the weighted average of Eq. (1) with
the similarity measure of Eq. (6) as the filtering kernel. Moreover, a
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parameter � that controls the relative influences of tone and space
in the calculation of K is introduced: the cost of crossing pixels is
refined to � · �i. Finally, using a Gaussian function G� with standard
deviation � (considering the concurrence of the parameter �, we set
� = 1), we are able to define new adaptive kernels:

• �-kernel over image gradient—The values of |∇f | are regarded as
the cost of crossing a pixel in the so-called �-kernel

K�(x, y) = G�

⎡
⎣� ·

l−1∑
i=1

��
i (∇f )

⎤
⎦ , (7)

where the sum is performed along the (shortest) geodesic path
P�

x→y with length l − 1 linking the central pixel x to a neighbour
pixel y. As a consequence, in the averaging, higher weights are
assigned to the nearby sample pixels that involve low gradient
values alongP�

x→y , as compared to samples that are either further
away from x or separated by higher gradient values.

• �-kernel based on image variations—Higher weights are assigned
to the nearby sample pixels which are linked to x and with similar
greylevel values. Hence, along a geodesic pathP�

x→y , the �-kernel
is defined as

K�(x, y) = G�

⎡
⎣� ·

l−1∑
i=1

��
i (f )

⎤
⎦ . (8)

Performing the geodesic filtering with either of these two kernels is
in fact equivalent to operate a progressive one-dimensional filtering,
as the averaging is performed along a geodesic path. The shortest
paths defined with these algorithms are similarly constrained to the
surface of the `height map': the path between two close pixels can
be long, if there is a high `ridge' or deep `valley' in the intensity
or gradient map between them. Still, Eqs. (4) and (5) clearly define
distinct geodesic paths, and thus distinct models (see Fig. 1).

Even if the spatial distance (ds in the bilateral filter) does not
appear explicitly in Eq. (6), it is implicitly taken into account by the
geodesic time functions as the length of the geodesic paths. Its role is
to limit the spatial extent of the filter. The respective tonal distance
(equivalent to dt) enables the suppression of the contributions of
pixels belonging to different connected components (see Fig. 3). This
way, pixels from across a sharp feature are given less weight because
they are not connected to the central pixel through any geodesic
path and, therefore, they are penalised by the geodesic functions.
Typically, if a pixel is located near an edge, then the intensity values
of pixels on the same side of the edge will have much stronger
influence on the filtering.

5. Extension to multichannel images

The study so far has dealt with scalar (greylevel) images. We
discuss here some special aspects of the algorithm when it comes
to the processing of multichannel images. Of particular interest is
the integration of the contrast information contained in the various
channels into one meaningful result.

Existing multichannel image processing solutions can be dis-
cerned between marginal methods, which operate on each channel
separately, and vector methods, which process the pixels as vectors
[1,36]. In particular, in applying our algorithm to multichannel im-
age, one could envision a marginal procedure where the kernels K�

and K� are applied unaltered to the different channels separately.
However, in order to preserve the inherent correlation that exists
between the different channels, the vector approach is preferred in
general. Its major advantage is that it takes into account the actual

multispectral edge information, so that further processing will be
more efficient to preserve edges.

Our approach, in both its theoretical foundation (comparison of
distance) and its implementation (use of priority queues), is highly
dependent on the definition of an order on the range space. Unfor-
tunately, it is not possible to define uniquely the ordering of multi-
valued data. The previous operators need, therefore, to be adjusted
when dealing with multichannel images. Let us consider such an im-
age f : Z2 → ZM , with channels (f1, . . . , fM),M>1, we then propose
the following filtering strategy to take into account the actual mul-
tichannel information:

• For the �-filter—A multichannel gradient should be intro-
duced for extending the spatial gradient of Eq. (7). A way
to achieve this is given by the first fundamental form [37]:
	 = (

∑
m(�fm/�x)

2,
∑

m(�fm/�x)(�fm/�y);
∑

m(�fm/�x)(�fm/�y),∑
m(�fm/�y)

2),which is a local measure of directional contrast
based upon the gradients of the M bands,3 and thus reflects
the multispectral edge information of f . Indeed, the direction of
maximal and minimal changes are given by the eigenvectors of
this quadratic form while the corresponding (positive) eigenval-
ues 
+

�
− denote the rate of contrast change. In particular, the
largest eigenvalue 
+ is known to be the derivative energy in the
most prominent direction. For a greylevel image (M= 1), it is ver-
ified that 
+ = |∇f |2, while 
− = 0 [37]. Taking into account these
observations, 
+ is a natural estimate for the norm of the image
gradient in Eq. (4). This leads to a kernel filter identical to the one
proposed by [39] in the continuous framework. Other measures
can be considered, e.g. 
+ − 
− which is similar to 
+ corrected
by the energy contributed by noise [40]. In practice, we need to
compute the 2 × 2 matrix 	 for each image point x in order to
apply Eq. (4).

• For the �-filter—A multivariate ordering criterion (e.g. distance
measures or similaritymeasures) should be defined for considering
the local variations of the multichannel image [36]. In particular,
the norm in Eq. (5) must be understood as a multispectral norm.
In practice, we use the L∞ norm on the different channels; then
we have, when comparing the geodesic time, ��

i (f )� t if and only
if |fm(xi) − fm(xi+1)|� t for all m = 1, . . . ,M. As a consequence, the
�-filter algorithm depends on the dimension of the tonal space,
which may increase its processing time.

6. Experiments and discussion

In this section, experiments are conducted on digital images with
the proposed EPS filters. The results are discussed and comparedwith
the outputs of some standard EPS filtering techniques encountered
in the literature.

6.1. Limitations of the original approach and suggested improvements

A limitation of both geodesic filters regards the treatment of the
(scalar or vector) intensity f (x) of the input central pixel x. As already
underlined in [19], by computing a spatial average, we make the
local smoothing very dependent on the correctness of this value.
Using f (x) as the `reference' tonal data for the estimation of the local
geodesic time assumes that this value is more or less noise free:
this is naturally a questionable assumption when building a noise
suppression filter and it may have effect on the result. Especially it is
not applicable when impulse noise affects the image. Following the

3 Note that this expression is equivalent to that of the unsmoothed structure
tensor ∇f T∇f generalised from scalar data to vector data [38].
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Fig. 3. Geodesic weighting kernels estimated on the excerpts of Fig. 2. The weights of the kernels K� (top) and K� (bottom) were quantised in [0,255], from (0) low to high
(255) values, and visualised in 3D.

suggestion of [19], the filtered image can be improved through a prior
processing step aiming at cancelling possible outliers present in the
image, e.g. using a (possibly vector-valued) median filter [2,41] or a
median filter followed by self-dual reconstruction [42]. It implicitly
introduces an additional `pilot image', similar to that of [32], which
provides an initial estimate of the true value.

Problems can also occur with the �-filter when the signal-to-
noise ratio of the image is low (and, as a consequence, its derived
local gradient vectors are noisy). To remedy this, one can perform
a spatial regularisation using 2D Gaussian convolution for removing
noise prior to filtering. However, it may cause important disconti-
nuities to be blurred. It is in fact preferable to use the 2 × 2 matrix
derived from the smoothed structure tensor [38] instead of the first
fundamental form (see Section 5) for estimating the eigenvalues of
the gradient tensor. The experiments in the following were led using
this latter improvement. In addition, other discontinuity measures
can be used to remedy overlocality, a weakness of spatial gradient.

Other problems concern the integration of the multichannel in-
formation. Our approach assumes that the information in the dif-
ferent channels is correlated to some degree. However, the spectral
information might be highly correlated in some parts of the image
and uncorrelated in other parts. Moreover, it makes the intrinsic as-
sumption of comparable significance of each channel: it supposes
that the level of noise is similar in all channels. It could be, there-
fore, useful to assign different weights to the components according
to their significance and their level of noise, but this issue is not
discussed in this paper.

6.2. Proposed implementation

In practice, due to memory and computational limitations, the
support of the kernel K is limited in size, e.g. sample pixels that
are further away than a given distance, say �, to the central pixel x
are not considered. As a consequence (see Section 3.2), calculating
the �-time from every pixel in the image results in a complexity
of O(N · �2 log�2) where N is the total number of pixels, while the
running time of the �-filter amounts to O(N ·k�2 log�2). An alterna-
tive approach consists in limiting the filtering to the sample pixels
reached from x with a time inferior to a given threshold value: this
is simply achieved by checking if the time is above this threshold

when one extracts an element from the priority queue, and by stop-
ping, in such case, the propagation process.

In terms of processing time, the implementation of the geodesic
filters also depends on the selected distance �. Running the �-filter
on a 2.4GHz-CPU to denoise a 3-bands image of size 400×400 pixels
(see Fig. 5) took between 2.9 s when � = 3 and 33 s when � = 11.
When applied on the same images and with identical parameters,
the �-filter took between 5.8 and 51 s. These results however, do
not incorporate any optimisation part. In particular, based on 1-byte
encoded scalar images, a finite table of pre-computed G�-values can
be used to further reduce the computational time. Interestingly, the
best filters are usually obtained for small windows (typical values of
� = 5, 7, see Fig. 6), which ensures a reasonable processing time.

6.3. Results and evaluation

The performance of the �- and �-filters in enhancement is first
qualitatively evaluated through the subjective inspection of the vi-
sual appearance of filtered images (Figs. 4 and 5). Quantitative re-
sults based on the PSNR estimation [43] are also presented in Fig. 6,
where the geodesic filters were applied on images with different
noise distributions. Both filters result in rather satisfying filtered ver-
sions of the original images, smoothing homogeneous areas while
preserving important structures such as edges (Figs. 4 and 5). Indeed,
the generic filtering approach enhances features through the com-
bined spatial and tonal actions represented in the geodesic similar-
ity measure of Eq. (6). While the role of the (implicit) spatial weight
in the kernels is to limit the spatial extent of the filter, the effect of
the tonal weight is to suppress the contributions of pixels from dif-
ferent intensity populations (see Section 4.2). Therefore, since only
pixels sharing similar intensity with the current pixel have signif-
icant weights in the averaging, edges are not diffused across and
noise is effectively suppressed. Close inspection to the images after
a processing step also shows that they are good at enhancing subtle
texture regions and they suppress small elements corresponding to
the main heterogeneities. Namely, when considering the edge map
obtained after running our filters (Fig. 4(c)), it appears that the main
edges are not altered, while the number of noisy edges are reduced.
Indeed, the main features are usually still present in the filtered im-
ages, even in the case of strong smoothing (Fig. 4(c), right). This is
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Fig. 4. Examples of filtering applied to greylevel and colour images by varying the parameters (�,�) of the geodesic filters, as described in Sections 4 and 5 for colour
images. In all experiments, the parameter � = 1 of the Gaussian weighting function is constant. (a) Influence of the window parameter �. From left to right: the �-filter is
applied on a fingerprint image (left) with � set to 3 (soft smoothing), 7 and 20 (strong); the parameter � = 2 is constant. (b) Influence of the control parameter �. From
left to right: the �-filter is applied on a colour retina image (left) by setting � to 7 (soft smoothing), 3 and 1 (strong); the parameter � = 7 is constant. (c) Highlighting the
features in filtered images. Top, from left to right: smoothing of a greylevel retina image (left) using the �-filter with (� = 7,� = 11) and the �-filter with (� = 5,� = 7) and
(� = 1,� = 3). Bottom: respective edge map computed as the magnitude of the Sobel gradient [1].

due to the fact that the filtering performed in this approach can be
reduced to a one-dimensional process along geodesic paths, so that it
is in particular able to preserve thin elongated structures. In general,
the image structures are not geometrically damaged, which would
be an issue for further processing like classification or segmenta-
tion. In this context, both the �-filter based on image gradient and
the �-filter based on image variations show high capability at EPS
when applied on noise-free images or on images perturbated with
Gaussian distributed noise (Figs. 4–6). However, due to its intrinsic
dependence on the intensity differences, the �-filter will rather en-
hance than smooth outlier pixels in the case of impulse noise.

The global strength of smoothing can be controlled by the pa-
rameter �, which amplifies or attenuates the influence of the local
contrast in parts of an image (Fig. 4). Small � values lead to an in-
crease of the amount of blurring so that details have been sacri-
ficed to the effect of denoising, producing a visual effect similar to
the well-known cartoon-like effect (Fig. 4). When � increases, the
geodesic time on the embedded surface becomes more sensitive to
image deformations: the cost of crossing pixels increases. For inter-
mediate � values, both filters result in a less diffusive effect. With

higher values of �, almost all contrasts are preserved and filtering
has very little effect on the image. Fig. 6 shows the respective influ-
ences of the parameters � and � in the denoising process. A good
compromise is generally found for kernels with size, � between 5
and 7 (defining a set of 25–50 pixels for estimating the central fil-
tered pixel) and smoothing factors, � between 5 and 7 (weighting
the respective contribution of domain and range). In the particular
case of Gaussian and uniform noise (Fig. 6, first two columns), these
latter � values seem to be optimal for the considered �-filter, and do
not depend much on the kernel size. On the contrary, filters using
lower � values result in averaging the noise and, therefore, altering
the structures when � increases, whereas filters with high � values,
and thus little smoothing effect, perform better denoising when �
increases.

6.4. Comparison with other methods

In Fig. 7, we present the filtered images obtained by applying
different EPS techniques known in the literature on a single noisy
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Fig. 5. Multispectral image denoising: geodesic filters compared to the amoeba filter of [32] when applied on a multichannel satellite image perturbated by a Gaussian
distributed noise. First column: original noisy image (top) and images filtered using amoebas with radius 3 (middle) and 5 (bottom). Second column: 
+ estimated from the
structure tensor of the input image (top) and used by the �-filter with parameters � = 3,� = 3 (middle) and � = 5,� = 5 (bottom). Third column: Gaussian image (top) used
as a `pilot' for the �-filter with parameters � = 3,� = 3 (middle) and � = 5,� = 5 (bottom). The geodesic filters reach higher PSNR than the amoeba filter on this example.

image. For each method, we selected the outputs that were the
most satisfying visually. The geodesic filters and the bilateral one [5]
result in similar smoothed images. However, the latter uses, as a
simple and intuitive choice for the adaptive kernel, separate terms
for penalising the spatial and tonal distances. Breaking the filtering
kernel into spatial and tonal terms (ds and dt) weakens the estima-
tor performance since it limits the degree of freedom and ignores
correlations between the location of the pixels and their values. In
particular, pixels contributing to the filter are spatially unrelated to
each other. By contrast, the proposed twofold similarity measure
based on the geodesic time over an image-derived manifold enables
to account for the correlations between the pixels' location and their
values. Moreover, the (Euclidean) distance used in the bilateral fil-
ter [5], while being easier to calculate, does not take into account
the image intensity values between two image pixels and thus ig-
nores connectivity [18]: a pixel can have a relatively high weight
although it belongs to a different object than that of the central pixel.
The geodesic filters enable to penalise pixels that belong to a differ-
ent connected component, as filtering is performed along geodesic
paths. One advantage of the bilateral filter over our approach is that
its computational complexity can be reduced to O(K · N logN) with
K independent of the window size � [35].

The anisotropic diffusion [21] is an iterative technique that de-
pends upon a termination time. Its major drawbacks include the fact
that the solution has to be found using an often time-consuming iter-
ative procedure and that it is very difficult to find a suitable stopping
time. Our approach is a non-iterative estimation technique, which
makes it more efficient and more stable. The adaptive Gaussian
filtering of [44] adjusts locally the smoothing scale in a scale-space
framework, through a minimal description length criterion, and it
is not iterative. However, it also results in more blurred images
(Fig. 7). The mean-shift algorithm [20] operates only on image in-
tensities (be they scalar or vector-valued) and does not account for
neighbourhood structure in image. Moreover, it is not fast because it
requires many iterations to achieve the desired output. By adopting
an adaptive strategy, our approach addresses the lack of flexibility
of morphological operators like area open-closing, top-hat, based on
the difficult choice of a structuring element [31]. Other morpholog-
ical EPS filters based on self-dual reconstruction [42] are also able
to smooth out texture and noise while preserving edge and corners
(Fig. 7), but, while they consider information regarding the tonal dis-
tance and the connectivity, they do not integrate the spatial distance
into the reconstruction process so that they usually flatten consider-
ably the image. Note, finally, the difference between the �-filter and
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Fig. 6. The geodesic filters are applied on the greylevel image of Fig. 1, resp. perturbated with Gaussian noise (first column, with PSNR = 24.14dB), uniform noise (second
column, 24.93dB) and impulse noise (third column, 15.82dB). On each graph, the PSNR obtained with either the �-filter (top) or the �-filter (bottom) for �=1 (represented
with symbol ×), 2 (∗), 3 (�), 5 (•), 7 (◦) and 15 (	) are presented in function of the window size �, varying from 3 to 11.

Fig. 7. Image denoising: the results of smoothing the satellite greylevel image of Fig. 1, corrupted with Gaussian distributed noise (PSNR=24.33dB, top left), are displayed (in
this order) for: the Gaussian filter of [44] (27.89dB), the morphological self-dual reconstruction from the median filter of [42] (29.74dB), the bilateral filter of [5] (28.45dB),
and the geodesic �-filter (31.5dB) and �-filter (31.11dB).

the amoeba filters of [32]: not only the geodesic neighbourhoods are
considered in the approach, but also the geodesic values themselves,
as they are used to define the weights of the samples in the kernel,
while the amoebas consider mean or rank statistics instead (Fig. 5).

7. Conclusion

In this paper, we introduced a new heuristic methodology for
adaptive EPS fromwhich we derive two efficient filtering algorithms.
The basic idea is similar to that of spatial–tonal filtering approaches,

which consist in employing both geometric and intensity closeness
of neighbour pixels. The originality of our approach lies in the defi-
nition of a new similarity measure combining both spatial and tonal
information and based on the local estimation of geodesic time func-
tions. It performs around each pixel a weighted convolution, making
use of: (i) a new set of weighting neighbourhoods through an adap-
tive selection of the pixels with non-negligible contribution to the
filter, (ii) a new weighting function through an automatic estimation
of the weights according to the local geodesic pattern. By designing
relevant geodesic masks, we can define new smoothing filters that



J. Grazzini, P. Soille / Pattern Recognition 42 (2009) 2306 -- 2316 2315

enable the simplification and/or the denoising of images, depending
on the input data and on the target purpose. The experiments per-
formed herein show the effectiveness of the proposed approach in
comparison to some standard EPS techniques. It can potentially pre-
serve important structural elements, such asmultichannel edges, and
eliminate degradations. Like other spatial–tonal based techniques,
the degree of smoothing in the image can be furthermore controlled
to adjust the fidelity to the original image. By blurring small dis-
continuities and sharpening edges, the image structures are not ge-
ometrically damaged, which might be fatal for further processing.
Therefore, this approach can be used as a preprocessing stage in
feature extraction and/or image classification as it enables to create
homogeneous regions, instead of pixels, as carriers of features. It is
of particular interest for filtering data for which a discrete approach
should be adopted, instead of a continuous one, in order to avoid
creating spurious artifacts through diffusion-like processes. Poten-
tial applications are foreseen in the fields of medical imaging and
remote sensing.

Possible improvements concern mainly the selection of the dif-
ferent parameters involved in the filtering strategy. One issue re-
gards the spatial extent of the window used for estimating the local
geodesic time functions: herein, we used a finite spatial windowwith
size � for limiting the calculations. Another issue concerns directly
the estimation of the local geodesic time: the calculation could be
refined by normalising locally the local cost �i of pixel crossing when
propagating the geodesics. The selection of the smoothing control
parameter � should also be further investigated. Further experiments
should be led on strongly textured images and confronted to other
recently developed techniques, in particular those that use a non-
local approach—with neighbourhoods not necessarily spatially con-
nected to the central pixel—for filtering [8]. Finally, it should also be
compared to classical solutions to the differential wave-front prop-
agation equations, especially to fast marching methods [28].
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